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1 Introduction

Let Q be a bounded convex polygon in R?, f € L,(Q), and 8 > 0 be a constant. We
consider the following elliptic optimal control problem: Find (y, u) € Hé (Q)X L, (L)
that minimize the functional

J(y,u>=§/g<y—f)2+§/gu2dx

-Ay=u in Q, y=0 on 0Q,

and y < ¢ in Q, where ¢ € WP (Q) for p > 2, and ¢ > 0 on 9Q.
By elliptic regularity (cf. [6]), we can reformulate the model problem as follows:
Find y € K such that

subject to

y = argmin[%a(v,v) - (f, v)} , (D

vekK

where K = {v € HH(Q) N H}(Q) : v < ¢ in Q},

a(v,w):B/Vzv:VZde+/vwdx and (f,v):/fvdx.
Q Q Q

2, . U2y = 2 v _FPw_ ; . ;
Here Vv : Vow = 307 j=1 3x;0%; dx;9%; 1 the inner product of the Hessian matrices

of v and w. Once y is calculated, then u can be determined by u = —Ay.
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A quadratic C° interior penalty method for the minimization problem (1) was
analyzed in [4]. The goal of this paper is to apply the ideas in [3] for an obsta-
cle problem of clamped Kirchhoff plates to develop and analyze additive Schwarz
preconditioners for the discrete problem in [4].

2 The C° Interior Penalty Method

Let 75, be a quasi-uniform triangulation of Q consisting of convex quadrilaterals, and
let V;, C Hé (Q) be the standard Qy finite element space (the space of polynomials
of degree < k in each variable) associated with 7j,.

The discrete problem of the optimal control problem (1) resulting from the C°
interior penalty method is to find

1
Y = argmin |:§ah(v’ V) - (fv V):| > (2)

vekKy,

where
Ky = {V €Vih:v(p) <¥(p), VpeN,

an(v,w) = Z /V% V2w dx + Z IeI/H

5]«
S U D ol 5 s

ecg)

Ny, is the set of nodes in Q associated with Vj,, 8;; is the set of edges in 7}, that
are interior to Q, n > 0 is a sufficiently large penalty parameter, and the jump [[-]]
and the average {{-}} are defined as follows. Let e be an interior edge shared by two
elements, D_ and D, and n, be the unit normal vector pointing from D_ to D, we

_ Ovy B ov_ and 6_2\} : 1 0%, N 8%v_
- On.  On, on2fl 2\ on2 a2

Note that ay(-, -) is a consistent bilinear form for the biharmonic equation with the
boundary conditions of simply supported plates (cf. [4]).

It follows from the standard theory that the discrete problem (2) has a unique
solution y;, € K}, characterized by the discrete variational inequality

an(Yn,vi = Yn) = (f> Ve —yn) Vv € Kp,. 3

Moreover, there exists a positive constant C independent of 4 such that (cf. [4])

ly = yulln < Ch?,
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where || - ||, is the mesh-dependent energy norm defined by

1
WG =B( D Wi+ ol T1@v/on] 13,00) + V1,

DeTy, ecg;,

h is the mesh size of the triangulation, and @ € (0, 1] is the index of elliptic regularity
that is determined by the interior angles of Q.

3 The Primal-Dual Active Set Algorithm

By introducing a Lagrange multiplier 4, : N, — R, the discrete variational
inequality (3) is equivalent to

an(ynv) = (£,v) == > u(p)v(p) ~ VveV, @)

pENh
yu(p) =¥ (p) 20, A4(p) 20 and (yn(p) —¢¥(p)An(p) =0 Vp e NuOs)

Moreover, the optimality conditions (5) can be written concisely as

Ap(p) = max(0, A (p) + c(yn(p) — ¥ (p))) vV p € Na, (6)

where c is a large positive number. The system (4) and (6) can then be solved by a
primal-dual active set (PDAS) algorithm (cf. [7, 8]).

Given the k—th approximation (yg, Ax), the (k + 1)—st iteration of the PDAS
algorithm is to find (yg+1, Ax+1) such that

an(yeesv) = (Fsv) == > At (p)v(p) VeV  (Ta)
PEN

yie1(p) =¥(p) Vp e A, (7b)

Ak+1(p) =0 Vp eI, (7c)

where A = {p € N : A(p) + c(yr(p) — ¥ (p)) > 0} is the active set deter-
mined by (yg,Ax), and I = N\ Ay is the inactive set. The iteration terminates
when Ay = Ax. Given a sufficiently accurate initial guess, the PDAS algorithm
converges superlinearly to the unique solution of (3) (cf. [7]).

From (7b) and (7c), we can reduce (7a) to an auxiliary system that only involves
the unknowns of y;.1(p) for p € Ii. But even so, for small &, the reduced aux-
iliary system is still large, sparse, and ill-conditioned. To solve such systems more
efficiently, we can apply the preconditioned conjugate gradient method.

Let N}, be a subset of Nj,. We define 7~"h : Vi = Vj,, the truncation operator, by

_ ~ v(p) if peK/h,
(Twv)(p) = {0 if p e N\ N
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Then fh is a projection from Vj, onto Vh = Tth- Moreover, let Xh : Vh — V}; be
defined by _ _
(Apv,w)y =ap(v,w)  VYv,w eV,

where (-, -) is the canonical bilinear form on 17,; X V.

In the context of solving (3), the set /\~/,,~represents the inactive set that appears
in an iteration of the PDAS algorithm and A, represents the stiffness matrix for the
corresponding auxiliary system. Our goal is to develop preconditioners for A, whose
performance is independent of Nj,.

4 A One-Level Additive Schwarz Preconditioner

LetQ;,1 < j < J,beoverlapping subdomains of Q such that Q = U{:l Q;,diam Q; ~
H, and the boundaries of €2; are aligned with 7;,. We assume that there exist non-
negative 6; € C*(Q) for 1 < j < J such that

0;=0 on Q\Q;,
J
Zej =1 on Q,
=1
C C
IVOillr. @ < 5 V260,11 (0) < o

where V20 ; is the Hessian of 6;,6 > 0 measures the overlap among subdomains,
and Cj is a positive constant independent of /2, H, and J. Moreover, we assume that

any point in  can belong to at most N, many subdomains,

where the positive integer N, is independent of 4, H, J and 6.
Let V be the subspace of Vh whose members vanish at all nodes outside €, and
let A‘, : VJ — ij be defined by

(va,w) =ap,j(v,w) Vv,we Vj,

| g v ]
W [ RETE Ry

eCQ_ \69
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The one-level additive Schwarz preconditioner Boy, : V;l — Vh is then defined
by
J o~ o~ —_~
Bor = le it
j=1

where 7; : V; — Vj, (1 < j < J) is the natural injection operator, and I~5 : 17,; - \7]7

.~

is the transpose of 7.
With similar arguments as in [3], we can obtain the following result.

Theorem 1 It holds that

/lmax(BOLZh) <

<167,
/lmin(BOLAh)

k(BorAp) =

where the positive constant C| is independent of H, h, j, 6 and Ni.

Remark 1 The condition number estimate given in Theorem 1 is identical to the one
for the plate bending problem without obstacles, which indicates that the obstacle is
invisible to the one-level additive Schwarz preconditioner.

5 A Two-level Additive Schwarz Preconditioner

A two-level additive Schwarz preconditioner contains not only subdomain solves,
but also a coarse grid solve. Let 7 be a coarse quasi-uniform triangulation for Q
whose mesh size is comparable to the diameters of the subdomains Q;,1 < j < J,
and Vg C Hé (Q) be the Qy finite element space associated with 7.

Since the Q> Bogner-Fox-Schmit (BFS) tensor product element is a C! relative
of the Qy tensor product element (cf. [2]), we define Wy € H*(Q) N Hj () to be
the Q4> BFS finite element space associated with 7. The two spaces Vg and Wy
can be connected by an enriching operator Ey which is constructed by the averaging
technique (cf. [2, 3]).

Now we define Iy : Vg — Vj, by

I(]:HhOEH

where I1j, : C(Q) — Vj, is the nodal interpolation operator.
Let Vy C V), be defined by o
Vo =Tn 1o VH,

and let the operator Ay Vo — \76 be defined by
(Zov,w) =ap(v,w) Yv,we V.

Then the two-level additive Schwarz preconditioner Bry, : V;l -V is given by



576 Susanne C. Brenner, Li-Yeng Sung, and Kening Wang
J
— T.ATIT
Brp = ZIJ AT
J=0

where I~J : Vj — V, (0 < j < J) is the natural injection operator, and 73 is the
transpose of 7 .

Following the arguments in [3], we can obtain an estimate on the condition number
of BTLAh .

Theorem 2 It holds that

«(Br1Ap) < C>min ((H/h)4,5—4) , ®)

where C; is a positive constant independent of H, h, j, d and Ni.

Remark 2 When the obstacle is present, it is necessary to include the truncation
operator in the construction of V. Therefore, the condition number estimate (8) for
the two-level additive Schwarz preconditioner is different from the one for the plate
bending problem without obstacles (cf. [S]) which takes the form

«(BrLAp) < C. (1 + (H/6)4) .

6 Numerical Results

We consider the obstacle problem (cf. [1]) with Q = (0.5, O.S)Z,ﬁ =0.1,y =0.01,
and f = 10(sin(27(x; + 0.5)) + (x2 + 0.5)). We discretize the model problem by
the C¥ interior penalty method that is based on a rectangular mesh, and choose V,
to be the standard Q, finite element space with the mesh size & = 2-¢ where £ is
the refinement level. The resulting discrete variational inequalities are solved by the
PDAS algorithm, in which we choose the constant ¢ to be 108. The initial guess for
the PDAS algorithm is taken to be the solution at the previous level or zero when
{=1.

The graphs of the numerical solution y, and the discrete active set Ay at refine-
ment level 7 are given in Figure 1.

For comparison, we first calculate the condition number of the un-preconditioned
auxiliary system Ay, in each iteration of the PDAS algorithm and then take the
average. The average condition numbers and numbers of iterations of the PDAS
algorithm for various levels are presented in Table 1.

We apply the one-level and two-level additive Schwarz preconditioners to the
auxiliary system in each iteration of the PDAS algorithm. The average condition
numbers of both preconditioned auxiliary systems for 4, 16, 64, and 256 subdomains
with small overlap, 6 = h, are reported in Table 2 and Table 3 respectively. Comparing
with the condition numbers of the unpreconditioned auxiliary systems in Table 1,
both one-level and two-level algorithms show dramatical improvements.
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Fig. 1: The numerical solution yy, (left) and the discrete active set Ay (right) at refinement level 7

K(Kh) PDAS Iterations
=1 | 1.7604 x 107 5
£ =2 | 2.2085 x 10* 10
=3 | 43057 % 10° 5
=4 | 6.7740x 10* 8
£=5 | 1.0849 x 10° 12
=6 | 1.8038x 10 15

Table 1: Average condition number of Ap,, and number of iterations of the PDAS algorithm

J=4 J=16 J =064 J =256
=2 5.8672x10° — — —
¢£=31]1.9350x 10" | 5.1410 x 10T — —
£=419.9423 x 10" | 2.4134 x 10° | 6.6698 x 10% —
£=516.9235x10> | 1.7965 x 10> | 3.4752x 10> | 1.0282 x 10*
£=6]56185x10° | 1.4676 x 10* | 2.8898 x 10* | 5.6312 x 10*

Table 2: Average condition number of Bo Lgh with small overlap

J=4 J=16 J =64 J =256
=2 | 5.4489 x 10° — — —
£=3]8.1290x10° | 1.2913 x 10T — —
£=4 ] 3.6660x 10" [ 1.8647 x 10" | 3.4614 x 10! —
¢=5 ] 2.1670x 10> | 4.0108 x 10" | 4.6832 x 10" [ 7.9579 x 10"
£=6 ] 1.5552x10° | 2.4043 x 10> | 5.5854 x 10" | 1.0981 x 10°

Table 3: Average condition number of B, Kh with small overlap

Moreover, similar simulations for generous overlap 6 = H are also performed.

The average condition numbers of the one-level and two level additive Schwarz
preconditioned auxiliary systems for various number of subdomains are presented
in Tables 4 and 5 .
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J=4 J=16 J=64 J =256
1.0000 x 10° — — —
1.0000 x 10° | 1.1796 x 10T — —
1.0000 x 10° | 1.2828 x 10T | 1.1154 x 10? —
1.0000x 10° | 1.3457 x 10T | 1.1315x 107 | 1.5925 x 10°
1.0000 x 107 | 1.4041 x 10T | 1.1760 x 107 | 1.6453 x 103

S| S| S S
1]
()] 9,1 =N RUS] § S

Table 4: Average condition number of Bo LZ n with generous overlap

J=4 J=16 J=64 J =256
1.2500 x 107 — — —
1.2500 x 10° | 7.8441 x 10° — —
1.2500 x 10° | 9.1917 x 10° | 2.4105 x 10! —
1.2500 x 10° | 9.9897 x 10° | 2.5678 x 10" | 5.8649 x 10T
1.2500 x 107 | 1.0569 x 107 | 2.6729 x 10T | 6.3733 x 10T

S| O O |
1l
QN | | W

Table 5: Average condition number of By, A n with generous overlap

7 Conclusion

We present additive Schwarz preconditioners for the auxiliary systems that appear in
a primal-dual active set algorithm for solving a state constrained elliptic distributed
optimal control problem discretized by a C? interior penalty method. Both the one-
level and two-level preconditioners improve the condition numbers of the auxiliary
systems significantly.
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