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1 Introduction

Let Ω be a bounded convex polygon in R2, 𝑓 ∈ 𝐿2 (Ω), and 𝛽 > 0 be a constant. We

consider the following elliptic optimal control problemȷ Find (𝑦, 𝑢) ∈ 𝐻1
0
(Ω)×𝐿2 (Ω)

that minimize the functional

𝐽 (𝑦, 𝑢) =
1

2

∫

Ω

(𝑦 − 𝑓 )2 +
𝛽

2

∫

Ω

𝑢2 𝑑𝑥

subject to

−Δ𝑦 = 𝑢 in Ω , 𝑦 = 0 on 𝜕Ω ,

and 𝑦 ≤ 𝜓 in Ω, where 𝜓 ∈ 𝑊3, 𝑝 (Ω) for 𝑝 > 2, and 𝜓 > 0 on 𝜕Ω.

By elliptic regularity ˘cf. [6]¯, we can reformulate the model problem as followsȷ

Find 𝑦 ∈ 𝐾 such that

𝑦 = argmin
𝑣∈𝐾

[
1

2
𝑎(𝑣, 𝑣) − ( 𝑓 , 𝑣)

]
, ˘1¯

where 𝐾 = {𝑣 ∈ 𝐻2 (Ω) ∩ 𝐻1
0
(Ω) : 𝑣 ≤ 𝜓 in Ω},

𝑎(𝑣, 𝑤) = 𝛽

∫

Ω

∇2𝑣 : ∇2𝑤 𝑑𝑥 +

∫

Ω

𝑣𝑤 𝑑𝑥 and ( 𝑓 , 𝑣) =

∫

Ω

𝑓 𝑣 𝑑𝑥.

Here ∇2𝑣 : ∇2𝑤 =
∑2

𝑖, 𝑗=1
𝜕2𝑣

𝜕𝑥𝑖𝜕𝑥 𝑗

𝜕2𝑤
𝜕𝑥𝑖𝜕𝑥 𝑗

is the inner product of the Hessian matrices

of 𝑣 and 𝑤. Once 𝑦 is calculated, then 𝑢 can be determined by 𝑢 = −Δ𝑦.
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A quadratic 𝐶0 interior penalty method for the minimization problem ˘1¯ was

analyzed in [4]. The goal of this paper is to apply the ideas in [3] for an obsta‚

cle problem of clamped Kirchhoff plates to develop and analyze additive Schwarz

preconditioners for the discrete problem in [4].

2 The 𝑪
0 Interior Penalty Method

Let Tℎ be a quasi‚uniform triangulation of Ω consisting of convex quadrilaterals, and

let 𝑉ℎ ⊂ 𝐻1
0
(Ω) be the standard 𝑄𝑘 finite element space ˘the space of polynomials

of degree ≤ 𝑘 in each variable¯ associated with Tℎ.

The discrete problem of the optimal control problem ˘1¯ resulting from the 𝐶0

interior penalty method is to find

𝑦ℎ = argmin
𝑣∈𝐾ℎ

[
1

2
𝑎ℎ (𝑣, 𝑣) − ( 𝑓 , 𝑣)

]
, ˘2¯

where

𝐾ℎ = {𝑣 ∈ 𝑉ℎ : 𝑣(𝑝) ≤ 𝜓(𝑝), ∀ 𝑝 ∈ Nℎ},

𝑎ℎ (𝑣, 𝑤) = 𝛽
[ ∑︁

𝐷∈Tℎ

∫

𝐷

∇2𝑣 : ∇2𝑤 𝑑𝑥 +
∑︁

𝑒∈E𝑖
ℎ

𝜂

|𝑒 |

∫

𝑒

[[
𝜕𝑣

𝜕𝑛

]] [[
𝜕𝑤

𝜕𝑛

]]
𝑑𝑠

+
∑︁

𝑒∈E𝑖
ℎ

∫

𝑒

({{
𝜕2𝑣

𝜕𝑛2

}} [[
𝜕𝑤

𝜕𝑛

]]
+

{{
𝜕2𝑤

𝜕𝑛2

}} [[
𝜕𝑣

𝜕𝑛

]] )
𝑑𝑠
]
+

∑︁

𝐷∈Tℎ

∫

𝐷

𝑣𝑤 𝑑𝑥,

Nℎ is the set of nodes in Ω associated with 𝑉ℎ, E𝑖
ℎ

is the set of edges in Tℎ that

are interior to Ω, 𝜂 > 0 is a sufficiently large penalty parameter, and the jump [[·]]

and the average {{·}} are defined as follows. Let 𝑒 be an interior edge shared by two

elements, 𝐷− and 𝐷+, and 𝑛𝑒 be the unit normal vector pointing from 𝐷− to 𝐷+, we

define [[
𝜕𝑣

𝜕𝑛

]]
=

𝜕𝑣+

𝜕𝑛𝑒
−
𝜕𝑣−

𝜕𝑛𝑒
and

{{
𝜕2𝑣

𝜕𝑛2

}}
=

1

2

(
𝜕2𝑣+

𝜕𝑛2
𝑒

+
𝜕2𝑣−

𝜕𝑛2
𝑒

)
.

Note that 𝑎ℎ (·, ·) is a consistent bilinear form for the biharmonic equation with the

boundary conditions of simply supported plates ˘cf. [4]¯.

It follows from the standard theory that the discrete problem ˘2¯ has a unique

solution 𝑦ℎ ∈ 𝐾ℎ characterized by the discrete variational inequality

𝑎ℎ (𝑦ℎ, 𝑣ℎ − 𝑦ℎ) ≥ ( 𝑓 , 𝑣ℎ − 𝑦ℎ) ∀ 𝑣ℎ ∈ 𝐾ℎ . ˘3¯

Moreover, there exists a positive constant 𝐶 independent of ℎ such that ˘cf. [4]¯

∥𝑦 − 𝑦ℎ∥ℎ ≤ 𝐶ℎ𝛼,
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where ∥ · ∥ℎ is the mesh‚dependent energy norm defined by

∥𝑣∥2
ℎ = 𝛽

( ∑︁

𝐷∈Tℎ

|𝑣 |2
𝐻2 (𝐷)

+
∑︁

𝑒∈E𝑖
ℎ

1

|𝑒 |
∥ [[𝜕𝑣/𝜕𝑛]] ∥2

𝐿2 (𝑒)

)
+ ∥𝑣∥2

𝐿2 (Ω)
,

ℎ is the mesh size of the triangulation, and 𝛼 ∈ (0, 1] is the index of elliptic regularity

that is determined by the interior angles of Ω.

3 The Primal-Dual Active Set Algorithm

By introducing a Lagrange multiplier 𝜆ℎ : Nℎ → R , the discrete variational

inequality ˘3¯ is equivalent to

𝑎ℎ (𝑦ℎ, 𝑣) − ( 𝑓 , 𝑣) = −
∑︁

𝑝∈Nℎ

𝜆ℎ (𝑝)𝑣(𝑝) ∀ 𝑣 ∈ 𝑉ℎ, ˘4¯

𝑦ℎ (𝑝) − 𝜓(𝑝) ≥ 0, 𝜆ℎ (𝑝) ≥ 0 and (𝑦ℎ (𝑝) − 𝜓(𝑝))𝜆ℎ (𝑝) = 0 ∀ 𝑝 ∈ Nℎ .̆5¯

Moreover, the optimality conditions ˘5¯ can be written concisely as

𝜆ℎ (𝑝) = max(0, 𝜆ℎ (𝑝) + 𝑐(𝑦ℎ (𝑝) − 𝜓(𝑝))) ∀ 𝑝 ∈ Nℎ, ˘6¯

where 𝑐 is a large positive number. The system ˘4¯ and ˘6¯ can then be solved by a

primal‚dual active set ˘PDAS¯ algorithm ˘cf. [7, 8]¯.

Given the 𝑘−th approximation (𝑦𝑘 , 𝜆𝑘), the (𝑘 + 1)−st iteration of the PDAS

algorithm is to find (𝑦𝑘+1, 𝜆𝑘+1) such that

𝑎ℎ (𝑦𝑘+1, 𝑣) − ( 𝑓 , 𝑣) = −
∑︁

𝑝∈Nℎ

𝜆𝑘+1 (𝑝)𝑣(𝑝) ∀ 𝑣 ∈ 𝑉ℎ, ˘7a¯

𝑦𝑘+1 (𝑝) = 𝜓(𝑝) ∀ 𝑝 ∈ A𝑘 , ˘7b¯

𝜆𝑘+1 (𝑝) = 0 ∀ 𝑝 ∈ I𝑘 , ˘7c¯

where A𝑘 = {𝑝 ∈ Nℎ : 𝜆𝑘 (𝑝) + 𝑐(𝑦𝑘 (𝑝) − 𝜓(𝑝)) > 0} is the active set deter‚

mined by (𝑦𝑘 , 𝜆𝑘), and I𝑘 = Nℎ\A𝑘 is the inactive set. The iteration terminates

when A𝑘+1 = A𝑘 . Given a sufficiently accurate initial guess, the PDAS algorithm

converges superlinearly to the unique solution of ˘3¯ ˘cf. [7]¯.

From ˘7b¯ and ˘7c¯, we can reduce ˘7a¯ to an auxiliary system that only involves

the unknowns of 𝑦𝑘+1 (𝑝) for 𝑝 ∈ I𝑘 . But even so, for small ℎ, the reduced aux‚

iliary system is still large, sparse, and ill‚conditioned. To solve such systems more

efficiently, we can apply the preconditioned conjugate gradient method.

Let Ñℎ be a subset of Nℎ. We define 𝑇ℎ : 𝑉ℎ → 𝑉ℎ, the truncation operator, by

(𝑇ℎ𝑣) (𝑝) =

{
𝑣(𝑝) if 𝑝 ∈ Ñℎ,

0 if 𝑝 ∈ Nℎ\Ñℎ .
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Then 𝑇ℎ is a projection from 𝑉ℎ onto 𝑉ℎ = 𝑇ℎ𝑉ℎ. Moreover, let 𝐴ℎ : 𝑉ℎ → 𝑉 ′
ℎ

be

defined by

⟨𝐴ℎ𝑣, 𝑤⟩ = 𝑎ℎ (𝑣, 𝑤) ∀ 𝑣, 𝑤 ∈ 𝑉ℎ,

where ⟨·, ·⟩ is the canonical bilinear form on 𝑉 ′
ℎ
×𝑉ℎ.

In the context of solving ˘3¯, the set Ñℎ represents the inactive set that appears

in an iteration of the PDAS algorithm and 𝐴ℎ represents the stiffness matrix for the

corresponding auxiliary system. Our goal is to develop preconditioners for 𝐴ℎ whose

performance is independent of Ñℎ.

4 A One-Level Additive Schwarz Preconditioner

LetΩ 𝑗 , 1 ≤ 𝑗 ≤ 𝐽, be overlapping subdomains ofΩ such thatΩ =
⋃𝐽

𝑗=1 Ω 𝑗 , diam Ω 𝑗 ≈

𝐻, and the boundaries of Ω 𝑗 are aligned with Tℎ. We assume that there exist non‚

negative 𝜃 𝑗 ∈ 𝐶∞ (Ω̄) for 1 ≤ 𝑗 ≤ 𝐽 such that

𝜃 𝑗 = 0 on Ω \Ω 𝑗 ,

𝐽∑︁

𝑗=1

𝜃 𝑗 = 1 on Ω̄ ,

∥∇𝜃 𝑗 ∥𝐿∞ (Ω) ≤
𝐶†

𝛿
, ∥∇2𝜃 𝑗 ∥𝐿∞ (Ω) ≤

𝐶†

𝛿2
,

where ∇2𝜃 𝑗 is the Hessian of 𝜃 𝑗 , 𝛿 > 0 measures the overlap among subdomains,

and 𝐶† is a positive constant independent of ℎ, 𝐻, and 𝐽. Moreover, we assume that

any point in Ω can belong to at most 𝑁𝑐 many subdomains,

where the positive integer 𝑁𝑐 is independent of ℎ, 𝐻, 𝐽 and 𝛿.

Let 𝑉 𝑗 be the subspace of 𝑉ℎ whose members vanish at all nodes outside Ω 𝑗 , and

let 𝐴 𝑗 : 𝑉 𝑗 → 𝑉 ′
𝑗 be defined by

⟨𝐴 𝑗𝑣, 𝑤⟩ = 𝑎ℎ, 𝑗 (𝑣, 𝑤) ∀ 𝑣, 𝑤 ∈ 𝑉 𝑗 ,

where

𝑎ℎ, 𝑗 (𝑣, 𝑤) = 𝛽

[ ∑︁

𝐷∈Tℎ

∫

𝐷

∇2𝑣 : ∇2𝑤 𝑑𝑥 +
∑︁

𝑒∈E𝑖
ℎ

𝑒⊂Ω 𝑗\𝜕Ω

𝜂

|𝑒 |

∫

𝑒

[[
𝜕𝑣

𝜕𝑛

]] [[
𝜕𝑤

𝜕𝑛

]]
𝑑𝑠

+
∑︁

𝑒∈E𝑖
ℎ

𝑒⊂Ω 𝑗\𝜕Ω

∫

𝑒

({{
𝜕2𝑣

𝜕𝑛2

}} [[
𝜕𝑤

𝜕𝑛

]]
+

{{
𝜕2𝑤

𝜕𝑛2

}} [[
𝜕𝑣

𝜕𝑛

]] )
𝑑𝑠

]
+

∑︁

𝐷∈Tℎ

∫

𝐷

𝑣𝑤 𝑑𝑥.
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The one‚level additive Schwarz preconditioner 𝐵𝑂𝐿 : 𝑉 ′
ℎ
→ 𝑉ℎ is then defined

by

𝐵𝑂𝐿 =

𝐽∑︁

𝑗=1

𝐼̃ 𝑗𝐴
−1
𝑗 𝐼̃ 𝑡𝑗 ,

where 𝐼̃ 𝑗 : 𝑉 𝑗 → 𝑉ℎ (1 ≤ 𝑗 ≤ 𝐽) is the natural injection operator, and 𝐼̃ 𝑡
𝑗

: 𝑉 ′
ℎ
→ 𝑉 ′

𝑗

is the transpose of 𝐼̃ 𝑗 .

With similar arguments as in [3], we can obtain the following result.

Theorem 1 It holds that

𝜅(𝐵𝑂𝐿𝐴ℎ) =
𝜆max (𝐵𝑂𝐿𝐴ℎ)

𝜆min(𝐵𝑂𝐿𝐴ℎ)
≤ 𝐶1𝛿

−4,

where the positive constant 𝐶1 is independent of 𝐻, ℎ, 𝑗 , 𝛿 and Ñℎ.

Remark 1 The condition number estimate given in Theorem 1 is identical to the one

for the plate bending problem without obstacles, which indicates that the obstacle is

invisible to the one‚level additive Schwarz preconditioner.

5 A Two-level Additive Schwarz Preconditioner

A two‚level additive Schwarz preconditioner contains not only subdomain solves,

but also a coarse grid solve. Let T𝐻 be a coarse quasi‚uniform triangulation for Ω

whose mesh size is comparable to the diameters of the subdomains Ω 𝑗 , 1 ≤ 𝑗 ≤ 𝐽,

and 𝑉𝐻 ⊂ 𝐻1
0
(Ω) be the 𝑄𝑘 finite element space associated with T𝐻 .

Since the 𝑄𝑘+2 Bogner‚Fox‚Schmit ˘BFS¯ tensor product element is a 𝐶1 relative

of the 𝑄𝑘 tensor product element ˘cf. [2]¯, we define 𝑊𝐻 ⊂ 𝐻2 (Ω) ∩ 𝐻1
0
(Ω) to be

the 𝑄𝑘+2 BFS finite element space associated with T𝐻 . The two spaces 𝑉𝐻 and 𝑊𝐻

can be connected by an enriching operator 𝐸𝐻 which is constructed by the averaging

technique ˘cf. [2, 3]¯.

Now we define 𝐼0 : 𝑉𝐻 → 𝑉ℎ by

𝐼0 = Πℎ ◦ 𝐸𝐻

where Πℎ : 𝐶0 (Ω̄) → 𝑉ℎ is the nodal interpolation operator.

Let 𝑉0 ⊂ 𝑉ℎ be defined by

𝑉0 = 𝑇ℎ 𝐼0 𝑉𝐻 ,

and let the operator 𝐴0 : 𝑉0 → 𝑉 ′
0

be defined by

⟨𝐴0𝑣, 𝑤⟩ = 𝑎ℎ (𝑣, 𝑤) ∀ 𝑣, 𝑤 ∈ 𝑉0.

Then the two‚level additive Schwarz preconditioner 𝐵𝑇𝐿 : 𝑉 ′
ℎ
→ 𝑉ℎ is given by
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𝐵𝑇𝐿 =

𝐽∑︁

𝑗=0

𝐼̃ 𝑗 𝐴
−1
𝑗 𝐼̃ 𝑡𝑗 ,

where 𝐼̃ 𝑗 : 𝑉 𝑗 → 𝑉ℎ (0 ≤ 𝑗 ≤ 𝐽) is the natural injection operator, and 𝐼̃ 𝑡
𝑗

is the

transpose of 𝐼̃ 𝑗 .

Following the arguments in [3], we can obtain an estimate on the condition number

of 𝐵𝑇𝐿𝐴ℎ.

Theorem 2 It holds that

𝜅(𝐵𝑇𝐿𝐴ℎ) ≤ 𝐶2 min
(
(𝐻/ℎ)4, 𝛿−4

)
, ˘8¯

where 𝐶2 is a positive constant independent of 𝐻, ℎ, 𝑗 , 𝛿 and Ñℎ.

Remark 2 When the obstacle is present, it is necessary to include the truncation

operator in the construction of 𝑉0. Therefore, the condition number estimate ˘8¯ for

the two‚level additive Schwarz preconditioner is different from the one for the plate

bending problem without obstacles ˘cf. [5]¯ which takes the form

𝜅(𝐵𝑇𝐿𝐴ℎ) ≤ 𝐶∗

(
1 + (𝐻/𝛿)4

)
.

6 Numerical Results

We consider the obstacle problem ˘cf. [1]¯ with Ω = (−0.5, 0.5)2, 𝛽 = 0.1, 𝜓 = 0.01,

and 𝑓 = 10(sin(2𝜋(𝑥1 + 0.5)) + (𝑥2 + 0.5)). We discretize the model problem by

the 𝐶0 interior penalty method that is based on a rectangular mesh, and choose 𝑉ℎ

to be the standard 𝑄2 finite element space with the mesh size ℎ = 2−ℓ , where ℓ is

the refinement level. The resulting discrete variational inequalities are solved by the

PDAS algorithm, in which we choose the constant 𝑐 to be 108. The initial guess for

the PDAS algorithm is taken to be the solution at the previous level or zero when

ℓ = 1.

The graphs of the numerical solution 𝑦ℎ and the discrete active set A𝑘 at refine‚

ment level 7 are given in Figure 1.

For comparison, we first calculate the condition number of the un‚preconditioned

auxiliary system 𝐴ℎ in each iteration of the PDAS algorithm and then take the

average. The average condition numbers and numbers of iterations of the PDAS

algorithm for various levels are presented in Table 1.

We apply the one‚level and two‚level additive Schwarz preconditioners to the

auxiliary system in each iteration of the PDAS algorithm. The average condition

numbers of both preconditioned auxiliary systems for 4, 16, 64, and 256 subdomains

with small overlap, 𝛿 = ℎ, are reported in Table 2 and Table 3 respectively. Comparing

with the condition numbers of the unpreconditioned auxiliary systems in Table 1,

both one‚level and two‚level algorithms show dramatical improvements.
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Fig. 1: The numerical solution 𝑦ℎ ˘left¯ and the discrete active set A𝑘 ˘right¯ at refinement level 7

𝜅 (𝐴ℎ) PDAS Iterations

ℓ = 1 1.7604 × 101 5

ℓ = 2 2.2085 × 102 10

ℓ = 3 4.3057 × 103 5

ℓ = 4 6.7740 × 104 8

ℓ = 5 1.084ß × 106 12

ℓ = 6 1.8038 × 107 15

Table 1: Average condition number of 𝐴ℎ, and number of iterations of the PDAS algorithm

𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256

ℓ = 2 5.8672 × 100 — — —

ℓ = 3 1.ß350 × 101 5.1410 × 101 — —

ℓ = 4 ß.ß423 × 101 2.4134 × 102 6.66ß8 × 102 —

ℓ = 5 6.ß235 × 102 1.7ß65 × 103 3.4752 × 103 1.0282 × 104

ℓ = 6 5.6185 × 103 1.4676 × 104 2.88ß8 × 104 5.6312 × 104

Table 2: Average condition number of 𝐵𝑂𝐿𝐴ℎ with small overlap

𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256

ℓ = 2 5.448ß × 100 — — —

ℓ = 3 8.12ß0 × 100 1.2ß13 × 101 — —

ℓ = 4 3.6660 × 101 1.8647 × 101 3.4614 × 101 —

ℓ = 5 2.1670 × 102 4.0108 × 101 4.6832 × 101 7.ß57ß × 101

ℓ = 6 1.5552 × 103 2.4043 × 102 5.5854 × 101 1.0ß81 × 102

Table 3: Average condition number of 𝐵𝑇𝐿𝐴ℎ with small overlap

Moreover, similar simulations for generous overlap 𝛿 = 𝐻 are also performed.

The average condition numbers of the one‚level and two level additive Schwarz

preconditioned auxiliary systems for various number of subdomains are presented

in Tables 4 and 5 .
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𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256

ℓ = 2 1.0000 × 100 — — —

ℓ = 3 1.0000 × 100 1.17ß6 × 101 — —

ℓ = 4 1.0000 × 100 1.2828 × 101 1.1154 × 102 —

ℓ = 5 1.0000 × 100 1.3457 × 101 1.1315 × 102 1.5ß25 × 103

ℓ = 6 1.0000 × 100 1.4041 × 101 1.1760 × 102 1.6453 × 103

Table 4: Average condition number of 𝐵𝑂𝐿𝐴ℎ with generous overlap

𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256

ℓ = 2 1.2500 × 100 — — —

ℓ = 3 1.2500 × 100 7.8441 × 100 — —

ℓ = 4 1.2500 × 100 ß.1ß17 × 100 2.4105 × 101 —

ℓ = 5 1.2500 × 100 ß.ß8ß7 × 100 2.5678 × 101 5.864ß × 101

ℓ = 6 1.2500 × 100 1.056ß × 101 2.672ß × 101 6.3733 × 101

Table 5: Average condition number of 𝐵𝑇𝐿𝐴ℎ with generous overlap

7 Conclusion

We present additive Schwarz preconditioners for the auxiliary systems that appear in

a primal‚dual active set algorithm for solving a state constrained elliptic distributed

optimal control problem discretized by a 𝐶0 interior penalty method. Both the one‚

level and two‚level preconditioners improve the condition numbers of the auxiliary

systems significantly.
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