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Abstract
We design and analyze aC0 interior penalty method for the approximation of classical
solutions of the Dirichlet boundary value problem of the Monge–Ampère equation on
convex polygonal domains. Themethod is based on an enhanced cubic Lagrange finite
element that enables the enforcement of the convexity of the approximate solutions.
Numerical results that corroborate the a priori and a posteriori error estimates are
presented. It is also observed from numerical experiments that this method can capture
certain weak solutions.

Mathematics Subject Classification 65N30 · 65K10 · 35G30 · 90C06 · 90C26

1 Introduction

The Monge–Ampère equation is a fully nonlinear partial differential equation that
appears in geometric analysis and related applications. Various aspects of this impor-
tant equation can be found in the monographs [6,20,38,42,44,49,72].
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The Dirichlet boundary value problem for the Monge–Ampère equation is given
by

det D2u = ψ in �, (1.1a)

u = φ on ∂�. (1.1b)

If � is a smooth and strictly convex domain, ψ ∈ C3(�̄) is strictly positive on �̄

and φ ∈ C4,δ(�̄) for some δ ∈ (0, 1), then (1.1) has a unique strictly convex solution
u ∈ C4,δ(�̄) (cf. [21, p. 371, Remark 2]). Our goal is to develop finite elementmethods
that can capture such smooth convex solutions of (1.1).

Remark 1.1 Throughout this paper wewill follow the standard notation for differential
operators, function spaces and norms that can be found for example in [1,17,23].

As a first step, we consider a finite element method for (1.1) on polygonal domains.
Accordingly we assume that � ⊂ R

2 is a bounded convex polygon,

φ ∈ H4(�), (1.2)

ψ ∈ H2(�) is strictly positive on �̄, (1.3)

and

the boundary value problem (1.1) has a strictly convex solution u ∈ H4(�),(1.4)

i.e., there exists a positive constant α� such that the Hessian D2u satisfies

ξ t (D2u)(x)ξ ≥ α�|ξ |2 ∀ x ∈ �, ξ ∈ R
2. (1.5)

Remark 1.2 The extension of our method to strictly convex smooth domains, where
the regularity (1.4) follows from appropriate regularity of the data, will be carried out
in a forthcoming paper.

Remark 1.3 Since a 2 × 2 symmetric matrix and its cofactor matrix have identical
eigenvalues, the estimate (1.5) is equivalent to

ξ tCof(D2u)(x)ξ ≥ α�|ξ |2 ∀ x ∈ �, ξ ∈ R
2. (1.6)

Remark 1.4 Note that under assumption (1.3) a sufficiently smooth solution of (1.1)
is strictly convex if and only if 
u ≥ 0 on �. This is the key motivation for the finite
element method in this paper.

There are many numerical approaches to the Dirichlet boundary value problem of
the Monge–Ampère equation (and related equations) in 2 and 3 spatial dimensions,
with respect to different solution classes (classical solutions, Aleksandrov solutions
[2] and viscosity solutions [54]). They include (i) geometric finite difference meth-
ods [63,66,68,69], (ii) monotone finite difference methods [7–9,39–41,48,50,67], (iii)
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augmented Lagrangian and least-squares finite elementmethods [19,28–31], (iv) finite
element methods based on the vanishing moment approach [3,35–37,57], (v) finite
element methods based on L2 projection [4,5,10,11,13,15,27,51,58–60], (vi) finite
element methods based on a reformulation of the Monge–Ampère equation as a
Hamilton–Jacobi–Bellman equation [14,34], and (v) two-scale methods [53,64,65].
Comprehensive reviews of the literature can be found in [33,61].

The method in this paper is also based on a nonlinear least-squares approach. It
is different from the least-squares method of Dean and Glowinski [19,29,31] in that
our least-squares problem is posed only on the finite element spaces and the discrete
problems are solved purely as optimization problems.

The key ingredient in our method is an enhanced cubic Lagrange element with
exotic degrees of freedom (dofs) that enables us to enforce the convexity of the finite
element solutions, which then allows us to develop a simple error analysis based on
existing results for second order elliptic problems in non-divergence form.

The rest of the paper is organized as follows. We introduce the enhanced cubic
Lagrange element in Sect. 2 togetherwith the discrete nonlinear least-squares problem.
We then present a priori and a posteriori error analyses in Sect. 3 and numerical results
in Sect. 4. We end with some concluding remarks in Sect. 5. We also put some of the
details in three appendices so that the main flow of the presentation is not distracted.
Appendix A contains the derivation of a stability result for elliptic problems in non-
divergence form needed for the error analysis in Sect. 3. Details of the optimization
algorithm that we use to solve the discrete problems are given in Appendix B. An
algorithm that we use to check the elementwise convexity of the approximate solutions
is outlined in Appendix C.

Throughout the paper we will use C to denote a generic positive constant indepen-
dent of the mesh size.

2 The discrete problem

The discrete problem is a nonlinear least-squares problem with box constraints. It is
based on an exotic finite element space whose degrees of freedom (dofs) can enforce
the convexity of the solutions.

2.1 An enhanced cubic Lagrange finite element

We begin by introducing a new finite element where some of the degrees of freedom
(dofs) are associated with nodes outside the element domain. Consequently the con-
struction of the local basis requires information from outside an element. Below we
will treat a polynomial on an element as the restriction of a polynomial on R2 and use
the same notation to denote both. In other words, we will identify Pk(R2) with the
space Pk(T ) of polynomials of (total) degree ≤ k on a triangle T .

The construction of the finite element is based on the following lemma, where T̂ is
the reference simplexwith vertices (0, 0), (1, 0) and (0, 1), andϕT̂ = x1x2(1−x1−x2)

is the cubic bubble function that vanishes on the boundary of T̂ .
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Fig. 1 dofs of the enhanced P3
Lagrange element

Lemma 2.1 A function v ∈ P3(T̂ ) ⊕ ϕ2
T̂
P1(T̂ ) is uniquely determined by the 10 dofs

of the standard cubic Lagrange finite element together with the values of 
v at the
three points (1, 1), (−1, 1) and (1,−1) (cf. Fig. 1).

Proof Suppose v vanishes at the 9 vertex and edge nodes, then v belongs to 〈ϕT̂ 〉 ⊕
ϕ2
T̂
P1(T̂ ). A direct calculation shows that 0 is the only polynomial in 〈ϕT̂ 〉⊕ϕ2

T̂
P1(T̂ )

that vanishes at the center of T̂ and whose Laplacian also vanishes at the three points
(1, 1), (−1, 1) and (1,−1). 
�

Remark 2.2 The space P3(T̂ )⊕ϕ2
T̂
P1(T̂ ) and the 13 dofs in Lemma 2.1 do not define

a finite element on T̂ in the classical sense of Ciarlet in [23, page 78] because the
shape functions are treated as functions defined globally on R

2, and not as functions
defined just on the element domain.

Remark 2.3 The vertices of the reference simplex are the midpoints of the edges of the
triangle with vertices (1, 1), (−1, 1) and (1,−1). For a general triangle T , the triangle
whose midpoints are the vertices of T will be denoted by T†.

On an arbitrary triangle T , the space of shape functions of the enhanced cubic
Lagrange element is P3(T ) ⊕ ϕ2

T P1(T ), where ϕT is the cubic bubble function that
vanishes on the boundary of T . The dofs of v ∈ P3(T ) ⊕ ϕ2

T P1(T ) are (i) the values
of v at the three vertices, (ii) the values of v at the two points that trisect each edge,
(iii) the value of v at the center of T , and (iv) the values of tr(J tT D

2v JT ) at the three
vertices of T†, where JT ∈ R

2×2 is the Jacobian matrix of an affine map that maps the
reference simplex to T .

Remark 2.4 The enhanced cubic Lagrange element is affine-equivalent (cf. [17,23])
by construction. The exotic dofs at the vertices of T† are responsible for enforcing the
elementwise convexity of the discrete solutions of (1.1).
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2.2 The finite element space Vh

Let Th be a quasi-uniform simplicial triangulation of �. A function v belongs to the
finite element space Vh ⊂ H1(�) if and only if (i) v belongs to C(�̄) and (ii) the
restriction of v to T ∈ Th belongs to P3(T ) ⊕ ϕ2

T P1(T ).
The (global) dofs of v ∈ Vh are (i) the values of v at the vertices of Th , (ii) the

values of v at the points that trisect the edges of Th , (iii) the values of v at the centers
of the triangles in Th , and (iv) the values of tr(J tT D

2vT JT ) at the three vertices of T†
for each T ∈ Th , where vT is the restriction of v to T and JT is the Jacobian of an
affine map that maps the reference simplex to T .

Remark 2.5 The dofs in (iii) and (iv) define the bubble functions in 〈ϕT 〉 ⊕ ϕ2
T P1(T ).

It follows from the extension theorems for Sobolev spaces (cf. [1, Chapter 5]) that
the solution u ∈ H4(�) of (1.1) can be extended to a strictly convex function in H4(�̃)

where �̃ is an open set that contains �̄ in its interior. We will denote this extension
again by u. We assume that h is sufficiently small so that

T† ⊂ �̃ ∀ T ∈ Th . (2.1)

The nodal interpolant�hu ∈ Vh is then defined by the condition that u and�hu share
the same global dofs mentioned above.

We will denote the piecewise Hessian operator by D2
h , the set of the interior edges

of Th by E i
h , the length of an edge e by |e|, and the jump of the normal derivative of v

across an (interior) edge by [[∂v/∂n]].
Lemma 2.6 The following estimates are valid for �hu:

‖u − �hu‖L2(�) + h|u − �hu|H1(�) + h‖u − �hu‖L∞(�)

+ h2‖D2
h(u − �hu)‖L2(�) + h4

( ∑
T∈Th

|D2
h(�hu)|2H2(T )

) 1
2 ≤ Ch4|u|H4(�̃),

(2.2)

|u − �hu|W 2,∞(T ) ≤ Ch|u|H4(�̃) ∀ T ∈ Th, (2.3)
∑

e∈E i
h

|e|−1‖[[∂(�hu)/∂n]]‖2L2(e) =
∑

e∈E i
h

|e|−1‖[[∂(u − �hu)/∂n]]‖2L2(e)

≤ Ch4|u|2
H4(�̃)

, (2.4)

‖D2
h(�hu)‖2L2(�) +

∑
T∈Th

|D2
h(�hu)|2H2(T )

+ max
T∈Th

|�hu|2W 2,∞(T )
≤ C‖u‖2

H4(�̃)
.

(2.5)

Proof The estimates (2.2) and (2.3) follow from the invariance of cubic polynomials
under the local nodal interpolation operator, the Bramble-Hilbert lemma [12] and
scaling. The estimate (2.2) then implies the estimate (2.4) through the trace theorem
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with scaling, and the estimate (2.5) follows from (2.2) and (2.3) through the triangle
inequality and the Sobolev Embedding Theorem [1, Theorem 4.12]. 
�

In view of the estimate for ‖D2
h(u − �hu)‖L2(�) in (2.2) and the bound for

maxT∈Th |�hu|W 2,∞(T ) in (2.5), we immediately arrive at

‖ det D2
h(�hu) − det D2u‖L2(�) ≤ Ch2, (2.6)

where the positive constant C is independent of h.

Remark 2.7 All the estimates for �hu are also valid for �hφ. In particular we have

‖D2
h(φ − �hφ)‖L2(�) +

( ∑

e∈E i
h

|e|−1‖[[∂(�hφ)/∂n]]‖2L2(e)

) 1
2 ≤ Ch2.

2.3 A nonlinear least-squares problemwith box constraints

Let φh be the one dimensional cubic Lagrange interpolant of φ along ∂� and the
(convex) subset Lh of Vh be defined by

Lh = {v ∈ Vh : v = φh on ∂� and tr(J tT D
2vT JT ) ≥ 0 at the vertices of T†

for every T ∈ Th}. (2.7)

Remark 2.8 The inequality constraints in the definition of Lh are motivated by the
observation in Remark 1.4 and they are box constraints for the dofs of Vh introduced
at the beginning of Sect. 2.2.

Remark 2.9 Note that φh = �hφ = �hu on ∂� and hence v = �hu on ∂� for all
v ∈ Lh .

The discrete problem is to find

uh = argmin
v∈Lh

Jh(v), (2.8)

where the cost function Jh is defined by

Jh(v) = h4

2
‖D2

hv‖2L2(�) + 1

2

∑
T∈Th

|tr(J tT D2vT JT )|2H2(T )

+ 1

2

∑

e∈E i
h

|e|−1‖[[∂v/∂n]]‖2L2(e)

+ 1

2
‖ det D2

hv − ψ‖2L2(�), (2.9)
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and vT is the restriction of v to T . Note that the Frobenius norm of JT satisfies

|JT | ≈ h. (2.10)

We will use ‖ · ‖h to denote the mesh-dependent norm defined by

‖v‖2h = ‖D2
hv‖2L2(�) +

∑

e∈E i
h

|e|−1‖[[∂v/∂n]]‖2L2(e). (2.11)

Remark 2.10 The first two terms in the definition of Jh are regularization terms that
are crucial for the well-posedness of the discrete problem and for enforcing the
elementwise convexity of the discrete solutions. The third term is a penalty term that
compensates for the fact that Vh �⊂ H2(�). The last term is the least-squares term for
(1.1a).

The solvability of (2.8) is justified by the following result.

Lemma 2.11 The cost function Jh : Lh −→ [0,∞) has a global minimizer.

Proof According to the Poincaré-Friedrichs inequality for piecewise H2 functions in
[18], we have

‖v‖L2(�) ≤ C‖v‖h ∀ v ∈ Vh ∩ H1
0 (�),

which implies (cf. Remark 2.9)

‖v − �hu‖L2(�) ≤ C‖v − �hu‖h ∀ v ∈ Lh . (2.12)

It follows from (2.2), (2.4), (2.5), (2.11) and (2.12) that ‖v‖h (and hence Jh(v))
approaches ∞ if v belongs to Lh and ‖v‖L2(�) approaches ∞. 
�

3 Error analysis

We will show that any uh satisfying (2.8) will converge to the solution u of (1.1)
as h ↓ 0 and the order of convergence is 2. Since our optimization algorithm does
not guarantee that a global minimizer of Jh can be found, it is also useful to have
an a posteriori error estimate that can demonstrate the convergence of our method
numerically.
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3.1 Some a priori bounds for uh

Since �hu belongs to Lh , it follows from (1.1a), (2.4)–(2.6) and (2.10) that

h4‖D2
huh‖2L2(�) +

∑
T∈Th

|tr(J tT D2(uh)T JT )|2H2(T )

+
∑

e∈E i
h

|e|−1‖[[∂uh/∂n]]‖2L2(e) + ‖ det D2
huh − ψ‖2L2(�)

= 2Jh(uh)

≤ 2Jh(�hu)

= h4‖D2
h(�hu)‖2L2(�) +

∑
T∈Th

|tr(J tT D2(�hu)T JT )|2H2(T )

+
∑

e∈E i
h

|e|−1‖[[∂(�hu)/∂n]]‖2L2(e) + ‖ det D2
h(�hu) − det D2u‖2L2(�)

≤ Ch4. (3.1)

Consequently we have

‖D2
huh‖L2(�) ≤ C, (3.2)

( ∑
T∈Th

|tr(J tT D2(uh)T JT )|2H2(T )

) 1
2 ≤ Ch2, (3.3)

( ∑

e∈E i
h

|e|−1‖[[∂uh/∂n]]‖2L2(e)

) 1
2 ≤ Ch2, (3.4)

‖ det D2
huh − ψ‖L2(�) ≤ Ch2. (3.5)

Let T ∈ Th be arbitrary and ψT be the P1 Lagrange interpolant of ψ on T . We
have, by a standard inverse estimate (cf. [17,23]),

‖ det D2
huh − ψ‖L∞(T ) ≤ ‖ det D2

huh − ψT‖L∞(T ) + ‖ψ − ψT‖L∞(T )

≤ Ch−1‖ det D2
huh − ψT‖L2(T ) + ‖ψ − ψT‖L∞(T )

≤ Ch−1(‖ det D2
huh − ψ‖L2(T ) + ‖ψ − ψT‖L2(T )

)

+ ‖ψ − ψT‖L∞(T ),

which together with (3.5) and the assumption that ψ ∈ H2(�) implies

‖ det D2
huh − ψ‖L∞(T ) ≤ Ch ∀ T ∈ Th . (3.6)
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3.2 The elementwise convexity of uh

Let qT be a polynomial defined on T ∈ Th . Recall that qT is the restriction of a
polynomial defined on R

2 which is also denoted by qT . We define IT qT to be the
restriction of IT†qT on T , where IT† is the P1 nodal interpolation operator associated
with T†. Note that any linear polynomial on T is invariant under IT , and according to
(2.7),

IT tr(J
t
T D

2vT JT ) ≥ 0 on T for all v ∈ Lh . (3.7)

We have, by (3.3), a standard inverse estimate (cf. [17,23]) and the Bramble-Hilbert
lemma,

‖tr(J tT D2(uh)T JT ) − IT tr(J
t
T D

2(uh)T JT )‖L∞(T )

≤ Ch−1‖tr(J tT D2(uh)T JT ) − IT tr(J
t
T D

2(uh)T JT )‖L2(T )

≤ Ch|tr(J tT D2(uh)T JT )|H2(T )

≤ Ch3. (3.8)

Lemma 3.1 There exists a positive constant α
 independent of h such that, for h suf-
ficiently small, we have

ξ t D2
huhξ ≥ α
|ξ |2 on all T ∈ Th and for all ξ ∈ R

2, (3.9)

or equivalently the minimum eigenvalue of D2
huh is bounded below by a positive

constant independent of h.

Proof Let T ∈ Th be arbitrary. From (3.6), we have

det D2(uh)T ≥ 1

2
min
x∈�̄

ψ(x) > 0 on T

if h is sufficiently small. Consequently, in view of (2.10), we also have

h−4 det(J tT D
2(uh)T JT ) ≥ δ2

2
min
x∈�̄

ψ(x) ∀ T ∈ Th, (3.10)

where the positive constant δ ≤ min{h−2| det JT | : T ∈ Th} is independent of h.
On the other hand, on each T ∈ Th , we have

h−2tr(J tT D
2(uh)T JT ) ≥ h−2[tr(J tT D2(uh)T JT ) − IT tr(J

t
T D

2(uh)T JT )
]

≥ −h−2‖tr(J tT D2(uh)T JT ) − IT tr(J
t
T D

2(uh)T JT )‖L∞(T )

≥ −Ch (3.11)

by (3.7) and (3.8), where the positive constant C is independent of h.
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We conclude from (3.10) and (3.11) that, for h sufficiently small, the minimum
eigenvalue of h−2 J tT D

2(uh)T JT on the triangle T is bounded below by a positive
constant independent of T and h, which implies that the same is true for D2

huh because
Th is a quasi-uniform triangulation. 
�

Therefore, for h sufficiently small, uh is a strictly convex polynomial on each
T ∈ Th . Note that (3.9) is equivalent to

ξ tCof(D2
huh)ξ ≥ α
|ξ |2 on all T ∈ Th and for all ξ ∈ R

2. (3.12)

3.3 A priori error estimates

We have, by the fundamental theorem of calculus (cf. [38, Lemma A.1]),

det D2u − det D2
huh =

[ ∫ 1

0
CofD2

h(tu + (1 − t)uh)dt
]

: D2
h(u − uh), (3.13)

which is valid for all points in � except those on the edges of Th . Here and below we
use the colon to denote the Frobenius inner product between matrices.

Let A ∈ [L∞(�)]2×2 be defined by the integral on the right-hand side of (3.13).
For h sufficiently small, we have, by (1.6), (3.6) and (3.12),

α|ξ |2 ≤ ξ t A(x)ξ ≤ β|ξ |2 ∀ ξ ∈ R
2 and almost all x ∈ �, (3.14)

where 0 < α ≤ β are constants independent of h.
The proof of the following lemma is given in Appendix A.

Lemma 3.2 Under the condition (3.14) we have

‖D2
h(ζ − v)‖L2(�) ≤ 1

1 − δ

[
α−1‖A : D2

h(ζ − v)‖L2(�)

+ 2C†

( ∑

e∈E i
h

|e|−1‖[[∂v/∂n]]‖2L2(e)

) 1
2
]

(3.15)

for all ζ ∈ H2(�) ∩ H1
0 (�) and v ∈ Vh ∩ H1

0 (�), where

δ = β − α

(α2 + β2)
1
2

(3.16)

and the positive constant C† only depends on the shape regularity of Th.

We can now establish an a priori error estimate for uh .

Theorem 3.3 There exists a positive constant C independent of h such that

‖u − uh‖h ≤ Ch2. (3.17)
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Proof We can assume h is sufficiently small so that (3.14) is satisfied. We begin with
the triangle inequality

‖D2
h(u − uh)‖L2(�) ≤ ‖D2

h

(
(u − φ) − (uh − �hφ)

)‖L2(�)

+‖D2
h(φ − �hφ)‖L2(�). (3.18)

Note that u − φ ∈ H2(�) ∩ H1
0 (�) by (1.1b) and uh − �hφ ∈ Vh ∩ H1

0 (�) by
(2.7) and Remark 2.9. Hence it follows from (3.15) that

‖D2
h

(
(u − φ) − (uh − �hφ)

)‖L2(�)

≤ C
[
‖A : D2

h

(
(u − φ) − (uh − �hφ)

)‖L2(�)

+
( ∑

e∈E i
h

|e|−1‖[[∂(uh − �hφ)/∂n]]‖2L2(e)

) 1
2
]

≤ C
[
‖A : D2

h(u − uh)‖L2(�) +
( ∑

e∈E i
h

|e|−1‖[[∂uh/∂n]]‖2L2(e)

) 1
2

+ ‖D2
h(φ − �hφ)‖L2(�) +

( ∑

e∈E i
h

|e|−1‖[[∂�hφ/∂n]]‖2L2(e)

) 1
2
]
. (3.19)

Putting (1.1a), (3.13), (3.18) and (3.19) together, we have

‖D2
h(u − uh)‖L2(�) ≤ C

[
‖ψ − det D2

huh‖L2(�) +
( ∑

e∈E i
h

|e|−1‖[[∂uh/∂n]]‖2L2(e)

) 1
2

+ Osc(φ)
]
, (3.20)

where

Osc(φ) = ‖D2
h(φ − �hφ)‖L2(�) +

( ∑

e∈E i
h

|e|−1‖[[∂�hφ/∂n]]‖2L2(e)

) 1
2
. (3.21)

It follows from Remark 2.7, (3.4), (3.5), (3.20) and (3.21) that

‖D2
h(u − uh)‖L2(�) ≤ Ch2, (3.22)

and then the estimate (3.17) follows from (2.11), (3.4) and (3.22). 
�
Remark 3.4 A careful tracking of the constant C in (3.17) shows that it takes the form
of C∗(β/α)[(1/α) + 1], where α and β are the constants in (3.14) and the positive
constant C∗ depends only on u, φ and the shape regularity of Th .
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According to the Poincaré-Friedrichs and Sobolev inequalities for piecewise H2

functions (cf. [16,18]), we have

‖ζ‖L2(�) + |ζ |H1(�) + ‖ζ‖L∞(�) ≤ C‖ζ‖h (3.23)

for all ζ ∈ H1
0 (�) that is piecewise H2 with respect to Th . It follows from (2.2), (2.4),

Remark 2.9, (2.11), (3.17), (3.23) and the triangle inequality that

‖u − uh‖L2(�) + |u − uh |H1(�) + ‖u − uh‖L∞(�)

≤ ‖u − �hu‖L2(�) + |u − �huh |H1(�) + ‖u − �huh‖L∞(�)

+ C(‖u − �hu‖h + ‖u − uh‖h)
≤ Ch2. (3.24)

Remark 3.5 Numerical results in Example 4.1 indicate that the convergence in
‖ · ‖L2(�), | · |H1(�) and ‖ · ‖L∞(�) is better than O(h2).

3.4 An a posteriori error estimate

Since finding a global minimizer of a nonconvex function is in general NP-hard, an
optimization algorithm usually only produces an approximate stationary point ũh of
the cost function Jh . Therefore we need more than the a priori error estimate (3.17)
to ensure the convergence of the approximate solutions to the solution u of (1.1).

In the following discussion, it suffices to assume that u belonging to W 2,∞(�) is
strictly convex, i.e., (1.5) is satisfied almost everywhere in �.

Let ũh ∈ Lh be elementwise strictly convex. Then the relation (3.13) is valid with
uh replaced by ũh , and we have, by Lemma 3.2 and the arguments in the proof of
Theorem 3.3,

‖D2
h(u − ũh)‖L2(�) ≤ C

[
‖ det D2

hũh − ψ‖L2(�) +
( ∑

e∈E i
h

|e|−1‖[[∂ ũh/∂n]]‖2L2(e)

) 1
2

+ Osc(φ)
]
, (3.25)

where the positive constant C depends only on the minimum and maximum eigenval-
ues of D2u and D2

hũh over � and the shape regularity of Th .
Therefore, after verifying the elementwise strict convexity of an approximate solu-

tion ũh for (2.8),we canmonitor the convergence of ũh by evaluating the residual-based
error estimator

ηh(ũh) = ‖ det D2
hũh − ψ‖L2(�) +

( ∑

e∈E i
h

|e|−1‖[[∂ ũh/∂n]]‖2L2(e)

) 1
2
. (3.26)
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According to (2.11) and (3.25), the estimator ηh is reliable for the error measured by
the norm ‖ · ‖h :

‖u − ũh‖h ≤ C
(
ηh(ũh) + Osc(φ)

)
. (3.27)

Moreover Osc(φ) is O(h2) (cf. Remark 2.7).
In the other direction the obvious relations

|e|−1‖[[∂ ũh/∂n]]‖2L2(e) = |e|−1‖[[∂(u − ũh)/∂n]]‖2L2(e) (3.28)

and

‖ det D2
hũh − ψ‖L2(T ) = ‖ det D2

hũh − det D2u‖L2(T ) (3.29)

imply that ηh(ũh) is also locally efficient. Therefore we can use ηh to generate adaptive
meshes when the solution of (1.1) is less smooth.

4 Numerical results

We have tested our method on three examples with known solutions. For each example
we solve (2.7)–(2.9) by an active set algorithm (cf. Appendix B) that produces an
approximate stationary point of the cost function in (2.9). The elementwise convexity
of the approximate solutions are checkednumerically byAlgorithmC.1 inAppendixC.

For Example 4.2 and Example 4.3, where the known solutions do not belong to
H4(�), we have also solved (2.7)–(2.9) on adaptive meshes generated by the error
estimator in (3.26) and a Dörfler marking strategy [32].

The relative errors of the approximate solution ũh in various norms are defined by

er2,h = ‖u − ũh‖h
‖u‖H2(�)

, er1,h = ‖u − ũh‖H1(�)

‖u‖H1(�)

, er0,h = ‖u − ũh‖L2(�)

‖u‖L2(�)

and

er∞,h =
max
p∈Vh

|u(p) − ũh(p)|
‖u‖L∞(�)

,

where Vh is the set of the vertices of the triangulation Th .
All the numerical experiments were carried out on aMacBook Pro laptop computer

with a 2.8GHzQuad-Core Intel Core i7 processor andwith 16GB 2133MHzLPDDR3
memory. We use MATLAB (R2018b v.9.5.0) in our computations.

Example 4.1 This example is from [28], where � is the unit square (0, 1)2,

ψ(x) = (1 + |x |2)e|x |2/2 and φ(x) = ex
2/2.
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Table 1 Relative errors versus mesh size h and orders of convergence (Example 4.1)

h er2,h Order er1,h Order er0,h Order er∞,h Order

20 1.2094e-1 – 3.1133e-2 – 6.7122e-3 – 1.1843e-2 –

2−1 2.1221e-2 2.51 2.9131e-3 3.42 5.8949e-4 3.51 7.4311e-4 3.99

2−2 5.5763e-3 1.93 3.2631e-4 3.16 3.0492e-5 4.27 3.8506e-5 4.27

2−3 1.4039e-3 1.99 3.9515e-5 3.05 2.7445e-6 3.47 3.7144e-6 3.37

2−4 3.5033e-4 2.00 4.8710e-6 3.02 2.9277e-7 3.23 3.7768e-7 3.30

2−5 8.7449e-5 2.00 6.5347e-7 2.90 8.1151e-8 1.85 9.2308e-8 2.03

Table 2 Residual, Cost and CPU Time (Example 4.1)

h 20 2−1 2−2 2−3 2−4 2−5

ηh(ũh) 8.4426e-1 1.9585e-1 4.7765e-2 1.1638e-2 2.7580e-3 6.5290e-4

Order – 2.11 2.03 2.04 2.08 2.08

Jh(ũh) 4.1353e-1 2.4864e-2 1.5275e-3 9.3814e-5 6.2186e-6 6.4513e-6

Order – 4.01 4.02 4.03 3.92 −0.05

CPU Time (s) 2.8892e0 2.3075e0 2.9910e0 5.2907e0 1.4320e1 7.1900e1

The exact solution is u = ex
2/2. The assumptions (1.2)–(1.4) are satisfied.

The errors of the approximate solutions ũh obtained by the optimization algorithm
on uniform meshes are reported in Table 1. The order of convergence for er2,h is 2,
which agrees with the estimate in Theorem 3.3 for the solutions uh of (2.8). The orders
of convergence for er1,h , e

r
0,h and er∞,h are higher.

The residual ηh(ũh) and the cost Jh(ũh) are reported in Table 2, their behaviors
agree with the estimates (3.1), (3.4) and (3.5) for the minimizer uh . It is observed from
the CPU times in Table 2 that a good approximate solution at h = 2−2 was computed
in 3 seconds.

We have verified that all the approximate solutions are elementwise strictly convex,
and the reliability of the error estimatorηh can be observed by comparing er2,h inTable 1
and ηh(ũh) in Table 2.

We have also solved the same problem on four other regular polygons (cf. Fig. 2),
where the diameters of these polygons are 2.3660 (triangle), 1.6420 (pentagon), 1.5774
(hexagon) and 1.5307 (octagon).

It is observed from the convergence histories of er2,h and er∞,h in Fig. 3 that the
performance of our method is similar for all five polygons.

Example 4.2 This example is from [63], where � = (−1, 1)2,

ψ(x) =
{
16 in |x | ≤ 1/2

64 − 16|x |−1 in 1/2 ≤ |x | ,
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Fig. 2 Regular triangle, pentagon, hexagon and octagon
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Fig. 3 Convergence histories of er2,h (left) and er∞,h (right) for five regular polygons (Example 4.1)

Fig. 4 Computational meshes (Example 4.2)

the exact solution is

u(x) =
{
2|x |2 in |x | ≤ 1/2

2(|x | − 1/2)2 + 2|x |2 in 1/2 ≤ |x | ,

and φ ∈ H4(�) equals u in a neighborhood of ∂�. For this example, the function ψ

is piecewise smooth and discontinuous along the circle defined by |x | = 1/2, and the
Aleksandrov solution u is a piecewise smooth C1 function.

The computational meshes are generated by a bisection procedure to fit the circle
where ψ is discontinuous. The first two meshes and the final mesh are presented in
Fig. 4.
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Table 3 Relative errors versus mesh size h and orders of convergence (Example 4.2)

# of dofs er2,h Order er1,h Order er0,h Order er∞,h Order

265 1.1610e-1 – 5.4486e-2 – 4.8750e-2 – 5.1245e-2 –

505 8.2598e-2 0.53 1.7304e-2 1.78 9.7645e-3 2.49 1.6850e-2 1.72

1009 4.3527e-2 0.93 9.2201e-3 0.91 6.9752e-3 0.49 7.7534e-3 1.12

1969 2.7050e-2 0.71 2.9208e-3 1.72 1.7075e-3 2.10 1.2552e-3 2.72

3937 1.5237e-2 0.83 8.5781e-4 1.77 4.5996e-4 1.89 5.6883e-4 1.14

7777 1.1519e-2 0.41 4.7382e-4 0.87 3.6609e-4 0.34 2.4460e-4 1.24

Table 4 Residual, Cost and CPU Time (Example 4.2)

# of dofs 265 505 1009 1969 3937 7777

ηh(ũh) 5.0972e0 3.1707e0 2.1286e0 1.7010e0 1.1319e0 9.3084e-1

Order – 0.74 0.58 0.34 0.59 0.29

Jh(ũh) 1.8770e1 4.5374e0 2.3356e0 1.2051e0 5.5931e-1 3.8182e-1

Order – 2.20 0.96 0.99 1.11 0.56

CPU time (s) 1.7195e1 6.8276e0 2.1865e0 7.7616e0 6.3374e0 1.5600e2

We have verified that all the approximate solutions are elementwise strictly convex.
The relative errors are reported in Table 3. The convergence of er2,h is of a reduced
order ≈ 0.5, and the orders of convergence are higher for the lower order norms.

The residual ηh(ũh), the cost Jh(ũh) and the CPU time are provided in Table 4.
It is observed that a satisfactory approximate solution with 1009 dofs was computed
in less than 3 seconds. The reliability estimate (3.27) is confirmed by comparing the
values of er2,h and ηh(ũh).

We also tested the performance of the a posteriori error estimator in (3.26) for
this example. The convergence histories of er2,h and er∞,h on bisection and adaptive
meshes are shown in Fig. 5. The advantages of the adaptive meshes can be observed
until round-off errors interfere at finer meshes.

The discrete solution on the final bisection mesh and the adaptive mesh with 3385
dofs are displayed in Fig. 6.

Example 4.3 This example is from [64], which is a modification of an example in [48].
The domain � is the unit square = (0, 1)2,

ψ(x) = max

(
1 − 0.2

|x − (1/2, 1/2)| , 0
)

,

the exact solution of this example is

u(x) = 1

2
(max(|x − (1/2, 1/2)| − 0.2), 0)2,
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Fig. 5 Convergence histories of er2,h (left) and er∞,h (right) on bisection and adaptive meshes (Example
4.2)

Fig. 6 (Left) graph of the computed solution on the final bisection mesh and (Right) adaptive mesh with
3385 dofs (Example 4.2)

and φ ∈ H4(�) equals u in a neighborhood of ∂�. For this example the function ψ

vanishes on the disc defined by |x − (1/2, 1/2)| ≤ 0.2 and the Aleksandrov solution
u is a piecewise smooth C1 function.

We solved this problem by the nonlinear least-squares method on uniform meshes.
The approximate solutions are elementwise strictly convex outside the disc where
ψ = 0. The relative errors of ũh are reported in Table 5. The order of convergence
for er2,h is roughly 0.5 and the orders of convergence for e

r
1,h , e

r
0,h and e

r∞,h are better

than 1. The discrete solution at h = 2−5 can be found in Fig. 8.
The residual ηh(ũh), the cost Jh(ũh) and the CPU time are provided in Table 6.

Comparing er2,h in Table 5 and ηh(ũh) in Table 6, one can see that the reliability
estimate (3.27) is no longer valid because of the lack of strict convexity for both the
discrete solutions and the continuous solution inside the disc where ψ = 0. It can also
be seen that a satisfactory approximate solution at h = 2−3 was computed in less than
8 seconds.
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Table 5 Relative errors versus mesh size h and orders of convergence (Example 4.3)

h er2,h Order er1,h Order er0,h Order er∞,h Order

20 3.4668e-1 – 1.7188e-1 – 1.4617e-1 – 1.5992e-1 –

2−1 2.2904e-1 0.60 8.5079e-2 1.01 7.5088e-2 0.96 7.5322e-2 1.09

2−2 1.4413e-1 0.67 3.0248e-2 1.49 2.2785e-2 1.72 2.0525e-2 1.88

2−3 9.2617e-2 0.64 8.9737e-3 1.75 5.7416e-3 1.99 4.8416e-3 2.08

2−4 7.9606e-2 0.22 5.3381e-3 0.75 3.0459e-3 0.91 2.5211e-3 0.94

2−5 5.4643e-2 0.54 2.0729e-3 1.36 9.1258e-4 1.74 7.4776e-4 1.75

Table 6 Residual, Cost and CPU Time (Example 4.3)

h 20 2−1 2−2 2−3 2−4 2−5

ηh(ũh) 1.3729e-1 7.5432e-2 2.9578e-2 1.1201e-2 4.3008e-3 1.5727e-3

Order – 0.86 1.35 1.40 1.38 1.45

Jh(ũh) 1.9072e-2 2.6887e-3 3.1878e-4 3.8834e-5 5.7440e-6 6.9137e-7

Order – 2.83 3.08 3.04 2.76 3.05

CPU Time (s) 1.1282e0 1.9737e0 3.5095e0 7.7817e0 2.9395e1 2.4705e2

log10(N)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

lo
g

10
(e

r 2,
h

)

Adaptive mesh
Uniform mesh

1.5 2 2.5 3 3.5 4 4.5 1.5 2 2.5 3 3.5 4 4.5

log10(N)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

10
(e

r
,h

)

Adaptive mesh
Uniform mesh

Fig. 7 Convergence histories of er2,h (left) er∞,h (right) on uniform and adaptive meshes (Example 4.3)

We also tested the performance of the a posteriori residual error estimator in (3.26)
for this example. The convergence histories of er2,h and e

r∞,h on uniform and adaptive
meshes are shown in Fig. 7. The advantage of adaptive meshes is observed. The
adaptive mesh with 30187 dofs in Fig. 8 clearly captures the singularities of the exact
solution along the circle defined by |x − (1/2, 1/2)| = 0.2.
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Fig. 8 (Left) graph of the computed solution on uniform mesh with h = 2−5 and (Right) adaptive mesh
with 30187 dofs (Example 4.3)

5 Concluding remarks

By going beyond the classical definition of a finite element, we are able to construct a
C0 interior penalty method for the Dirichlet boundary value problem of the Monge–
Ampère equation, where the elementwise convexity of the approximate solutions can
be enforced. This in turn enables us to use existing results for second order elliptic
equations in nondivergence form to obtain both a priori and a posteriori error esti-
mates. The a posteriori error estimate is a significant part of our method since it allows
us to access the convergence of the approximate solutions generated by optimization
algorithms that are not necessarily global minimizers.

The approach in this paper can be extended to smooth domains. We also note that
convexity enforcing is useful for the problem of prescribed Gaussian curvature (cf.
[38,42]) and the nonlinear least-squares approach can be applied to the Pucci equations
(cf. [20,42]). These are some of our ongoing projects.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. The Proof of Lemma 3.2

We note that stability estimates similar to 3.2 and in more general settings can be
found for example in [62,70]. We include a proof here for self-containedness.
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The first ingredient is the Miranda–Talenti estimate

‖D2ζ‖L2(�) ≤ ‖
ζ‖L2(�) ∀ ζ ∈ H2(�) ∩ H1
0 (�) (A.1)

that is valid for convex domains (cf. [56,71]). In the case of a polygon, the two sides
of (A.1) are actually equal (cf. [43, Sect. 4.3]).

The second ingredient is the existence of an operator Eh : Vh ∩ H1
0 (�) −→

H2(�) ∩ H1
0 (�) that satisfies

‖D2
h(v − Ehv)‖L2(�) ≤ C†

( ∑

e∈E i
h

|e|−1‖[[∂v/∂n]]‖2L2(e)

) 1
2 ∀ v ∈ Vh ∩ H1

0 (�),

(A.2)

where C† only depends on the shape regularity of Th (cf. [62, Lemma 3]).

Remark A.1 The operator Eh in [62] is for the standard cubic Lagrange finite element
space. The extension of Eh and (A.2) to the enhanced cubic Lagrange finite element
space in Sect. 2.1 is straightforward since the additional bubble functions are already
in H2(�) ∩ H1

0 (�).

It follows from (A.1) and (A.2) that

‖D2
h(ζ − v)‖L2(�) ≤ ‖D2

h(ζ − Ehv)‖L2(�) + ‖D2
h(v − Ehv)‖L2(�)

≤ ‖
(ζ − Ehv)‖L2(�) + ‖D2
h(v − Ehv)‖L2(�)

≤ ‖
h(ζ − v)‖L2(�) + 2‖D2
h(v − Ehv)‖L2(�)

≤ ‖
h(ζ − v)‖L2(�) + 2C†

( ∑

e∈E i
h

|e|−1‖[[∂v/∂n]]‖2L2(e)

) 1
2

(A.3)

for all ζ ∈ H2(�) ∩ H1
0 (�) and v ∈ Vh ∩ H1

0 (�).
Following the treatment of second order linear elliptic equations in nondivergence

form in [22,55,70], we introduce the function

γ (x) = A(x) : I
A(x) : A(x)

where I is the 2 × 2 identity matrix.
Note that A(x) : I is the sum of the eigenvalues of A(x) and A(x) : A(x) is the sum

of the squares of the eigenvalues of A(x). Therefore we have, by (3.14), the following
upper bound of γ (x):

γ (x) ≤ max
α≤λ1,λ2≤β

λ1 + λ2

λ21 + λ22
= 1

α
, (A.4)
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and also the following Cordes condition (cf. [24]):

|γ (x)A(x) − I |2 = γ (x)2A(x) : A(x) − 2γ (x)(A(x) : I ) + 2

= 2 − (A(x) : I )2
A(x) : A(x)

≤ max
α≤λ1,λ2≤β

(λ1 − λ2)
2

λ21 + λ22
= (β − α)2

α2 + β2 = δ2, (A.5)

where δ (< 1) is given by (3.16).
It follows from (A.3) and (A.5) that

∫

�

[γ A : D2
h(ζ − v)]
h(ζ − v) dx

= ‖
h(ζ − v)‖2L2(�) +
∫

�

[γ A : D2
h(ζ − v) − 
h(ζ − v)]
h(ζ − v)dx

= ‖
h(ζ − v)‖2L2(�) +
∫

�

[(γ A − I ) : D2
h(ζ − v)]
h(ζ − v)dx

≥ ‖
h(ζ − v)‖2L2(�) − δ‖D2
h(ζ − v)‖L2(�)‖
h(ζ − v)‖L2(�)

≥ (1 − δ)‖
h(ζ − v)‖2L2(�)

− 2C†δ‖
h(ζ − v)‖L2(�)

( ∑

e∈E i
h

|e|−1‖[[∂v/∂n]]‖2L2(e)

) 1
2
,

which together with (A.4) implies

‖
h(ζ − v)‖L2(�) ≤ α−1

1 − δ
‖A : D2

h(ζ − v)‖L2(�)

+ 2C†
δ

1 − δ

( ∑

e∈E i
h

|e|−1‖[[∂v/∂n]]‖2L2(e)

) 1
2
. (A.6)

Finally we arrive at (3.15) through (A.3) and (A.6).

Appendix B. An optimization algorithm

An active set algorithm is implemented to solve the bound constrained optimization

min { f (x) : x ∈ B}, (B.1)

where f : Rn → R is twice continuously differentiable on the the set B = {x ∈ Rn :
l ≤ x ≤ u}. Our algorithm is based on the active set approach proposed in [45] for
solving nonlinear optimization with bound constraints, which was further developed
in [47] for handling more general polyhedral constrained optimization.
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Here, we just very briefly explain the structure and convergence results of our algo-
rithm. For more details on the theory of the algorithm, one may refer to references
[45,47]. Our active set algorithm consists of two phases: a nonmonotone gradient pro-
jection phase and an unconstrained optimization phase, and a set of rules for switching
between these two phases for achieving both global and fast local convergence. In par-
ticular, a projected cyclic Barzilai-Borwein (PCBB) algorithm is used in the gradient
projection phase, where the line search direction at iteration xk is generated by

dk = PB(xk − αkgk) − xk . (B.2)

Here, PB(·) is the projection on the feasible regionB, αk is the cyclic Barzilai-Borwein
stepsize [25] and gk = ∇ f (xk). Along the search direction dk , an adaptive nonmono-
tone line search proposed in [26] is used to ensure global convergence. This PCBB
algorithm of phase one is not only robust in the sense that it converges to a stationary
point under mild assumptions, but also very effective for identifying the optimal active
constraints where the components of the solution are on the boundary of B.

However, the convergence rate of PCBB is often at best linear. Hence, to accelerate
the convergence, a more efficient unconstrained optimization algorithm is used in
phase two to optimize the objective function by fixing some components of variable
x on the boundary of B, that is

min { f (x) : xA = bA}. (B.3)

Here,A is the active index set given by phase one andbA indicates the partial boundary
of B where the components of x with index A are fixed. When one iteration of the
phase two algorithm lies out of the feasible region B, the set rules developed in the
algorithm determinewhether the algorithmwill switch to the gradient projection phase
or restart the unconstrained optimization phase by projecting the iterate back to B. A
limitedmemory nonlinear conjugate gradient method (L-CG_DESCENT) [46] is used
to solve the subspace optimization (B.3) in phase two.

L-CG_DESCENT is a very efficient first-order method which has much more rapid
convergence thanmost gradient descent methods, andmaintains cheap iterations since
only up to first-order information is used. However, when the optimization problem
gets very ill-conditioned, which is often the case for a discrete optimization problem
resulting fromafinite differencemethodor afinite elementmethod (such as theC0 inte-
rior penalty method studied in this paper), slow convergence is often detected near the
solution. Under this situation, in phase two we would switch L-CG_DESCENT to the
second-order Newton’s method, which is generally more expensive but often quickly
leads to more accurate solutions. The convergence theories developed in [45,47] guar-
antee our active set algorithm converges at least to a stationary point of problem
(B.1). Furthermore, the active set algorithm would asymptotically reduce the bound
constrained optimization (B.1) to an unconstrained optimization (B.3) even when the
problem is degenerate. Hence, fast local convergence would be expected by combin-
ing the more rapid convergence algorithms such as L-CG_DESCENT and Newton’s
method in the phase two optimization.
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Appendix C. Elementwise convexity

Since the enhanced cubic Lagrange finite element is affine-equivalent, we can focus
on the reference simplex. It is convenient to first consider the convexity of a tensor
product polynomial on the unit square (0, 1) × (0, 1), for which we will need some
explicit inverse estimates.

C.1 Explicit inverse estimates

LetQm,n be the space of tensor product polynomials spanned by x j
1 x

k
2 for 0 ≤ j ≤ m

and 0 ≤ k ≤ n. Given any q ∈ Qm,n , we can write

q(x) =
m∑
j=0

n∑
k=0

a j,k p j (x1)pk(x2)

where p0, p1, . . . are the Legendre polynomials.
Let I = (−1, 1). It follows from the properties of the Legendre polynomials [52,

(4.4.2), (4.5.1) and (4.5.2)] that

‖q‖L∞(I×I ) ≤
m∑
j=0

n∑
k=0

|a j,k |

≤
( m∑

j=0

n∑
k=0

( j + 1

2
)(k + 1

2
)
) 1

2
( m∑

j=0

n∑
k=0

a2j,k( j + 1

2
)−1(k + 1

2
)−1

) 1
2

= (m + 1)(n + 1)

2
‖q‖L2(I×I ),

which, through scaling, implies

‖q‖L∞((0,1)×(0,1)) ≤ (m + 1)(n + 1)‖q‖L2((0,1)×(0,1)) ∀ q ∈ Qm,n . (C.1)

C.2 Convexity on the unit square

Let K̂ be the (closed) unit square [0, 1] × [0, 1] with vertices p̂1, p̂2, p̂3, p̂4, and QK̂

be the nodal interpolation operator for the Q1 finite element on K̂ .
For any q ∈ Qm,n and x ∈ K̂ , we have QK̂
q − 
q ∈ Qm,n and therefore

(QK̂
q)(x) = [(QK̂
q)(x) − 
q(x)] + 
q(x)

≤ (m + 1)(n + 1)‖QK̂
q − 
q‖L2(K̂ )
+ 
q(x)
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by (C.1). It follows that


q(x) ≥ min
x∈K̂

(QK̂
q)(x) − (m + 1)(n + 1)‖
q − QK̂
q‖L2(K̂ )

= min
1≤i≤4


q( p̂i ) − (m + 1)(n + 1)‖
q − QK̂ (
q)‖L2(K̂ )
∀ x ∈ K̂ .

(C.2)

Similarly, since det D2q − QK̂ (det D2q) ∈ Q2m−2,2n−2, we have

(det D2q)(x) ≥ min
x∈K̂

[QK̂ (det D2q)](x)

− (2m − 1)(2n − 1)‖ det D2q − QK̂ (det D2q)‖L2(K̂ )

= min
1≤i≤4

(det D2q)( p̂i )

− (2m − 1)(2n − 1)‖ det D2q − QK̂ (det D2q)‖L2(K̂ )
∀ x ∈ K̂ .

(C.3)

According to (C.2) and (C.3), if

min
1≤i≤4

(
q)( p̂i ) − (m + 1)(n + 1)‖
q − QK̂ (
q)‖L2(K̂ )
> 0

and

min
1≤i≤4

(det D2q)( p̂i ) − (2m − 1)(2n − 1)‖ det D2q − QK̂ (det D2 p)‖L2(K̂ )
> 0,

then


p > 0 and det D2 p > 0 ∀ x ∈ K̂ ,

which implies that q is strictly convex on K̂ .

C.3 Convexity on the reference simplex

Let q ∈ P3(T̂ ) ⊕ ϕ2
T̂
P1(T̂ ). Then q ∈ Q5,5 and we begin by computing (cf. (C.2) and

(C.3))

L

,K̂ = min

1≤i≤4
(
q)( p̂i ) − 36‖
q − QK̂ (
q)‖L2(K̂ )

(C.4)

and

Ldet,K̂ = min
1≤i≤4

(det D2q)( p̂i ) − 81‖ det D2q − QK̂ (det D2q)‖L2(K̂ )
. (C.5)
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If L

,K̂ > 0 and Ldet,K̂ > 0, then q is strictly convex on K̂ (and therefore also

on T̂ ). If this is not the case, then we divide K̂ into four sub-squares and use scaled
versions of (C.4) and (C.5) to check the convexity of q on the sub-squares whose
intersection with T̂ has a positive area. By repeating this procedure we arrive at the
following algorithm for checking the convexity of q ∈ P3(T̂ ) ⊕ ϕ2

T̂
P1(T̂ ) on T̂ .

Algorithm C.1 Let R0 = {K̂ } and L be the maximum refinement level.

1. IfRl �= ∅ and l ≤ L , compute for K ∈ Rl the quantities

L
,K = min
1≤i≤4

(
q)(pK ,i ) − 36

hl
‖
q − QK (
q)‖L2(K )

and

Ldet,K = min
1≤i≤4

(det D2q)(pK ,i ) − 81

hl
‖ det D2q − QK (det D2q)‖L2(K ),

where pK ,i (i = 1, 2, 3, 4) are the vertices of K , hl is the width/height of the
squares in Rl , and QK is the nodal interpolation operator for the Q1 element
associated with K . Set

Rnc
l = {K ∈ Rl : L
,K ≤ 0 or Ldet,K ≤ 0}.

Stop ifRnc
l = ∅. The polynomial is strictly convex on T̂ .

2. If Rnc
l �= ∅, divide each K ∈ Rnc

l into four sub-squares K j ( j = 1, 2, 3, 4) and
define

Rnc,d
l = {K j : K ∈ Rnc

l , j = 1, 2, 3, 4}.

Set

Rl+1 = {K ∈ Rnc,d
l : |K ∩ T̂ | > 0},

hl = 1
2hl , l = l + 1 and go to 1.

Remark C.2 In our numerical experiments we were able to verify the elementwise
strict convexity by observing that the Algorithm C.1 terminated before the refinement
reached level 6.
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