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Abstract

The bootstrap is a popular data-driven method

to quantify statistical uncertainty, but for modern

high-dimensional problems, it could suffer from

huge computational costs due to the need to re-

peatedly generate resamples and refit models. We

study the use of bootstraps in high-dimensional

environments with a small number of resamples.

In particular, we show that with a recent ªcheapº

bootstrap perspective, using a number of resam-

ples as small as one could attain valid coverage

even when the dimension grows closely with the

sample size, thus strongly supporting the imple-

mentability of the bootstrap for large-scale prob-

lems. We validate our theoretical results and com-

pare the performance of our approach with other

benchmarks via a range of experiments.

1. Introduction

The bootstrap is a widely used method for statistical uncer-

tainty quantification, notably confidence interval construc-

tion (Efron & Tibshirani, 1994; Davison & Hinkley, 1997;

Shao & Tu, 2012; Hall & Martin, 1988). Its main idea is

to resample data and use the distribution of resample esti-

mates to approximate a sampling distribution. Typically, this

approximation requires running many Monte Carlo repli-

cations to generate the resamples and refit models. This is

affordable for classical problems, but for modern large-scale

problems, this repeated fitting could impose tremendous

computation concerns. This issue motivates an array of re-

cent works to curb the computation effort, mostly through a

ªsubsamplingº perspective that fits models on smaller data

sets in the bootstrap process, e.g., Kleiner et al. (2012);

Lu et al. (2020); Giordano et al. (2019); Schulam & Saria

(2019); Alaa & Van Der Schaar (2020).

In contrast to subsampling, we consider in this paper the
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reduction in bootstrap computation cost by using a fewer

number of Monte Carlo replications or resamples. In par-

ticular, we target the following question: Is it possible to

run a valid bootstrap for high-dimensional problems with

very little Monte Carlo computation? While conventional

bootstraps rely heavily on adequate resamples, recent work

(Lam, 2022a;b) shows that it is possible to reduce the resam-

pling effort dramatically, even down to one Monte Carlo

replication. The rough idea of this ªcheapº bootstrap is to ex-

ploit the approximate independence among the original and

resample estimates, instead of their distributional closeness

utilized in the conventional bootstraps. We will leverage

this recent idea in this paper. However, since Lam (2022a;b)

is based purely on asymptotic derivation, giving an affirma-

tive answer to the above question requires the study of new

finite-sample bounds to draw understanding on bootstrap

behaviors jointly in terms of problem dimension p, sample

size n and number of resamples B.

To this end, our main theoretical contribution in this paper

is three-fold:

General Finite-Sample Bootstrap Bounds: We derive

general finite-sample bounds on the coverage error of con-

fidence intervals aggregated from B resample estimates,

where B is small using the ªcheapº bootstrap idea, and

B = ∞ for traditional quantile-based bootstrap methods

including the basic and percentile bootstraps (e.g., Davison

& Hinkley (1997) Section 5.2-5.3). Our bounds reveal that,

given the same primitives on the approximate normality of

the original and each resample estimate, the cheap bootstrap

with fixed small B achieves similar coverage error bounds

as conventional bootstraps using infinite resamples. This

also simultaneously recovers the main result in Lam (2022a),

but stronger in terms of the finite-sample guarantee.

Bootstrap Bounds on Function-of-Mean Models Explicit

in p, n and B: We specialize our general bounds above to

the function-of-mean model that is customary in the high-

dimensional Berry-Esseen and central limit theorem (CLT)

literature (Pinelis & Molzon, 2016; Zhilova, 2020). In partic-

ular, our bounds explicit on p, n and B conclude vanishing

coverage errors for the cheap bootstrap when p = o(n), for

any given B ≥ 1. Note that the function-of-mean model

does not capture all interesting problems, but it has been

commonly used ± and in fact, appears the only model used
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in deriving finite-sample CLT errors for technicality reasons.

Our bounds shed light that, at least for this wide class of

models, using a small number of resamples can achieve a

good coverage even in a dimension p growing closely with

n.

Bootstrap Bounds on Linear Models Independent of p:

We further specialize our bounds to linear functions with

weaker tail conditions, which have orders independent of p
under certain conditions on the Lp norm or Orlicz norm of

the linearly scaled random variable.

In addition to theoretical bounds, we investigate the empiri-

cal performances of bootstraps using few resamples on large-

scale problems, including high-dimensional linear regres-

sion, high-dimensional logistic regression, computational

simulation modeling, and a real-world data set RCV1-v2

(Lewis et al., 2004). To give a sense of our comparisons

that support using the cheap bootstrap in high dimension,

here is a general conclusion observed in our experiments:

Figure 1(a) shows the coverage probabilities of 95%-level

confidence intervals for three regression coefficients with

corresponding true values 0, 2,−1 in a 9000-dimensional

linear regression (in Section 4). The cheap bootstrap cov-

erage probabilities are close to the nominal level 95% even

with one resample, but the basic and percentile bootstraps

only attain around 80% coverage with ten resamples. In

this example, one Monte Carlo replication to obtain each

resample estimate takes around 4 minutes in the virtual ma-

chine e2-highmem-2 in Google Cloud Platform. Therefore,

the cheap bootstrap only requires 4 minutes to obtain a sta-

tistically valid interval, but the standard bootstrap methods

are still far from the nominal coverage even after more than

a 40-minute run. Figure 1(b) shows the average interval

widths. This reveals the price of a wider interval for the

cheap bootstrap when the Monte Carlo budget is very small,

but considering the low coverages in the other two methods

and the fast decay of the cheap bootstrap width for the first

few number of resamples, such a price appears secondary.

Notation. For a random vector X , we write Xk as the ten-

sor power X⊗k. The vector norm is taken as the usual

Euclidean norm. The matrix and tensor norms are taken

as the operator norm. For a square matrix M , tr(M) de-

notes the trace of M . Ip×p denotes the identity matrix in

R
p×p and 1p denotes the vector in R

p whose components

are all 1. Φ denotes the cumulative distribution function of

the standard normal. C2(Rp) denotes the set of twice con-

tinuously differentiable functions on R
p. Throughout the

whole paper, we use C > 0 (without subscripts) to denote

a universal constant which may vary each time it appears.

We use C1, C2, . . . to denote constants that could depend on

other parameters and we will clarify their dependence when

using them.

2. Background on Bootstrap Methods

We briefly review standard bootstrap methods and from

there the recent cheap bootstrap. Suppose we are interested

in estimating a target statistical quantity ψ := ψ(PX) where

ψ(·) : P 7→ R is a functional defined on the probability mea-

sure space P . Given i.i.d. data X1, . . . , Xn ∈ R
p following

the unknown distribution PX , we denote the empirical dis-

tribution as P̂X,n(·) := (1/n)
∑n
i=1 I(Xi ∈ ·). A natural

point estimator is ψ̂n := ψ(P̂X,n).

To construct a confidence interval from ψ̂n, a typical be-

ginning point is the distribution of ψ̂n − ψ from which we

can pivotize. As this distribution is unknown in general,

the bootstrap idea is to approximate it using the resample

counterpart, as if the empirical distribution was the true

distribution. More concretely, conditional on X1, . . . , Xn,

we repeatedly, say for B times, resample (i.e., sample

with replacement) the data n times to obtain resamples

{X∗b
1 , . . . , X

∗b
n }, b = 1, . . . , B. Denoting P̂ ∗b

X,n as the re-

sample empirical distributions, we construct B resample

estimates ψ̂∗b
n := ψ(P̂ ∗b

X,n). Then we use the α/2 and

(1−α/2)-th quantiles of ψ̂∗b
n − ψ̂n, called qα/2 and q1−α/2,

to construct [ψ̂n − q1−α/2, ψ̂n − qα/2] as a (1 − α)-level

confidence interval, which is known as the basic bootstrap

(Davison & Hinkley (1997) Section 5.2). Alternatively, we

could also use the α/2 and (1−α/2)-th quantiles of ψ̂∗b
n , say

q′α/2 and q′1−α/2, to form [q′α/2, q
′
1−α/2], which is known as

the percentile bootstrap (Davison & Hinkley (1997) Section

5.3). There are numerous other variants in the literature,

such as studentization (Hall, 1988), calibration or iterated

bootstrap (Hall, 1986a; Beran, 1987), and bias correction

and acceleration (Efron, 1987; DiCiccio et al., 1996; DiCic-

cio & Tibshirani, 1987), with the general goal of obtaining

more accurate coverage.

All the above methods rely on the principle that ψ̂n−ψ and

ψ̂∗
n − ψ̂n (conditional on X1, . . . , Xn) are close in distri-

bution. Typically, this means that, with a
√
n-scaling, they

both converge to the same normal distribution. In contrast,

the cheap bootstrap proposed in Lam (2022a;b) constructs a

(1− α)-level confidence interval via
[

ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B
]

, (1)

where S2
n,B = (1/B)

∑B
b=1(ψ̂

∗b
n − ψ̂n)

2, and tB,1−α/2 is

the (1− α/2)-th quantile of tB , the t-distribution with de-

gree of freedomB. The quantity S2
n,B resembles the sample

variance of the resample estimates ψ̂∗b
n ’s, in the sense that as

B → ∞, S2
n,B approaches the bootstrap variance V ar∗(ψ̂∗

n)
(where V ar∗(·) denotes the variance of a resample condi-

tional on the data). In this way, (1) reduces to the normality

interval with a ªplug-inº estimator of the standard error term

whenB and n are both large. However, intriguingly, B does

not need to be large, and S2
n,B is not necessarily close to
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Proof sketch of Theorem 3.1. Step 1: We write the cover-

age probability as the expected value (with respect to data)

of a multiple integral with respect to the distributions of√
n(ψ̂∗

n − ψ̂n) (denoted by Q∗, conditional on data), i.e.,

P (|ψ − ψ̂n| ≤ tB,1−α/2Sn,B)

= P





∣

∣

∣

∣

∣

∣

√
n(ψ̂n − ψ)

√

1
B

∑B
b=1(

√
n(ψ̂∗b

n − ψ̂n))2

∣

∣

∣

∣

∣

∣

≤ tB,1−α/2





= E







∫

|√n(ψ̂n−ψ)|√∑B
b=1

z2
b
/B

≤tB,1−α/2
dQ∗(zB) · · · dQ∗(z1)






.

(5)

Step 2: Suppose (3) happens and denote this event by A
which satisfies P (Ac) ≤ β. For each b = 1, . . . , B, given

all other zb′ , b
′ ̸= b, the integration region is of the form

zb ∈ (−∞,−q] ∪ [q,∞) for some q ≥ 0. Then we can

replace the distribution Q∗ by the distribution of N(0, σ2)
(denoted by P0) with controlled error given in (3) and obtain

E







∫

|√n(ψ̂n−ψ)|√∑B
b=1

z2
b
/B

≤tB,1−α/2
dQ∗(zB) · · · dQ∗(z1)







= E







∫

|√n(ψ̂n−ψ)|√∑B
b=1

z2
b
/B

≤tB,1−1−α/2

dP0(zB) · · · dP0(z1)







+R1, (6)

where |R1| ≤ 2BE2 +β accounts for the error from (3) and

the small probability event Ac.

Step 3: Following the same logic in Step 2 and noticing that

the integration region for
√
n(ψ̂n − ψ) is [−q, q] for some

q ≥ 0, we can also replace the distribution of
√
n(ψ̂n − ψ)

by the distribution P0 with controlled error |R2| ≤ 2E1
according to (2):

E







∫

|√n(ψ̂n−ψ)|√∑B
b=1

z2
b
/B

≤tB,1−α/2
dP0(zB) · · · dP0(z1)







=

∫

|z0|√∑B
b=1

z2
b
/B

≤tB,1−α/2
dP0(zB) · · · dP0(z1)dP0(z0)

+R2

= 1− α+R2. (7)

Step 4: Plugging (6) and (7) back into (5), we can express

the coverage probability as a sum of the nominal level and

the remainder term:

P (|ψ − ψ̂n| ≤ tB,1−α/2Sn,B) = 1− α+R1 +R2

with error |R1 + R2| ≤ 2E1 + 2BE2 + β. This gives our

conclusion.

Theorem 3.1 is designed to work well for smallB (our target

scenario), but deteriorates when B grows. However, in the

latter case, we can strengthen the bound to cover the large-B
regime with additional conditions on the variance estimator

(see Appendix B.1).

We compare with standard basic and percentile bootstraps

using B = ∞. Below is a generalization of Zhilova (2020)

which focuses only on the basic bootstrap under the function-

of-mean model.

Theorem 3.2. Suppose the conditions in Theorem 3.1 hold.

If qα/2, q1−α/2 are the α/2-th and (1− α/2)-th quantiles

of ψ̂∗
n − ψ̂n respectively given X1, . . . , Xn, then a finite-

sample bound on the basic bootstrap coverage error is

|P (ψ̂n − q1−α/2 ≤ ψ ≤ ψ̂n − qα/2)− (1− α)|
≤ 2E1 + 2E2 + 2β. (8)

If q′α/2, q′1−α/2 are the α/2-th and (1− α/2)-th quantiles

of ψ̂∗
n respectively given X1, . . . , Xn, then a finite-sample

bound on the percentile bootstrap coverage error is

|P (q′α/2 ≤ ψ ≤ q′1−α/2)−(1−α)| ≤ 2E1+2E2+2β. (9)

In view of Theorems 3.1 and 3.2, the cheap bootstrap with

any fixed B can achieve the same order of coverage error

bound as the basic and percentile bootstraps with B = ∞,

in the sense that

(1/2) EBQuantile ≤ EBCheap ≤ B EBQuantile, (10)

where EBCheap is the RHS error bound of (4) and EBQuantile is

that of (8) or (9). This shows that, to attain a good coverage

that is on par with standard basic/percentile bootstraps, it

suffices to use the cheap bootstrap with a small B which

could save computation dramatically.

Besides coverage, another important quality of confidence

interval is its width. To this end, note that for any fixed B,

(3) ensures that
√
nSn,B ⇒ σ

√

χ2
B/B (unconditionally as

n → ∞ with proper model assumptions) . Therefore, the

half-width of (1) is approximately tB,1−α/2σ
√

χ2
B/(nB)

with expected value

E

[

tB,1−α/2σ

√

χ2
B

nB

]

= tB,1−α/2σ

√

2

Bn

Γ((B + 1)/2)

Γ(B/2)
,

(11)

where Γ(·) is the gamma function. Since the dimensional

impact is hidden in σ which is a common factor in the

expected width as B varies, we can see p does not affect the

relative width behavior as B changes. In particular, from

(11) the inflation of the expected width relative to the case
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B = ∞ is 417.3% for B = 1, and dramatically reduces to

94.6%, 24.8% and 10.9% for B = 2, 5, 10, thus giving an

interval with both correct coverage and short width using a

small computation budget B.

In the next sections, we will apply Theorem 3.1 to obtain

explicit bounds for specific high-dimensional models. Here,

in relation to (10), we briefly comment that the order of the

coverage error bounds for these models is of order 1/
√
n,

both for the cheap bootstrap (which we will derive) and

state-of-the-art high-dimensional bootstrap CLT. This is

in contrast to the typical 1/n coverage error in two-sided

bootstrap confidence intervals in low dimension (see Hall

(2013) Section 3.5 for quantile-based bootstraps and Lam

(2022a) Section 3.2 for the cheap bootstrap).

3.2. Function-of-Mean Models

We now specialize to the function-of-mean model ψ = g(µ)
for a mean vector µ = E[X] ∈ R

p and smooth function

g : Rp 7→ R, which allows us to construct more explicit

bounds. The original estimate ψ̂n and resample estimate ψ̂∗b
n

are now given by g(X̄n) and g(X̄∗b
n ) respectively, where

X̄n denotes the sample mean of data and X̄∗b
n denotes the

resample mean of X∗b
1 , . . . , X

∗b
n . We assume:

Assumption 3.3. The function g(x) ∈ C2(Rp) has Hes-

sian matrix Hg(x) with uniformly bounded eigenvalues,

that is, ∃ a constant CHg > 0 s.t. supx∈Rp |a⊤Hg(x)a| ≤
CHg ||a||2, ∀a ∈ R

p.

Assumption 3.4. X is sub-Gaussian, i.e., there is a constant

τ2 > 0 s.t. E[exp(a⊤(X − µ))] ≤ exp(||a||2τ2/2), ∀a ∈
R
p. Furthermore, X has a density bounded by a constant

CX and its covariance matrix Σ is positive definite with the

smallest eigenvalue λΣ > 0.

Based on Theorem 3.1, we derive the following explicit

bound:

Theorem 3.5. Suppose the function g satisfies Assump-

tion 3.3 and random vector X satisfies Assumption 3.4.

Moreover, assume ||∇g(µ)|| > C∇g
√
p for some constant

C∇g > 0. Then we have

∣

∣P (|g(µ)− g(X̄n)| ≤ tB,1−α/2Sn,B)− (1− α)
∣

∣

≤ 6

n
+BC

(

m31√
nσ3

+
CHgm

1/3
31 tr(Σ)√
nσ2

+
CHgm

2/3
32

n5/6σ

+
CHgm

1/3
31 m

2/3
32

nσ2
+

CHgτ
2

C∇g
√
λΣ

(

1 +
log n

p

)
√

p

n

+
||E[(X − µ)3]||

λ
3/2
Σ

1√
n
+

τ3

λ
3/2
Σ

(

1 +
log n

p

)3/2
1√
n

+
τ4
√
p

λ2Σn

(

1 +
log n

p

)1/2

+
τ2
√
p

λΣn

(

1 +
log n

p

)1/2

+
τ3
√
p

λ
3/2
Σ n

(

1 +
log n

p

)

)

+BC1

(

τ4(log n)3/2

λ2Σ
√
n

+
τ2(log n)3/2

λΣ
√
n

+
τ3

λ
3/2
Σ

√
n

(

1 +
log n

p

)1/2

(log n+ log p)
√

log n

)

,

wherem31 = E[|∇g(µ)⊤(X−µ)|3],m32 := E[||X−µ||3],
σ2 = ∇g(µ)⊤Σ∇g(µ), C is a universal constant and C1

is a constant only depending on CX .

Theorem 3.5 is obtained by tracing the implicit quantities in

Theorem 3.1 for the function-of-mean model, via extracting

the dependence on problem parameters in the Berry-Esseen

theorems for the multivariate delta method (Pinelis & Mol-

zon, 2016) and the standard bootstrap (Zhilova, 2020). In

particular, the sub-Gaussian assumption is required to de-

rive finite-sample concentration inequalities, in a similar

spirit as the state-of-the-art high-dimensional CLTs (e.g.,

Chernozhukov et al. (2017); Lopes (2022)). On the other

hand, the third moments such as ||E[(X − µ)3]|| (operation

norm of the third order tensor E[(X − µ)3]), m31 and m32

are due to the use of the Berry-Esseen theorem and a mul-

tivariate higher-order Berry-Esseen inequality in Zhilova

(2020), which generally requires this order of moments. The

bound in Theorem 3.5 can be simplified with reasonable

assumptions on the involved quantities:

Corollary 3.6. Suppose the conditions in Theorem 3.5 hold.

Moreover, suppose that τ, CHg , C1 = O(1), C∇g, λΣ =
Θ(1), ||∇g(µ)||2 = O(p), σ2 = Θ(p) and ||E[(X −
µ)3]|| = O(1). Then as p, n→ ∞,

∣

∣P (|g(µ)− g(X̄n)| ≤ tB,1−α/2Sn,B)− (1− α)
∣

∣

= B ×O

((

1 +
log n

p

)
√

p

n

+
1√
n

(

1 +
log n

p

)1/2

(log n+ log p)
√

log n

)

.

Consequently, for any fixed B ≥ 1, the cheap bootstrap

confidence interval is asymptotically exact provided p =
o(n), i.e.,

lim
p,n→∞
p=o(n)

P (|g(µ)− g(X̄n)| ≤ tB,1−α/2Sn,B) = 1− α.

In Corollary 3.6, the cheap bootstrap coverage error shrinks

to 0 as n → ∞ if p = o(n), i.e., the problem dimen-

sion grows slower than n in any arbitrary fashion. Al-

though there is no theoretical guarantee that the choice of

p = o(n) is tight, we offer numerical evidence in Section

4 where the cheap bootstrap works with a small B when

p/n = 0.09 but it fails (i.e., over-covers the target with a
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quite large interval width) when p/n = 0.25. Such a dif-

ference indicates that p = o(n) can be tight in some cases.

Recall that ||E[(X − µ)3]|| denotes the operator norm of

the third order tensor E[(X − µ)3], and so the assumption

||E[(X − µ)3]|| = O(1) holds if the components of X are

independent (or slightly weakly dependent). Other order

assumptions in Corollary 3.6 are natural. An example of

the function-of-mean model is g(µ) = ||µ||2, used also

in Zhilova (2020), whose confidence interval becomes a

simultaneous confidence region for the mean vector µ.

3.3. Linear Functions

We consider a further specialization to linear g where, in-

stead of sub-Gaussanity ofX , we are now able to use weaker

tail conditions. Assume g(x) = g⊤1 x+ g2, where g1 ∈ R
p

and g2 ∈ R are known. Then g(X̄n) and g(X̄∗b
n ) are essen-

tially the sample mean and resample mean of i.i.d. random

variables g⊤1 Xi + g2, i = 1, . . . , n.

First, we consider the case where g⊤1 (X − µ) is sub-

exponential, i.e., ||g⊤1 (X − µ)||ψ1
:= inf{λ > 0 :

E[ψ1(|g⊤1 (X − µ)|/λ)] ≤ 1} < ∞, where || · ||ψ1
is the

Orlicz norm induced by the function ψ1(x) = ex − 1. Sub-

exponential property is a weaker tail condition than sub-

Gaussianity; see e.g. Vershynin (2018) Sections 2.5 and 2.7.

Under this condition, we have:

Theorem 3.7. Suppose g is a linear function in the form

g(x) = g⊤1 x + g2. Assume that σ2 = g⊤1 Σg1 > 0 and

||g⊤1 (X − µ)||ψ1
< ∞. Then for any n ≥ 3, we have

the following finite-sample bound on the cheap bootstrap

coverage error

∣

∣P (|g(µ)− g(X̄n)| ≤ tB,1−α/2Sn,B)− (1− α)
∣

∣

≤ C

n
+BC

E[|g⊤1 (X − µ)|3]
σ3

√
n

+BC
||g⊤1 (X − µ)||4ψ1

log11(n)

σ4
√
n

,

where C is a universal constant.

Note that the bootstrap in Theorem 3.7 effectively applies

on the univariate g⊤1 (X − µ). Nonetheless, proving Theo-

rem 3.7 requires tools from high-dimensional CLT (Lopes,

2022; Chernozhukov et al., 2020), as this appears the only

line of work that investigates finite-sample bootstrap er-

rors (for mean estimation). The order of the bound in

terms of p is controlled by g⊤1 (X − µ), and so if the lat-

ter is well-scaled by its standard deviation σ in the sense

that E[|g⊤1 (X −µ)/σ|3], ||g⊤1 (X −µ)/σ||ψ1
= O(1) (e.g.,

X follows a multivariate normal distribution), then the or-

der is independent of p, which means the error goes to 0
for any p as long as n → ∞. However, if the orders of

E[|g⊤1 (X − µ)/σ|3] and ||g⊤1 (X − µ)/σ||ψ1 depend on p,

then the growing rate of p must be restricted by n to ensure

the error goes to 0.

Next, we further weaken the tail condition on g⊤1 (X − µ).
We only assume E[|g⊤1 (X − µ)|q] <∞ for some q ≥ 4. In

this case, we have the following:

Theorem 3.8. Suppose g is a linear function in the form

of g(x) = g⊤1 x + g2. Assume that σ2 = g⊤1 Σg1 > 0 and

E[|g⊤1 (X − µ)|q] < ∞ for some q ≥ 4. Then for any

n ≥ 3, we have the following finite-sample bound on the

cheap bootstrap coverage accuracy

∣

∣P (|g(µ)− g(X̄n)| ≤ tB,1−α/2Sn,B)− (1− α)
∣

∣

≤ BC1

√
log n

n1/2−3/(2q)
max

{

E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
}

+ C
E[|g⊤1 (X − µ)|3]

σ3
√
n

,

where C is a universal constant and C1 is a constant de-

pending only on q.

The implication of Theorem 3.8 on the choice of p is similar

to Theorem 3.7. In parallel to the above, explicit finite-

sample bounds for standard quantile-based bootstrap meth-

ods can also be obtained by means of Theorem 3.2 under

the assumptions in Theorems 3.5, 3.7 or 3.8 (see Appendix

B.2).

4. Numerical Experiments

We consider various high-dimensional examples:

Ellipsoidal estimation: The estimation target is g(µ) =
||µ||2, where µ is the mean of X ∈ R

p with ground-truth

distribution N(0.021p, 0.01Ip×p). Sample size n = 105

and dimension p = 2.5× 104.

Sinusoidal estimation: The estimation target is g(µ) =
∑p
i=1 sin(µi), where µ = (µi)

p
i=1 is the mean of X ∈ R

p

with ground-truth distributionN(0, 0.01Ip×p). Sample size

n = 105 and dimension p = 2.5× 104.

Linear regression with independent covariates: Con-

sider the true model Y = X⊤β + ε, where X ∈ R
p fol-

lows N(0, 0.01Ip×p) and ε ∼ N(0, 1) independent of X .

The first, second and last 1/3 components of β = (βi)
p
i=1

are 0, 2,−1 respectively. We estimate β given i.i.d. data

(Xi, Yi)
n
i=1 with n = 105 and p = 9000.

Logistic regression with independent covariates: Con-

sider the true model Y ∈ {0, 1}, X ∈ R
p, P (Y = 1|X) =

exp(X⊤β)/(1+exp(X⊤β)), whereX ∼ N(0, 0.01Ip×p).
The first 300 components of βi’s are 1, the second 300
components −1 and the rest 0. As suggested in Sur &

Candès (2019), we choose such values of βi’s to make

sure V ar(X⊤β) = 6 does not increase with p so that

P (Y = 1|X) is not trivially equal to 0 or 1 in most cases.
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We estimate β given i.i.d. data (Xi, Yi)
n
i=1 with n = 105

and p = 9000.

Stochastic simulation model: Consider a stochastic com-

puter communication model used to calculate the steady-

state average message delay (Cheng & Holland (1997); Lin

et al. (2015); Lam & Qian (2022); see Appendix C.3 for de-

tails). This problem can be cast as computing ψ(P1, . . . , Pp)
where ψ represents this expensive simulation model (due to

the need to run very long time in order to reach steady state)

and Pj’s denote the input distributions, p = 13 in total. The

data sizes for observing these 13 input models range from

3× 104 to 6× 104.

A real data example: We run logistic regression on the

RCV1-v2 data in Lewis et al. (2004). This dataset contains

n = 804414 manually categorized newswire stories with

a total of p = 47236 features. ªEconomicsº (ªECATº) is

chosen as the +1 label. We target coefficient estimation.

Linear regression with dependent covariates: We con-

sider the same linear regression setup as before but with

two different distributions of X . One is X ∼ N(0, 0.01Σ)
where the components of Σ are Σij = 0.8|i−j|. For this

distribution, the i-th component and j-th component of X
are more dependent when i and j are closer to each other.

The other distribution is X ∼ N(0, 0.01AA⊤), where A is

a random matrix whose components are i.i.d. from U(0, 1).
The two cases are referred to as ªexponential decayº and

ªrandom covariance matrixº respectively.

Logistic regression with dependent covariates: We con-

sider the same logistic regression setup as before but change

the distribution of X into the exponential decay distribution

mentioned above. Here we do not consider the random co-

variance matrix case because the significant noisiness of X
makes V ar(X⊤β) so large that P (Y = 1|X) is trivially

equal to 0 or 1 in most cases, which is also avoided in other

work (e.g., Sur & Candès (2019)).

Ridge regression with p > n: Consider the true linear

model Y = X⊤β + ε, where ε ∼ N(0, 1) is indepen-

dent of X . The first, second and last 1/3 components of

β = (βi)
p
i=1 are 0, 2,−1 respectively. We consider three

distributions of X . The first one is X ∼ N(0, 0.01Ip×p)
(referred to as ªindependentº). The other two are exponen-

tial decay distribution and random covariance matrix men-

tioned above. Given i.i.d. data (Xi, Yi)
n
i=1 with n = 8000

and p = 9000, we estimate β by means of ridge regression

which minimizes ||Y −Xβ||2 + λ||β||2.

(Regularized) logistic regression with varying dimen-

sions p: We use the same setup of logistic regression with

independent covariates as before (e.g. n = 105) but use

p ∈ {12000, 15000, 18000, 21000, 25000} to test the valid

boundary of p (i.e., the maximum p that makes cheap boot-

strap work) in this problem. Moreover, we also run a regu-

larized version by adding the ℓ2 regularization term ||β||2/2
to the log likelihood function of logistic regression to see

the effect of regularization.

Setups and comparison benchmarks. In each example

above, our targets are 95%-level confidence intervals for the

target parameters. We test four bootstrap confidence inter-

vals: 1) cheap bootstrap (1); 2) basic bootstrap described

in Section 2; 3) percentile bootstrap described in Section 2;

4) standard error bootstrap that uses standard normal quan-

tile and standard deviation of ψ̂∗b
n ’s in lieu of tB,1−α/2 and

Sn,B respectively in (1). For each setup except the real-data

example, we run 1000 experimental repetitions, each time

generating a new data set from the ground truth distribu-

tion and construct the intervals. We report the empirical

coverage and average interval width over these repetitions.

For examples with more than one target estimation quantity,

we further average the coverages and widths over all these

targets. For the high-dimensional linear regression with

independent covariates, we additionally show a box plot of

the coverage probabilities and confidence interval widths

of each individual βi. We vary the number of resamples B
from 1 to 10 in all examples and report the running time (i.e.,

model fitting time for one point estimate and B bootstrap

estimates; the time for outputting the confidence intervals

using these estimates is negligible compared to the model

fitting time) in the virtual machine e2-highmem-2 in Google

Cloud Platform. Some examples have larger scale and thus

are run in the virtual machine e2-highmem-8 with larger

memory and better CPU, whose running time will be starred

(*).

Results and discussions. Tables 1-5 and Figure 2 describe

our results (Tables 2-5 are delegated to Appendix C.1 due

to the limitation of space), where we report B = 1, 2, 5, 10.

ªCBº, ªBBº, ªPBº and ªSEBº in Figure 2 stand for the cheap

bootstrap, basic bootstrap, percentile bootstrap and standard

error bootstrap respectively.

Coverage probability: According to Table 1, the cheap boot-

strap performs the best in terms of the coverage probabilities

in almost all cases (except the real-data example where we

cannot validate and only report the interval widths). In all

but three entries, the cheap bootstrap gives the closest cov-

erages to the nominal 95% among all considered bootstrap

methods, and in all but three entries the cheap bootstrap

coverages are above 95%. In contrast, other approaches are

substantially below the nominal level except for very few

cases with B = 10. For example, in the ellipsoidal estima-

tion, cheap bootstrap coverage probabilities are above 95%

for all considered B’s, while the highest coverage among

other bootstrap methods is 82.1% even for B = 10. These

observations corroborate with theory since unlike standard

bootstrap methods, the cheap bootstrap gives small cover-

age errors even with very small B. Note that when B = 1,
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Table 1. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the first six numerical

examples. The closest coverage probability to the nominal 95% level among all methods in each setting is bold.

Example B
Cheap Bootstrap Basic Bootstrap Percentile Bootstrap Standard Error Bootstrap

Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

1 96.0% 0.069 N.A. N.A. N.A. N.A. N.A. N.A. 9*

Ellipsoidal 2 97.3% 0.026 32.2% 0.002 5.5% 0.002 55.1% 0.006 15*

estimation 5 97.4% 0.016 66.0% 0.005 13.6% 0.005 70.1% 0.007 36*

10 97.5% 0.014 82.1% 0.006 20.8% 0.006 73.6% 0.008 70*

1 94.4% 0.958 N.A. N.A. N.A. N.A. N.A. N.A. 7*

Sinusoidal 2 95.2% 0.384 29.6% 0.051 35.2% 0.051 63.2% 0.142 12*

estimation 5 93.6% 0.248 71.2% 0.117 66.4% 0.117 86.4% 0.187 27*

10 94.4% 0.222 84.0% 0.156 83.2% 0.156 89.6% 0.196 52*

Linear 1 95.1% 0.68 N.A. N.A. N.A. N.A. N.A. N.A. 443

regression 2 95.1% 0.256 33.5% 0.038 33.5% 0.038 70.2% 0.105 666

(independent 5 95.2% 0.164 67.0% 0.078 67.0% 0.078 88.1% 0.123 1337

covariates) 10 95.2% 0.146 82.2% 0.103 82.2% 0.103 92.1% 0.128 2454

Logistic 1 96.1% 2.866 N.A. N.A. N.A. N.A. N.A. N.A. 50

regression 2 96.9% 1.074 39.7% 0.147 31.7% 0.147 73.4% 0.407 81

(independent 5 97.9% 0.685 77.9% 0.302 63.3% 0.302 91.0% 0.479 175

covariates) 10 98.4% 0.609 91.9% 0.400 77.7% 0.400 94.6% 0.496 331

1 96.9% 1.757×10−3 N.A. N.A. N.A. N.A. N.A. N.A. 1

Stochastic 2 98.8% 6.417×10−4 21.9% 6.962×10−5 47.0% 6.962×10−5 68.7% 1.930×10−4 2

simulation 5 99.7% 4.044×10−4 43.2% 1.428×10−4 90.4% 1.428×10−4 87.1% 2.269×10−4 3

10 100% 3.591×10−4 55.6% 1.915×10−4 99.8% 1.915×10−4 92.6% 2.375×10−4 5

1 N.A. 3.594 N.A. N.A. N.A. N.A. N.A. N.A. 156

Real 2 N.A. 1.361 N.A. 0.201 N.A. 0.201 N.A. 0.556 233

data 5 N.A. 0.877 N.A. 0.414 N.A. 0.414 N.A. 0.658 464

10 N.A. 0.779 N.A. 0.547 N.A. 0.547 N.A. 0.682 849

are tight in some appropriate sense.

We close this paper by positioning our results in the broader

literature. First, our work is related to bootstrap cover-

age analysis. The commonest approach is to use the Edge-

worth expansion that reveals the asymptotic higher-order

terms in the coverage errors; see the comprehensive mono-

graph (Hall, 2013). It is only until recently when finite-

sample bounds on bootstrap appear, mostly in the high-

dimensional CLT literature where the target is sample mean

(Chernozhukov et al. (2017); Lopes (2022); Chernozhukov

et al. (2020) and references therein). They aim to prove a

uniform finite-sample bound of normal approximation of

the (bootstrap) sample mean over all hyperrectangles. An

alternative approach is to use Stein’s method (Fang & Koike,

2021).

Second, within the bootstrap framework, various approaches

have been proposed to reduce the Monte Carlo sampling ef-

fort by, e.g., variance reduction such as importance sampling

(Booth & Do, 1993), or analytic approximation especially

when applying iterated bootstraps (Booth & Hall, 1994;

Lee & Young, 1995). These methods, however, require

additional knowledge such as an explicit way to calculate

variance, or focus on tail estimation issue. The closest

work to the cheap bootstrap idea we utilize in this paper is

Hall (1986b) who investigates the number of resamples for

one-sided bootstrap intervals. Nonetheless, Hall (1986b)

suggests a minimum of 19 for B in a 95%-level interval,

obtained via an order-statistics calculation, which is still

much larger than the minimal choice B = 1 in the cheap

bootstrap.
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A. A More Detailed Explanation on the Cheap Bootstrap in the Low-Dimensional Case

This section aims to give more details on the cheap bootstrap method in the low-dimensional case discussed in Section 2.

Suppose we are interested in estimating a target statistical quantity ψ := ψ(PX) where ψ(·) : P 7→ R is a functional defined

on the probability measure space P . Given i.i.d. data X1, . . . , Xn ∈ R
p following the unknown distribution PX , we denote

the empirical distribution as P̂X,n(·) := (1/n)
∑n
i=1 I(Xi ∈ ·). A natural point estimator is ψ̂n := ψ(P̂X,n).

The cheap bootstrap confidence interval for ψ is constructed as follows. Conditional on X1, . . . , Xn, we independently

resample, i.e., sample with replacement, the data for B times to obtain resamples {X∗b
1 , . . . , X

∗b
n }, b = 1, . . . , B. Denoting

P̂ ∗b
X,n as the resample empirical distributions, we construct B resample estimates ψ̂∗b

n := ψ(P̂ ∗b
X,n). A (1 − α)-level

confidence interval is then given by

[

ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B
]

, (12)

where S2
n,B = (1/B)

∑B
b=1(ψ̂

∗b
n − ψ̂n)

2, and tB,1−α/2 is the (1− α/2)-th quantile of tB , the t-distribution with degree of

freedom B. Theorem 1 in Lam (2022a) shows that, under conditions on par with standard bootstrap methods, (12) is an

asymptotically exact (1− α)-level confidence interval for any fixed B ≥ 1, i.e.,

P (ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ]) → 1− α, as n→ ∞ (13)

where P is the probability with respect to both the data and the randomness in the resampling process.

Here we explain the asymptotic argument that gives rise to (13). Under suitable conditions, the sampling distribution of an

estimate ψ̂n and the distribution of a resample estimate ψ̂∗
n are approximately equal. More formally, they are equal in the

asymptotic sense of two CLTs
√
n(ψ̂n − ψ)

d→ N(0, σ2) for some σ2 > 0, and
√
n(ψ̂∗

n − ψ̂n)
d→ N(0, σ2) (conditional on

X1, . . . , Xn in probability) for the same σ2. By means of a conditional argument, we can combine the two aforementioned

CLTs to obtain the following joint convergence

√
n(ψ̂n − ψ, ψ̂∗1

n − ψ̂n, . . . , ψ̂
∗B
n − ψ̂n)

d→ (σZ0, σZ1, . . . , σZB), as n→ ∞ (14)

where Zb, b = 0, . . . , B are i.i.d. standard normal. From (14), we can establish the convergence of a pivotal t-statistic

(ψ̂n − ψ)/Sn,B
d→ tB which gives (13). The above shows that, with B fixed as small as 1, (12) already offers a coverage

close to the nominal level as n→ ∞. In this argument, the approximation accuracy of (ψ̂n − ψ)/Sn,B by the tB random

variable is crucial. However, in the high-dimensional case when p→ ∞ as n→ ∞, the joint CLT (14) may not hold and

thus the techniques in this paper are needed to establish the validity of the cheap bootstrap method.

B. Additional Theoretical Results

This section provides additional theoretical results. Appendix B.1 establishes an alternative finite-sample bound for the

cheap bootstrap that generalizes Theorem 3.1 to cover the large-B regime. Section B.2 provides finite-sample bounds for

standard quantile-based bootstrap methods under the conditions in Sections 3.2 and 3.3.

B.1. Further Finite-Sample Bound for the Cheap Bootstrap

The following result generalizes Theorem 3.1 to include both the small and large-B regimes:

Theorem B.1. Suppose we have the finite sample accuracy for the estimator ψ̂n

sup
x∈R

∣

∣

∣
P (

√
n(ψ̂n − ψ) ≤ x)− Φ

(x

σ

)∣

∣

∣
≤ E1, (15)

and with probability at least 1− β we have the finite sample accuracy for the bootstrap estimator ψ̂∗
n

sup
x∈R

∣

∣

∣P ∗(
√
n(ψ̂∗

n − ψ̂n) ≤ x)− Φ
(x

σ

)∣

∣

∣ ≤ E2,
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where σ > 0 and P ∗ denotes the probability on a resample conditional on the data. Further, suppose that the following

concentration inequality holds

P





∣

∣

∣

∣

∣

∣

√

√

√

√

1

B

B
∑

b=1

(
√
n(ψ̂∗b

n − ψ̂n))2 − σ

∣

∣

∣

∣

∣

∣

≥ E3



 ≤ E4, (16)

where E3 is deterministic and σ − E3 > 0. Then we have the following finite sample bound on the cheap bootstrap coverage

error

|P (ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ])− (1− α)|

≤ min

{

2E1 + 2BE2 + β, 2E1 + 2E4 +
√

2

π
|tB,1−α/2 − z1−α/2|+

√

2

π

E3
σ
tB,1−α/2

}

,

where z1−α/2 is the (1− α/2)-quantile of the standard normal.

The finite sample accuracy in Theorem B.1 consists of two parts. The first one 2E1 +2BE2 + β works well when B is small

as shown in Sections 3.2 and 3.3 but it deteriorates when B grows. In contrast, the second part

2E1 + 2E4 +
√

2

π
|tB,1−α/2 − z1−α/2|+

√

2

π

E3
σ
tB,1−α/2 (17)

vanishes as B, n→ ∞ but does not if B is bounded even if n→ ∞. Its behavior for bounded B is easy to see: The third

term
√

2/π|tB,1−α/2 − z1−α/2| in (17) is bounded away from zero if B is bounded and thus (17) never converges to zero

even if n → ∞. To explain why (17) vanishes as B, n → ∞, first note that the first term 2E1 is independent of B and

satisfies E1 → 0 as n→ ∞ by the Berry-Esseen Theorem for a reasonable model ψ(·) such as the function-of-mean model

in Section 3.2. Second, notice that

√

(1/B)
∑B
b=1(

√
n(ψ̂∗b

n − ψ̂n))2 is the bootstrap estimator of the asymptotic standard

deviation σ. Therefore, (16) is the concentration inequality for the bootstrap principle applied to the estimation of σ and

would hold with a choice of E3 and E4 satisfying E3 → 0, E4 → 0 as B, n→ ∞. Lastly, since tB
d→ N(0, 1) as B → ∞,

by Lemma 21.2 in Van der Vaart (2000), we have tB,1−α/2 → z1−α/2 as B → ∞. Therefore, we can see the second part

(17) converges to zero as B, n→ ∞ at any rate.

Under concrete assumptions on X as in Sections 3.2 and 3.3, explicit forms of E3 and E4 depending on B, n and the

distribution of X can be derived, based on similar arguments as the explicit bounds in Theorems 3.5-3.8. Then by studying

the order of these explicit bounds with respect to B, p and n, we can deduce a proper growth rate of dimension p = p(B, n)
which ensures a vanishing error as B, n→ ∞. The concentration inequality (16) seems unexplored in the literature and we

leave it as future work.

B.2. Explicit Finite-Sample Bounds for Quantile-Based Bootstrap Methods

In this section, in parallel to Theorems 3.5-3.8 for the cheap bootstrap, we provide a few explicit bounds for standard

quantile-based bootstrap methods under the same conditions.

The first result is in parallel to Theorem 3.5 under the function-of-mean model:

Theorem B.2. Suppose the conditions in Theorem 3.5 hold. If qα/2, q1−α/2 are the α/2-th and (1− α/2)-th quantiles of

g(X̄∗
n)− g(X̄n) respectively given X1, . . . , Xn, then the finite-sample bound on the basic bootstrap coverage error is given

by

|P (g(X̄n)− q1−α/2 ≤ g(µ) ≤ g(X̄n)− qα/2)− (1− α)|

≤ 12

n
+ C

(

m31√
nσ3

+
CHgm

1/3
31 tr(Σ)√
nσ2

+
CHgm

2/3
32

n5/6σ
+
CHgm

1/3
31 m

2/3
32

nσ2

+
CHgτ

2

C∇g
√
λΣ

(

1 +
log n

p

)
√

p

n
+

||E[(X − µ)3]||
λ
3/2
Σ

1√
n
+

τ3

λ
3/2
Σ

(

1 +
log n

p

)3/2
1√
n
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+
τ4
√
p

λ2Σn

(

1 +
log n

p

)1/2

+
τ2
√
p

λΣn

(

1 +
log n

p

)1/2

+
τ3
√
p

λ
3/2
Σ n

(

1 +
log n

p

)

)

+ C1

(

τ4(log n)3/2

λ2Σ
√
n

+
τ2(log n)3/2

λΣ
√
n

+
τ3

λ
3/2
Σ

√
n

(

1 +
log n

p

)1/2

(log n+ log p)
√

log n

)

,

where C is a universal constant andC1 is a constant only depending on CX . If q′α/2, q′1−α/2 are the α/2-th and (1−α/2)-th
quantiles of g(X̄∗

n) respectively given X1, . . . , Xn, then the finite-sample bound on the percentile bootstrap coverage error

is given by

|P (q′α/2 ≤ g(µ) ≤ q′1−α/2)− (1− α)|

≤ 12

n
+ C

(

m31√
nσ3

+
CHgm

1/3
31 tr(Σ)√
nσ2

+
CHgm

2/3
32

n5/6σ
+
CHgm

1/3
31 m

2/3
32

nσ2

+
CHgτ

2

C∇g
√
λΣ

(

1 +
log n

p

)
√

p

n
+

||E[(X − µ)3]||
λ
3/2
Σ

1√
n
+

τ3

λ
3/2
Σ

(

1 +
log n

p

)3/2
1√
n

+
τ4
√
p

λ2Σn

(

1 +
log n

p

)1/2

+
τ2
√
p

λΣn

(

1 +
log n

p

)1/2

+
τ3
√
p

λ
3/2
Σ n

(

1 +
log n

p

)

)

+ C1

(

τ4(log n)3/2

λ2Σ
√
n

+
τ2(log n)3/2

λΣ
√
n

+
τ3

λ
3/2
Σ

√
n

(

1 +
log n

p

)1/2

(log n+ log p)
√

log n

)

,

where C is a universal constant and C1 is a constant only depending on CX .

Our discussion below Theorem 3.2 shows that the cheap bootstrap error bound with any given B and quantile-based

bootstrap error bounds with B = ∞ only differ up to a constant. Therefore, the order analysis for the cheap bootstrap in

Corollary 3.6 also applies here, that is, under the conditions in Corollary 3.6, the quantile-based bootstrap coverage errors

shrink to 0 as n→ ∞ if p = o(n).

The second result is in parallel to Theorem 3.7 under the sub-exponential assumption and linearity of g:

Theorem B.3. Suppose the conditions in Theorem 3.7 hold. If qα/2, q1−α/2 are the α/2-th and (1− α/2)-th quantiles of

g(X̄∗
n)− g(X̄n) respectively given X1, . . . , Xn, then the finite-sample bound on the basic bootstrap coverage error is given

by

|P (g(X̄n)− q1−α/2 ≤ g(µ) ≤ g(X̄n)− qα/2)− (1− α)|

≤ C

(

1

n
+
E[|g⊤1 (X − µ)|3]

σ3
√
n

+
||g⊤1 (X − µ)||4ψ1

log11(n)

σ4
√
n

)

+
CE[|g⊤1 (X − µ)|3]

σ3
√
n

,

where C is a universal constant. If q′α/2, q′1−α/2 are the α/2-th and (1 − α/2)-th quantiles of g(X̄∗
n) respectively given

X1, . . . , Xn, then the finite-sample bound on the percentile bootstrap coverage error is given by

|P (q′α/2 ≤ g(µ) ≤ q′1−α/2)− (1− α)|

≤ C

(

1

n
+
E[|g⊤1 (X − µ)|3]

σ3
√
n

+
||g⊤1 (X − µ)||4ψ1

log11(n)

σ4
√
n

)

+
CE[|g⊤1 (X − µ)|3]

σ3
√
n

,

where C is a universal constant.

The last result is in parallel to Theorem 3.8 under moment conditions and linearity of g:

Theorem B.4. Suppose the conditions in Theorem 3.8 hold. If qα/2, q1−α/2 are the α/2 and (1 − α/2)-quantiles of

g(X̄∗
n)− g(X̄n) respectively given X1, . . . , Xn, then the finite-sample bound on the basic bootstrap coverage error is given

by

|P (g(X̄n)− q1−α/2 ≤ g(µ) ≤ g(X̄n)− qα/2)− (1− α)|
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≤ 2√
n
+ C1 max

{

E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
}(

(log n)3/2√
n

+

√
log n

n1/2−3/(2q)

)

+
CE[|g⊤1 (X − µ)|3]

σ3
√
n

,

where C is a universal constant and C1 is a constant depending only on q. If q′α/2, q′1−α/2 are the α/2 and (1 − α/2)-

quantiles of g(X̄∗
n) respectively given X1, . . . , Xn, then the finite-sample bound on the percentile bootstrap coverage error

is given by

|P (q′α/2 ≤ g(µ) ≤ q′1−α/2)− (1− α)|

≤ 2√
n
+ C1 max

{

E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
}(

(log n)3/2√
n

+

√
log n

n1/2−3/(2q)

)

+
CE[|g⊤1 (X − µ)|3]

σ3
√
n

,

where C is a universal constant and C1 is a constant depending only on q.

The order analysis for the cheap bootstrap also applies to Theorems B.3 and B.4. If g⊤1 (X −µ) is well-scaled by its standard

deviation σ in the sense that the Lp norm and Orlicz norm || · ||ψ1 is independent of p, then the errors shrink to 0 for any p
as n→ ∞. Otherwise, the growth rate of p should depend on n to obtain a vanishing error.

C. Details of Numerical Experiments and Additional Numerical Results

In this section, we present additional results and details of the experiments in Section 4. We also report some additional

experiments. Section C.1 presents tables for experimental results in Section 4 that have not been shown in previous sections.

The following subsections, C.2, C.3 and C.4 provide additional details for logistic regression with independent covariates,

the computer network and the real world problem presented in Section 4. Section C.5 further validates our performances by

a simulation study with a lower nominal level 70%. Finally, Section C.6 studies the coverage error behavior as B and n vary

for the sinusoidal estimation.

C.1. Additional Tables

Tables 2-5 reports the experimental results of regression problems with dependent covariates, ridge regression and (regular-

ized) logistic regression with different p presented in Section 4 respecitvely.

C.2. Logistic Regression with Independent Covariates

Figure 3 presents the coverage probabilities and confidence interval widths of 95%-level confidence intervals for three

typical choices of parameters: β1 = 1, β301 = −1 and β601 = 0. We observe that all cheap bootstrap coverage probabilities

are close to or larger than the nominal level 95% while other bootstrap method coverages are below 90% except for the

standard error bootstrap for β601 = 0 and B ≥ 5. Besides, cheap bootstrap interval widths are larger than others but decay

very fast for the first few B’s, in line with our observation in the previous linear regression example. In fact, it is already

quite close to other bootstrap widths for β601 = 0 and B = 10. Figure 4 reports the box plot of the coverage probabilities

and confidence interval widths of all βi’s with B = 1, 2, 5, 10. We distinguish between βi ̸= 0 and βi = 0 since the former

has wider widths than the latter. For βi ̸= 0, the cheap bootstrap widths shrink more slowly so that almost all cheap bootstrap

coverage probabilities are 100% but other bootstrap method coverages are still below 90% in almost all cases. For βi = 0,

the cheap bootstrap with any B, standard error bootstrap with B = 5, 10 and basic bootstrap with B = 10 have coverage

probabilities close to the nominal level 95%. In other cases, most of the coverage probabilities are below 85%. A similar

decay rate for the cheap bootstrap interval width is also observed here: it decreases by around 2/3 from B = 1 to B = 2
and by around 4/5 from B = 1 to B = 10.

C.3. Computer Network

We detail the specifications of the computer communication network simulation model; similar models have been used in

Cheng & Holland (1997); Lin et al. (2015); Lam & Qian (2022). This network can be represented by an undirected graph
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Table 2. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the regression problems with

dependent covariates. The closest coverage probability to the nominal 95% level among all methods in each setting is bold.

Example B
Cheap Bootstrap Basic Bootstrap Percentile Bootstrap Standard Error Bootstrap

Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

Linear 1 95.1% 1.451 N.A. N.A. N.A. N.A. N.A. N.A. 167*

regression 2 95.1% 0.546 33.6% 0.081 33.5% 0.081 70.3% 0.224 258*

(exponential 5 95.2% 0.350 67.1% 0.166 67.1% 0.166 88.2% 0.264 531*

decay) 10 95.2% 0.311 82.2% 0.220 82.2% 0.220 92.1% 0.273 987*

Linear 1 94.7% 129.255 N.A. N.A. N.A. N.A. N.A. N.A. 511

regression 2 94.9% 52.791 33.9% 7.575 34.5% 7.575 69.9% 20.995 798

(random 5 94.8% 30.733 67.8% 14.875 66.8% 14.875 87.5% 23.555 1659

cov matrix) 10 95.0% 27.048 82.1% 19.398 82.1% 19.398 91.9% 23.787 3095

Logistic 1 95.3% 7.411 N.A. N.A. N.A. N.A. N.A. N.A. 114*

regression 2 95.5% 2.787 34.9% 0.404 32.3% 0.404 70.7% 1.119 175*

(exponential 5 95.8% 1.787 69.5% 0.832 64.8% 0.832 88.6% 1.318 360*

decay) 10 96.0% 1.588 84.6% 1.101 79.8% 1.101 92.6% 1.364 667*

in Figure 5. The four nodes denote message processing units and the four edges are transport channels. For every pair of

nodes i, j (i ̸= j), there are external messages which enter into node i from the external and are to be transmitted to node

j through a prescribed path. Their arrival time follows a Poisson process with parameter λi,j showed in Table 6. All the

message lengths (unit: bits) are i.i.d. following a common exponential distribution with mean 300 bits. Suppose each unit

spends 0.001 second to process a message passing it. We assume the node storage is unlimited but the channel storage is

restricted to 275000 bits. Message speed in transport channels is 150000 miles per second and channel i has length 100i
miles. Therefore, it takes l/275000 + 100i/150000 seconds for a message with length l bits to pass channel i. Suppose the

network is empty at the beginning. The performance measure of interest is the steady-state average delay for the messages

where delay means the time from the entering node to the destination node. It has approximate true value 7.05 × 10−3.

This example has 13 unknown input distributions, i.e., 12 inter-arrival time distributions Exp(λi,j) and one message length

distribution Exp(1/300), for which we have data sizes from 3× 104 to 6× 104. Given input distributions P1, . . . , P13, the

performance measure of this system can be computed accurately by

ψ(P1, . . . , P13) = EP1,...,P13

[

1

9500

10000
∑

k=501

Dk

]

,

where Dk is the delay for the k-th message. The point estimator of ψ(P1, . . . , P13) is taken as ψ̂ = ψ(P̂1,n1
, . . . , P̂13,n13

)

where each P̂i,ni is the empirical distribution of ni i.i.d. samples {Xi,j , j = 1, . . . , ni} from the i-th input distribution Pi.

Next we construct the bootstrap estimator ψ̂∗b. For each b = 1, . . . , B and i = 1, . . . , 13, we sample with replacement

the data {Xi,j , j = 1, . . . , ni} to obtain the bootstrap resamples {X∗b
i,j , j = 1, . . . , ni} and denote the resample empirical

distribution by P̂ ∗b
i,ni

. The sampling procedure is conducted independently for different b and i. The bootstrap estimator is

taken as ψ̂∗b = ψ(P̂ ∗b
1,n1

, . . . , P̂ ∗b
13,n13

). The cheap bootstrap confidence interval is still constructed as in (1).

The results for the above configuration can be found in the row ªStochastic simulationº of Table 1 and the corresponding

discussions can be found in Section 4.

To investigate the robustness of the cheap bootstrap or other methods, we consider an alternative configuration where

computer network is the same but the input models are different. More concretely, all 13 input models (12 inter-arrival time

distributions and one message length distribution) are changed to Gamma distributions Gamma(α, β) which have densities

of the form

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0.
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Table 3. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the ridge regression with

p = 9000 and n = 8000. The closest coverage probabilities to the nominal 95% level among all methods are bold.

Example B
Cheap Bootstrap Basic Bootstrap Percentile Bootstrap Standard Error Bootstrap

Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

Ridge 1 96.7% 15.572 N.A. N.A. N.A. N.A. N.A. N.A. 48

regression 2 97.2% 5.719 23.1% 0.553 25.5% 0.553 68.8% 1.534 72

(independent; 5 97.5% 3.595 47.0% 1.141 51.8% 1.141 86.6% 1.807 144

λ = 0.1) 10 97.6% 3.171 60.2% 1.510 66.0% 1.510 90.7% 1.870 264

Ridge 1 96.3% 13.734 N.A. N.A. N.A. N.A. N.A. N.A. 48

regression 2 96.7% 5.082 27.1% 0.539 24.8% 0.539 68.7% 1.495 72

(independent; 5 97.0% 3.212 54.8% 1.111 50.3% 1.111 86.5% 1.761 144

λ = 1) 10 97.1% 2.839 69.2% 1.471 64.3% 1.471 90.6% 1.822 264

Ridge 1 96.9% 9.588 N.A. N.A. N.A. N.A. N.A. N.A. 47

regression 2 97.7% 3.453 11.6% 0.263 37.3% 0.263 48.0% 0.728 71

(exponential 5 98.4% 2.143 23.8% 0.541 73.9% 0.541 59.9% 0.857 142

decay; λ = 0.1) 10 98.7% 1.882 31.2% 0.716 88.5% 0.716 62.8% 0.887 260

Ridge 1 95.7% 5.776 N.A. N.A. N.A. N.A. N.A. N.A. 48

regression 2 96.3% 2.145 19.5% 0.240 36.2% 0.240 61.6% 0.665 71

(exponential 5 96.9% 1.360 39.8% 0.495 71.8% 0.495 78.0% 0.784 142

decay; λ = 1) 10 97.2% 1.203 51.5% 0.654 86.7% 0.654 81.9% 0.811 261

Ridge 1 96.7% 15.232 N.A. N.A. N.A. N.A. N.A. N.A. 49

regression 2 96.8% 5.527 19.4% 0.462 21.2% 0.462 64.4% 1.281 74

(random cov 5 96.5% 3.448 39.6% 0.953 43.4% 0.953 81.5% 1.510 151

matrix; λ = 0.1) 10 96.3% 3.032 51.2% 1.261 56.4% 1.261 85.6% 1.563 279

Ridge 1 96.3% 13.302 N.A. N.A. N.A. N.A. N.A. N.A. 50

regression 2 96.4% 4.873 23.5% 0.457 20.9% 0.457 65.2% 1.267 76

(random cov 5 96.2% 3.060 47.9% 0.943 42.8% 0.943 82.5% 1.493 155

matrix; λ = 1) 10 95.9% 2.696 61.2% 1.247 55.7% 1.247 86.6% 1.545 286

The message length distribution follows Gamma(2.5, 1/200) and the parameters for the inter-arrival time distributions

Gamma(αi,j , βi,j) are given in Table 7. Under the new input distributions, the true steady-state mean delay is approximately

0.0109. Figure 6 reports the results. The cheap bootstrap coverage probabilities are close to the nominal level 95% for any

B while those of the basic bootstrap and standard error bootstrap are below 60% and 90% respectively even for B = 10.

Percentile bootstrap also performs well when B ≥ 7 perhaps because of the skewness of the estimates. But this is not

always the case in view of the previous numerical results.

C.4. Real World Problem

The data we use is the RCV1-v2 data in Lewis et al. (2004). This dataset contains n = 804414 manually categorized

newswire stories with a total of p = 47236 features. We compare the confidence interval widths of the logistic regression

parameters for the four bootstrap methods, by using all the observations to run the logistic regression and estimate the

parameters. That is, the observation matrix is of the size 804414 × 47236 ≈ 4 × 1010. There are up to 103 different

categories for all these newswire stories. As in Singh et al. (2009) and Balakrishnan & Madigan (2008), we only use the

ªeconomicsº (ªECATº) as the +1 label, i.e., the label Y is 1 if the newswire story is in ªeconomicsº and 0 if not, which

leads to 119920 positive labels. Besides, we add l2 regularization to this logistic regression as in Singh et al. (2009) and

Balakrishnan & Madigan (2008).
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Table 4. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the logistic regression with

n = 105 and different p. The closest coverage probability to the nominal 95% level among all methods in each setting is bold.

p B
Cheap Bootstrap Basic Bootstrap Percentile Bootstrap Standard Error Bootstrap

Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

12000

1 96.7% 3.697 N.A. N.A. N.A. N.A. N.A. N.A. 46*

2 97.7% 1.378 42.8% 0.182 32.3% 0.182 75.9% 0.504 76*

5 99.0% 0.878 83.1% 0.375 64.6% 0.375 93.1% 0.594 165*

10 99.5% 0.778 95.3% 0.496 79.0% 0.496 96.2% 0.615 314*

15000

1 97.5% 5.368 N.A. N.A. N.A. N.A. N.A. N.A. 84*

2 98.7% 1.993 46.3% 0.251 33.3% 0.251 80.2% 0.697 142*

5 99.8% 1.268 88.0% 0.518 66.4% 0.518 95.9% 0.821 316*

10 100% 1.123 96.2% 0.686 80.9% 0.686 98.1% 0.849 606*

18000

1 98.7% 11.473 N.A. N.A. N.A. N.A. N.A. N.A. 160*

2 99.7% 4.249 47.2% 0.495 35.0% 0.495 88.3% 1.372 285*

5 100% 2.700 89.1% 1.022 69.6% 1.022 99.2% 1.619 659*

10 100% 2.389 96.2% 1.354 84.0% 1.354 99.9% 1.676 1283*

21000

1 100% 1272.497 N.A. N.A. N.A. N.A. N.A. N.A. 143*

2 100% 468.656 36.6% 48.271 36.5% 48.271 99.9% 133.799 242*

5 100% 296.354 72.5% 99.900 72.2% 99.900 100% 158.067 537*

10 100% 261.811 86.6% 132.870 86.3% 132.870 100% 163.747 1029*

25000

1 99.9% 201.611 N.A. N.A. N.A. N.A. N.A. N.A. 142*

2 100% 74.595 36.6% 7.597 35.3% 7.597 98.8% 21.057 215*

5 100% 47.205 72.5% 15.737 70.1% 15.737 100% 24.922 433*

10 100% 41.583 86.8% 20.819 84.7% 20.819 100% 25.750 797*

To run this logistic regression, we use sklearn.linear model.LogisticRegression (a machine learning package in Python)

in the virtual machine c2-standard-8 in Google Cloud Platform, which takes about 30-40 minutes to run one bootstrap

resample. Therefore, the common bootstrap methods which require B = 50 or 100 would be computationlly expensive.

In Section 4, we report and discuss the average interval widths over all βi’s for the four bootstrap methods. Here we

display the results for three individual parameters, namely the first three βi’s, in Figure 7. Since we are only able to run one

experimental repetition in this real world example, the confidence interval widths contain some noises and thus we cannot

observe the monotonicity of the widths when B increases. But we still see the cheap bootstrap confidence interval widths

are wider than others, with general trends that resemble the average interval widths in our synthetic examples. This suggests

that the cheap bootstrap confidence intervals would have higher and closer-to-nominal coverages than the other methods.

C.5. Numerical Experiments with a Lower Nominal Level

In this section, we conduct a simulation study with the nominal level 70% to further support the validity of the cheap

bootstrap. We choose the ellipsoidal estimation and sinusoidal estimation presented in Section 4 as our model. All the

settings are the same except that we use a different sample size n = 4× 104 and a different dimension p = 9000. Table 8

presents the empirical coverage and average interval width over 1000 experimental repetitions. We can observe that the

cheap bootstrap coverage probabilities are still close to the nominal level, and are the closest among all methods in all

cases except two (sinusoidal B = 5 and B = 10) where percentile and standard error bootstraps each outperforms slightly.

Regarding these exceptional cases, we note that the outperformance of the percentile bootstrap is likely a coincidence,

because as a quantile-based method it cannot construct a symmetric 70% level confidence interval from only 5 resamples.

We have used the minimum and maximum of the 5 resamples to construct this percentile bootstrap confidence interval,
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Table 5. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the ℓ2-regularized logistic

regression with n = 105 and different p. The closest coverage probability to the nominal 95% level among all methods in each setting is

bold.

p B
Cheap Bootstrap Basic Bootstrap Percentile Bootstrap Standard Error Bootstrap

Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

12000

1 96.3% 3.162 N.A. N.A. N.A. N.A. N.A. N.A. 42*

2 97.3% 1.182 41.0% 0.161 32.2% 0.161 74.7% 0.446 69*

5 98.4% 0.755 80.3% 0.331 64.4% 0.331 92.2% 0.525 150*

10 98.9% 0.669 93.5% 0.438 78.9% 0.438 95.6% 0.543 284*

15000

1 96.8% 3.943 N.A. N.A. N.A. N.A. N.A. N.A. 83*

2 97.9% 1.471 43.5% 0.196 32.9% 0.196 76.9% 0.543 141*

5 99.1% 0.938 84.3% 0.404 65.6% 0.404 93.9% 0.640 315*

10 99.6% 0.832 95.9% 0.534 80.1% 0.534 96.8% 0.662 606*

18000

1 97.3% 5.056 N.A. N.A. N.A. N.A. N.A. N.A. 156*

2 98.5% 1.884 45.7% 0.246 33.6% 0.246 79.3% 0.683 241*

5 99.6% 1.202 87.6% 0.508 67.1% 0.508 95.5% 0.805 498*

10 99.9% 1.065 97.1% 0.673 81.6% 0.673 97.8% 0.833 925*

21000

1 97.6% 6.400 N.A. N.A. N.A. N.A. N.A. N.A. 191*

2 98.8% 2.385 47.1% 0.310 34.5% 0.310 81.4% 0.859 319*

5 99.8% 1.520 89.4% 0.639 68.6% 0.639 96.5% 1.012 703*

10 100% 1.348 97.5% 0.845 83.1% 0.845 98.3% 1.047 1343*

25000

1 97.4% 7.259 N.A. N.A. N.A. N.A. N.A. N.A. 208*

2 98.7% 2.712 46.5% 0.362 35.2% 0.362 80.8% 1.004 350*

5 99.7% 1.731 88.8% 0.746 69.9% 0.746 96.0% 1.183 777*

10 99.9% 1.536 98.3% 0.988 84.5% 0.988 97.9% 1.224 1487*

whose actual nominal level should be close to 100%. So it is likely by accident that percentile bootstrap coverage is closest

to 70% and in fact this coverage is far away from its actual nominal level around 100%.

C.6. Coverage Error Behavior with Respect to B and n

In this section, we numerically study the cheap bootstrap coverage error behavior with respect to B and n and illustrate how

it aligns with our theoretical bounds. We choose the model as the sinusoidal estimation in Section 4. We fix the dimension

p = 9000 and vary B and n. Figure 8 displays the colormaps of the absolute values of empirical coverage errors (nominal

level 95%), where the x-axis represents B and y-axis represents n. We cut the results of the basic and percentile bootstraps

for the first few B’s because their errors are too large. From Figure 8 (a), it appears that the cheap bootstrap coverage error

does not change much in this regime of n. This matches to some extent Theorem 3.5 and Corollary 3.6 that guarantee

the coverage error would decrease as n increases with a slow rate 1/
√
n. Further, when we fix n, the cheap bootstrap

coverage error seems to lack clear trend and otherwise be quite stable as B changes. On the other hand, the basic and

percentile bootstrap coverage errors show a clear decreasing trend as B increases. Their different behaviors are attributed to

the different ideas behind them. The basic bootstrap and percentile bootstrap are quantile-based methods. As B increases,

the bootstrap quantile estimate is closer and closer to the true quantile, which leads to the improvement on the coverage

error. However, the cheap bootstrap method relies on a totally different idea, i.e., it relies on approximate independence of

the resamples from the original estimator and thus a t-distribution-based (with degree of freedom B) confidence interval

can be constructed. Different B just means a different pivotal t-distribution. There is no evident reason that the pivotal

t-distribution with a larger degree of freedom B will lead to a smaller coverage error.
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Table 6. Arrival rates λi,j of messages to be transmitted from node i to node j.

Node j

Node i 1 2 3 4

1 N.A. 40 30 35

2 50 N.A. 45 15

3 60 15 N.A. 20

4 25 30 40 N.A.

Table 7. Parameters (αi,j , βi,j) for the inter-arrival time distribution of messages to be transmitted from node i to node j.

Node j

Node i 1 2 3 4

1 N.A. (1.5, 60) (0.7, 40) (1.3, 50)
2 (2, 80) N.A. (1.5, 65) (0.6, 20)
3 (3, 100) (0.5, 25) N.A. (1.2, 30)
4 (0.8, 40) (1.1, 50) (0.9, 35) N.A.

then we know that P (Ac) ≤ β. We consider the coverage probability intersected with A, i.e.,

E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1);A
]

. (19)

Note that conditional on X1, . . . , Xn and given z1, . . . , zB−1, the integral region for zB can be written as







zB : |
√
n(ψ̂n − ψ)| ≤ tB,1−α/2

√

√

√

√

1

B

B
∑

b=1

z2b







= (−∞,−q] ∪ [q,∞)

for some q ≥ 0. Therefore, applying (18), we have

∣

∣

∣

∣

∣

∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB)−
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dP0(zB)

∣

∣

∣

∣

∣

≤ 2E2,

where P0 is the distribution of N(0, σ2). Plugging it into (19), we have

E

[

∫

· · ·
∫

|√n(g(X̄n)−g(µ))|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1);A
]

= E

[

∫

· · ·
∫ ∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dP0(zB)dQ
∗(zB−1) · · · dQ∗(z1);A

]

+RB ,

where the error RB satisfies

|RB | ≤ E

[∫

· · ·
∫

2E2dQ∗(zB−1) · · · dQ∗(z1);A
]

≤ 2E2

By the same argument, we can further replace the remaining Q∗(zi)’s by P0(zi)’s and obtain

E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1);A
]
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Table 8. Coverage probabilities (Pro.), confidence interval widths (Wid.) and running time (unit: second) of the numerical examples. The

closest coverage probability to the nominal 70% level among all methods in each setting is bold.

Example B
Cheap Bootstrap Basic Bootstrap Percentile Bootstrap Standard Error Bootstrap

Running Time
Pro. Wid. Pro. Wid. Pro. Wid. Pro. Wid.

1 73.0% 9.828× 10−3 N.A. N.A. N.A. N.A. N.A. N.A. 2

Ellipsoidal 2 70.0% 7.568× 10−3 30.9% 2.197× 10−3 7.7% 2.197× 10−3 34.3% 3.220× 10−3 4

estimation 5 68.5% 6.639× 10−3 64.7% 4.429× 10−3 16.5% 4.429× 10−3 42.3% 3.717× 10−3 10

10 66.9% 6.323× 10−3 60.1% 3.756× 10−3 10.8% 3.756× 10−3 41.8% 3.804× 10−3 20

1 70.3% 0.148 N.A. N.A. N.A. N.A. N.A. N.A. 2

Sinusoidal 2 72.0% 0.116 34.9% 0.052 33.3% 0.052 52.4% 0.077 4

estimation 5 72.2% 0.104 67.6% 0.108 68.6% 0.108 65.6% 0.091 10

10 72.3% 0.100 65.8% 0.093 63.7% 0.093 68.8% 0.094 19

= E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dP0(zB) · · · dP0(z1);A
]

+
B
∑

b=1

Rb,

where each error Rb satisfies

|Rb| ≤ 2E2.
Therefore, the coverage probability satisfies

E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1)

]

= E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1);A
]

+ E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1);Ac

]

= E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dP0(zB) · · · dP0(z1);A
]

+

B
∑

b=1

Rb

+ E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1);Ac

]

= E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dP0(zB) · · · dP0(z1)

]

+RAc +
B
∑

b=1

Rb, (20)

where the additional error RAc is given by

RAc = E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1);Ac

]

− E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dP0(zB) · · · dP0(z1);Ac

]

and it satisfies |RAc | ≤ P (Ac) ≤ β. Now we will handle the distribution of
√
n(ψ̂n − ψ) which is denoted by Q0. Note

that by Fubini’s theorem we have

E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dP0(zB) · · · dP0(z1)

]
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for i.i.d. Zi ∼ N(0, σ2), i = 0, . . . , B and the error R0 satisfies

|R0| ≤ 2E1.

Plugging (21) into (20), we have

E

[

∫

· · ·
∫

|√n(ψ̂n−ψ)|≤tB,1−α/2
√

1
B

∑B
b=1 z

2
b

dQ∗(zB) · · · dQ∗(z1)

]

= 1− α+RAc +
B
∑

b=0

Rb := 1− α+R,

where the overall error satisfies

|R| ≤ 2E1 + 2BE2 + β.

Proof of Theorem 3.2: Recall that for a cumulative distribution function F of a random variable, the q-th quantile is defined

as F−1(q) = inf{x : F (x) ≥ q}. We first prove a useful result: if the cumulative distribution functions of two random

variables X and Y satisfy

sup
t∈R

|FX(t)− FY (t)| ≤ ε, (22)

then for any α ∈ [0, 1],

F−1
Y (α− ε) ≤ F−1

X (α) ≤ F−1
Y (α+ ε). (23)

To prove it, we note that if α − ε < 0 then −∞ = F−1
Y (α − ε) ≤ F−1

X (α) trivially holds and if α + ε > 1 then

F−1
X (α) ≤ F−1

Y (α+ ε) = ∞ trivially holds. So we assume 0 ≤ α− ε ≤ α+ ε ≤ 1. Now let’s prove the first inequality

F−1
Y (α− ε) ≤ F−1

X (α). By the definition of F−1
X and right-continuity of FX , we know that FX(F−1

X (α)) ≥ α. Therefore,

by (22), we know that FY (F
−1
X (α)) ≥ α− ε, which implies F−1

Y (α− ε) ≤ F−1
X (α) by the definition of F−1

Y (α− ε). This

proves the first inequality in (23). Interchanging the role of X and Y , we have F−1
X (α − ε) ≤ F−1

Y (α). Replacing α by

α+ ε, we obtain the second inequality F−1
X (α) ≤ F−1

Y (α+ ε).

Now we consider the basic bootstrap. We write A as the event

sup
x∈R

∣

∣

∣
P ∗(

√
n(ψ̂∗

n − ψ̂n) ≤ x)− Φ
(x

σ

)∣

∣

∣
≤ E2.

By our assumption, we have P (Ac) ≤ β. Note that if qα/2 and q1−α/2 are the α/2-th and (1−α/2)-th quantiles of ψ̂∗
n− ψ̂n

given X1, . . . , Xn, then
√
nqα/2 and

√
nq1−α/2 are the α/2-th and (1− α/2)-th quantiles of

√
n(ψ̂∗

n − ψ̂n) respectively

given X1, . . . , Xn. By the inequality (23), when A happens, we have

σzα/2−E2
≤

√
nqα/2 ≤ σzα/2+E2

,

where zq is the q-th quantile of the standard normal. This inequality implies

P (
√
n(ψ̂n − ψ) < σzα/2−E2

;A) ≤ P (
√
n(ψ̂n − ψ) <

√
nqα/2;A) (24)

and

P (
√
n(ψ̂n − ψ) <

√
nqα/2;A) ≤ P (

√
n(ψ̂n − ψ) < σzα/2+E2

;A). (25)

Next, we notice that

sup
x∈R

∣

∣

∣P (
√
n(ψ̂n − ψ) ≤ x)− Φ

(x

σ

)∣

∣

∣ ≤ E1

⇔ sup
x∈R

∣

∣

∣P (
√
n(ψ̂n − ψ) < x)− Φ

(x

σ

)∣

∣

∣ ≤ E1.
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Thus, (24) implies that

P (
√
n(ψ̂n − ψ) <

√
nqα/2;A)

≥ P (
√
n(ψ̂n − ψ) < σzα/2−E2

;A)

≥ P (
√
n(ψ̂n − ψ) < σzα/2−E2

)− P (Ac)

≥ Φ
(σzα/2−E2

σ

)

− E1 − β

=
α

2
− E1 − E2 − β.

Similarly, (25) implies that

P (
√
n(ψ̂n − ψ) <

√
nqα/2;A) ≤ P (

√
n(ψ̂n − ψ) < σzα/2+E2

) ≤ α

2
+ E1 + E2.

Therefore, we have the following two-sided bound

α

2
− E1 − E2 − β ≤ P (

√
n(ψ̂n − ψ) <

√
nqα/2;A) ≤ α

2
+ E1 + E2.

For the (1− α/2)-th quantile, we can also derive a similar bound

1− α

2
− E1 − E2 − β ≤ P (

√
n(ψ̂n − ψ) ≤

√
nq1−α/2;A) ≤ 1− α

2
+ E1 + E2.

So we have

|P (
√
nqα/2 ≤

√
n(ψ̂n − ψ) ≤

√
nq1−α/2;A)− (1− α)| ≤ 2E1 + 2E2 + β,

which gives rise to

|P (
√
nqα/2 ≤

√
n(ψ̂n − ψ) ≤

√
nq1−α/2)− (1− α)|

≤ |P (
√
nqα/2 ≤

√
n(ψ̂n − ψ) ≤

√
nq1−α/2;A)− (1− α)|

+ P (
√
nqα/2 ≤

√
n(ψ̂n − ψ) ≤

√
nq1−α/2;Ac)

≤ 2E1 + 2E2 + β + P (Ac)

≤ 2E1 + 2E2 + 2β,

or equivalently

|P (ψ̂n − q1−α/2 ≤ ψ ≤ ψ̂n − qα/2)− (1− α)| ≤ 2E1 + 2E2 + 2β.

The result for the percentile bootstrap follows similarly but we need to use the symmetry of N(0, σ2). Note that

sup
x∈R

∣

∣

∣P (
√
n(ψ̂n − ψ) ≤ x)− Φ

(x

σ

)∣

∣

∣ ≤ E1

⇔ sup
x∈R

∣

∣

∣P (
√
n(ψ̂n − ψ) < x)− Φ

(x

σ

)∣

∣

∣ ≤ E1

and the latter can be rewritten as

sup
x∈R

∣

∣

∣P (
√
n(ψ̂n − ψ) < x)− Φ

(x

σ

)∣

∣

∣

=sup
x∈R

∣

∣

∣

∣

P (
√
n(ψ̂n − ψ) < −x)− Φ

(−x
σ

)∣

∣

∣

∣

=sup
x∈R

∣

∣

∣

∣

P (
√
n(ψ − ψ̂n) > x)− Φ

(−x
σ

)∣

∣

∣

∣

=sup
x∈R

∣

∣

∣

∣

(1− P (
√
n(ψ − ψ̂n) > x))−

(

1− Φ

(−x
σ

))∣

∣

∣

∣
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=sup
x∈R

∣

∣

∣P (
√
n(ψ − ψ̂n) ≤ x)− Φ

(x

σ

)∣

∣

∣ ≤ E1,

where the last equality uses the symmetry of N(0, σ2), i.e., 1−Φ(−x/σ) = Φ(x/σ). Moreover, if qα/2 and q1−α/2 are the

α/2-th and (1− α/2)-th quantiles of ψ̂∗
n given X1, . . . , Xn, then

√
n(qα/2 − ψ̂n) and

√
n(q1−α/2 − ψ̂n) are the α/2-th

and (1− α/2)-th quantiles of
√
n(ψ̂∗

n − ψ̂n) given X1, . . . , Xn. Therefore, the proof for the basic bootstrap also applies if

we replace
√
nqα/2,

√
nq1−α/2 and

√
n(ψ̂n − ψ) in that proof by

√
n(qα/2 − ψ̂n),

√
n(q1−α/2 − ψ̂n) and

√
n(ψ − ψ̂n)

respectively. In particular, the final result now reads as follows

|P (
√
n(qα/2 − ψ̂n) ≤

√
n(ψ − ψ̂n) ≤

√
n(q1−α/2 − ψ̂n))− (1− α)| ≤ 2E1 + 2E2 + 2β

or equivalently

|P (qα/2 ≤ ψ ≤ q1−α/2)− (1− α)| ≤ 2E1 + 2E2 + 2β.

This completes our proof.

To prove Theorem 3.5, we first need to prove two lemmas regarding (2) and (3) respectively.

The following lemma is from Theorem 2.11 in Pinelis & Molzon (2016) which establishes the Berry-Esseen theorem in the

multivariate delta method in the form of (2).

Lemma D.1. Suppose that X1, . . . , Xn are i.i.d. random vectors in R
p satisfying E[X] = µ, V ar(X) = Σ, m31 :=

E[|∇g(µ)⊤(X − µ)|3] < ∞ and m32 := E[||X − µ||3] < ∞. Suppose g(x) satisfies Assumption 3.3 and σ2 :=
∇g(µ)⊤Σ∇g(µ) > 0. Then there is a universal constant C > 0 s.t.

sup
x∈R

∣

∣

∣P (
√
n(g(X̄n)− g(µ)) ≤ x)− Φ

(x

σ

)∣

∣

∣

≤ C

(

m31√
nσ3

+
CHgm

1/3
31 tr(Σ)√
nσ2

+
CHgm

2/3
32

n5/6σ
+
CHgm

1/3
31 m

2/3
32

nσ2

)

.

Proof of Lemma D.1: Define f(x) = g(x+ µ)− g(µ) and its linearization L(x) = ∇g(µ)⊤x. Then by the second order

Taylor expansion of f(x) and boundedness property of Hg in Assumption 3.3, we can see (2.1) in Pinelis & Molzon (2016)

holds for Mϵ = CHg and any ϵ > 0. By Theorem 2.11 in Pinelis & Molzon (2016) with V = X − µ, c∗ = 1/2 and ϵ→ ∞,

we have

sup
x∈R

∣

∣

∣P (
√
n(g(X̄n)− g(µ)) ≤ x)− Φ

(x

σ

)∣

∣

∣

≤ K0 + K1m31/σ
3

√
n

+
K20 + K21m

1/3
31 /σ√

n
tr(Σ) +

K30 + K31m
1/3
31 /σ√

n
m

2/3
32 , (26)

where the additional term Kϵ in Theorem 2.11 vanishes as ϵ→ ∞. By the definition of these K’s with c∗ = 1/2 in (2.30) in

Pinelis & Molzon (2016), we can see there is a universal constant C > 0 s.t.

K0 ≤ C,K1 ≤ C,K20 ≤ C
CHg
σ

,K21 ≤ C
CHg
σ

,K30 ≤ C
CHg
σn1/3

,K31 ≤ C
CHg
σn1/2

.

Moreover, by Holder’s inequality, m31 = E[|∇g(µ)⊤(X − µ)|3] ≥ E[|∇g(µ)⊤(X − µ)|2]3/2 = σ3, which implies that

K0,K20 can be absorbed into K1m31/σ
3,K21m

1/3
31 /σ respectively by choosing a larger C. Therefore, (26) can be written as

sup
x∈R

∣

∣

∣P (
√
n(g(X̄n)− g(µ)) ≤ x)− Φ

(x

σ

)∣

∣

∣

≤ C

(

m31√
nσ3

+
CHgm

1/3
31 tr(Σ)√
nσ2

+
CHgm

2/3
32

n5/6σ
+
CHgm

1/3
31 m

2/3
32

nσ2

)

.

This concludes our proof.
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Next we prove the finite-sample accuracy (3) for the bootstrap estimator by extracting the dependence on problem parameters

in Theorem 4.2 in Zhilova (2020) and combining it with Lemma D.1.

Lemma D.2. Suppose the conditions in Theorem 3.5 hold. Then with probability at least 1− 6/n we have

sup
x∈R

∣

∣

∣
P ∗(

√
n(g(X̄∗

n)− g(X̄n)) ≤ x)− Φ
(x

σ

)∣

∣

∣

≤ C

(

m31√
nσ3

+
CHgm

1/3
31 tr(Σ)√
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32
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+
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32
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+
CHgτ

2
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√
λΣ
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1 +
log n

p

)
√

p

n
+

||E[(X − µ)3]||
λ
3/2
Σ

1√
n
+

τ3

λ
3/2
Σ

(

1 +
log n

p

)3/2
1√
n

+
τ4
√
p

λ2Σn

(

1 +
log n

p

)1/2

+
τ2
√
p

λΣn

(

1 +
log n

p

)1/2

+
τ3
√
p

λ
3/2
Σ n

(

1 +
log n

p

)

)

+ C1

(

τ4(log n)3/2

λ2Σ
√
n

+
τ2(log n)3/2

λΣ
√
n

+
τ3

λ
3/2
Σ

√
n

(

1 +
log n

p

)1/2

(log n+ log p)
√

log n

)

,

where m31,m32 and σ2 are defined in Lemma D.1, C is a universal constant and C1 only depends on CX .

Proof of Lemma D.2: We use Theorem 4.2 in Zhilova (2020) to prove this lemma. First, we verify the conditions of

Theorem 4.2 with K = 3. For K = 3, by Remark 2.1, we can take Ui ≡ 0, Yi − µ = Zi − µ ∼ N(0,Σz) independent

of X1, . . . , Xn with Σz = Σ which satisfies (2.1) and (2.2) for approximating Xi − µ (since Xi is not centered in

Theorem 4.2, Yi should also be non-centered). In this case, we can see Cz := ||Σ−1/2
z || = ||Σ−1/2|| = 1/

√
λΣ. Similarly,

CX := ||Σ−1/2|| = 1/
√
λΣ. Other conditions about f in Theorem 4.2 have already been assumed in the statement of this

lemma. Thus, by Theorem 4.2, it holds with probability at least 1− 6e−x for x > 0:

sup
t∈R

|P (
√
n(g(X̄n)− g(µ)) ≤ t)− P ∗(

√
n(g(X̄∗

n)− g(X̄n)) ≤ t)|

≤ 2CHg

√

1

λΣ
τ2
(

1 + 2

√

x

p
+

2x

p

)

1

C∇g

√

p

n
+ CB,i.i.d.

1

λ
3/2
Σ

CM,3
1√
n

+ 2CB,i.i.d.

(

1 + 2

√

x

p
+

2x

p

)3/2
1

λ
3/2
Σ

τ3
1√
n
+R1,n,3 (27)

where CB,i.i.d. > 0 is a constant only depending on K and thus is a universal constant for K = 3, CM,3 is defined as

CM,3 = ||E[(X − µ)3]||+ ||E[(Y1 − µ)3]||

and R1,n,3 is defined in (B.14) as

R1,n,3 =
τ4Cx,2

λ2Σ
√
2n

+
4τ2Cx,2

λΣ
√
2n

+
C̃ϕ,2τ

3Cx,3

2λ
3/2
Σ

√
n
. (28)

Since Y1 − µ ∼ N(0,Σz), the tensor power (Y1 − µ)3 has expectation zero and thus CM,3 can be simplified as CM,3 =

||E[(X − µ)3]||. C̃ϕ,2 in (28) is defined in (A.13) and according to Remark A.1, it depends on the choice of ϕ(t) which is a

K = 3 times continuously differentiable smooth approximation of the indicator function 1{t ≤ 0}. Once we fix such ϕ(t),
C̃ϕ,2 is a universal constant. Cx,2 and Cx,3 in (28) are defined in (B.27) of Theorem B.1 as

Cx,2 = C1((x+ log n) ∨
√

x+ log n)
√
2x+ 2

√

p

n

(

1 + 2

√

x+ log n

p
+

2(x+ log n)

p

)1/2

,

Cx,3 = C1

(

1 + 2

√

x+ log n+ log p

p
+

2(x+ log n+ log p)

p

)1/2
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× ((x+ log n+ log p) ∨
√

x+ log n+ log p)
√
2x

+ 3

√

p

n

(

1 + 2

√

x+ log n

p
+

2(x+ log n)

p

)

,

where C1 is a constant only depending on the density bound CX based on the proof of Theorem B.1. Besides, since we

assume n ≥ 3, we know that x + log n ≥
√
x+ log n and x + log n + log p ≥

√
x+ log n+ log p holds for any x > 0.

Therefore, Cx,2 and Cx,3 can be simplified as

Cx,2 = C1(x+ log n)
√
2x+ 2

√

p

n

(

1 + 2

√

x+ log n

p
+

2(x+ log n)

p

)1/2

,

Cx,3 = C1

(

1 + 2

√

x+ log n+ log p

p
+

2(x+ log n+ log p)

p

)1/2

(x+ log n+ log p)
√
2x

+ 3

√

p

n

(

1 + 2

√

x+ log n

p
+

2(x+ log n)

p

)

.

Moreover, for any y > 0, we always have 1 + y ≤ 1 + 2
√
y + 2y ≤ 4(1 + y). Therefore, the remainder term (28) can be

bounded in a more compact way up to some constants as follows:

R1,n,3 ≤ C1

(

τ4

λ2Σ
√
n
(x+ log n)

√
x+

τ2

λΣ
√
n
(x+ log n)

√
x

+
τ3

λ
3/2
Σ

√
n

(

1 +
x+ log n+ log p

p

)1/2

(x+ log n+ log p)
√
x

)

+ C

(

τ4
√
p

λ2Σn

(

1 +
x+ log n

p

)1/2

+
τ2
√
p

λΣn

(

1 +
x+ log n

p

)1/2

+
τ3
√
p

λ
3/2
Σ n

(

1 +
x+ log n

p

)

)

,

where C is a universal constant and C1 only depends on CX . Plugging it back to (27), we can similarly write (27) in a more

compact way:

sup
t∈R

|P (
√
n(g(X̄n)− g(µ)) ≤ t)− P ∗(

√
n(g(X̄∗

n)− g(X̄n)) ≤ t)|

≤ C

(

CHgτ
2

C∇g
√
λΣ

(

1 +
x

p

)
√

p

n
+

||E[(X − µ)3]||
λ
3/2
Σ

1√
n
+

τ3

λ
3/2
Σ

(

1 +
x

p

)3/2
1√
n

+
τ4
√
p

λ2Σn

(

1 +
x+ log n

p

)1/2

+
τ2
√
p

λΣn

(

1 +
x+ log n

p

)1/2

+
τ3
√
p

λ
3/2
Σ n

(

1 +
x+ log n

p

)

)

+ C1

(

τ4

λ2Σ
√
n
(x+ log n)

√
x+

τ2

λΣ
√
n
(x+ log n)

√
x

+
τ3

λ
3/2
Σ

√
n

(

1 +
x+ log n+ log p

p

)1/2

(x+ log n+ log p)
√
x

)

,

where C is a universal constant and C1 only depends on CX . Now we choose x = log n. Then with probability at least

1− 6/n, we have

sup
t∈R

|P (
√
n(g(X̄n)− g(µ)) ≤ t)− P ∗(

√
n(g(X̄∗

n)− g(X̄n)) ≤ t)|

≤ C

(

CHgτ
2

C∇g
√
λΣ

(

1 +
log n

p

)
√

p

n
+

||E[(X − µ)3]||
λ
3/2
Σ

1√
n
+

τ3

λ
3/2
Σ

(

1 +
log n

p

)3/2
1√
n
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+
τ4
√
p

λ2Σn

(

1 +
log n

p

)1/2

+
τ2
√
p

λΣn

(

1 +
log n

p

)1/2

+
τ3
√
p

λ
3/2
Σ n

(

1 +
log n

p
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+ C1

(

τ4(log n)3/2

λ2Σ
√
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+
τ2(log n)3/2

λΣ
√
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τ3

λ
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Σ

√
n

(

1 +
log n

p

)1/2

(log n+ log p)
√

log n

)

,

where C is a universal constant, C1 only depends on CX and we have absorbed log p/p into the constant term 1 due to

log p/p ≤ 1.

Now we combine the above bound with Lemma D.1 in this paper. Since X is sub-Gaussian, the moment conditions in

Lemma D.1 hold. Moreover, since Σ is positive definite and ||∇g(µ)|| > 0, σ2 = ∇g(µ)⊤Σ∇g(µ) > 0 is also satisfied.

Therefore, by Lemma D.1 and triangular inequality, we obtain the desired bound with probability at least 1− 6/n

sup
x∈R

∣

∣

∣P ∗(
√
n(g(X̄∗

n)− g(X̄n)) ≤ x)− Φ
(x

σ

)∣

∣

∣
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+
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+
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1 +
log n
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(

τ4(log n)3/2

λ2Σ
√
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+
τ2(log n)3/2
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√
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+
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√
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1 +
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(log n+ log p)
√
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,

where C is a universal constant and C1 only depends on CX .

Proof of Theorem 3.5: Plugging the bounds in Lemma D.1 and Lemma D.2 into Theorem 3.1, we obtain the desired finite

sample bound for the cheap bootstrap coverage accuracy. Besides, the error E1 can be absorbed in E2.

We make a remark about the proof of Theorem 3.5. In Zhilova (2020), it appears that a generalized version of the Hanson-

Wright inequality (equation (B.32)) that allows dependent components is derived as a middle step of the proof of Theorem

B.1. If the classical Hanson-Wright inequality (Theorem 1.1 in Rudelson & Vershynin (2013)) is used in that proof instead,

then our Theorem 3.5 would be changed accordingly to have an additional assumption that X has independent components

but no longer needs to be continuously distributed with a bounded density. In this case, C1 can be taken as a universal

constant.

Proof of Corollary 3.6: It suffices to show that if τ = O(1) and ||∇g(µ)||2 = O(p), then tr(Σ) = O(p), m31 = O(p3/2)
and m32 = O(p3/2). In fact, if these orders hold, with other orders assumed in Corollary 3.6, we can easily get the desired

order after absorbing the small order terms into large order terms.

Now let us prove tr(Σ) = O(p), m31 = O(p3/2) and m32 = O(p3/2) provided τ = O(1) and ||∇g(µ)||2 = O(p). Recall

that X is assumed to be sub-Gaussian, i.e.,

E[exp(a⊤(X − µ))] ≤ exp(||a||2τ2/2), ∀a ∈ R
p. (29)

for some τ2 > 0. Therefore, Xi − µi, i = 1, . . . , p are sub-Gaussian random variables with sub-Gaussian norm τ up to a

universal constant (see Vershynin (2018) Section 2.5). For simplicity, we write a ≲ b if a ≤ Cb for a universal constant

C > 0. By Proposition 2.5.2 (ii) in Vershynin (2018), E[|Xi − µi|2] = Σii ≲ τ2 and E[|Xi − µi|4] ≲ τ4. Therefore, we

can see tr(Σ) ≲ τ2p = O(p). By HÈolder’s inequality,

m32 = E[||X − µ||3] ≤ E[||X − µ||4]3/4 =





p
∑

i,j=1

E
[

(Xi − µi)
2(Xj − µj)

2
]





3/4
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≤





p
∑

i,j=1

√

E [(Xi − µi)4]E[(Xj − µj)4]





3/4

≲





p
∑

i,j=1

τ4





3/4

= τ3p3/2 = O(p3/2).

Moreover, (29) also implies that ∇g(µ)⊤(X − µ) is sub-Gaussian with sub-Gaussian norm ||∇g(µ)||τ up to a universal

constant. By Proposition 2.5.2 (ii) in Vershynin (2018), we have m31 = E[|∇g(µ)⊤(X−µ)|3] ≲ ||∇g(µ)||3τ3 = O(p3/2).
This concludes our proof.

Proof of Theorem 3.7: We will apply Theorem 3.1 to prove this theorem. The finite-sample bound (2) can be obtained by

the Berry-Esseen theorem:

sup
x∈R

∣

∣

∣P (
√
n(g⊤1 X̄n − g⊤1 µ) ≤ x)− Φ

(x

σ

)∣

∣

∣ ≤ CE[|g⊤1 (X − µ)|3]
σ3

√
n

. (30)

Next, we need to find a bound for

sup
x∈R

∣

∣

∣P ∗(
√
n(g⊤1 X̄

∗
n − g⊤1 X̄n) ≤ x)− Φ

(x

σ

)∣

∣

∣ .

We consider the i.i.d. centered random variables g⊤1 (Xi − µ), i = 1, . . . , n which have non-degenerate variance σ2 =
g⊤1 Σg1 > 0. We apply Theorem 2.5 in Lopes (2022) to g⊤1 (Xi − µ)’s by choosing Y = N(0, g⊤1 Σg1) such that ϱ = 1,

∆ = 0, ω1 = ||g⊤1 (X − µ)/σ||ψ1 = ||g⊤1 (X − µ)||ψ1/σ and obtain that with probability at least 1− C/n,

sup
x∈R

|P ∗(
√
n(g⊤1 X̄

∗
n − g⊤1 X̄n) ≤ x)− P (

√
ng⊤1 (X̄n − µ) ≤ x)| ≤

C||g⊤1 (X − µ)||4ψ1
log11(n)

σ4
√
n

,

where C > 0 is a universal constant. By the triangle inequality and Berry-Esseen bound (30), the following holds with

probability at least 1− C/n

sup
x∈R

∣

∣

∣P ∗(
√
n(g⊤1 X̄

∗
n − g⊤1 X̄n) ≤ x)− Φ

(x

σ

)∣

∣

∣ ≤ CE[|g⊤1 (X − µ)|3]
σ3

√
n

+
C||g⊤1 (X − µ)||4ψ1

log11(n)

σ4
√
n

, (31)

where C > 0 is a universal constant.

By Theorem 3.1 and the bounds (30) and (31), we finally get

∣

∣P (g(µ) ∈ [g(X̄n)− tB,1−α/2Sn,B , g(X̄n) + tB,1−α/2Sn,B ])− (1− α)
∣

∣

≤ C

n
+BC

(

E[|g⊤1 (X − µ)|3]
σ3

√
n

+
||g⊤1 (X − µ)||4ψ1

log11(n)

σ4
√
n

)

+
CE[|g⊤1 (X − µ)|3]

σ3
√
n

,

where C is a universal constant. Furthermore, the last term can be absorbed into the second term by using a larger constant

2C, which completes our proof.

Proof of Theorem 3.8: We use Theorem 3.1 to prove this theorem. As in the proof of Theorem 3.7, (2) is given by the

Berry-Esseen theorem in (30) and we only need to bound

sup
x∈R

∣

∣

∣P ∗(
√
n(g⊤1 X̄

∗
n − g⊤1 X̄n) ≤ x)− Φ

(x

σ

)∣

∣

∣ .

In this regard, we will use the results in Chernozhukov et al. (2020). Note that their results only apply for at least

three-dimensional random vectors so we consider the following setting. Suppose we have 3n i.i.d. random variables

g⊤1 (Xij − µ), i = 1, . . . , n, j = 1, 2, 3 where each Xij has the same distribution as X1. Then we can construct n three-

dimensional i.i.d. random vectors as X̃i := (g⊤1 (Xi1 − µ), g⊤1 (Xi2 − µ), g⊤1 (Xi3 − µ))⊤, i = 1, . . . , n whose components

have common variance σ2 = g⊤1 Σg1. Then we can see that conditions (E.3) and (M) are satisfied for

Bn = max

{

3E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
}

.
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Therefore, by Corollary 3.2 in Chernozhukov et al. (2020) (σ∗,W = 1 since X̃i has independent components), we have with

probability at least 1− 1/
√
n that

sup
A∈R

|P ∗(
√
n( ¯̃X∗

n − ¯̃Xn) ∈ A)− P (N(0, σ2I3×3) ∈ A)|

≤ C1Bn

(

log 3 log n
√

log(3
√
n)√

n
+

log 3
√

log(3n)

n1/2−3/(2q)

)

≤ C1 max

{

3E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
}(

(log n)3/2√
n

+

√
log n

n1/2−3/(2q)

)

,

where C1 > 0 denotes a constant depending only on q which are different for its two appearances and R contains all the

hyperrectangles in R
3. In particular, if we only focus on the first component of X̃i, that is, we chooseA = (−∞, x]×R× R,

we have with probability at least 1− 1/
√
n that

sup
x∈R

∣

∣

∣P ∗(
√
n(g⊤1 X̄

∗
n − g⊤1 X̄n) ≤ x)− Φ

(x

σ

)∣

∣

∣

≤ C1 max

{

3E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
}(

(log n)3/2√
n

+

√
log n

n1/2−3/(2q)

)

. (32)

By Theorem 3.1 and the bounds (30) and (32), we then obtain

∣

∣P (g(µ) ∈ [g(X̄n)− tB,1−α/2Sn,B , g(X̄n) + tB,1−α/2Sn,B ])− (1− α)
∣

∣

≤ 2√
n
+BC1 max

{

E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
}

×
(

(log n)3/2√
n

+

√
log n

n1/2−3/(2q)

)

+
CE[|g⊤1 (X − µ)|3]

σ3
√
n

,

where C is a universal constant and C1 is a constant depending only on q. Finally notice that

(log n)3/2√
n

= o

( √
log n

n1/2−3/(2q)

)

,

andE[|g⊤1 (X−µ)|3]/σ3 ≥ 1. We can absorb (log n)3/2/
√
n into

√
log n/n1/2−3/(2q) and absorb 2/

√
n intoCE[|g⊤1 (X−

µ)|3]/σ3
√
n (with larger constants C1 and C), which leads to

∣

∣P (g(µ) ∈ [g(X̄n)− tB,1−α/2Sn,B , g(X̄n) + tB,1−α/2Sn,B ])− (1− α)
∣

∣

≤ BC1 max

{

E[|g⊤1 (X − µ)/σ|q]1/q,
√

E[|g⊤1 (X − µ)/σ|4]
} √

log n

n1/2−3/(2q)
+
CE[|g⊤1 (X − µ)|3]

σ3
√
n

.

Proof of Theorem B.1: In view of Theorem 3.1, it suffices to show

|P (ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ])− (1− α)|

≤ 2E1 + 2E4 +
√

2

π
|tB,1−α/2 − z1−α/2|+

√

2

π

E3
σ
tB,1−α/2.

Then taking the minimum of the two bounds, we can get the desired result. We write A as the event that

∣

∣

∣

∣

∣

∣

√

√

√

√

1

B

B
∑

b=1

(
√
n(ψ̂∗b

n − ψ̂n))2 − σ

∣

∣

∣

∣

∣

∣

≤ E3
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⇔ σ − E3 ≤

√

√

√

√

1

B

B
∑

b=1

(
√
n(ψ̂∗b

n − ψ̂n))2 ≤ σ + E3.

Then we have P (Ac) ≤ E4. Note that the confidence interval can be written as

ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ]

⇔







ψ :

∣

∣

∣

∣

∣

∣

√
n(ψ̂n − ψ)

√

1
B

∑B
b=1(

√
n(ψ̂∗b

n − ψ̂n))2

∣

∣

∣

∣

∣

∣

≤ tB,1−α/2







Therefore, we have

P

(

|√n(ψ̂n − ψ)|
σ − E3

≤ tB,1−α/2;A
)

≤ P (ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ];A)

≤ P

(

|√n(ψ̂n − ψ)|
σ + E3

≤ tB,1−α/2;A
)

.

For the upper bound, we can further bound it as follows

P

(

|√n(ψ̂n − ψ)|
σ + E3

≤ tB,1−α/2;A
)

≤ P

(

|√n(ψ̂n − ψ)|
σ + E3

≤ tB,1−α/2

)

= P (−(σ + E3)tB,1−α/2 ≤
√
n(ψ̂n − ψ) ≤ (σ + E3)tB,1−α/2).

By means of the finite-sample accuracy in (15), we have

P (−(σ + E3)tB,1−α/2 ≤
√
n(ψ̂n − ψ) ≤ (σ + E3)tB,1−α/2)

≤ Φ

(

σ + E3
σ

tB,1−α/2

)

− Φ

(

−σ + E3
σ
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+ 2E1

≤ Φ(z1−α/2)− Φ(−z1−α/2) + 2E1 +
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∣

∣

∣
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σ
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∣
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∣

∣

≤ 1− α+ 2E1 +
√

2

π
|tB,1−α/2 − z1−α/2|+

√

2

π

E3
σ
tB,1−α/2,

where z1−α/2 is the (1− α/2)-th quantile of the standard normal and the second inequality is due to the 1/
√
2π-Lipschitz

property of Φ(·). For the lower bound, by a similar argument we can obtain

P
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|√n(ψ̂n − ψ)|
σ − E3

≤ tB,1−α/2;A
)

≥ P
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|√n(ψ̂n − ψ)|
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)

− P (Ac)
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√

2

π
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π

E3
σ
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√

2

π
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√

2

π

E3
σ
tB,1−α/2 − E4.
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Thus, by combining the upper and lower bounds, we have the following bound for the coverage error when A happens

|P (ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ];A)− (1− α)|

≤ 2E1 + E4 +
√

2

π
|tB,1−α/2 − z1−α/2|+

√

2

π

E3
σ
tB,1−α/2.

Finally, the overall coverage error can be bounded by

|P (ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ])− (1− α)|
≤ |P (ψ ∈ [ψ̂n − tB,1−α/2Sn,B , ψ̂n + tB,1−α/2Sn,B ];A)− (1− α)|+ P (Ac)

≤ 2E1 + 2E4 +
√

2

π
|tB,1−α/2 − z1−α/2|+

√

2

π

E3
σ
tB,1−α/2,

which, combined with Theorem 3.1, gives us the desired bound.

Proof of Theorem B.2: By means of Lemmas D.1 and D.2, this directly follows from Theorem 3.2. Besides, the error E1
can be absorbed into E2.

Proof of Theorem B.3: Plugging the bounds (30) and (31) into Theorem 3.2, we get the desired result.

Proof of Theorem B.4: Plugging the bounds (30) and (32) into Theorem 3.2, we get the desired result.
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