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Abstract

The bootstrap is a popular data-driven method
to quantify statistical uncertainty, but for modern
high-dimensional problems, it could suffer from
huge computational costs due to the need to re-
peatedly generate resamples and refit models. We
study the use of bootstraps in high-dimensional
environments with a small number of resamples.
In particular, we show that with a recent “cheap”
bootstrap perspective, using a number of resam-
ples as small as one could attain valid coverage
even when the dimension grows closely with the
sample size, thus strongly supporting the imple-
mentability of the bootstrap for large-scale prob-
lems. We validate our theoretical results and com-
pare the performance of our approach with other
benchmarks via a range of experiments.

1. Introduction

The bootstrap is a widely used method for statistical uncer-
tainty quantification, notably confidence interval construc-
tion (Efron & Tibshirani, 1994; Davison & Hinkley, 1997;
Shao & Tu, 2012; Hall & Martin, 1988). Its main idea is
to resample data and use the distribution of resample esti-
mates to approximate a sampling distribution. Typically, this
approximation requires running many Monte Carlo repli-
cations to generate the resamples and refit models. This is
affordable for classical problems, but for modern large-scale
problems, this repeated fitting could impose tremendous
computation concerns. This issue motivates an array of re-
cent works to curb the computation effort, mostly through a
“subsampling” perspective that fits models on smaller data
sets in the bootstrap process, e.g., Kleiner et al. (2012);
Lu et al. (2020); Giordano et al. (2019); Schulam & Saria
(2019); Alaa & Van Der Schaar (2020).

In contrast to subsampling, we consider in this paper the
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reduction in bootstrap computation cost by using a fewer
number of Monte Carlo replications or resamples. In par-
ticular, we target the following question: Is it possible to
run a valid bootstrap for high-dimensional problems with
very little Monte Carlo computation? While conventional
bootstraps rely heavily on adequate resamples, recent work
(Lam, 2022a;b) shows that it is possible to reduce the resam-
pling effort dramatically, even down to one Monte Carlo
replication. The rough idea of this “cheap” bootstrap is to ex-
ploit the approximate independence among the original and
resample estimates, instead of their distributional closeness
utilized in the conventional bootstraps. We will leverage
this recent idea in this paper. However, since Lam (2022a;b)
is based purely on asymptotic derivation, giving an affirma-
tive answer to the above question requires the study of new
finite-sample bounds to draw understanding on bootstrap
behaviors jointly in terms of problem dimension p, sample
size n and number of resamples B.

To this end, our main theoretical contribution in this paper
is three-fold:

General Finite-Sample Bootstrap Bounds: We derive
general finite-sample bounds on the coverage error of con-
fidence intervals aggregated from B resample estimates,
where B is small using the “cheap” bootstrap idea, and
B = oo for traditional quantile-based bootstrap methods
including the basic and percentile bootstraps (e.g., Davison
& Hinkley (1997) Section 5.2-5.3). Our bounds reveal that,
given the same primitives on the approximate normality of
the original and each resample estimate, the cheap bootstrap
with fixed small B achieves similar coverage error bounds
as conventional bootstraps using infinite resamples. This
also simultaneously recovers the main result in Lam (2022a),
but stronger in terms of the finite-sample guarantee.

Bootstrap Bounds on Function-of-Mean Models Explicit
in p, n and B: We specialize our general bounds above to
the function-of-mean model that is customary in the high-
dimensional Berry-Esseen and central limit theorem (CLT)
literature (Pinelis & Molzon, 2016; Zhilova, 2020). In partic-
ular, our bounds explicit on p, n and B conclude vanishing
coverage errors for the cheap bootstrap when p = o(n), for
any given B > 1. Note that the function-of-mean model
does not capture all interesting problems, but it has been
commonly used — and in fact, appears the only model used



in deriving finite-sample CLT errors for technicality reasons.
Our bounds shed light that, at least for this wide class of
models, using a small number of resamples can achieve a
good coverage even in a dimension p growing closely with
n.

Bootstrap Bounds on Linear Models Independent of p:
We further specialize our bounds to linear functions with
weaker tail conditions, which have orders independent of p
under certain conditions on the L; norm or Orlicz norm of
the linearly scaled random variable.

In addition to theoretical bounds, we investigate the empiri-
cal performances of bootstraps using few resamples on large-
scale problems, including high-dimensional linear regres-
sion, high-dimensional logistic regression, computational
simulation modeling, and a real-world data set RCV1-v2
(Lewis et al., 2004). To give a sense of our comparisons
that support using the cheap bootstrap in high dimension,
here is a general conclusion observed in our experiments:
Figure 1(a) shows the coverage probabilities of 95%-level
confidence intervals for three regression coefficients with
corresponding true values 0, 2, —1 in a 9000-dimensional
linear regression (in Section 4). The cheap bootstrap cov-
erage probabilities are close to the nominal level 95% even
with one resample, but the basic and percentile bootstraps
only attain around 80% coverage with ten resamples. In
this example, one Monte Carlo replication to obtain each
resample estimate takes around 4 minutes in the virtual ma-
chine e2-highmem-2 in Google Cloud Platform. Therefore,
the cheap bootstrap only requires 4 minutes to obtain a sta-
tistically valid interval, but the standard bootstrap methods
are still far from the nominal coverage even after more than
a 40-minute run. Figure 1(b) shows the average interval
widths. This reveals the price of a wider interval for the
cheap bootstrap when the Monte Carlo budget is very small,
but considering the low coverages in the other two methods
and the fast decay of the cheap bootstrap width for the first
few number of resamples, such a price appears secondary.

Notation. For a random vector X, we write X* as the ten-
sor power X®*. The vector norm is taken as the usual
Euclidean norm. The matrix and tensor norms are taken
as the operator norm. For a square matrix M, tr(M) de-
notes the trace of M. I,,«, denotes the identity matrix in
RP*P and 1, denotes the vector in R whose components
are all 1. ® denotes the cumulative distribution function of
the standard normal. C?(RP) denotes the set of twice con-
tinuously differentiable functions on RP. Throughout the
whole paper, we use C' > 0 (without subscripts) to denote
a universal constant which may vary each time it appears.
We use C1, Cs, . .. to denote constants that could depend on
other parameters and we will clarify their dependence when
using them.

2. Background on Bootstrap Methods

We briefly review standard bootstrap methods and from
there the recent cheap bootstrap. Suppose we are interested
in estimating a target statistical quantity ¢ := 1(Px ) where
() : P — Ris a functional defined on the probability mea-
sure space P. Given i.i.d. data X1, ..., X,, € RP following
the unknown distribution Px, we denote the empirical dis-
tribution as Px ,(-) := (1/n) Y7, I(X; € -). A natural
point estimator is 1[)n = 1/1(15)(7").

To construct a confidence interval from 1&,1, a typical be-
ginning point is the distribution of &n — 1) from which we
can pivotize. As this distribution is unknown in general,
the bootstrap idea is to approximate it using the resample
counterpart, as if the empirical distribution was the true
distribution. More concretely, conditional on X1, ..., X,
we repeatedly, say for B times, resample (i.e., sample
with replacement) the data n times to obtain resamples
{X3,..., X}, b =1,..., B. Denoting P, as the re-
sample empirical distributions, we construct B resample
estimates 7 := 1/)(I5§<lfn). Then we use the «/2 and
(1 — «/2)-th quantiles of ¢*" — 1), called Qos2 and qi_q /2,
to construct [zﬁn — ql,a/Q,l/AJn — qay2) @s a (1 — «)-level
confidence interval, which is known as the basic bootstrap
(Davison & Hinkley (1997) Section 5.2). Alternatively, we
could also use the /2 and (1—cv/2)-th quantiles of 9?, say
q;/Q and q’l_a/Q, to form [q’oé/27 q'l_a/z], which is known as
the percentile bootstrap (Davison & Hinkley (1997) Section
5.3). There are numerous other variants in the literature,
such as studentization (Hall, 1988), calibration or iterated
bootstrap (Hall, 1986a; Beran, 1987), and bias correction
and acceleration (Efron, 1987; DiCiccio et al., 1996; DiCic-
cio & Tibshirani, 1987), with the general goal of obtaining
more accurate coverage.

All the above methods rely on the principle that zﬁn — 1) and

A;‘,, — 77[;,,, (conditional on X4,...,X,) are close in distri-
bution. Typically, this means that, with a /n-scaling, they
both converge to the same normal distribution. In contrast,
the cheap bootstrap proposed in Lam (2022a;b) constructs a
(1 — a)-level confidence interval via

Un —tB1—a/2Sn,58,Un + tB,1—a/25n,B] , (D

where S7 ; = (1/B) 2521(1[);” — 1), and tB1—aj2 is
the (1 — a/2)-th quantile of ¢, the ¢-distribution with de-
gree of freedom B. The quantity STQL) g resembles the sample

variance of the resample estimates ﬁ:b’s, in the sense that as
B — o, S,ZL’ 5 approaches the bootstrap variance V ar, (1&2)
(where Var,(-) denotes the variance of a resample condi-
tional on the data). In this way, (1) reduces to the normality
interval with a “plug-in” estimator of the standard error term
when B and n are both large. However, intriguingly, B does
not need to be large, and SZ,B is not necessarily close to
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Figure 1. Empirical coverage probabilities and confidence interval widths for different numbers of resamples in a linear regression.

the bootstrap variange. Instez}d, the jdea is to consiQer the
joint distribution of 1, — 1, ¥xt — by, ... EB — ), that
is argued to be asymptotically independent as n — oo
and B fixed, which subsequently allows the construction
of a pivotal ¢-statistic and gives rise to (1) for fixed B. A
more detailed explanation on the cheap bootstrap in the
low-dimensional case (i.e., p is fixed) is given in Appendix
A.

3. High-Dimensional Bootstrap Bounds

As explained in the introduction, we aim to study the cov-
erage performance of bootstraps in high-dimensional prob-
lems, focusing on the cheap bootstrap approach that allows
the use of small computation effort. We describe our re-
sults at three levels, first under general assumptions (Sec-
tion 3.1), then more explicit bounds under the function-of-
mean model and sub-Gaussianity of X (Section 3.2), finally
bounds for a linear function under weaker tail assumptions
on X (Section 3.3).

3.1. General Finite-Sample Bounds

We have the following finite-sample bound for the cheap
bootstrap:

Theorem 3.1. Suppose we have the finite-sample accuracy
for the estimator ¥y,

sup [P(Vii(thn = ¥) <2) - B(/o)| < &, @)

zeR

and with probability at least 1 — 3 we have the finite-sample
accuracy for the bootstrap estimator 1},

sup | P (VA = $a) <o) —0@/0)| < & )

zER

where o > 0, & and & are deterministic quantities, and
P* denotes the probability on a resample conditional on
the data. Then the coverage error of (1) satisfies, for any
B >1,

P(|t — 4] < tB1-a/250,8) — (1 —a)
<28 +2B& + B. 4)

Condition (2) is a Berry-Esseen bound (Bentkus, 2003;
Pinelis & Molzon, 2016) that gauges the normal approxima-
tion for the original estimate 1[),7 Condition (3) manifests a
similar normal approximation for the resample estimate 1[1;
and has been a focus in the high-dimensional CLT literature
(Zhilova, 2020; Lopes, 2022; Chernozhukov et al., 2020).
Both conditions (in their asymptotic form) are commonly
used to establish the validity of standard bootstrap methods.
Theorem 3.1 shows that, under these conditions, the cover-
age error of the cheap bootstrap interval (1) with any B > 1
can be controlled. Note that Theorem 3.1 is very general in
the sense that there is no direct assumption applied on the
form of () — All we assume is approximate normality in
the sense of (2) and (3). Due to technical delicacies, in the
bootstrap literature, finite-sample or higher-order coverage
errors are typically obtainable only with specific models
(Hall, 2013; Zhilova, 2020; Lopes, 2022; Chernozhukov
et al., 2020), the most popular being the function-of-mean
model (see Section 3.2) or even simply the sample mean.
In contrast, the bound in Theorem 3.1 that concludes the
sufficiency in using a very small B is a general statement
that does not depend on the delicacies of v(-). Moreover,
by plugging in suitable bounds for £1, &2, 5 under regularity
conditions, Theorem 3.1 also recovers the main result (The-
orem 1) in Lam (2022a). The detailed proof of Theorem
3.1 is in Appendix D (and so are the proofs of all other
theorems). Below we give a sketch of the main argument.



Proof sketch of Theorem 3.1. Step 1: We write the cover-
age probability as the expected value (with respect to data)
of a multiple integral with respect to the distributions of

\/5(1/32 — @n) (denoted by Q*, conditional on data), i.e.,
P(jp — | < i1 a/2Sn B)
=P ‘ ¥n — w) - Stpi-a/2
VESEL )2
- F dQ*(z5) - - - dQ*
/\ﬁwn DL <tp1 0o Q"(z5) Q=)
| VEE. 3B :

®)

Step 2: Suppose (3) happens and denote this event by A
which satisfies P(A¢) < 8. Foreachb = 1,..., B, given
all other z;/,b" # b, the integration region is of the form
zp € (—00,—q] U [g,00) for some ¢ > 0. Then we can
replace the distribution Q* by the distribution of N (0, o2)
(denoted by Fy) with controlled error given in (3) and obtain

E /W<t31 a/2 dQ (ZB)dQ (Zl)

Sty #4/B

dPy(zB) -+ - dPo(21)

+ Ry, (6)

where |R;| < 2B&; + 8 accounts for the error from (3) and
the small probability event A°.

Step 3: Following the same logic in Step 2 and noticing that
the integration region for /7 (1, — v) is [—q, ¢] for some
¢ > 0, we can also replace the distribution of v/n(1b,, — )
by the distribution Py with controlled error |Rs| < 2&;
according to (2):

/ dpo(ZB)“-dPo(Zl)
VA (dbn =) <tp_a/2
VIt 55/ B

= / ™ -, dPQ(ZB) e dP()(Zl)dP()(Zo)
VEL e

+ Ry

=1—a+ Rs. (7)

Step 4: Plugging (6) and (7) back into (5), we can express
the coverage probability as a sum of the nominal level and
the remainder term:

P(|¢ — ¥n| < tBi1—a/25n,B) =1 —a+ Ry + Ry

with error |Ry + Rg| < 2&; + 2B&; + . This gives our
conclusion. O]

Theorem 3.1 is designed to work well for small B (our target
scenario), but deteriorates when B grows. However, in the
latter case, we can strengthen the bound to cover the large-B
regime with additional conditions on the variance estimator
(see Appendix B.1).

We compare with standard basic and percentile bootstraps
using B = oco. Below is a generalization of Zhilova (2020)
which focuses only on the basic bootstrap under the function-
of-mean model.

Theorem 3.2. Suppose the conditions in Theorem 3.1 hold.
If Qa2 @1—ay2 are the a/2-th and (1 — a/2)-th quantiles
of 1[1: - 1[),L respectively given X1, ...,X,, then a finite-
sample bound on the basic bootstrap coverage error is

|P(¢n —Q1—a/2 < w < 'lﬁn - qa/g) — (1 — 04)|
<28 428+ 25. (3)

I Q9 @y are the a/2-th and (1 — ov/2)-th quantiles

of@; respectively given X1, ..., X,, then a finite-sample
bound on the percentile bootstrap coverage error is

1P(qh2 SV < @1 q)—(1—a)] < 261+282+25. (9)

In view of Theorems 3.1 and 3.2, the cheap bootstrap with
any fixed B can achieve the same order of coverage error
bound as the basic and percentile bootstraps with B = oo,
in the sense that

(1/2) EBQuantile < EBCheap S B EBQuantilea (10)

where EBcpeap is the RHS error bound of (4) and EB quangile 18
that of (8) or (9). This shows that, to attain a good coverage
that is on par with standard basic/percentile bootstraps, it
suffices to use the cheap bootstrap with a small B which
could save computation dramatically.

Besides coverage, another important quality of confidence
interval is its width. To this end, note that for any fixed B,
(3) ensures that /1S, g = 04/ X2B /B (unconditionally as
n — oo with proper model assumptions) . Therefore, the
half-width of (1) is approximately tp 1_q/20/ X5/ (nB)
with expected value

t =t 1
ag = g
B,1—a/2 B,1—a/2 \/ Bn B/2 )

1D
where I'(+) is the gamma function. Since the dimensional
impact is hidden in o which is a common factor in the
expected width as B varies, we can see p does not affect the
relative width behavior as B changes. In particular, from
(11) the inflation of the expected width relative to the case




B = 001is417.3% for B = 1, and dramatically reduces to
94.6%, 24.8% and 10.9% for B = 2,5, 10, thus giving an
interval with both correct coverage and short width using a
small computation budget B.

In the next sections, we will apply Theorem 3.1 to obtain
explicit bounds for specific high-dimensional models. Here,
in relation to (10), we briefly comment that the order of the
coverage error bounds for these models is of order 1/4/n,
both for the cheap bootstrap (which we will derive) and
state-of-the-art high-dimensional bootstrap CLT. This is
in contrast to the typical 1/n coverage error in two-sided
bootstrap confidence intervals in low dimension (see Hall
(2013) Section 3.5 for quantile-based bootstraps and Lam
(2022a) Section 3.2 for the cheap bootstrap).

3.2. Function-of-Mean Models

We now specialize to the function-of-mean model ¢ = g(u)
for a mean vector 4 = E[X] € RP and smooth function
g : RP — R, which allows us to construct more explicit
bounds. The original estimate @n and resample estimate ’(/AJ:Lb
are now given by g(X,) and g(X;") respectively, where
X, denotes the sample mean of data and X * denotes the
resample mean of X% ..., X ?. We assume:

Assumption 3.3. The function g(z) € C?(RP) has Hes-
sian matrix H,(x) with uniformly bounded eigenvalues,
that is, 3 a constant Cg, > 0 S.t. Sup,cg» | Hy(2)a| <
Chu,lla|?>,Ya e RP.

Assumption 3.4. X is sub-Gaussian, i.e., there is a constant
72 > 0s.t. Elexp(a’ (X — p))] < exp(||al|?>72/2),Va €
RP. Furthermore, X has a density bounded by a constant
Cx and its covariance matrix X is positive definite with the
smallest eigenvalue \y; > 0.

Based on Theorem 3.1, we derive the following explicit
bound:

Theorem 3.5. Suppose the function g satisfies Assump-
tion 3.3 and random vector X satisfies Assumption 3.4.
Moreover, assume ||V g(p)|| > Cvg+/p for some constant
Cvg > 0. Then we have

’P(|g(,u) - g(Xn” < tB71—oz/2Sn B) - (1 - Oz)|
< 6 L pe [ e C’Hgml/gtr(E) CH, m2/3
~n N /no? nd/6g
a7
no? CyvgVas P n
211 ) 1 e (1+ logn>3/21
A2 VN2 p Vn
7'4\/]3 logn 1/2 7' \f logn 1/2
++ 1+ —
Asn P )\gn P

s \f logn
2 ()
\ Be < o | rlogn)?”?
U2 A1
3 1
+)\‘3/Z ( 0gn> logn—l—logp)\/logn) ,
wheremzy = B[|Vg(u) " (X—p)’], maa := B[[| X —u||’]

2 = Vg(u)"SVg(p), C is a universal constant and Cy
is a constant only depending on Cx.

Theorem 3.5 is obtained by tracing the implicit quantities in
Theorem 3.1 for the function-of-mean model, via extracting
the dependence on problem parameters in the Berry-Esseen
theorems for the multivariate delta method (Pinelis & Mol-
zon, 2016) and the standard bootstrap (Zhilova, 2020). In
particular, the sub-Gaussian assumption is required to de-
rive finite-sample concentration inequalities, in a similar
spirit as the state-of-the-art high-dimensional CLTs (e.g.,
Chernozhukov et al. (2017); Lopes (2022)). On the other
hand, the third moments such as || E[(X — 1)?]|| (operation
norm of the third order tensor E[(X — 11)3]), m3; and ma3z
are due to the use of the Berry-Esseen theorem and a mul-
tivariate higher-order Berry-Esseen inequality in Zhilova
(2020), which generally requires this order of moments. The
bound in Theorem 3.5 can be simplified with reasonable
assumptions on the involved quantities:

Corollary 3.6. Suppose the conditions in Theorem 3.5 hold.
Moreover, suppose that 7,Cpy,,Cy = O(1), Cyy,As =
e(1), (WI* = O(p), 0* = O(p) and ||E[(X -
w)3]|| = O(1). Then as p,n — o,

|P(|g(ﬂ') - g(Xn)| < tB,lfa/2Sn,B) -

:on(<1+10g"> b

1 logn\ /2
+— <1—|— i ) (logn + logp)y/logn | .

(1—a)|

n
Vn

Consequently, for any fixed B > 1, the cheap bootstrap

confidence interval is asymptotically exact provided p =

o(n), i.e.,

lim  P(lg(1) — g(

pP,N—00
p=o(n)

Xn)| S tB,l—a/QSn,B) =1-oa.

In Corollary 3.6, the cheap bootstrap coverage error shrinks
to 0 asn — oo if p = o(n), i.e., the problem dimen-
sion grows slower than n in any arbitrary fashion. Al-
though there is no theoretical guarantee that the choice of
p = o(n) is tight, we offer numerical evidence in Section
4 where the cheap bootstrap works with a small B when
p/n = 0.09 but it fails (i.e., over-covers the target with a



quite large interval width) when p/n = 0.25. Such a dif-
ference indicates that p = o(n) can be tight in some cases.
Recall that ||E[(X — u)?]|| denotes the operator norm of
the third order tensor E[(X — y)3], and so the assumption
[|E[(X — u)3]]] = O(1) holds if the components of X are
independent (or slightly weakly dependent). Other order
assumptions in Corollary 3.6 are natural. An example of
the function-of-mean model is g(u) = ||u||?, used also
in Zhilova (2020), whose confidence interval becomes a
simultaneous confidence region for the mean vector p.

3.3. Linear Functions

We consider a further specialization to linear g where, in-
stead of sub-Gaussanity of X, we are now able to use weaker
tail conditions. Assume g(x) = g{ x + g2, where g; € R?
and go € R are known. Then g(X,,) and g(X ) are essen-
tially the sample mean and resample mean of i.i.d. random
variables g X; + ¢g2,i=1,...,n.

First, we consider the case where g/ (X — p) is sub-
exponential, i.e., ||g] (X — p)|ly, = inf{A > 0
Elun(|g] (X — m)|/N)] < 1} < oo, where || - |, is the
Orlicz norm induced by the function 1 () = e* — 1. Sub-
exponential property is a weaker tail condition than sub-
Gaussianity; see e.g. Vershynin (2018) Sections 2.5 and 2.7.
Under this condition, we have:

Theorem 3.7. Suppose g is a linear function in the form
g(z) = gz + go. Assume that 0 = g/ Xg, > 0 and
llgy (X — p)||¢y < oc. Then for any n > 3, we have
the following finite-sample bound on the cheap bootstrap
coverage error

|P(lg(1) — 9(X0)| < tgi—a/2SnB) — (1 — o)

c Ellg] (X — p)|?]
Sy - Yokl L G 1 |
R N

g (X — )[4, log™ (n)
+ BC . :
(o2 \/ﬁ

where C' is a universal constant.

Note that the bootstrap in Theorem 3.7 effectively applies
on the univariate g; (X — ). Nonetheless, proving Theo-
rem 3.7 requires tools from high-dimensional CLT (Lopes,
2022; Chernozhukov et al., 2020), as this appears the only
line of work that investigates finite-sample bootstrap er-
rors (for mean estimation). The order of the bound in
terms of p is controlled by g, (X — u), and so if the lat-
ter is well-scaled by its standard deviation o in the sense
that El|g] (X —p)/0]*], |91 (X — ) /olly, = O(1) (e.g,
X follows a multivariate normal distribution), then the or-
der is independent of p, which means the error goes to 0
for any p as long as n — oo. However, if the orders of
Ellg) (X — p)/ol*] and ||gi" (X — ) /c ]|, depend on p,

then the growing rate of p must be restricted by n to ensure
the error goes to 0.

Next, we further weaken the tail condition on g{ (X — p).
We only assume E[|g; (X — )| < oo for some ¢ > 4. In
this case, we have the following:

Theorem 3.8. Suppose g is a linear function in the form
of g(x) = g{ & + go. Assume that % = g Xg, > 0 and
Ellgy (X — w)|9] < oo for some q > 4. Then for any
n > 3, we have the following finite-sample bound on the
cheap bootstrap coverage accuracy

|P(lg(1) — 9(Xn)| < tpi—aj2Sn.B) — (1 —a)]
BCi+/logn

— nl/2-3/(29)

VElT (x - u)/cr“]} e

max { Ellg] (X ~ ) /o|]/",
Ellg! (X — )]

a3y/n ’
where C is a universal constant and C1 is a constant de-
pending only on q.

The implication of Theorem 3.8 on the choice of p is similar
to Theorem 3.7. In parallel to the above, explicit finite-
sample bounds for standard quantile-based bootstrap meth-
ods can also be obtained by means of Theorem 3.2 under
the assumptions in Theorems 3.5, 3.7 or 3.8 (see Appendix
B.2).

4. Numerical Experiments

We consider various high-dimensional examples:

Ellipsoidal estimation: The estimation target is g(u) =
||12]|?, where p is the mean of X € RP with ground-truth
distribution N(0.021,,0.011,x,). Sample size n = 10°
and dimension p = 2.5 x 10%.

Sinusoidal estimation: The estimation target is g(p) =
P sin(u;), where = (p;)F_; is the mean of X € R?
with ground-truth distribution V' (0, 0.017,,,,). Sample size
n = 10° and dimension p = 2.5 x 10%.

Linear regression with independent covariates: Con-
sider the true model Y = X Tﬂ + ¢, where X € RP fol-
lows N(0,0.011,4,) and € ~ N(0, 1) independent of X.
The first, second and last 1/3 components of 5 = (3;)Y_,
are 0, 2, —1 respectively. We estimate [ given i.i.d. data
(X;,Y:)™ , with n = 10° and p = 9000.

Logistic regression with independent covariates: Con-
sider the true model Y € {0,1}, X e R?, P(Y = 1|X) =
exp(X " B)/(1+exp(X T B3)), where X ~ N(0,0.011,x,).
The first 300 components of 3;’s are 1, the second 300
components —1 and the rest 0. As suggested in Sur &
Candes (2019), we choose such values of ;’s to make
sure Var(X ") = 6 does not increase with p so that
P(Y = 1]|X) is not trivially equal to 0 or 1 in most cases.



We estimate 3 given i.i.d. data (X;,Y;)", withn = 10°
and p = 9000.

Stochastic simulation model: Consider a stochastic com-
puter communication model used to calculate the steady-
state average message delay (Cheng & Holland (1997); Lin
et al. (2015); Lam & Qian (2022); see Appendix C.3 for de-
tails). This problem can be cast as computing (P, . .., Pp)
where 1) represents this expensive simulation model (due to
the need to run very long time in order to reach steady state)
and P;’s denote the input distributions, p = 13 in total. The
data sizes for observing these 13 input models range from
3 x 10% to 6 x 10%.

A real data example: We run logistic regression on the
RCV1-v2 data in Lewis et al. (2004). This dataset contains
n = 804414 manually categorized newswire stories with
a total of p = 47236 features. “Economics” (“ECAT”) is
chosen as the +1 label. We target coefficient estimation.

Linear regression with dependent covariates: We con-
sider the same linear regression setup as before but with
two different distributions of X. One is X ~ N(0,0.01X)
where the components of ¥ are %;; = 0.8/°~7l. For this
distribution, the i-th component and j-th component of X
are more dependent when ¢ and j are closer to each other.
The other distribution is X ~ N(0,0.01AAT™), where A is
a random matrix whose components are i.i.d. from U (0, 1).
The two cases are referred to as “exponential decay” and
“random covariance matrix” respectively.

Logistic regression with dependent covariates: We con-
sider the same logistic regression setup as before but change
the distribution of X into the exponential decay distribution
mentioned above. Here we do not consider the random co-
variance matrix case because the significant noisiness of X
makes Var(X ") so large that P(Y = 1|X) is trivially
equal to 0 or 1 in most cases, which is also avoided in other
work (e.g., Sur & Candes (2019)).

Ridge regression with p > n: Consider the true linear
model Y = XT3 + ¢, where e ~ N(0,1) is indepen-
dent of X. The first, second and last 1/3 components of
B = (8:)F_, are 0,2, —1 respectively. We consider three
distributions of X. The first one is X ~ N(0,0.011,x,)
(referred to as “independent”). The other two are exponen-
tial decay distribution and random covariance matrix men-
tioned above. Given i.i.d. data (X, Y;)" ; with n = 8000
and p = 9000, we estimate 5 by means of ridge regression
which minimizes ||Y — X 3||* + A||8||2.

(Regularized) logistic regression with varying dimen-
sions p: We use the same setup of logistic regression with
independent covariates as before (e.g. n = 10°) but use
p € {12000, 15000, 18000, 21000, 25000} to test the valid
boundary of p (i.e., the maximum p that makes cheap boot-
strap work) in this problem. Moreover, we also run a regu-

larized version by adding the /5 regularization term ||3||? /2
to the log likelihood function of logistic regression to see
the effect of regularization.

Setups and comparison benchmarks. In each example
above, our targets are 95%-level confidence intervals for the
target parameters. We test four bootstrap confidence inter-
vals: 1) cheap bootstrap (1); 2) basic bootstrap described
in Section 2; 3) percentile bootstrap described in Section 2;
4) standard error bootstrap that uses standard normal quan-
tile and standard deviation of ﬁ:b’s inlieu of {1 _q/2 and
Sy, B respectively in (1). For each setup except the real-data
example, we run 1000 experimental repetitions, each time
generating a new data set from the ground truth distribu-
tion and construct the intervals. We report the empirical
coverage and average interval width over these repetitions.
For examples with more than one target estimation quantity,
we further average the coverages and widths over all these
targets. For the high-dimensional linear regression with
independent covariates, we additionally show a box plot of
the coverage probabilities and confidence interval widths
of each individual 3;. We vary the number of resamples B
from 1 to 10 in all examples and report the running time (i.e.,
model fitting time for one point estimate and B bootstrap
estimates; the time for outputting the confidence intervals
using these estimates is negligible compared to the model
fitting time) in the virtual machine e2-highmem-2 in Google
Cloud Platform. Some examples have larger scale and thus
are run in the virtual machine e2-highmem-8 with larger
memory and better CPU, whose running time will be starred
().

Results and discussions. Tables 1-5 and Figure 2 describe
our results (Tables 2-5 are delegated to Appendix C.1 due
to the limitation of space), where we report B = 1,2, 5, 10.
“CB”, “BB”, “PB” and “SEB” in Figure 2 stand for the cheap
bootstrap, basic bootstrap, percentile bootstrap and standard
error bootstrap respectively.

Coverage probability: According to Table 1, the cheap boot-
strap performs the best in terms of the coverage probabilities
in almost all cases (except the real-data example where we
cannot validate and only report the interval widths). In all
but three entries, the cheap bootstrap gives the closest cov-
erages to the nominal 95% among all considered bootstrap
methods, and in all but three entries the cheap bootstrap
coverages are above 95%. In contrast, other approaches are
substantially below the nominal level except for very few
cases with B = 10. For example, in the ellipsoidal estima-
tion, cheap bootstrap coverage probabilities are above 95%
for all considered B’s, while the highest coverage among
other bootstrap methods is 82.1% even for B = 10. These
observations corroborate with theory since unlike standard
bootstrap methods, the cheap bootstrap gives small cover-
age errors even with very small B. Note that when B = 1,



the entries of other bootstrap methods are all “N.A.” since
quantile-based approaches cannot even output two distinct
finite numbers using one resample, and standard error boot-
strap uses B — 1 in the denominator of the sample variance.
Similar results are also observed from Tables 2 and 3, which
confirm that even for distributions with dependent compo-
nents and ridge regression with p > n, the cheap bootstrap
continues to work and outperform other bootstrap meth-
ods. In terms of the individual plot in Figure 2, the cheap
bootstrap has coverages close to the nominal level 95% for
almost all 3;’s for any B. On the other hand, standard er-
ror bootstrap coverages are above 90% only when B = 10
while the quantile-based bootstrap coverages are still below
85% for most of the (3;’s even for B = 10.

Interval width: Cheap bootstrap intervals are wider than
other bootstrap intervals. However, these widths appear to
decay very fast for the first few B’s. In all examples, they de-
crease by around 2/3 from B = 1 to B = 2 and by around
4/5 from B = 1 to B = 10, hinting a quick enhancement
of statistical efficiency as the computation budget increases.
Note that while the other bootstrap intervals are shorter,
they fall short in attaining the nominal coverage. It is thus
reasonable to see the larger widths of the cheap bootstrap
intervals which appear to push up the coverages by the right
amounts.

Valid boundary of p: Table 4 displays the results of logistic
regression with varying p. We observe that the confidence
widths have a dramatic increase when p increases to 21000
from 18000, which hints that the validity boundary of p
under this setting should be at most 21000. Moreover, even
for p = 15000 and p = 18000, the coverage probabilities
are almost 100% which is overly large compared to the
nominal level 95%. Combining with our existing favorable
results for p = 9000, for this problem it appears the validity
boundary could be indeed around 9000. As a comparison,
Table 5 displays the results of regularized logistic regression.
We can see although the interval widths seem to converge
with the regularization, the coverage probabilities are still
overly large for large p. For this regularized example, the
validity boundary could be around 12000 or 15000, which is
larger than the previous boundary. This contrast shows that
regularization could be helpful to achieve a valid confidence
interval when p is large. But no matter whether we add
the regularization, it seems the validity boundary is always
around the order p = o(n) for logistic regression. The
results here, combined with the favorable results for ridge
regression with p > n in Table 3, provide evidence that the
precise validity threshold of p could be model-dependent.

5. Discussions and Other Connections

In this paper, we show how to run the bootstrap that achieves
statistically valid coverage with very low cost, in terms of
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Figure 2. Box plots of empirical coverage probabilities and confi-
dence interval widths of all 3;’s for different numbers of resamples
in a linear regression.

the number of resamples, even when the problem dimension
grows closely with the data size. This is made possible by
using sample-resample independence from a recent “cheap”
bootstrap perspective. We provide general finite-sample
coverage error bounds to support our validity, and special-
ize these bounds to explicit models including function-of-
mean models with sub-Gaussian tails and linear models with
weaker tail conditions. We discuss how our approach can
operate with as low as one resample in attaining valid inter-
val coverage in large sample. At the same time, the interval
constructed with one resample tends to be wide, but fortu-
nately shrinks quickly as the number of resamples increases
from one even slightly. We run a wide set of numerical
experiments to validate our theory and show the outperfor-
mance of our method compared to other benchmarks. As
our numerical experiments hint that the tight growth rate of
p in terms of n could be model-dependent, a future investi-
gation is to establish more precise finite-sample bounds that



Table 1. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the first six numerical
examples. The closest coverage probability to the nominal 95% level among all methods in each setting is bold.

Cheap Bootstrap Basic Bootstrap Percentile Bootstrap ~ Standard Error Bootstrap . )
Example ) ) ) ) Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.
1 96.0% 0.069 N.A. N.A. N.A. N.A. N.A. N.A. 9%
Ellipsoidal 2 97.3% 0.026 32.2% 0.002 5.5% 0.002 55.1% 0.006 15%
estimation 5 97.4% 0.016 66.0% 0.005 13.6% 0.005 70.1% 0.007 36%*
10 97.5% 0.014 82.1% 0.006 20.8% 0.006 73.6% 0.008 70%*
1 94.4% 0.958 N.A. N.A. N.A. N.A. N.A. N.A. 7*
Sinusoidal 2 952% 0.384 29.6% 0.051 352% 0.051 63.2% 0.142 12%
estimation 93.6% 0.248 71.2% 0.117 66.4% 0.117 86.4% 0.187 27*
10 94.4% 0.222 84.0% 0.156 83.2% 0.156 89.6% 0.196 52%
Linear 1 951% 0.68 N.A. N.A. N.A. N.A. N.A. N.A. 443
regression 2 951% 0.256 33.5% 0.038 33.5% 0.038 70.2% 0.105 666
(independent 5  95.2% 0.164 67.0% 0.078 67.0% 0.078 88.1% 0.123 1337
covariates) 10 95.2% 0.146 82.2% 0.103 82.2% 0.103 92.1% 0.128 2454
Logistic 1 96.1% 2.866 N.A. N.A. N.A. N.A. N.A. N.A. 50
regression 2 96.9% 1.074 39.7% 0.147 31.7% 0.147 73.4% 0.407 81
(independent 5  97.9% 0.685 77.9% 0.302 63.3% 0.302 91.0% 0.479 175
covariates) 10 98.4% 0.609 91.9% 0.400 77.7% 0.400 94.6 % 0.496 331
1 969% 1.757x1073 N.A. N.A. N.A. N.A. N.A. N.A. 1
Stochastic 2 988% 6417x107% 21.9% 6.962x107° 47.0% 6.962x107° 68.7% 1.930x104 2
simulation 5 997% 4.044x107% 432% 1.428x107* 904% 1.428x107* 87.1% 2.269x107* 3
10 100% 3.591x107% 55.6% 1.915x10~* 99.8% 1.915x10~* 92.6% 2.375%107* 5
1 N.A. 3.594 N.A. N.A. N.A. N.A. N.A. N.A. 156
Real 2 N.A. 1.361 N.A. 0.201 N.A. 0.201 N.A. 0.556 233
data N.A. 0.877 N.A. 0414 N.A. 0414 N.A. 0.658 464
10 N.A. 0.779 N.A. 0.547 N.A. 0.547 N.A. 0.682 849

are tight in some appropriate sense.

We close this paper by positioning our results in the broader
literature. First, our work is related to bootstrap cover-
age analysis. The commonest approach is to use the Edge-
worth expansion that reveals the asymptotic higher-order
terms in the coverage errors; see the comprehensive mono-
graph (Hall, 2013). It is only until recently when finite-
sample bounds on bootstrap appear, mostly in the high-
dimensional CLT literature where the target is sample mean
(Chernozhukov et al. (2017); Lopes (2022); Chernozhukov
et al. (2020) and references therein). They aim to prove a
uniform finite-sample bound of normal approximation of
the (bootstrap) sample mean over all hyperrectangles. An
alternative approach is to use Stein’s method (Fang & Koike,
2021).

Second, within the bootstrap framework, various approaches
have been proposed to reduce the Monte Carlo sampling ef-
fort by, e.g., variance reduction such as importance sampling
(Booth & Do, 1993), or analytic approximation especially
when applying iterated bootstraps (Booth & Hall, 1994;

Lee & Young, 1995). These methods, however, require
additional knowledge such as an explicit way to calculate
variance, or focus on tail estimation issue. The closest
work to the cheap bootstrap idea we utilize in this paper is
Hall (1986b) who investigates the number of resamples for
one-sided bootstrap intervals. Nonetheless, Hall (1986b)
suggests a minimum of 19 for B in a 95%-level interval,
obtained via an order-statistics calculation, which is still
much larger than the minimal choice B = 1 in the cheap
bootstrap.
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A. A More Detailed Explanation on the Cheap Bootstrap in the Low-Dimensional Case

This section aims to give more details on the cheap bootstrap method in the low-dimensional case discussed in Section 2.

Suppose we are interested in estimating a target statistical quantity ) := ¢)(Px ) where ¢)(-) : P — R is a functional defined
on the probability measure space P. Given 1.i.d. data X1, .., X, € R following the unknown distribution Px, we denote
the empirical distribution as Py () := (1/n) ., I(X; € -). A natural point estimator is ¢, := 1(Px,).

The cheap bootstrap confidence interval for ¢ is constructed as follows. Conditional on X1, ..., X,,, we independently
resample, i.e., sample with replacement, the data for B times to obtain resamples { X;°, ..., X*} b =1,..., B. Denoting
P3P as the resample empirical distributions, we construct B resample estimates 150 := ¥ (P3). A (1 — «)-level

confidence interval is then given by
QZJn - tB,l—(x/QSn,B; Jjn + tB,l—a/QSn,B] 3 (12)

where S7, ; = (1/B) Zszl(J)be — )2, and tB,1—a/2 is the (1 — a/2)-th quantile of ¢ g, the ¢-distribution with degree of
freedom B. Theorem 1 in Lam (2022a) shows that, under conditions on par with standard bootstrap methods, (12) is an
asymptotically exact (1 — «)-level confidence interval for any fixed B > 1, i.e.,

P € [hn —tB1 a/2SnB:¥n +tB1_a/250,5]) = 1 —a, as n — oo (13)

where P is the probability with respect to both the data and the randomness in the resampling process.

Here we explain the asymptotic argument that gives rise to (13). Under suitable conditions, the sampling distribution of an
estimate v,, and the distribution of a resample estimate 1);; are approximately equal. More formally, they are equal in the

asymptotic sense of two CLTs \/n(¥h, — ¥) % N (0, 02) for some o2 > 0, and /n ()X — 1) % N(0, 02) (conditional on
X1, ..., X, in probability) for the same 2. By means of a conditional argument, we can combine the two aforementioned
CLTs to obtain the following joint convergence

\/ﬁ(qﬁn - waqz;;l - QL’VH' . 'all&:B - qﬁn) i) (O'ZOaO-Zh cee 7UZB)7 as n — oo (14)

where Z;,,b = 0,..., B are i.i.d. standard normal. From (14), we can establish the convergence of a pivotal ¢-statistic
(1&,1 —)/Sn.B i tp which gives (13). The above shows that, with B fixed as small as 1, (12) already offers a coverage
close to the nominal level as n — oo. In this argument, the approximation accuracy of (1/},1 — )/ Sy, B by the t 5 random
variable is crucial. However, in the high-dimensional case when p — oo as n — oo, the joint CLT (14) may not hold and
thus the techniques in this paper are needed to establish the validity of the cheap bootstrap method.

B. Additional Theoretical Results

This section provides additional theoretical results. Appendix B.1 establishes an alternative finite-sample bound for the
cheap bootstrap that generalizes Theorem 3.1 to cover the large- B regime. Section B.2 provides finite-sample bounds for
standard quantile-based bootstrap methods under the conditions in Sections 3.2 and 3.3.

B.1. Further Finite-Sample Bound for the Cheap Bootstrap

The following result generalizes Theorem 3.1 to include both the small and large- B regimes:

Theorem B.1. Suppose we have the finite sample accuracy for the estimator 1[)71

sup |P(Vi(d ) <2)— @ (2 )| < &1, (15)

z€R

and with probability at least 1 — 3 we have the finite sample accuracy for the bootstrap estimator 1&:

sup| P (vl —da) < 0) - @ (2)] < &,

zER
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where o > 0 and P* denotes the probability on a resample conditional on the data. Further, suppose that the following
concentration inequality holds

1 B

P B bz::l(\/ﬁ( Aflb - /(/;n))2 —o|>& | <&, (16)

where Es is deterministic and o — E3 > 0. Then we have the following finite sample bound on the cheap bootstrap coverage
error

|P(¢) € [thn — ﬁB,ka/zsn,Bﬂ/A)n +1tB1—a/25,8]) — (1 — a)

2 2 &
< min {251 +2B& + (3,281 + 284 + \/;|tB,1a/2 — Z1_a/2| + \/;;tfmam} ;

where z,_ 2 is the (1 — o /2)-quantile of the standard normal.

The finite sample accuracy in Theorem B.1 consists of two parts. The first one 2&; + 2BE> + 3 works well when B is small
as shown in Sections 3.2 and 3.3 but it deteriorates when B grows. In contrast, the second part

2 2 &
281 + 264 + \/7|tB,1—a/2 — Z1—ay2| + \/7‘3 iB1-a/2 (17
T To

vanishes as B, n — oo but does not if B is bounded even if n — oo. Its behavior for bounded B is easy to see: The third
term \/2/7|tg 1_a/2 — Z1—qa/2| in (17) is bounded away from zero if B is bounded and thus (17) never converges to zero
even if n — oo. To explain why (17) vanishes as B,n — oo, first note that the first term 2&; is independent of B and
satisfies £ — 0 as n — oo by the Berry-Esseen Theorem for a reasonable model ¢(+) such as the function-of-mean model

in Section 3.2. Second, notice that \/ (1/B) Zszl (vn(zb — 1), ))? is the bootstrap estimator of the asymptotic standard
deviation o. Therefore, (16) is the concentration inequality for the bootstrap principle applied to the estimation of o and

would hold with a choice of £ and &4 satisfying £ — 0,&€4 — 0 as B, n — oo. Lastly, since tg 4 N(0,1) as B — oo,
by Lemma 21.2 in Van der Vaart (2000), we have tp 1 _o/2 — 21_q/2 a8 B — oo. Therefore, we can see the second part
(17) converges to zero as B,n — oo at any rate.

Under concrete assumptions on X as in Sections 3.2 and 3.3, explicit forms of £3 and &4 depending on B, n and the
distribution of X can be derived, based on similar arguments as the explicit bounds in Theorems 3.5-3.8. Then by studying
the order of these explicit bounds with respect to B, p and n, we can deduce a proper growth rate of dimension p = p(B, n)
which ensures a vanishing error as B, n — oo. The concentration inequality (16) seems unexplored in the literature and we
leave it as future work.

B.2. Explicit Finite-Sample Bounds for Quantile-Based Bootstrap Methods

In this section, in parallel to Theorems 3.5-3.8 for the cheap bootstrap, we provide a few explicit bounds for standard
quantile-based bootstrap methods under the same conditions.

The first result is in parallel to Theorem 3.5 under the function-of-mean model:

Theorem B.2. Suppose the conditions in Theorem 3.5 hold. If qo /2, q1—a 2 are the a/2-th and (1 — ov/2)-th quantiles of
9(X}) — g(X,,) respectively given X1, ..., X, then the finite-sample bound on the basic bootstrap coverage error is given
by

|P(9(Xn) = q1—ay2 < 9(1) < 9(Xn) = qaye) — (1 — a)

1/3 2/3 1/3,2/3
< 12 Lo me CHgm?,{ tr(X) N C’Hgm3/ N CHgmg){ m3é
- n V/nos V/no? n/6g no?

Cu, 7> 1 E[(X —p)?|| 1 3 1 32
L On, (1+ ogn> \/5_~_ | E[( 3/2M) ]||7+ 7;/2 (1+ ogn) L
CvgVAs p n A v\ P vn
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where C'is a universal constant and C1 is a constant only depending on C'x. Ifq;/2, qi_a/Q are the a/2-th and (1 —«/2)-th

quantiles of (X ) respectively given X1, ..., X,, then the finite-sample bound on the percentile bootstrap coverage error
is given by

[P(dn/2 < 9(1) < dq)_q) — (1 — )|

1/3 2/3 1/32/3
<12 Lo M CHgmg{ tr(X) n C’Hgm3é n CHgm?,{ mi)
~n V/no? Vno? n5/6¢g no?

. Cnm,7? (L+bgn>vﬁ>+HEKX—wwﬂH1+ 73 (1+h%n>”2:1
CygVAs p n PREEERVID Ve P Vn

Jr74\/5 (1 N logn)l/2 N 2/P (1 N logn>1/2 N /P (1 N logn))

Agn p Asn p AY2n p

4(logn)®/?  72(logn)3/? 73 ( log n) 1/2
+C + + 1+ logn + logp)y/logn |,
1( AV v o\t ) (eenrlesnvis

where C'is a universal constant and C1 is a constant only depending on Cx.

Our discussion below Theorem 3.2 shows that the cheap bootstrap error bound with any given B and quantile-based
bootstrap error bounds with B = co only differ up to a constant. Therefore, the order analysis for the cheap bootstrap in
Corollary 3.6 also applies here, that is, under the conditions in Corollary 3.6, the quantile-based bootstrap coverage errors
shrink to 0 as n — oo if p = o(n).

The second result is in parallel to Theorem 3.7 under the sub-exponential assumption and linearity of g:

Theorem B.3. Suppose the conditions in Theorem 3.7 hold. If qo /2, q1—a 2 are the a/2-th and (1 — o/2)-th quantiles of
9(X¥) — g(X,,) respectively given X1, ..., X, then the finite-sample bound on the basic bootstrap coverage error is given
by

[P(9(Xn) = @1-ay2 < 9(1) < 9(Xn) = daj2) — (1 - )
§C<2+EMHXMW]HMHX—Mm%b§%m>+CEMﬂXMW]

o3y/n o*y/n a3y/n ’
where C'is a universal constant. Ifq;/Q, q’lfa/2 are the o /2-th and (1 — a/2)-th quantiles of g(X ;) respectively given
X1,..., Xy, then the finite-sample bound on the percentile bootstrap coverage error is given by

1P(qhys < 9(1) < @i_ppa) — (1= )|
§C<2+EMHXMW]HMHX—Mm%b§%m>+CEMﬂXMW]

o3y/n o*y/n a3y/n ’
where C'is a universal constant.

The last result is in parallel to Theorem 3.8 under moment conditions and linearity of g:
Theorem B.4. Suppose the conditions in Theorem 3.8 hold. If qo)2, q1—ay2 are the o /2 and (1 — «/2)-quantiles of

9(X}) — g(X,,) respectively given X1, ..., X,, then the finite-sample bound on the basic bootstrap coverage error is given

by
|P(9(Xn) = q1—ay2 < g(1) < 9(Xn) = qay2) — (1 — @)
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where C' is a universal constant and C1 is a constant depending only on q. Ifq;/Q, q’ka/2 are the a/2 and (1 — «/2)-

quantiles of g(X ) respectively given X1, ..., X,, then the finite-sample bound on the percentile bootstrap coverage error
is given by

IPdys < 908) < dhaye) — (1)
2 a1/a (logn)3/? logn
< 2 Comax { BllT (6 - /o110, Blly (6 — o] (L5714 o)

CE[lgy (X — p)?
n Hgas(\/ﬁ ol ]’

where C'is a universal constant and C1 is a constant depending only on q.

The order analysis for the cheap bootstrap also applies to Theorems B.3 and B.4. If g (X — y) is well-scaled by its standard
deviation o in the sense that the L,, norm and Orlicz norm || - ||, is independent of p, then the errors shrink to 0 for any p
as n — oo. Otherwise, the growth rate of p should depend on n to obtain a vanishing error.

C. Details of Numerical Experiments and Additional Numerical Results

In this section, we present additional results and details of the experiments in Section 4. We also report some additional
experiments. Section C.1 presents tables for experimental results in Section 4 that have not been shown in previous sections.
The following subsections, C.2, C.3 and C.4 provide additional details for logistic regression with independent covariates,
the computer network and the real world problem presented in Section 4. Section C.5 further validates our performances by
a simulation study with a lower nominal level 70%. Finally, Section C.6 studies the coverage error behavior as B and n vary
for the sinusoidal estimation.

C.1. Additional Tables

Tables 2-5 reports the experimental results of regression problems with dependent covariates, ridge regression and (regular-
ized) logistic regression with different p presented in Section 4 respecitvely.

C.2. Logistic Regression with Independent Covariates

Figure 3 presents the coverage probabilities and confidence interval widths of 95%-level confidence intervals for three
typical choices of parameters: 51 = 1, #3091 = —1 and 891 = 0. We observe that all cheap bootstrap coverage probabilities
are close to or larger than the nominal level 95% while other bootstrap method coverages are below 90% except for the
standard error bootstrap for Sg01 = 0 and B > 5. Besides, cheap bootstrap interval widths are larger than others but decay
very fast for the first few B’s, in line with our observation in the previous linear regression example. In fact, it is already
quite close to other bootstrap widths for 8g9; = 0 and B = 10. Figure 4 reports the box plot of the coverage probabilities
and confidence interval widths of all 8;’s with B = 1,2, 5, 10. We distinguish between 3; # 0 and 3; = 0 since the former
has wider widths than the latter. For 3; # 0, the cheap bootstrap widths shrink more slowly so that almost all cheap bootstrap
coverage probabilities are 100% but other bootstrap method coverages are still below 90% in almost all cases. For 3; = 0,
the cheap bootstrap with any B, standard error bootstrap with B = 5, 10 and basic bootstrap with B = 10 have coverage
probabilities close to the nominal level 95%. In other cases, most of the coverage probabilities are below 85%. A similar
decay rate for the cheap bootstrap interval width is also observed here: it decreases by around 2/3 from B = 1to B = 2
and by around 4/5 from B = 1 to B = 10.

C.3. Computer Network

We detail the specifications of the computer communication network simulation model; similar models have been used in
Cheng & Holland (1997); Lin et al. (2015); Lam & Qian (2022). This network can be represented by an undirected graph
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Figure 3. Empirical coverage probabilities and confidence interval widths for different numbers of resamples in a logistic regression.




Table 2. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the regression problems with
dependent covariates. The closest coverage probability to the nominal 95% level among all methods in each setting is bold.

Cheap Bootstrap  Basic Bootstrap  Percentile Bootstrap ~ Standard Error Bootstrap

Example ) ) ) ) Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

Linear 1 951% 1451 N.A. N.A. N.A. N.A. N.A. N.A. 167*
regression 2 951% 0546  33.6% 0.081 33.5% 0.081 70.3% 0.224 258%*
(exponential 5 952% 0350 67.1% 0.166 67.1% 0.166 88.2% 0.264 531*
decay) 10 952% 0311 822% 0220 82.2% 0.220 92.1% 0.273 987*
Linear 1 947% 129.255 N.A. N.A. N.A. N.A. N.A. N.A. 511
regression 2 949% 52791 339% 7.575 34.5% 7.575 69.9% 20.995 798
(random 5 948% 30.733 67.8% 14.875 66.8% 14.875 87.5% 23.555 1659
covmatrix) 10 95.0% 27.048 82.1% 19.398 82.1% 19.398 91.9% 23.787 3095
Logistic 1 953% 7411 N.A. N.A. N.A. N.A. N.A. N.A. 114*
regression 2 955% 2787 349% 0404 32.3% 0.404 70.7% 1.119 175*
(exponential 5  95.8% 1.787  695% 0.832 64.8% 0.832 88.6% 1.318 360*
decay) 10 96.0% 1.588 84.6% 1.101 79.8% 1.101 92.6% 1.364 667*

in Figure 5. The four nodes denote message processing units and the four edges are transport channels. For every pair of
nodes i, j (i # j), there are external messages which enter into node i from the external and are to be transmitted to node
J through a prescribed path. Their arrival time follows a Poisson process with parameter \; ; showed in Table 6. All the
message lengths (unit: bits) are i.i.d. following a common exponential distribution with mean 300 bits. Suppose each unit
spends 0.001 second to process a message passing it. We assume the node storage is unlimited but the channel storage is
restricted to 275000 bits. Message speed in transport channels is 150000 miles per second and channel ¢ has length 1007
miles. Therefore, it takes [ /275000 + 1007/150000 seconds for a message with length [ bits to pass channel i. Suppose the
network is empty at the beginning. The performance measure of interest is the steady-state average delay for the messages
where delay means the time from the entering node to the destination node. It has approximate true value 7.05 x 1073,
This example has 13 unknown input distributions, i.e., 12 inter-arrival time distributions Exp(); ;) and one message length
distribution Exp(1/300), for which we have data sizes from 3 x 10* to 6 x 10*. Given input distributions P, ..., Py3, the
performance measure of this system can be computed accurately by

10000

1
T/)(Pl’ . -’P13) = EPl,.A.,Plg l%m) Z Dk‘| ;

k=501

where Dy, is the delay for the k-th message. The point estimator of ¢)( P, . .., Pi3) is taken as '(/AJ = 1/1(]51,711, cee 15137”13)
where each ]57;77” is the empirical distribution of n; i.i.d. samples {X7 iJ=1... ,n; } from the i-th input distribution P;.

Next we construct the bootstrap estimator 1/;*17. Foreachb =1,...,Band: = 1,...,13, we sample with replacement
the data {X; ;,7 = 1,...,n,} to obtain the bootstrap resamples {X jl]’, j=1,...,n;} and denote the resample empirical

distribution by ]51*?, .- The sampling procedure is conducted independently for different b and . The bootstrap estimator is

taken as )*? = Y(Pro Py, ). The cheap bootstrap confidence interval is still constructed as in (1).

1nyo 0% 13,n13
The results for the above configuration can be found in the row “Stochastic simulation” of Table 1 and the corresponding
discussions can be found in Section 4.

To investigate the robustness of the cheap bootstrap or other methods, we consider an alternative configuration where
computer network is the same but the input models are different. More concretely, all 13 input models (12 inter-arrival time
distributions and one message length distribution) are changed to Gamma distributions Gamma(a, 8) which have densities
of the form

% e P 2 > 0.

f(x)zm
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Table 3. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the ridge regression with
p = 9000 and n = 8000. The closest coverage probabilities to the nominal 95% level among all methods are bold.

Cheap Bootstrap  Basic Bootstrap  Percentile Bootstrap ~ Standard Error Bootstrap

Example B . . . . Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

Ridge 1 96.7% 15.572 N.A. N.A. N.A. N.A. N.A. N.A. 48
regression 2 972% 5719 23.1% 0553 25.5% 0.553 68.8% 1.534 72
(independent; 5 975% 3595 47.0% 1.141 51.8% 1.141 86.6% 1.807 144
A=0.1) 10 97.6% 3.171 602% 1510 66.0% 1.510 90.7% 1.870 264
Ridge 1 963% 13.734 N.A. N.A. N.A. N.A. N.A. N.A. 48
regression 2 96.7% 5.082 27.1% 0.539 24.8% 0.539 68.7% 1.495 72
(independent; 5 970% 3212 548% 1.111 50.3% 1.111 86.5% 1.761 144
A=1) 10 971% 2.839 692% 1471 643% 1.471 90.6% 1.822 264
Ridge 1 969% 9588 N.A. N.A. N.A. N.A. N.A. N.A. 47
regression 2 977% 3453 11.6% 0.263 37.3% 0.263 48.0% 0.728 71
(exponential 5 984% 2143 238% 0.541 73.9% 0.541 59.9% 0.857 142
decay; A\=0.1) 10 98.7% 1.882 31.2% 0.716 88.5% 0.716 62.8% 0.887 260
Ridge 1 957% 5776 N.A. N.A. N.A. N.A. N.A. N.A. 48
regression 2 963% 2145 195% 0.240 36.2% 0.240 61.6% 0.665 71
(exponential 5 969% 1360 39.8% 0495 71.8% 0.495 78.0% 0.784 142
decay; A = 1) 10 972% 1203 51.5% 0.654 86.7% 0.654 81.9% 0.811 261
Ridge 1 96.7% 15232 N.A. N.A. N.A. N.A. N.A. N.A. 49
regression 2 96.8% 5527 194% 0462 21.2% 0.462 64.4% 1.281 74
(random cov 5 96.5% 3.448 39.6% 0.953 43.4% 0.953 81.5% 1.510 151
matrix; A =0.1) 10 963% 3.032 512% 1261 56.4% 1.261 85.6% 1.563 279
Ridge 1 963% 13302 N.A. N.A. N.A. N.A. N.A. N.A. 50
regression 2 964% 4873 235% 0457 20.9% 0.457 65.2% 1.267 76
(random cov 5 96.2% 3.060 479% 0943 42.8% 0.943 82.5% 1.493 155
matrix; A\=1) 10 959% 2.696 612% 1247 55.7% 1.247 86.6% 1.545 286

The message length distribution follows Gamma(2.5,1/200) and the parameters for the inter-arrival time distributions
Gamma(oy_ j, 8;,;) are given in Table 7. Under the new input distributions, the true steady-state mean delay is approximately
0.0109. Figure 6 reports the results. The cheap bootstrap coverage probabilities are close to the nominal level 95% for any
B while those of the basic bootstrap and standard error bootstrap are below 60% and 90% respectively even for B = 10.
Percentile bootstrap also performs well when B > 7 perhaps because of the skewness of the estimates. But this is not
always the case in view of the previous numerical results.

C.4. Real World Problem

The data we use is the RCV1-v2 data in Lewis et al. (2004). This dataset contains n = 804414 manually categorized
newswire stories with a total of p = 47236 features. We compare the confidence interval widths of the logistic regression
parameters for the four bootstrap methods, by using all the observations to run the logistic regression and estimate the
parameters. That is, the observation matrix is of the size 804414 x 47236 ~ 4 x 1019, There are up to 103 different
categories for all these newswire stories. As in Singh et al. (2009) and Balakrishnan & Madigan (2008), we only use the
“economics” (“ECAT”) as the +1 label, i.e., the label Y is 1 if the newswire story is in “economics” and 0 if not, which
leads to 119920 positive labels. Besides, we add l2 regularization to this logistic regression as in Singh et al. (2009) and
Balakrishnan & Madigan (2008).
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Table 4. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the logistic regression with
n = 10° and different p. The closest coverage probability to the nominal 95% level among all methods in each setting is bold.

Cheap Bootstrap Basic Bootstrap ~ Percentile Bootstrap ~ Standard Error Bootstrap

P B ) ) ) ) Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.
96.7 % 3.697 N.A. N.A. N.A. N.A. N.A. N.A. 46*
97.7 % 1.378 42.8% 0.182  323% 0.182 75.9% 0.504 76%*
12000 99.0% 0.878 83.1% 0375 64.6% 0.375 93.1% 0.594 165%
10 99.5% 0.778 953% 0496  79.0% 0.496 96.2% 0.615 314*
1 97.5% 5.368 N.A. N.A. N.A. N.A. N.A. N.A. 84
98.7 % 1.993 46.3% 0.251 33.3% 0.251 80.2% 0.697 142%
15000 99.8% 1.268 88.0% 0.518  66.4% 0.518 95.9% 0.821 316*
10  100% 1.123 96.2%  0.686  80.9% 0.686 98.1% 0.849 606*
1 98.7% 11.473 N.A. N.A. N.A. N.A. N.A. N.A. 160*
2 99.7% 4.249 47.2% 0495  35.0% 0.495 88.3% 1.372 285%
18000 100% 2.700 89.1% 1.022  69.6% 1.022 99.2% 1.619 659*
10  100% 2.389 96.2% 1.354  84.0% 1.354 99.9% 1.676 1283*
1 100% 1272497 N.A. N.A. N.A. N.A. N.A. N.A. 143*
2 100%  468.656 36.6% 48271 36.5% 48.271 99.9% 133.799 242%
21000 100%  296.354  72.5% 99.900 72.2% 99.900 100 % 158.067 537*
10 100%  261.811 86.6% 132.870 86.3% 132.870 100 % 163.747 1029*
I 999% 201.611 N.A. N.A. N.A. N.A. N.A. N.A. 142%
100% 74.595 36.6% 7597 353% 7.597 98.8 % 21.057 215%
23000 100% 47.205 72.5% 15737  70.1% 15.737 100 % 24.922 433%*
10 100% 41.583 86.8%  20.819 84.7% 20.819 100% 25.750 797*

To run this logistic regression, we use sklearn.linear_model.LogisticRegression (a machine learning package in Python)
in the virtual machine c2-standard-8 in Google Cloud Platform, which takes about 30-40 minutes to run one bootstrap
resample. Therefore, the common bootstrap methods which require B = 50 or 100 would be computationlly expensive.

In Section 4, we report and discuss the average interval widths over all §;’s for the four bootstrap methods. Here we
display the results for three individual parameters, namely the first three [3;’s, in Figure 7. Since we are only able to run one
experimental repetition in this real world example, the confidence interval widths contain some noises and thus we cannot
observe the monotonicity of the widths when B increases. But we still see the cheap bootstrap confidence interval widths
are wider than others, with general trends that resemble the average interval widths in our synthetic examples. This suggests
that the cheap bootstrap confidence intervals would have higher and closer-to-nominal coverages than the other methods.

C.5. Numerical Experiments with a Lower Nominal Level

In this section, we conduct a simulation study with the nominal level 70% to further support the validity of the cheap
bootstrap. We choose the ellipsoidal estimation and sinusoidal estimation presented in Section 4 as our model. All the
settings are the same except that we use a different sample size n = 4 x 10* and a different dimension p = 9000. Table 8
presents the empirical coverage and average interval width over 1000 experimental repetitions. We can observe that the
cheap bootstrap coverage probabilities are still close to the nominal level, and are the closest among all methods in all
cases except two (sinusoidal B = 5 and B = 10) where percentile and standard error bootstraps each outperforms slightly.
Regarding these exceptional cases, we note that the outperformance of the percentile bootstrap is likely a coincidence,
because as a quantile-based method it cannot construct a symmetric 70% level confidence interval from only 5 resamples.
We have used the minimum and maximum of the 5 resamples to construct this percentile bootstrap confidence interval,
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Table 5. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the ¢>-regularized logistic
regression with n = 10° and different p. The closest coverage probability to the nominal 95% level among all methods in each setting is
bold.

Cheap Bootstrap  Basic Bootstrap  Percentile Bootstrap ~ Standard Error Bootstrap

D B ) ) ) ) Running Time

Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

96.3% 3.162 N.A. N.A. N.A. N.A. N.A. N.A. 42%

2 973% 1.182 41.0% 0.161 32.2% 0.161 74.7% 0.446 69%

12000 98.4%  0.755 80.3% 0331 64.4% 0.331 92.2% 0.525 150*

10 989% 0.669 93.5% 0438 78.9% 0.438 95.6 % 0.543 284*

96.8%  3.943 N.A. N.A. N.A. N.A. N.A. N.A. 83*

15000 2 979% 1471 435% 0.196 32.9% 0.196 76.9% 0.543 141*

99.1% 0938 84.3% 0404 65.6% 0.404 93.9% 0.640 315*

10 99.6% 0.832 959% 0.534 80.1% 0.534 96.8% 0.662 606*

973%  5.056 N.A. N.A. N.A. N.A. N.A. N.A. 156*

18000 2 985% 1884 457% 0.246 33.6% 0.246 79.3% 0.683 241*

99.6% 1.202 87.6% 0508 67.1% 0.508 95.5% 0.805 498*

10 999% 1.065 971% 0.673 81.6% 0.673 97.8% 0.833 925%

97.6%  6.400 N.A. N.A. N.A. N.A. N.A. N.A. 191*

21000 2 988% 2385 47.1% 0.310 34.5% 0.310 81.4% 0.859 319*

99.8% 1.520 89.4% 0.639 68.6% 0.639 96.5% 1.012 703*

10  100% 1.348 975% 0845 83.1% 0.845 98.3% 1.047 1343*

1 974%  7.259 N.A. N.A. N.A. N.A. N.A. N.A. 208*

. 2 987% 2712 465% 0.362 35.2% 0.362 80.8% 1.004 350*

99.7% 1.731 88.8% 0.746 69.9% 0.746 96.0% 1.183 777*

10 999% 1536 983% 0.988 84.5% 0.988 97.9% 1.224 1487%*

whose actual nominal level should be close to 100%. So it is likely by accident that percentile bootstrap coverage is closest
to 70% and in fact this coverage is far away from its actual nominal level around 100%.

C.6. Coverage Error Behavior with Respect to B and n

In this section, we numerically study the cheap bootstrap coverage error behavior with respect to B and n and illustrate how
it aligns with our theoretical bounds. We choose the model as the sinusoidal estimation in Section 4. We fix the dimension
p = 9000 and vary B and n. Figure 8 displays the colormaps of the absolute values of empirical coverage errors (nominal
level 95%), where the x-axis represents B and y-axis represents n. We cut the results of the basic and percentile bootstraps
for the first few B’s because their errors are too large. From Figure 8 (a), it appears that the cheap bootstrap coverage error
does not change much in this regime of n. This matches to some extent Theorem 3.5 and Corollary 3.6 that guarantee
the coverage error would decrease as n increases with a slow rate 1/+/n. Further, when we fix n, the cheap bootstrap
coverage error seems to lack clear trend and otherwise be quite stable as B changes. On the other hand, the basic and
percentile bootstrap coverage errors show a clear decreasing trend as B increases. Their different behaviors are attributed to
the different ideas behind them. The basic bootstrap and percentile bootstrap are quantile-based methods. As B increases,
the bootstrap quantile estimate is closer and closer to the true quantile, which leads to the improvement on the coverage
error. However, the cheap bootstrap method relies on a totally different idea, i.e., it relies on approximate independence of
the resamples from the original estimator and thus a ¢-distribution-based (with degree of freedom B) confidence interval
can be constructed. Different B just means a different pivotal ¢-distribution. There is no evident reason that the pivotal
t-distribution with a larger degree of freedom B will lead to a smaller coverage error.
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(c) Coverage probability 8; = 0 (d) Confidence interval width 3; = 0

Figure 4. Box plots of empirical coverage probabilities and confidence interval widths of all 3;’s for different numbers of resamples in a
logistic regression.

D. Proofs
Proof of Theorem 3.1: We define Q* as the distribution of \/ﬁ(zﬁ: — @n) conditional on X7, ..., X,,. With the repeated
bootstrap resampling, we have that /n ()% — 4,,),b = 1, ..., B are independent conditional on X1, ..., X,,. Then we can
write the coverage probability as
P € [ —tB1—a/2Sn.B:¥n +tB1-0/25n.5))
B Tk 5
VS e — )2

<iBi-a/2

=B

o dQ* (25) -+ dQ*(zl)l
/ /\/ﬁ(wnw)<t3,1a/2\/}52b31 22

where the expectation F is taken with respect to X, ..., X,,. If we write A as the event that

(2)]==

sup [Q*((—00,2]) — @ (2]

zER g

= sup | P*(vVn(! — ) < z) — ®

z€R

(18)
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Figure 6. Empirical coverage probabilities and confidence interval widths for different numbers of resamples in a computer communication

network.

Figure 7. Confidence interval widths of the first three 3’s for different numbers of resamples in a real world logistic regression.

Channel 1

Channel 2

~~_Channel 3

~Channel 4

Figure 5. A computer network with four nodes and four channels.
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Table 6. Arrival rates \; ; of messages to be transmitted from node 7 to node j.

Table 7. Parameters (c,;, Bi,;) for the inter-arrival time distribution of messages to be transmitted from node ¢ to node j.

Node j
Node 7 1 2 3 4
1 N.A. 40 30 35
2 50 N.A. 45 15
3 60 15 N.A. 20
4 25 30 40 N.A.

Node j
Node % 1 2 3 4
1 N.A. (1.5,60) (0.7,40) (1.3,50)
2 (2,80) N.A. (1.5,65) (0.6,20)
3 (3,100) (0.5,25) N.A. (1.2,30)
4 (0.8,40) (1.1,50) (0.9,35) N.A.

then we know that P(A°) < /3. We consider the coverage probability intersected with A, i.e.,

l V(=) |<ts1-a/2V/ & bt 72

., 2p—1, the integral region for zp can be written as

Note that conditional on X1, ..., X, and given 21, ..

for some ¢ > 0. Therefore, applying (18), we have

|/ h dQ*(zp) —/
V(=) |<tB1—a/2V & Sz

where P, is the distribution of N (0, ). Plugging it into (19),

E

/ /I\/ﬁ(g()_(n)—g(#))lﬁtma/zx/ézz’fl zg

=F

where the error Rp satisfies

dP,
/ //|ﬁ(1ﬁn—¢)|§t3,1a/2\/ % 25:1 23

dQ"(zp) -+ dQ"(z1); A| .

dPy(2B)

|\/E(7[’n—¢)|§t3,1fa/2\/ B 7

we have
dQ*(zp) - dQ*(z1); «4]

(2)dQ* (25-1) - - - dQ"(21); A

|RB| S FE |://2€2dQ*(231>dQ*(21>,A:| S 252

By the same argument, we can further replace the remaining Q*(z;)’s by Py(2;)’s and obtain

E

3

/ /|\/ﬁ(1/;n—'/1)|§t3,1a/2\/ = 25:1 22
2

dQ*(zp) -+~ dQ*(zl);A]

S 2827

+RB7

19)



Table 8. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the numerical examples. The

closest coverage probability to the nominal 70% level among all methods in each setting is bold.

Cheap Bootstrap Basic Bootstrap Percentile Bootstrap Standard Error Bootstrap . .
Example B ) ) ) ) Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.
1 73.0% 9.828x1073 N.A. N.A. N.A. N.A. N.A. N.A.
Ellipsoidal 2  70.0% 7.568 x 1073 30.9% 2.197 x 1072  7.7% 2.197 x 1073 343% 3.220 x 1073
estimation 5 68.5% 6.639 x 1073 64.7% 4.429x107% 16.5% 4.429x 1073 423% 3.717x 1073 10
10 66.9% 6.323 x 1072 60.1% 3.756 x 1073 10.8% 3.756 x 1073 41.8%  3.804 x 1072 20
1 70.3% 0.148 N.A. N.A. N.A. N.A. N.A. N.A.
Sinusoidal 2 72.0% 0.116 34.9% 0.052 33.3% 0.052 52.4% 0.077
estimation 5  72.2% 0.104 67.6% 0.108 68.6% 0.108 65.6% 0.091 10
10 723% 0.100 65.8% 0.093 63.7% 0.093 68.8 % 0.094 19
=F / / dPo(ZB) dPo Zl +2Rb,
V(=) |<tg1_ a/2m

where each error R, satisfies
|Rp| < 2&s.

Therefore, the coverage probability satisfies

dQ"(zp) - dQ*(ZO]

/ /I\/H('J}n"/’)<tB,1a/2 V %Zszl 25

=k / /M(wn —)|<tp- a/zmdQ*(ZB)MdQ*(ZI);A]
tr /m/ﬁ(zﬁn—wmts,lu/zx/mdQ*(ZB)mdQ*(m;Ac
B
=F / /wwn ¥)|<tpi_ mxzx/mdPO(ZB)mdPO(Zl);A +bz::1Rb
r /'“/ﬁwnw><tB,1a/zmdQ*(ZB)mdQ*(m;Ac
B
—E /.“~/|\/ﬁ(1ﬁn—1/1)|§t5,1a/QMdPO(ZB).”dPO(Zl) +RAC+;R1,, (20)

where the additional error R 4 is given by

R_Ac:E

dQ*(ZB) . dQ*(Zl),AC‘|

/ \/l\/ﬁ(lﬁnw)l<t3,l—(y/2 V %Zszl Zg

—F dPo(ZB)“'dPo(Zl);.AC
B et %

/ /\/ﬁ(lﬁnw)<tB,1—a/2\/l 2 =} ]

1) which is denoted by Q. Note

and it satisfies | R 4¢| < P(A°) < . Now we will handle the distribution of /7 (¢}, —
that by Fubini’s theorem we have

dPo(ZB) L dPQ(Zl)
B 2be1 %

/ /x/ﬁ(ﬁﬁn—w)lét&la/z\/ﬁ
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Figure 8. Colormaps of the absolute values of empirical coverage errors (nominal level 95%) for the sinusoidal estimation.

:// dQo
|20|<tm,1—a/2V 5 Doty 22

(20)dPo(zp) - - - dPo(21).

Given z1, ..., zp, consider the innermost integral with respect to Q. By the finite-sample accuracy for o, i.e.,

sup | P(vi(n — ) <2) - @ ()

z€R zER
we have
/ Qo) - |
[20|<tB 1—a/2V 5 Yoty 22 lz0|<tp 1
Therefore,

B // A dP,
WA (b =) |<tp1—a2V/ 5 v, 22
(Zo)dpo(ZB) cee dP()(Zl) + RO

:// P
l20|<tB1—a/2V 5 Dby 22

=1—a+ Ry,

where the second equality follows from
Zy

/ B
B b1 Zp

25

d

—a/2

tp

= sup |Qo((—00,7]) — Po((—o0,z])| < &1,

dPo(Zo) S 251.

T ~~B
VB i1 %

(zB) - dPo(21)
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foriid. Z; ~ N(0,0%),i =0,..., B and the error Ry satisfies
|Ro| < 2&;.

Plugging (21) into (20), we have

l WA($n—9)|<tp1—a/2\/ 5 Seo, 22
B

=1—a+ Rye +ZRZ, =1—a+R,
b=0
where the overall error satisfies

|R| <2& +2B& + f5.

O

Proof of Theorem 3.2: Recall that for a cuamulative distribution function F' of a random variable, the ¢-th quantile is defined
as F~1(q) = inf{x : F(z) > ¢}. We first prove a useful result: if the cumulative distribution functions of two random
variables X and Y satisfy

sup [Fix (t) — Fy (t)] <, (22)
teR
then for any « € [0, 1],
Fyl(a—e) < Fil(a) < Fyl(a+e). (23)

To prove it, we note that if @ — ¢ < 0 then —co = Fy,'(a — ) < Fy'(a) trivially holds and if o + ¢ > 1 then
Fit(a) < Fy''(a+ ¢) = oo trivially holds. So we assume 0 < a — & < a + & < 1. Now let’s prove the first inequality
Fy ' (a —€) < Fi'(a). By the definition of F5;* and right-continuity of Fx, we know that Fx (F'(c)) > a. Therefore,
by (22), we know that Fy (F;*(a)) > o — &, which implies Fy, ' (a — &) < Fy'(«) by the definition of Fy' (o — ¢). This
proves the first inequality in (23). Interchanging the role of X and Y, we have F;'(a — ) < Fy ! (a). Replacing a by
o + ¢, we obtain the second inequality Fi' (o) < Fy ' (a +¢).

Now we consider the basic bootstrap. We write 4 as the event

sup [P* (VA — dn) < 2) - @ (2)] < &2

zeR o

By our assumption, we have P(A¢) < 3. Note that if ¢, /» and g, _, /5 are the o/2-th and (1 — c/2)-th quantiles of 1/3;; — )y,
given Xy, ..., X,,, then \/nq, /2 and /ng;_q 2 are the a/2-th and (1 — c/2)-th quantiles of \/ﬁ(zﬁ,’; - ﬁn) respectively
given X1,..., X,,. By the inequality (23), when .4 happens, we have

OZa/2—& < \/EQOA/Q < OZa/24E5>»

where z, is the g-th quantile of the standard normal. This inequality implies

P(/n(thn =) < 02ay2-£,3A) < P(Vn(thy — ) < V/Ngay2; A) (24)

and

P(v/(thn — ) < Vngas2i A) < P(Vn(ihn — ) < 02021655 A). (25)

Next, we notice that

sup P(Vn(pn — ) < z) — @ (g)‘ <&
& sup | P(Va(, —v) <2) - @ (2)] < &1,

zeR
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Thus, (24) implies that
P(\/n(tn = 1) < /25 A)

ZP(\f( — 1) < 024/2-,5A)
(f(¢n - ) < UZO(/?*SQ) - P(-AC)

’U

JzOL/2—52
> _Tjeme2 )y e
>o ( - ) & —p
Q@
=——-&-&—-p0.
5 1 2 — 0
Similarly, (25) implies that
- - e
P(v/n(Yn — V) < Vngaja; A) < P(Vn(bn — ) < 024 j2+8,) < 5t + &1+ &a.
Therefore, we have the following two-sided bound
@ Q@
5—51 — B < P(Vn(thn — ) < Vngay2: A) < §+51+52-
For the (1 — «/2)-th quantile, we can also derive a similar bound
Q «
1*5781 5275<P(\/>( )<\/>q1 a/2’ ) 1*54’814’52

So we have

IP(Vngas2 < Vi(n — ) < Vigi_ao; A) — (1 — a)| < 281 + 26 + B,

which gives rise to

|P(V1as2 < Vi —¥) < Vigi—ays) — (1 — )|

< [P(Vgay2 < Vi —¥) < Vigi—aj2; A) — (1 — )
+ P(v/nga)2 < V(i — ) < Vngi—a)2; A°)

<28 +2& + f+ P(A9)

<28 + 28 + 28,

or equivalently R R
|P(Vn — @1—aj2 S U < ¥n — qay2) — (1 — )| <28 428 + 20.

The result for the percentile bootstrap follows similarly but we need to use the symmetry of N (0, o2). Note that

Sup P(Vn(, —v) <z)— @ (g)‘ <&

s sup| PV —¥) <2) -0 ()| < &

z€R

and the latter can be rewritten as

sup | Pt — ) < )~ & ()]
—sup|[P(vtG, ) < -~ (2]
=sup |P(v(U = ) > )~ @ (f)\
=sup| (1 — P(Vn( — 1) > z)) — (1 - ¢ (_;C))’
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—sup|P(va(w — ) <2) - @ ()| < &,

zeR

where the last equality uses the symmetry of N (0, 0?),i.e., 1 — ®(—xz/0) = ®(x/c). Moreover, if a2 and g _ /o are the
av/2-th and (1 — «/2)-th quantiles of ¢ given X1, ..., X,,, then Vi(qay2 — ) and Vi(qi—ase — ) are the ar/2-th
and (1 — a/2)-th quantiles of \/n(1* — 1),) given X1, ..., X,,. Therefore, the proof for the basic bootstrap also applies if
we replace \/qq /2, \/1q1—a /2 and V() — ) in that proof by V(Gay2 — Un), Vildi—aj2 — ) and /n(e — 9y, )

respectively. In particular, the final result now reads as follows

|P(\/ﬁ(QO¢/2 - 'Q[Ajn) S \/’E('l/} - "Z}n) S \/'E(ql—oz/Q - 'l[}n)) - (1 - a)| S 251 + 252 + 25
or equivalently
|P(qas2 < < qimay2) — (1 —a)| <26 +2& + 26.

This completes our proof. ]

To prove Theorem 3.5, we first need to prove two lemmas regarding (2) and (3) respectively.

The following lemma is from Theorem 2.11 in Pinelis & Molzon (2016) which establishes the Berry-Esseen theorem in the
multivariate delta method in the form of (2).

Lemma D.1. Suppose that X1,...,X,, are i.i.d. random vectors in RP satisfying E[X]| = p, Var(X) = X, mg; =
E[[Vg(u) (X — p)]?] < oo and mss := E[||X — p|])] < oco. Suppose g(x) satisfies Assumption 3.3 and o° =
V() "EVg(p) > 0. Then there is a universal constant C > 0 s.t.

sup | P(vn(g(Xn) — g(p) < z) — @ (E)‘

SN o
<C ms1 N C’Hgml/str(E) N C’Hgmgég N CH, mé{smgés
- V/nos Vno? n5/6¢g no? '

Proof of Lemma D.1: Define f(z) = g(z + p) — g(p) and its linearization L(z) = Vg(x) 2. Then by the second order
Taylor expansion of f(«) and boundedness property of H in Assumption 3.3, we can see (2.1) in Pinelis & Molzon (2016)
holds for M. = Cy, and any € > 0. By Theorem 2.11 in Pinelis & Molzon (2016) with V' = X — i, ¢, = 1/2 and € — oo,
we have

_ x
sup [ P(v/n(g(X,) — () < ) — @ (7 )]
xc

Q 3 1/3 1/3
< Bt BLimagi /o n R0 + Rormsy /o R30 + Rz1ma) /0m2/3
- \/ﬁ \/ﬁ \/ﬁ 320

where the additional term K, in Theorem 2.11 vanishes as ¢ — co. By the definition of these £’s with ¢, = 1/2 in (2.30) in
Pinelis & Molzon (2016), we can see there is a universal constant C' > 0 s.t.

tr(3) +

(26)

CH,

Cu Ch Cu
ﬁ0<0ﬁ1<0ﬁ20<07ﬁ21<07ﬁ30<0 —_—.
O—nl/2

1/3aﬁ31 C

Moreover, by Holder’s inequality, m3; = E[|Vg(u) " (X — p)|?] > E[|[Vg(u) T (X — p)[?]?/2 = o3, which implies that
Ro, Koo can be absorbed into K;m3;/ o3, ﬁglmé{j /o respectively by choosing a larger C'. Therefore, (26) can be written as

sup | P(vn(g(Xn) — g(p) < z) — @ (f)‘

z€eR o
1/3 2/3 1/3._2/3
<o e Cu,ms) (%) " CHgm?,é + Cu,m 3{ m3é
- Vnos Vno? n®/Sg no? '
This concludes our proof. O
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Next we prove the finite-sample accuracy (3) for the bootstrap estimator by extracting the dependence on problem parameters
in Theorem 4.2 in Zhilova (2020) and combining it with Lemma D.1.

Lemma D.2. Suppose the conditions in Theorem 3.5 hold. Then with probability at least 1 — 6/n we have

sup |P*(vn(g(X;;) — g(Xn)) <o) — @ (EN

zeR o

1/3 2/3 1/3 2/3
<o e CHgm3{ tr(¥) n CHgmsé + CHgm?,{ m3é
- V/nos \/no? nd/6g no?

Cu,° 1 E[(X — )3 1 3 1 32 4
L G, (1+ 0gn> \/5+ IET( 3/2N) ma 2/2 (1+ 0gn> 4
CygVAs p n Ay Vi p vn

4 1/2 2 1/2 3
I 1 I
+Tﬁ(1+c>gn> +T\/5(1+0g”> +Tx/ﬁ(1+0gn>>
p p

A&n Asn A2 p

N2

where ma1, msa and o2 are defined in Lemma D.1, C is a universal constant and Cy only depends on Cx.

4 (logn)3/2  1%(logn)3/? 3 ( log n) 12
+C + + 1+ logn + 1o logn |,
1< o T ’ (log gp)V/log

Proof of Lemma D.2: We use Theorem 4.2 in Zhilova (2020) to prove this lemma. First, we verify the conditions of
Theorem 4.2 with K = 3. For K = 3, by Remark 2.1, we can take U; = 0,Y; — p = Z; — p ~ N(0,X,) independent
of Xq,...,X, with X, = ¥ which satisfies (2.1) and (2.2) for approximating X; — u (since X; is not centered in
Theorem 4.2, Y; should also be non-centered). In this case, we can see C, := \|ZZ_1/2|| =||27Y2|| = 1/\/As. Similarly,
Cx := ||[272|| = 1/4/As. Other conditions about f in Theorem 4.2 have already been assumed in the statement of this
lemma. Thus, by Theorem 4.2, it holds with probability at least 1 — 6e~* for x > 0:

sup [P(vn(g(Xn) — g(w) < t) — P*(Vn(g(X;) — 9(X,)) < t)

1 r 2 1 p 1 1
<2 =72 (1+2,/54+= -1/ = iid =75 —
S CHg )\ZT ( + \/;Jr » ) Cvg n + Cgiid )\3/2 C]M’S\/ﬁ

T 2z 3/2 1 51
+2CB,id. | 1+2 » + " WT N +Ringa 27
5

where Cp ;i4. > 0 is a constant only depending on K and thus is a universal constant for K = 3, Cs 3 is defined as

Cus = [|1EIX — )|l + [ E[(Y1 — w)*]ll

and R ,, 3 is defined in (B.14) as

T4Chp  A72C,5  Cyom®Chs

+ .
A2V2n o Asv2n o aa¥?/m

Rl,n,S = (28)

Since Y7 — pu ~ N(0,X,), the tensor power (Y3 — u)? has expectation zero and thus C) 3 can be simplified as Cjy 3 =

|E[(X — u)?]]]. Cy.2 in (28) is defined in (A.13) and according to Remark A.1, it depends on the choice of ¢(t) which is a
K = 3 times continuously differentiable smooth approximation of the indicator function 1{# < 0}. Once we fix such ¢(t),
C4 2 is a universal constant. C;, » and C, 3 in (28) are defined in (B.27) of Theorem B.1 as

1/2
1 2 1
Cp2 = Ci((x +1logn) VvV x+logn)\/2z+2\/§ <1+2“x+pogn + (@ erOgn)) ,

1/2

Cr3=0C <1+2\/x+logz+logp+2(x+logpn+logp)>
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X ((z +logn +logp) V v/z + logn + logp)V2x

+3\/§ 142 x+logn+2(x—|—logn) 7
n p p

where (' is a constant only depending on the density bound C'x based on the proof of Theorem B.1. Besides, since we

assume n > 3, we know that z + logn > /z + logn and = + logn + logp > +/x + logn + log p holds for any = > 0.
Therefore, C, 2 and C;, 3 can be simplified as

1/2
1 2 1

0172201(:(;+10gn)\/ﬁ+2\/§ <1+2\/m+ (x—i—pogn)) ,
p

1/2

» ) (z +logn + logp)V2zx

+3\/§<1+2 /x+logn+2(:r+logn)>'
n p p

Moreover, for any y > 0, we always have 1 4y < 1 + 2,/y + 2y < 4(1 + y). Therefore, the remainder term (28) can be
bounded in a more compact way up to some constants as follows:

Cr3=0C <1+2\/x+logn+logp . 2(x+10gn+logp)>

Rin3 <C ( z +logn)yz + z + logn)y/x
1,n,3 1 )\22\/*( ) \/*( )
3 +1 +1 1/2
+ 3/7-2 ( yoroen ng) (z 4 logn + log p)vVz
PEND p
Lof” /P +x+logn LT 2/p x+logn 1/2+ /P +x+logn
A P T en p \¥2, p ’

where C'is a universal constant and C only depends on Cx. Plugging it back to (27), we can similarly write (27) in a more
compact way:

sup | P(v/n(g(Xn) — g(n)) < t) = P*(Vn(9(X]) — 9(Xn)) < 1)]

teR

cof Cnr ( )f IB(X - L 7 (Hx)w 1
- qu\//\z P 3/2 Vn /\;/2 D Vn

+T4\/i) a:+10gn 1/2 x—l—logn 1/2+T3\/§ 1+m+logn
A&n )\gn P P

p

+cl<%f<x+1ogn>f+ f(xﬂogn)ﬁ

73 ( Jrx+10gn+logp

PN P

where C'is a universal constant and C; only depends on C'x. Now we choose © = log n. Then with probability at least
1 —6/n, we have

+

1/2
) (z +logn + logp)\/E> ,

sup |P(v/n(g(Xn) — g(n)) <t) = P*(Vn(g(X]) — 9(Xn)) < 1)]

teR

Cy, 72 I B(X - 1 7 logn\*? 1
<c H,T (1+ ogn> p+||[(3/2”)]||+7?:/2(1+ ogn)
CyvgvVAs p n A vz P
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4 1 1/2 2 1 1/2 3 1
+2 ‘/f)<1+o§”) +Z \/ﬁ(1+ Ogn) +T\/ﬁ(1+ Ogn)

A&n Axn D X;/Qn P

(logn)®/?  12(logn)3/? 73 ( log n) 1/2
+C + + 1+ logn + logp)+/logn |,
! < A2 /n A/ N2 D ( )

where C' is a universal constant, C; only depends on C'x and we have absorbed log p/p into the constant term 1 due to
logp/p < 1.

Now we combine the above bound with Lemma D.1 in this paper. Since X is sub-Gaussian, the moment conditions in
Lemma D.1 hold. Moreover, since ¥ is positive definite and ||[Vg(u)|| > 0, 02 = Vg(u) "X Vg(u) > 0 is also satisfied.
Therefore, by Lemma D.1 and triangular inequality, we obtain the desired bound with probability at least 1 — 6/n

sup |P* (via(g(X;) = 9(%,) < @) — @ ()]

zeR o

1/3 2/3 1/3 2/3
<o e C'Hgm3{ tr(%) CHgmsé + CHgmg{ m3é
- V/no3 \/no? n5/6¢g no?

. G, (Hlogn>\/?+llE[(Xu)3]lll+ (Hlogn>3/21
CygVAs P n PUEEENTID e P Vn

4 1/2 2 1/2 3
1 1 1
+7-\/Z)(1+ ogn) +T\/§(1+ 0§n> +T\/ﬁ(1+ ogn>>

A&n D Axn /\‘;/% D

N2

where C'is a universal constant and C only depends on C'x. O

(logn)3/?  12(logn)3/? 73 ( log n) 1/2
+C + + 1+ logn + 1o logn |,
1< W it ’ (log gp)y/log

Proof of Theorem 3.5: Plugging the bounds in Lemma D.1 and Lemma D.2 into Theorem 3.1, we obtain the desired finite
sample bound for the cheap bootstrap coverage accuracy. Besides, the error £ can be absorbed in &;. O

We make a remark about the proof of Theorem 3.5. In Zhilova (2020), it appears that a generalized version of the Hanson-
Wright inequality (equation (B.32)) that allows dependent components is derived as a middle step of the proof of Theorem
B.1. If the classical Hanson-Wright inequality (Theorem 1.1 in Rudelson & Vershynin (2013)) is used in that proof instead,
then our Theorem 3.5 would be changed accordingly to have an additional assumption that X has independent components
but no longer needs to be continuously distributed with a bounded density. In this case, C; can be taken as a universal
constant.

Proof of Corollary 3.6: Tt suffices to show that if 7 = O(1) and ||Vg(u)||> = O(p), then tr(X) = O(p), mz1 = O(p>/?)
and mg3s = O(p?’/ 2). In fact, if these orders hold, with other orders assumed in Corollary 3.6, we can easily get the desired
order after absorbing the small order terms into large order terms.

Now let us prove (%) = O(p), m31 = O(p>/?) and mss = O(p*/?) provided 7 = O(1) and ||[Vg(u)||> = O(p). Recall
that X is assumed to be sub-Gaussian, i.e.,

E[eXp(aT(X —n)] < exp(||a||27'2/2),Va € RP. (29)

for some 72 > 0. Therefore, X; — p1;,7 = 1,...,p are sub-Gaussian random variables with sub-Gaussian norm 7 up to a
universal constant (see Vershynin (2018) Section 2.5). For simplicity, we write a < b if ¢ < Cb for a universal constant
C > 0. By Proposition 2.5.2 (i) in Vershynin (2018), E[|X; — w;|?] = Xi < 72 and E[|X; — p|*] < 7. Therefore, we
can see t7(X) < 72p = O(p). By Hoélder’s inequality,

3/4

maz = B[||X = pl’) < BIX — pl|'P/* = | Y E[(Xi = m)* (X5 — p5)°]

i,j=1
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3/4 3/4

< .Zl \/E (Xs — u)YEN(X; — py)*] < -Zl 4 — P332 O(p3/2).

Moreover, (29) also implies that Vg(u) T (X — p) is sub-Gaussian with sub-Gaussian norm ||Vg(i)||7 up to a universal
constant. By Proposition 2.5.2 (ii) in Vershynin (2018), we have ms3; = E[|Vg(u) T (X — p)|?] < ||Vg(w)| P2 = O(p*/?).
This concludes our proof. O

Proof of Theorem 3.7: 'We will apply Theorem 3.1 to prove this theorem. The finite-sample bound (2) can be obtained by
the Berry-Esseen theorem:

T T z CE[lg{ (X — )]
sup ’P(x/ﬁ(gl Xn—g p)<z)—@ (;)’ < S : (30)
Next, we need to find a bound for
* % - x
sup | P*(vn(g{ X, — g{ X,) < z) - @ (*)‘ -
z€R g
We consider the i.i.d. centered random variables g{ (X; — u1),7 = 1,...,n which have non-degenerate variance 0% =

g1 g1 > 0. We apply Theorem 2.5 in Lopes (2022) to g{ (X; — 11)’s by choosing Y = N(0, g/ Xg;) such that o = 1,
A=0,w = |lg] (X —p)/olly, = Ilg7 (X — 1)||s, /o and obtain that with probability at least 1 — C/n,

. . , _ Cllgd (X = )[4, log" (n)
sup | P*(v/n(g{ X — g{ Xn) < @) — P(Vng] (X, —p) < 2)] < —— s :
z€R o \/ﬁ

where C' > 0 is a universal constant. By the triangle inequality and Berry-Esseen bound (30), the following holds with
probability at least 1 — C'/n

7 ¢ CE[lg7 (X —w)* . Cllgl (X = p)ll}, log" (n)
P* TX* _ TXn < 7@ (g)‘ < 1 1 31
sup (Vn(g X, — g1 X») <) )= = + Y . (3D
where C' > 0 is a universal constant.
By Theorem 3.1 and the bounds (30) and (31), we finally get
|P(g(p) € [9(Xn) = tB1—a/25n.8,9(Xn) +tB1—a/290.8]) — (1 — a)|
c Ellgl (X — wl) | llgr (X = lly, log" () ) | CE[lg] (X — )]}
<—+BC + + )
n a3y/n oty/n a3\/n
where C' is a universal constant. Furthermore, the last term can be absorbed into the second term by using a larger constant
2C, which completes our proof. O

Proof of Theorem 3.8: We use Theorem 3.1 to prove this theorem. As in the proof of Theorem 3.7, (2) is given by the
Berry-Esseen theorem in (30) and we only need to bound

sup |P* (v(g) X — o] %) < 2) - @ (2))].
z€R o

In this regard, we will use the results in Chernozhukov et al. (2020). Note that their results only apply for at least
three-dimensional random vectors so we consider the following setting. Suppose we have 3n i.i.d. random variables
gI(XZ" —p),i=1,...,n,j = 1,2,3 where each X;; has the same distribution as X;. Then we can construct n three-
dimensional i.i.d. random vectors as X; := (g, (X;1 — ), 97 (Xiz — 1), g1 (Xss — p))T,i = 1,...,n whose components
have common variance o2 = ng >g1. Then we can see that conditions (E.3) and (M) are satisfied for

By = meax {35 (9] (X = /ol 2.\ Ella] (X = /011
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Therefore, by Corollary 3.2 in Chernozhukov et al. (2020) (o, = 1 since le has independent components), we have with
probability at least 1 — 1/4/n that

sup | P* (Vi(X: — Xn) € A) — P(N(0,0%I33) € A)|

AeR
< B log 3logny/log(3y/n)  log3+/log(3n)
=GP n RSYE=TIen

n 3/2 n
< Cumax {3Bla] (X - /ol o, [Elal (X - ol } (BB 4 80,

where €1 > 0 denotes a constant depending only on g which are different for its two appearances and R contains all the
hyperrectangles in R3. In particular, if we only focus on the first component of X, that is, we choose A = (—o0, 2] x R x R,
we have with probability at least 1 — 1/4/n that

* vk v €T
sup [P* (Vialg! X = 9 Xa) <) - @ (2 )]
TER g

3/2 /1og n ) 32)

< Cumax {3Bl9] (X - /ol e, Bl (X — o fali] (DB 4 o

By Theorem 3.1 and the bounds (30) and (32), we then obtain
|P(g(p) € [9(Xn) = tBi—a/25n.8,9(Xn) + tB1—a/250.8]) — (1 — a)|
< 2=+ By max { Blo] (X - /o112, /Blo] (X - /ol
. (Qogn)*”? ~ logn CEllg] (X — )]
NG + nl/2—3/(2q) + a3/n )

where C' is a universal constant and C' is a constant depending only on ¢. Finally notice that

(logn)3/? ) Viogn
Jn o\ esen )

and E[|g; (X —p)|?]/o® > 1. We can absorb (log n)3/2 /+/n into \/Tog nn/n'/?~3/(24) and absorb 2/1/n into CE[|g] (X —
w)|3]/o3y/n (with larger constants C; and C), which leads to

’P(Q(H) € [9(Xn) = tB1-a/25n,8,9(Xn) + tB1-a/250.8]) — (1 — Oé)’

Viogn (X =)
< BC, maX{E[ng(X — ) /o)1 9, \/E[|ng(X - u)/g|4]} n1/21?§/(2q) n CE[IQ;E\);E DIWY

Proof of Theorem B.1: In view of Theorem 3.1, it suffices to show

|P(¢ € [ijn - tB,l—a/2Sn,Bv1[)n +1tB1-a/25.,8]) — (1 — a)

2 2 &
<286 +28,+ \/715}371—(1/2 — Z1—a/2| + \/ **BtB,l—a/?
™ ™ O

Then taking the minimum of the two bounds, we can get the desired result. We write A as the event that




B

So-&< ;;Ww:;b — )2 <o+ Es

Then we have P(A°) < &,. Note that the confidence interval can be written as

P € [ty — tpi- oz/QSn By Un + tB1—a/25n,B]

| Yo — ¥) = <iBi1-a/2
Ve zbl VA — $.))?

_ <t )2
( 0__53 B,1 a/27~’4>

P € [¢hn — tB,1—a/25n, By Un + tB1—a/25n,8]; A)

< ('fo(f%:g_g )|<tB,1a/2;-A>-

For the upper bound, we can further bound it as follows

Therefore, we have

<|\f0(?,/j:&3 V) <tB,1—a/2;A>
|\/>(¢n - )‘ t
ot & Bil-a/2

= P(—(0 + &)tpi-aje < V(e — ) < (0 +E3)tp1-a)2)-
By means of the finite-sample accuracy in (15), we have
P(—(0+&)tpi—as2 < Vi, — ) < (o + E3)tpi—a/2)

o+ & o+ &
<o ( . 3t3,1a/2) - (— . 3tB,1a/2) +2&

o+ &

B,1-a/2 — Rl—a/2

< P(z1-qy2) — P(—21-a/2) +2&1 + \/;

2 2 &3
Sl-—a+28 +4/=ltp1-a/2 — Z1-as2| + \/>tB,1a/27
™ ™ O

where 21 _, /9 is the (1 — «/2)-th quantile of the standard normal and the second inequality is due to the 1/+/27-Lipschitz
property of ®(-). For the lower bound, by a similar argument we can obtain

» (wwn )| PP A)
g — 83
> P (W < tB,l_ap) ~ P(A%)

210251\/7|t31 a2 = Z1—aj2| — V- 7tBl a2 — P(A%)
>1—-a—2& — \/7|t31 a2 = Z1—aj2| — V7 7tBl a2 — €.
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Thus, by combining the upper and lower bounds, we have the following bound for the coverage error when A happens

|P(y € [y, —tp1- a/25n,B5 Un +tp a/29n,8l; A) = (1 — )]

<251+54+\/ |tBl a/2 — - oz/2|+\/>tBl a/2-

Finally, the overall coverage error can be bounded by

|P('(/} € [’IZ;’I’L - tB,lfa/ZSvaz[Jn + tB,lfa/QSn,B]) - (1 - Oé>|
<P € [ —tB1—a/25n,8,%n +tB1_a/2Sn el A) — (1 — )| + P(A°)

2 2 &
<281 +28,+ \/7|t13,1—a/2 — Z1_a/2| + \/73753,1—&/2,
Vs ™ O

which, combined with Theorem 3.1, gives us the desired bound. O

Proof of Theorem B.2: By means of Lemmas D.1 and D.2, this directly follows from Theorem 3.2. Besides, the error &;

can be absorbed into &,. O
Proof of Theorem B.3: Plugging the bounds (30) and (31) into Theorem 3.2, we get the desired result. O
Proof of Theorem B.4: Plugging the bounds (30) and (32) into Theorem 3.2, we get the desired result. O

35



