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Abstract

We design and analyze a C” interior penalty method for the approximation of classical
solutions of the Dirichlet boundary value problem of the Monge—Ampere equation on
convex polygonal domains. The method is based on an enhanced cubic Lagrange finite
element that enables the enforcement of the convexity of the approximate solutions.
Numerical results that corroborate the a priori and a posteriori error estimates are
presented. It is also observed from numerical experiments that this method can capture
certain weak solutions.

Mathematics Subject Classification 65N30 - 65K 10 - 35G30 - 90C06 - 90C26

1 Introduction

The Monge—-Ampere equation is a fully nonlinear partial differential equation that
appears in geometric analysis and related applications. Various aspects of this impor-
tant equation can be found in the monographs [6,20,38,42,44,49,72].
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The Dirichlet boundary value problem for the Monge—Ampere equation is given
by

det D*u = in 2, (1.1a)
u=¢ on 9Q. (1.1b)

If © is a smooth and strictly convex domain, ¥ € C3() is strictly positive on
and ¢ € C 48(§2) for some § € (0, 1), then (1.1) has a unique strictly convex solution
ueCc* (5_2) (cf. [21, p. 371, Remark 2]). Our goal is to develop finite element methods
that can capture such smooth convex solutions of (1.1).

Remark 1.1 Throughout this paper we will follow the standard notation for differential
operators, function spaces and norms that can be found for example in [1,17,23].

As a first step, we consider a finite element method for (1.1) on polygonal domains.
Accordingly we assume that  C R? is a bounded convex polygon,

¢ € HY(Q), (1.2)
Y € H*(Q) is strictly positive on 2, (1.3)
and
the boundary value problem (1.1) has a strictly convex solution u € H 4(52), (1.4)
i.e., there exists a positive constant oy such that the Hessian D?u satisfies
E(D*u)(x)E > az|E]>  VxeQ, £ e R% (1.5)

Remark 1.2 The extension of our method to strictly convex smooth domains, where
the regularity (1.4) follows from appropriate regularity of the data, will be carried out
in a forthcoming paper.

Remark 1.3 Since a 2 x 2 symmetric matrix and its cofactor matrix have identical
eigenvalues, the estimate (1.5) is equivalent to

£'Cof (D*u)(x)€ > az|E> VxeQ, £ e R (1.6)

Remark 1.4 Note that under assumption (1.3) a sufficiently smooth solution of (1.1)
is strictly convex if and only if Au > 0 on 2. This is the key motivation for the finite
element method in this paper.

There are many numerical approaches to the Dirichlet boundary value problem of
the Monge—Ampere equation (and related equations) in 2 and 3 spatial dimensions,
with respect to different solution classes (classical solutions, Aleksandrov solutions
[2] and viscosity solutions [54]). They include (i) geometric finite difference meth-
ods [63,66,68,69], (ii) monotone finite difference methods [7-9,39-41,48,50,67], (ii1)
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augmented Lagrangian and least-squares finite element methods [19,28-31], (iv) finite
element methods based on the vanishing moment approach [3,35-37,57], (v) finite
element methods based on L projection [4,5,10,11,13,15,27,51,58-60], (vi) finite
element methods based on a reformulation of the Monge—Ampere equation as a
Hamilton—Jacobi—Bellman equation [14,34], and (v) two-scale methods [53,64,65].
Comprehensive reviews of the literature can be found in [33,61].

The method in this paper is also based on a nonlinear least-squares approach. It
is different from the least-squares method of Dean and Glowinski [19,29,31] in that
our least-squares problem is posed only on the finite element spaces and the discrete
problems are solved purely as optimization problems.

The key ingredient in our method is an enhanced cubic Lagrange element with
exotic degrees of freedom (dofs) that enables us to enforce the convexity of the finite
element solutions, which then allows us to develop a simple error analysis based on
existing results for second order elliptic problems in non-divergence form.

The rest of the paper is organized as follows. We introduce the enhanced cubic
Lagrange element in Sect. 2 together with the discrete nonlinear least-squares problem.
We then present a priori and a posteriori error analyses in Sect. 3 and numerical results
in Sect. 4. We end with some concluding remarks in Sect. 5. We also put some of the
details in three appendices so that the main flow of the presentation is not distracted.
Appendix A contains the derivation of a stability result for elliptic problems in non-
divergence form needed for the error analysis in Sect. 3. Details of the optimization
algorithm that we use to solve the discrete problems are given in Appendix B. An
algorithm that we use to check the elementwise convexity of the approximate solutions
is outlined in Appendix C.

Throughout the paper we will use C to denote a generic positive constant indepen-
dent of the mesh size.

2 The discrete problem

The discrete problem is a nonlinear least-squares problem with box constraints. It is
based on an exotic finite element space whose degrees of freedom (dofs) can enforce
the convexity of the solutions.

2.1 An enhanced cubic Lagrange finite element

We begin by introducing a new finite element where some of the degrees of freedom
(dofs) are associated with nodes outside the element domain. Consequently the con-
struction of the local basis requires information from outside an element. Below we
will treat a polynomial on an element as the restriction of a polynomial on R? and use
the same notation to denote both. In other words, we will identify Py (Rz) with the
space Py (T) of polynomials of (total) degree < k on a triangle T'.

The construction of the finite element is based on the following lemma, where T is
the reference simplex with vertices (0, 0), (1, 0) and (0, 1), and ¢ = xjx2(1—x1—x2)
is the cubic bubble function that vanishes on the boundary of T.
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Fig. 1 dofs of the enhanced P3
Lagrange element

Lemma 2.1 A function v € Pg(f) @ <p2f Py (YA“) is uniquely determined by the 10 dofs

of the standard cubic Lagrange finite element together with the values of Av at the
three points (1, 1), (=1, 1) and (1, —1) (cf. Fig. 1).

Proof Suppose v vanishes at the 9 vertex and edge nodes, then v belongs to (¢;) ©
(p% P (f"). A direct calculation shows that 0 is the only polynomial in (@) & (pzf P (f")

that vanishes at the center of 7' and whose Laplacian also vanishes at the three points
(1, 1), (—=1,1) and (1, —1). O

Remark 2.2 The space Ps3 (f) ® gozf Py ( f") and the 13 dofs in Lemma 2.1 do not define

a finite element on 7" in the classical sense of Ciarlet in [23, page 78] because the
shape functions are treated as functions defined globally on R?, and not as functions
defined just on the element domain.

Remark 2.3 The vertices of the reference simplex are the midpoints of the edges of the
triangle with vertices (1, 1), (—1, 1) and (1, —1). For a general triangle 7', the triangle
whose midpoints are the vertices of T will be denoted by 7.

On an arbitrary triangle 7', the space of shape functions of the enhanced cubic
Lagrange element is P3(T) & (p% P1(T), where ¢; is the cubic bubble function that
vanishes on the boundary of 7. The dofs of v € P3(T) & (p% P (T) are (i) the values
of v at the three vertices, (ii) the values of v at the two points that trisect each edge,
(iii) the value of v at the center of T', and (iv) the values of tr(J}DvaT) at the three
vertices of T, where Jr € R?*2 is the Jacobian matrix of an affine map that maps the
reference simplex to 7.

Remark 2.4 The enhanced cubic Lagrange element is affine-equivalent (cf. [17,23])
by construction. The exotic dofs at the vertices of T; are responsible for enforcing the
elementwise convexity of the discrete solutions of (1.1).
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2.2 The finite element space V},

Let 7), be a quasi-uniform simplicial triangulation of Q2. A function v belongs to the
finite element space Vj, ¢ H'() if and only if (i) v belongs to C($2) and (ii) the
restriction of v to T € 7, belongs to P3(T) & (p% P (T).

The (global) dofs of v € V}, are (i) the values of v at the vertices of 7, (ii) the
values of v at the points that trisect the edges of 7}, (iii) the values of v at the centers
of the triangles in 73, and (iv) the values of tr(J;Dsz Jr) at the three vertices of T
for each T € 7}, where v; is the restriction of v to T and J; is the Jacobian of an
affine map that maps the reference simplex to 7.

Remark 2.5 The dofs in (iii) and (iv) define the bubble functions in (@) & (p% P (T).

It follows from the extension theorems for Sobolev spaces (cf. [1, Chapter 5]) that
the solutionu € H*($2) of (1.1) can be extended to a strictly convex function in H 4(Q)
where  is an open set that contains € in its interior. We will denote this extension
again by u. We assume that £ is sufficiently small so that

T:cQ VT eT,,. .1

The nodal interpolant IT,u € V, is then defined by the condition that u and IT,u share
the same global dofs mentioned above.

We will denote the piecewise Hessian operator by D2, the set of the interior edges
of 7;, by £!, the length of an edge e by |e|, and the jump of the normal derivative of v
across an (interior) edge by [[dv/dn]].

Lemma 2.6 The following estimates are valid for T1ju:

lu — MpullLy@) + hlu — Hpul gy + hllu = HpullLg @)
1

+ 1 Dj e — ) [, + h4( ) |D£(Hh“)|§12<r))2 < Ch'ul gy

TeT,

(2.2)

D el IaMaw) /onTl7 o) = > lel 18 — Thu)/an Tl

eeé’,’% 665;,

4, 2
< Ch*lul}y - 2.4)
I DR 0y + D 1RO oy + max IMauliys ey = CllulG g
TeT, h

(2.5)

Proof The estimates (2.2) and (2.3) follow from the invariance of cubic polynomials
under the local nodal interpolation operator, the Bramble-Hilbert lemma [12] and
scaling. The estimate (2.2) then implies the estimate (2.4) through the trace theorem
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with scaling, and the estimate (2.5) follows from (2.2) and (2.3) through the triangle
inequality and the Sobolev Embedding Theorem [1, Theorem 4.12]. O

In view of the estimate for ||D%(u — Iu)llr,e) in (2.2) and the bound for
maxyeg, | pu|y2.00ry in (2.5), we immediately arrive at

|| det D3 (TTju) — det D?ul|r, @) < Ch?, (2.6)

where the positive constant C is independent of /.

Remark 2.7 All the estimates for IT,u are also valid for IT;¢. In particular we have

1

1D} (¢ — i)l Lye) + ( > el ||[[a(nh¢)/an]]||iz(e))2 < Ch%.

i
eel

2.3 A nonlinear least-squares problem with box constraints

Let ¢, be the one dimensional cubic Lagrange interpolant of ¢ along 92 and the
(convex) subset Ly, of Vj, be defined by

L,={veV,:v=¢,ondand tr(J}DszJT) > 0 at the vertices of T+
forevery T € 7p}. 2.7

Remark 2.8 The inequality constraints in the definition of Lj are motivated by the
observation in Remark 1.4 and they are box constraints for the dofs of V}, introduced
at the beginning of Sect. 2.2.

Remark 2.9 Note that ¢, = I1,¢ = IT,u on 92 and hence v = IT,u on 92 for all
v E Ly.

The discrete problem is to find

up = argmin Jp (v), 2.8)

veLy

where the cost function J, is defined by

h* 1
Ti (@) = —IDivli, + 5 D I0ULD* 0 I

TeT,
1 _
+5 2 lel ™ Idv/onlZ
eeé',';
1
+ Il det Djv—¥7, - (2.9)
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and vy is the restriction of v to 7. Note that the Frobenius norm of J; satisfies
|Jr| = h. (2.10)

We will use || - ||, to denote the mesh-dependent norm defined by

lvll; = 1DvlI7, ) + Y lel™ IT0v/0nTllIZ (). (2.11)

i
ek

Remark 2.10 The first two terms in the definition of 7, are regularization terms that
are crucial for the well-posedness of the discrete problem and for enforcing the
elementwise convexity of the discrete solutions. The third term is a penalty term that
compensates for the fact that V), ¢ H 2(Q). The last term is the least-squares term for
(1.1a).

The solvability of (2.8) is justified by the following result.
Lemma 2.11 The cost function [Jy, : L, —> [0, 00) has a global minimizer.

Proof According to the Poincaré-Friedrichs inequality for piecewise H? functions in
[18], we have

llizy@ < Clvlln Yo e Vi N H (),
which implies (cf. Remark 2.9)
lv—Mpullry@ < Cllv— yullpy Vv e L. (2.12)

It follows from (2.2), (2.4), (2.5), (2.11) and (2.12) that ||v]|;, (and hence Jj(v))
approaches oo if v belongs to L, and |[v]|1,(q) approaches oo. O

3 Error analysis

We will show that any u;, satisfying (2.8) will converge to the solution u of (1.1)
as h | 0 and the order of convergence is 2. Since our optimization algorithm does
not guarantee that a global minimizer of J;, can be found, it is also useful to have
an a posteriori error estimate that can demonstrate the convergence of our method
numerically.
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3.1 Some a priori bounds for uj,

Since IT,u belongs to Ly, it follows from (1.1a), (2.4)—(2.6) and (2.10) that

WD, ) + Y (D> wn)r Jr) o g,

TeT)
+ Y lel 9w /0nNIT () + Il det Djun — Y117, 0
eeS,"l
= 2Jp(up)
< 27, (TTju)
= WD (ML I7 ) + Y 1 (E D> () I o
TeT,
+ ) lel” I () /n |7, ) + || det D (Tju) — det D*ul7,
ee:‘);;
< Ch*. (3.1)
Consequently we have
IDFunllLr < C, (3.2)
1
(Y D @) I sy ) = CH, (3.3)
TeTy
1
(X tel™ Mou/onni3, ) < CH2, (3.4)
6’65;;
Il det Djup — ¥y < Ch*. (3.5)

Let T € 7 be arbitrary and ; be the Py Lagrange interpolant of ¥ on 7. We
have, by a standard inverse estimate (cf. [17,23]),

Il det Djup — ¥llLoo(ry < | det Dyupn — Vel + 1% — YrllLoo(r)
< Ch7 Y| det Diup — Yrllyry + 1 — Yol
< Ch™ (Il det Djup — ¥llLycry + 1Y — YrllLy)
+ I = YrllLeo()

which together with (3.5) and the assumption that € H 2(Q) implies
| det Diup — ¥y <Ch YT €Ty (3.6)
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3.2 The elementwise convexity of up,

Let g be a polynomial defined on 7 € 7j. Recall that ¢g; is the restriction of a
polynomial defined on R? which is also denoted by ¢;. We define I7¢; to be the
restriction of I1;gr on T, where Ir; is the P nodal interpolation operator associated
with T;. Note that any linear polynomial on 7 is invariant under /7, and according to
(2.7),

Irtr(JED*v;J;) =0 onT forallv € Ly,. (3.7)

We have, by (3.3), a standard inverse estimate (cf. [17,23]) and the Bramble-Hilbert
lemma,
er(Jf D n)r Jr) = Irte(J; D* un)r I | Lo ()
< Ch M lw(IED? (un)r Jr) — Ire(JED* wn)r I |l s )
< Chlt(JED* ) Jr) | 2y
<chr. (3.8)

Lemma 3.1 There exists a positive constant «;, independent of h such that, for h suf-
ficiently small, we have

E'Diupg > w|&|>  onall T € Ty, and for all € € R?, (3.9)

or equivalently the minimum eigenvalue of D%uh is bounded below by a positive
constant independent of h.

Proof Let T € 7Ty be arbitrary. From (3.6), we have

1
det D*(up); = —miny(x) >0 onT
2 xe

if & is sufficiently small. Consequently, in view of (2.10), we also have

—4 2 5 .
h™"det(J, D" (up)rJr) > > miny(x) VT €7, (3.10)
xeQ

where the positive constant § < min{h~2|det J;|: T € Tp} is independent of A.
On the other hand, on each T € 7, we have

h= 2w (JED (up)r Jr) = h=2[tw(JED* up) 1 Jr) — Irte(JED? (up)r )]
—h 72\t (JED* (up)r Jr) — ITte(JED?* (i) J) | Lo (1)
—Ch (3.11)

IV 1V

by (3.7) and (3.8), where the positive constant C is independent of 4.
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We conclude from (3.10) and (3.11) that, for i sufficiently small, the minimum
eigenvalue of h’ZJ}DZ(uh)T Jr on the triangle T is bounded below by a positive
constant independent of 7 and &, which implies that the same is true for Dﬁuh because
Ty, is a quasi-uniform triangulation. O

Therefore, for i sufficiently small, u; is a strictly convex polynomial on each
T € 7;,. Note that (3.9) is equivalent to

£'Cof (Djup)é > apl€[>  onall T € T;, and for all £ € R, (3.12)

3.3 A priori error estimates

We have, by the fundamental theorem of calculus (cf. [38, Lemma A.1]),

1
det D*u — det D2uj, = [/ Cof D (tu + (1 = Nup)d | : DR — up), (3.13)
0

which is valid for all points in 2 except those on the edges of 7;,. Here and below we
use the colon to denote the Frobenius inner product between matrices.

Let A € [Loo(2)1%*? be defined by the integral on the right-hand side of (3.13).
For h sufficiently small, we have, by (1.6), (3.6) and (3.12),

al]? <&'A(x)E < B> VEeR? andalmostall x € Q, (3.14)

where 0 < o < B are constants independent of 4.
The proof of the following lemma is given in Appendix A.

Lemma 3.2 Under the condition (3.14) we have

103 = v)llL@) < 17—

vac( Yl imav/onti )] G19)

i
ee&;

a7 145 DY = V)l

forall ¢ € H*(Q) N H} () and v € Vj, N H (), where

B—«

§=—7
(a2 + B%)2

(3.16)

and the positive constant C+ only depends on the shape regularity of Tj,.
We can now establish an a priori error estimate for uy,.

Theorem 3.3 There exists a positive constant C independent of h such that

lu — unllp < Ch>. (3.17)
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Proof We can assume £ is sufficiently small so that (3.14) is satisfied. We begin with
the triangle inequality

D7 — un)llry@) < IID%((M —¢) — (up — ) 1o (2)
+IDE (P — Thd) |1 ()- (3.18)

Note that u — ¢ € H*(Q) N H} () by (1.1b) and up, — ¢ € V, N Hy (Q) by
(2.7) and Remark 2.9. Hence it follows from (3.15) that

1D; (= ¢) = (un = Ta)) Lo
= c[I4: D} (= ) = i = M) I aco

1
+ (D lel ™ M0 — g /omTl )|

i
eel)

< CI4: DR = wnlliae + (Y el MIdun/om1I3 ))
EES;-’
1

+ 136 ~ ) Lo + (D lel ™ II0Mg /om0 ) |- 319)

i
et

Putting (1.1a), (3.13), (3.18) and (3.19) together, we have

1
1D = un) Ly < C|IY = det Diunllae + (Y lel™" Mo /onNI3 )

i
ee&)

+ 0sc(¢)], (3.20)

where

Osc(@®) = D@ = M) e + (Y lel™ IO /0n1I3 ()" (B2D)

ee:‘,‘fl
It follows from Remark 2.7, (3.4), (3.5), (3.20) and (3.21) that
D5 — up)l Ly < Ch?, (3.22)

and then the estimate (3.17) follows from (2.11), (3.4) and (3.22). O
Remark 3.4 A careful tracking of the constant C in (3.17) shows that it takes the form

of C.(B/a)[(1/a) 4+ 1], where o and B are the constants in (3.14) and the positive
constant C, depends only on u, ¢ and the shape regularity of 7j,.
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According to the Poincaré-Friedrichs and Sobolev inequalities for piecewise H>
functions (cf. [16,18]), we have

1o + 1811 @) + ISl L@ = CliElR (3.23)

forall¢ € HO1 () that is piecewise H? with respect to 7. It follows from (2.2), (2.4),
Remark 2.9, (2.11), (3.17), (3.23) and the triangle inequality that

lu —unllL,@ + lu —unlgiq) + e —unllLo @
< llu — TpullLye) + lu — Hpunlgiq) + lu — HpunllL
+ C(llu — Tpullp + llu — uplln)
< Ch%. (3.24)

Remark 3.5 Numerical results in Example 4.1 indicate that the convergence in
- oy |- e and |- L) is better than O(hz).

3.4 An a posteriori error estimate

Since finding a global minimizer of a nonconvex function is in general NP-hard, an
optimization algorithm usually only produces an approximate stationary point iy, of
the cost function 7j,. Therefore we need more than the a priori error estimate (3.17)
to ensure the convergence of the approximate solutions to the solution « of (1.1).

In the following discussion, it suffices to assume that u belonging to W2 () is
strictly convex, i.e., (1.5) is satisfied almost everywhere in €2.

Let uy, € Lj be elementwise strictly convex. Then the relation (3.13) is valid with
uy, replaced by iy, and we have, by Lemma 3.2 and the arguments in the proof of
Theorem 3.3,

1
2

102 = i)l o = C[lldet DRn = Yl + (Y el 08 0n 113 o))

i
=

4 0sc(¢)], (3.25)

where the positive constant C depends only on the minimum and maximum eigenval-
ues of D?u and Dﬁﬁh over 2 and the shape regularity of 7j,.

Therefore, after verifying the elementwise strict convexity of an approximate solu-
tion iy, for (2.8), we can monitor the convergence of i1, by evaluating the residual-based
error estimator

M) = || det Dty — o + (D lel ™ Il0an/onlI ). (3.26)

i
et
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According to (2.11) and (3.25), the estimator 7y, is reliable for the error measured by
the norm || - ||5:

lu — anlln < C(na(in) + Osc(e)). (3.27)

Moreover Osc(¢) is O (h?) (cf. Remark 2.7).
In the other direction the obvious relations

le| =M 1T0dn/n 1T 0y = lel ™ IO — iin) /0nTIII7 , e (3.28)
and
|| det Diiy, — |l Lyry = || det Diiiy, — det D*ul| 1, (1) (3.29)

imply that 1y, (i17,) is also locally efficient. Therefore we can use 7, to generate adaptive
meshes when the solution of (1.1) is less smooth.

4 Numerical results

We have tested our method on three examples with known solutions. For each example
we solve (2.7)—(2.9) by an active set algorithm (cf. Appendix B) that produces an
approximate stationary point of the cost function in (2.9). The elementwise convexity
of the approximate solutions are checked numerically by Algorithm C.1 in Appendix C.

For Example 4.2 and Example 4.3, where the known solutions do not belong to
H*(2), we have also solved (2.7)—(2.9) on adaptive meshes generated by the error
estimator in (3.26) and a Dorfler marking strategy [32].

The relative errors of the approximate solution iy in various norms are defined by

ro Mu—=anln o Nu—uwnllgiey 0w —dnlg
Q0= T Y A T I

s €=
Nl 772 () Nl g1 () lullz2(q)

and

max |u(p) — i (p)|
r PEV)
€oo,h =

el Loe ()

where V), is the set of the vertices of the triangulation 7j,.

All the numerical experiments were carried out on a MacBook Pro laptop computer
with a 2.8GHz Quad-Core Intel Core i7 processor and with 16GB 2133 MHz LPDDR3
memory. We use MATLAB (R2018b v.9.5.0) in our computations.

Example 4.1 This example is from [28], where €2 is the unit square (0, 12,
Yx) = (1 + x[e /% and ¢ (x) = /2.
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Table 1 Relative errors versus mesh size & and orders of convergence (Example 4.1)

h eE, h Order 2 o Order e6’ h Order egc, i Order
20 1.2094e-1 - 3.1133e-2 - 6.7122¢-3 - 1.1843e-2 —
2-1 2.1221e-2 2.51 2.9131e-3 3.42 5.8949¢-4 3.51 7.4311e-4 3.99

272 5.5763e-3 1.93 3.2631e-4 3.16 3.0492e-5 4.27 3.8506e-5 4.27
273 1.4039e-3 1.99 3.9515e-5 3.05 2.7445e-6 3.47 3.7144e-6 3.37
24 3.5033e-4 2.00 4.8710e-6 3.02 2.9277e-7 3.23 3.7768e-7 3.30
273 8.7449¢-5 2.00 6.5347e-7 2.90 8.1151e-8 1.85 9.2308e-8 2.03

Table 2 Residual, Cost and CPU Time (Example 4.1)

h 20 21 22 23 24 25
Ra) 8.4426¢-1 1.9585e-1  4.7765e2  1.1638e-2  2.7580e-3  6.5290e-4
Order - 2.11 2.03 2.04 2.08 2.08
Tn(ip) 4.1353¢e-1  2.4864e-2  15275¢-3  9.3814e-5  62186e-6  6.4513e-6
Order - 4.01 4.02 4.03 3.92 —0.05

CPU Time (s) 2.8892e0 2.3075e0 2.9910e0 5.2907e0 1.4320el 7.1900el

The exact solution is u = ¢* /2. The assumptions (1.2)—(1.4) are satisfied.

The errors of the approximate solutions #; obtained by the optimization algorithm
on uniform meshes are reported in Table 1. The order of convergence for ¢ , is 2,
which agrees with the estimate in Theorem 3.3 for the solutions u, of (2.8). The orders
of convergence for el ns €0, and eoo ;, are higher.

The residual 5y, (uh) and the cost J}, (iiy) are reported in Table 2, their behaviors
agree with the estimates (3.1), (3.4) and (3.5) for the minimizer uy,. It is observed from
the CPU times in Table 2 that a good approximate solution at # = 272 was computed
in 3 seconds.

We have verified that all the approximate solutions are elementwise strictly convex,
and the reliability of the error estimator 7, can be observed by comparing eg’ , inTable 1
and ny, (1) in Table 2

We have also solved the same problem on four other regular polygons (cf. Fig. 2),
where the diameters of these polygons are 2.3660 (triangle), 1.6420 (pentagon), 1.5774
(hexagon) and 1.5307 (octagon).

It is observed from the convergence histories of ¢ , and e . In Fig. 3 that the
performance of our method is similar for all five polygons

Example 4.2 This example is from [63], where Q = (—1, 1)2,

16 in x| <1/2

(x) = ,
4 64 — 16]x| ! in 1/2 < |x|
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/N O C

Fig.2 Regular triangle, pentagon, hexagon and octagon

0 T T T T -1 T T T T |
—A— Triangle —A— Triangle
—e— Square —e— Square

051 Pentagon| Pentagon
—4— Hexagon 2F —%— Hexagon [
—6— Octagon —6— Octagon
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&
.
2n)
&

og (e
l0g (e

log,(1/h) log, o(1/h)

Fig.3 Convergence histories of ¢, , (left) and ego ;, (right) for five regular polygons (Example 4.1)

Fig.4 Computational meshes (Example 4.2)

the exact solution is

20x[? in x| <1/2

u(x) = ,
2()x| = 1/2)* +21x>  in 1/2 < |x]|

and ¢ € H*(2) equals u in a neighborhood of 9. For this example, the function v/
is piecewise smooth and discontinuous along the circle defined by |x| = 1/2, and the
Aleksandrov solution u is a piecewise smooth C! function.

The computational meshes are generated by a bisection procedure to fit the circle
where ¥ is discontinuous. The first two meshes and the final mesh are presented in
Fig. 4.
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Table 3 Relative errors versus mesh size & and orders of convergence (Example 4.2)

# of dofs eg’ h Order e} o Order 66’ h Order e;o’ h Order
265 1.1610e-1 - 5.4486e-2 - 4.8750e-2 - 5.1245e-2 -

505 8.2598e-2 0.53 1.7304¢-2 1.78 9.7645¢-3 2.49 1.6850e-2 1.72
1009 4.3527e-2 093 9.2201e-3 0.91 6.9752¢-3 0.49 7.7534e-3 1.12
1969 2.7050e-2  0.71 2.9208e-3 1.72 1.7075e-3 2.10 1.2552¢-3 2.72
3937 1.5237¢-2  0.83 8.5781e-4 1.77 4.5996e-4 1.89 5.6883e-4 1.14
7777 1.1519¢-2  0.41 4.7382e-4  0.87 3.6609¢-4  0.34 2.4460e-4 1.24

Table 4 Residual, Cost and CPU Time (Example 4.2)

# of dofs 265 505 1009 1969 3937 7777
ny (i) 5.0972e0 3.1707e0 2.1286e0 1.7010e0 1.1319e0 9.3084e-1
Order - 0.74 0.58 0.34 0.59 0.29
NAUD) 1.8770el 4.5374e0 2.3356e0 1.2051e0 5.5931e-1 3.8182e-1
Order - 2.20 0.96 0.99 1.11 0.56
CPU time (s) 1.7195e1 6.8276e0 2.1865e0 7.7616e0 6.3374e0 1.5600e2

We have verified that all the approximate solutions are elementwise strictly convex.
The relative errors are reported in Table 3. The convergence of e} ; is of a reduced
order &~ (.5, and the orders of convergence are higher for the lower order norms.

The residual 5y (i1y,), the cost J, (i) and the CPU time are provided in Table 4.
It is observed that a satisfactory approximate solution with 1009 dofs was computed
in less than 3 seconds. The reliability estimate (3.27) is confirmed by comparing the
values of egyh and np ().

We also tested the performance of the a posteriori error estimator in (3.26) for
this example. The convergence histories of e} , and ef, , on bisection and adaptive
meshes are shown in Fig. 5. The advantages of the adaptive meshes can be observed
until round-off errors interfere at finer meshes.

The discrete solution on the final bisection mesh and the adaptive mesh with 3385
dofs are displayed in Fig. 6.

Example 4.3 This example is from [64], which is a modification of an example in [48].
The domain 2 is the unit square = (0, 1)2,

¥ (x) = max <1 - L, 0) ,
lx — (172, 1/2)]

the exact solution of this example is
1
u(x) = 2 (max(lx = (1/2,1/2)| = 02),00%,
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109 15(€l. )

35k
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Zig.)s Convergence histories of eg, ; (eft) and ego’ j, (right) on bisection and adaptive meshes (Example
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08

4 08 06 -04 -02 0 02 04 06 08 1

Fig. 6 (Left) graph of the computed solution on the final bisection mesh and (Right) adaptive mesh with
3385 dofs (Example 4.2)

and ¢ € H*(Q) equals u in a neighborhood of 9. For this example the function
vanishes on the disc defined by |x — (1/2, 1/2)| < 0.2 and the Aleksandrov solution
u is a piecewise smooth C! function.

We solved this problem by the nonlinear least-squares method on uniform meshes.
The approximate solutions are elementwise strictly convex outside the disc where
Y = 0. The relative errors of 1 are reported in Table 5. The order of convergence
for e; , is roughly 0.5 and the orders of convergence for e} , e ;, and e, are better

than 1. The discrete solution at 4 = 27> can be found in Fig. 8.

The residual ny, (i1,), the cost Jj, (i15,) and the CPU time are provided in Table 6.
Comparing e; , in Table 5 and 7y, () in Table 6, one can see that the reliability
estimate (3.27) is no longer valid because of the lack of strict convexity for both the
discrete solutions and the continuous solution inside the disc where ¢ = 0. It can also
be seen that a satisfactory approximate solution at 1 = 273 was computed in less than
8 seconds.
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Table 5 Relative errors versus mesh size & and orders of convergence (Example 4.3)

h e Order el Order e6 h Order eon Order

20 3.4668e-1 - 1.7188e-1 - 1.4617e-1 - 1.5992e-1 -

21 2.2904e-1 0.60 8.5079e-2 1.01 7.5088e-2 0.96 7.5322e-2 1.09
272 1.4413e-1 0.67 3.0248e-2 1.49 2.2785e-2 1.72 2.0525e-2 1.88
273 9.2617e-2 0.64 8.9737e-3 1.75 5.7416e-3 1.99 4.8416e-3 2.08
24 7.9606e-2 0.22 5.3381e-3 0.75 3.0459-3 0.91 2.5211e-3 0.94
273 5.4643e-2 0.54 2.0729e-3 1.36 9.1258e-4 1.74 7.4776e-4 1.75

Table 6 Residual, Cost and CPU Time (Example 4.3)

h 20 2-1 272 273 24 25
i) 1.3729e-1 754322 2.9578¢2  1.120le-2  4.3008e-3 1.5727¢-3
Order - 0.86 135 1.40 138 1.45
Tn(iip) 1.9072e2  2.6887e-3  3.1878e-4  3.8834e-5  5.7440e-6  6.9137e-7
Order - 2.83 3.08 3.04 2.76 3.05

CPU Time (s) 1.1282e0 1.9737e0 3.5095e0 7.7817e0 2.9395el 2.4705e2

04 T T T T T 05 T T T T T

—+— Adaptive mesh|
—*— Uniform mesh

—+— Adaptive mesh|
—*— Uniform mesh

1094(65)
log (el )
&

16 L L L L L 35 L L L L L

log,o(N) 1ogo(N)

Fig.7 Convergence histories of eE’ 5, (left) ego’ ;, (right) on uniform and adaptive meshes (Example 4.3)

We also tested the performance of the a posteriori residual error estimator in (3.26)
for this example. The convergence histories of e; , and e ;, on uniform and adaptive
meshes are shown in Fig. 7. The advantage of adaptive meshes is observed. The
adaptive mesh with 30187 dofs in Fig. 8§ clearly captures the singularities of the exact
solution along the circle defined by [x — (1/2,1/2)] = 0.2.
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Fig. 8 (Left) graph of the computed solution on uniform mesh with 7 = 275 and (Right) adaptive mesh
with 30187 dofs (Example 4.3)

5 Concluding remarks

By going beyond the classical definition of a finite element, we are able to construct a
CY interior penalty method for the Dirichlet boundary value problem of the Monge—
Ampere equation, where the elementwise convexity of the approximate solutions can
be enforced. This in turn enables us to use existing results for second order elliptic
equations in nondivergence form to obtain both a priori and a posteriori error esti-
mates. The a posteriori error estimate is a significant part of our method since it allows
us to access the convergence of the approximate solutions generated by optimization
algorithms that are not necessarily global minimizers.

The approach in this paper can be extended to smooth domains. We also note that
convexity enforcing is useful for the problem of prescribed Gaussian curvature (cf.
[38,42]) and the nonlinear least-squares approach can be applied to the Pucci equations
(cf. [20,42]). These are some of our ongoing projects.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. The Proof of Lemma 3.2

We note that stability estimates similar to 3.2 and in more general settings can be
found for example in [62,70]. We include a proof here for self-containedness.
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The first ingredient is the Miranda—Talenti estimate
1D*¢llLy@) < 1Al V& € HA(Q) N Hy () (AD)

that is valid for convex domains (cf. [56,71]). In the case of a polygon, the two sides
of (A.1) are actually equal (cf. [43, Sect. 4.3]).

The second ingredient is the existence of an operator E; : Vj N HO1 Q) —
H?(Q) N HJ (Q) that satisfies

1
ID3w = Bz = Ci( Y el Illav/onlld, ) Yo e Vin Hy (@),
eE(‘:}’;

(A2)

where C+ only depends on the shape regularity of 7j, (cf. [62, Lemma 3]).

Remark A.1 The operator Ej, in [62] is for the standard cubic Lagrange finite element
space. The extension of Ej, and (A.2) to the enhanced cubic Lagrange finite element
space in Sect. 2.1 is straightforward since the additional bubble functions are already
in H*(Q) N HJ ().

It follows from (A.1) and (A.2) that

IDF(¢ — Wiy < I1DFE — Env)llzye) + IDF© — Exv)llLy@
< A = Exv)l Ly + 1DF(v — Exv)llLy @)
< 1AL — VILy@) + 21D7 (v — Exv) @)

1
< 18N = 0)lac@ +2C+ (3 tel~ v /on R )
eeé';’;

(A3)

forall ¢ € H*(2) N HY () and v € V;, N HL(Q).
Following the treatment of second order linear elliptic equations in nondivergence
form in [22,55,70], we introduce the function

Ax): 1
y(x) = —7T7——
A(x) 1 Ax)
where [ is the 2 x 2 identity matrix.
Note that A(x) : [ is the sum of the eigenvalues of A(x) and A(x) : A(x) is the sum
of the squares of the eigenvalues of A (x). Therefore we have, by (3.14), the following
upper bound of y (x):

A A 1
max ;+ ; =—, (A4)
asinM=B AT+ A; @

y(x) <
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and also the following Cordes condition (cf. [24]):

Y A@) = 1P =y (02 AG) 1 AW) = 2y ()(AQ) : 1) +2
_ A1)’
Ax) 1 A(x)

2 o2
(r—2)° (B-o) _ s (AS5)

< max =
a<ii,A2<p )\.% + k% a? + 52

where 6 (< 1) is given by (3.16).
It follows from (A.3) and (A.5) that

/Q[yA D¢ — V)] AR — v)dx
= 1AWE — D) + /Q[VA L D2(C = v) — An(E — VAR — v)dx

= 1AxEC = VI, +/Q[<yA — 1) : D¢ — 0)]AR(E — v)dx

> 1 An(E = V)7, — SIDFE — WLy | ARE = V)@
> (1= 8)[AnE = VI

— 208184 = Dz ( D lel ™ IT0v/on1IE )

L’Eg;;
which together with (A.4) implies

—1
o
AR — V)L ) < Tg”A : DF (¢ = VL@

s B 1
20— (2 lel Mov/omll, ) - (A

i
ee&)

Finally we arrive at (3.15) through (A.3) and (A.6).

Appendix B. An optimization algorithm

An active set algorithm is implemented to solve the bound constrained optimization
min {f(x) : x € B}, (B.1)

where f : R" — R is twice continuously differentiable on the the set B = {x € R" :

1 < x < u}. Our algorithm is based on the active set approach proposed in [45] for

solving nonlinear optimization with bound constraints, which was further developed
in [47] for handling more general polyhedral constrained optimization.
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Here, we just very briefly explain the structure and convergence results of our algo-
rithm. For more details on the theory of the algorithm, one may refer to references
[45,47]. Our active set algorithm consists of two phases: a nonmonotone gradient pro-
jection phase and an unconstrained optimization phase, and a set of rules for switching
between these two phases for achieving both global and fast local convergence. In par-
ticular, a projected cyclic Barzilai-Borwein (PCBB) algorithm is used in the gradient
projection phase, where the line search direction at iteration X is generated by

di = Pp(Xp — axgr) — Xk. (B.2)

Here, P (-) is the projection on the feasible region 3, a is the cyclic Barzilai-Borwein
stepsize [25] and g = V f(Xx). Along the search direction dy, an adaptive nonmono-
tone line search proposed in [26] is used to ensure global convergence. This PCBB
algorithm of phase one is not only robust in the sense that it converges to a stationary
point under mild assumptions, but also very effective for identifying the optimal active
constraints where the components of the solution are on the boundary of B.

However, the convergence rate of PCBB is often at best linear. Hence, to accelerate
the convergence, a more efficient unconstrained optimization algorithm is used in
phase two to optimize the objective function by fixing some components of variable
x on the boundary of B, that is

min {f(x) : x4 = b 4}. (B.3)

Here, A is the active index set given by phase one and b 4 indicates the partial boundary
of B where the components of x with index A are fixed. When one iteration of the
phase two algorithm lies out of the feasible region B3, the set rules developed in the
algorithm determine whether the algorithm will switch to the gradient projection phase
or restart the unconstrained optimization phase by projecting the iterate back to B. A
limited memory nonlinear conjugate gradient method (L-CG_DESCENT) [46] is used
to solve the subspace optimization (B.3) in phase two.

L-CG_DESCENT is a very efficient first-order method which has much more rapid
convergence than most gradient descent methods, and maintains cheap iterations since
only up to first-order information is used. However, when the optimization problem
gets very ill-conditioned, which is often the case for a discrete optimization problem
resulting from a finite difference method or a finite element method (such as the C? inte-
rior penalty method studied in this paper), slow convergence is often detected near the
solution. Under this situation, in phase two we would switch L-CG_DESCENT to the
second-order Newton’s method, which is generally more expensive but often quickly
leads to more accurate solutions. The convergence theories developed in [45,47] guar-
antee our active set algorithm converges at least to a stationary point of problem
(B.1). Furthermore, the active set algorithm would asymptotically reduce the bound
constrained optimization (B.1) to an unconstrained optimization (B.3) even when the
problem is degenerate. Hence, fast local convergence would be expected by combin-
ing the more rapid convergence algorithms such as L-CG_DESCENT and Newton’s
method in the phase two optimization.
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Appendix C. Elementwise convexity

Since the enhanced cubic Lagrange finite element is affine-equivalent, we can focus
on the reference simplex. It is convenient to first consider the convexity of a tensor
product polynomial on the unit square (0, 1) x (0, 1), for which we will need some
explicit inverse estimates.

C.1 Explicit inverse estimates
Let Q. be the space of tensor product polynomials spanned by x{ xlz‘ forO0<j<m

and 0 < k < n. Given any g € Q,, ,, we can write

q@) =" ajipj@)pe(x2)

j=0 k=0

where po, p1, ... are the Legendre polynomials.
Let I = (—1, 1). It follows from the properties of the Legendre polynomials [52,
(4.4.2), (4.5.1) and (4.5.2)] that

m n
1gllLorxry < Y lajil

j=0k=0
m n 1 1 l m n 1 1 l
- 1) 2 2 e -1 2\-1)2
S(XXU+ e+ ) (XX ai+  k+ ™)
J=0 k=0 J=0 k=0
m+1Hn+1)
= fnanz(lxl),

which, through scaling, implies

191 Lo 0. )x0.1) < (m+ D+ Dllglly0.nx0.1) Vg € Qua.  (C.1)
C.2 Convexity on the unit square
Let K be the (closed) unit square [0, 1] x [0, 1] with vertices py, p2, p3, pa, and Q p

be the nodal interpolation operator for the Q1 finite element on K.
Forany g € Qm » and x € K, we have O p Ag — Ag € Qy , and therefore

(0 AQ)(x) = [(Qz AQ)(x) — Ag(x)] + Ag(x)
< m+ 1D+ DIQgAG — Agll, 2y + Ag(x)
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by (C.1). It follows that

AG) 2 min(Qg A = o+ D+ DIIAg = g Adlly

= min Ag(pi) — (m+ D+ DIAG = Qg(ADl,z)  Yr ek,
(C.2)

Similarly, since det qu — Qk(det qu) € Qam—2.2n—2, we have

(det D?q)(x) > min[Q ¢ (det D*¢)](x)
xekK

— @m — )@n = D)||det D*q — Q¢ (det D*q) ||, 2,
= min (det D%q)(p;)
1<i<4

— @m —1)@n — 1)||det D’q — Qp(det D*q)|, z, VxeK.
(C.3)

According to (C.2) and (C.3), if
12i24(Aq)(ﬁi) —m+ D+ DIAg = Qp(Al, %) >0
and
min,(det D%q)(p;) — 2m = D)(2n = D det D*q = Qg (det D)l g, > 0.
then
Ap >0 and detsz >0 Vxek,
which implies that g is strictly convex on K.

C.3 Convexity on the reference simplex

Letqg € Pg(f‘) ® <p2f Py (f"). Then g € @5 5 and we begin by computing (cf. (C.2) and
(C.3)

Ly = min (Aq)() = 36189 = Q¢ (A, 4, €
and
Lyt i = min (det D?q)(5;) — 81| det D’ — Qg (et D’q)l|, - (C5)
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If L AR 0and L Y 0, then ¢ is strictly convex on K (and therefore also

on 7). If this is not the case, then we divide K into four sub-squares and use scaled
versions of (C.4) and (C.5) to check the convexity of ¢ on the sub-squares whose
intersection with 7" has a positive area. By repeating this procedure we arrive at the
following algorithm for checking the convexity of ¢ € P3(f‘) ® (p% Pi(TyonT.

Algorithm C.1 Let Rg = {I% } and L be the maximum refinement level.

1. fR; #@Wand! < L, compute for K € R; the quantities
L in (Aq)(pk.i) 36|IA Ok (A
= min ) — — —
ALK 15{24 q)(PK i I, q K (AG) Ly (K)
and
. 2 81 2 2
Lget, xk = min (det D°q)(pk i) — —Ildet D°q — Qg (det D*q)|lL,(k),
1<i<4 hy

where px; (i = 1,2,3,4) are the vertices of K, h; is the width/height of the
squares in Ry, and Qg is the nodal interpolation operator for the Q1 element
associated with K. Set

R?C ={K eR;: LA,K < OOI‘Ldet’K < 0}.

Stop if R}“ = @. The polynomial is strictly convex on T.
2. If R} # ¢, divide each K € R} into four sub-squares K; (j = 1,2, 3,4) and
define

Ry =(K;: K eRIF, j=1273,4).
Set
Rip1 = (K e RIU: KN T[>0},

hlz%hl,l:l+landgotol.

Remark C.2 In our numerical experiments we were able to verify the elementwise
strict convexity by observing that the Algorithm C.1 terminated before the refinement
reached level 6.
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