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Abstract
Evolutionary anti-coordination games on networks capture
real-world strategic situations such as traffic routing and mar-
ket competition. Two key problems concerning evolutionary
games are the existence of a pure Nash equilibrium (NE) and
the convergence time. In this work, we study these two prob-
lems for anti-coordination games under sequential and syn-
chronous update schemes. For each update scheme, we ex-
amine two decision modes based on whether an agent con-
siders its own previous action (self essential) or not (self non-
essential) in choosing its next action. Using a relationship be-
tween games and dynamical systems, we show that for both
update schemes, finding an NE can be done efficiently under
the self non-essential mode but is computationally intractable
under the self essential mode. We then identify special cases
for which an NE can be obtained efficiently. For convergence
time, we show that the dynamics converges in a polynomial
number of steps under the synchronous scheme; for the se-
quential scheme, the convergence time is polynomial only
under the self non-essential mode. Through experiments, we
empirically examine the convergence time and the equilibria
for both synthetic and real-world networks.

1 Introduction
Evolutionary anti-coordination (AC) games have been
widely used to model real-world strategic situations such as
product marketing (Linde, Sonnemans, and Tuinstra 2014),
balanced traffic routing (Galib and Moser 2011), and so-
cial competition (Bramoullé 2007). In the networked ver-
sion of such a game, vertices are agents (players), and edges
are interactions between agents. At each time step, agents
make new decisions based on the decisions of their neigh-
bors (Young 2015). Specifically, under the best-response dy-
namics of an anti-coordination game with binary actions,
each agent maximizes its utility at the current time step by
choosing a particular action (i.e., 0 or 1) if and only if a
sufficient number of its neighbors chose the opposite ac-
tion at the previous step (Ramazi, Riehl, and Cao 2016).
There are two main types of update schemes for evolution-
ary games: agents either choose actions synchronously or se-
quentially (Adam, Dahleh, and Ozdaglar 2012a).

The decision mode where each agent only considers its
neighbors’ actions in making its decisions is common in
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the game theory literature (Gibbons 1992). Nevertheless, in
real-world situations where agents compete for resources,
it is natural for an agent to also consider its own previ-
ous action before choosing a new action (Gibbons 1992;
Traulsen et al. 2010; Lo et al. 2006). For example, drivers
on a highway can be seen as agents in an evolutionary anti-
coordination game, where people switch lanes to avoid traf-
fic. In particular, an agent’s choice of lanes in the next time
step is influenced by both its current lane and the lanes of
neighboring cars. Such considerations motivate us to investi-
gate two decision modes: (i) self essential (SE), where each
agent considers both its previous action and the actions of
its neighbors, and (ii) self non-essential (SN), where each
agent only considers the actions of its neighbors1.

Pure Nash equilibria (NE) are a central concept in game
theory (Aleksandrov and Walsh 2017; Nissan et al. 2007).
In evolutionary games, another key notion is the time it
takes for the best-response dynamics to reach an NE or
a limit cycle (Christodoulou, Mirrokni, and Sidiropoulos
2006; Jackson and Zenou 2015). Nevertheless, researchers
have given limited attention to efficiently finding an NE
for anti-coordination games under the SE and SN modes.
Further, to our knowledge, whether the best-response dy-
namics of anti-coordination games has a polynomial con-
vergence time remains open. In this work, we close the
gap with a systematic study of the following two problems
for the synchronous and sequential games under both SE
and SN modes: (i) EQUILIBRIUM EXISTENCE/FINDING
(EQE/EQF): Does the game have an NE, and if so, can one
be found efficiently? (ii) CONVERGENCE (CONV): Start-
ing from an action profile, how fast does the best-response
dynamics converge to a limit cycle of length at most 2?

The best-response dynamics of an evolutionary anti-
coordination game can be specified using a threshold frame-
work (Adam, Dahleh, and Ozdaglar 2012b). This naturally
allows us to model such a game as a graphical dynami-
cal system (Barrett et al. 2006). In such a system, at ev-
ery time step, each vertex uses its local function to compute
its state in the next time step. To model anti-coordination
games, the domain is Boolean, and the local functions are
inverted-threshold functions whereby each vertex u is as-

1The word “essential” is based on the term “essential variable”
used in the context of Boolean functions (Salomaa 1963).
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signed state 1 for the next step if and only if enough neigh-
boring vertices of u are currently in state 0. Graphical dy-
namical systems are commonly used to model the propaga-
tion of contagions and decision-making processes over net-
works (Barrett et al. 2006). Here, we use dynamical systems
with inverted-threshold functions as a theoretical framework
to study EQE/EQF and CONV problems for evolutionary
networked anti-coordination games.
Main Contributions
• Finding an NE. We demonstrate a contrast in the com-

plexity of EQE/EQF between the SE and SN modes
for anti-coordination games. In particular, we show that
EQE/EQF is NP-hard under the SE mode for both syn-
chronous and sequential games, even on bipartite graphs.
Further, we show that the corresponding counting problem
is #P-hard. On the other hand, one can find an NE effi-
ciently under the SN mode for synchronous and sequential
games. We also identify special cases (e.g., the underlying
graph is a DAG or even-cycle free) of EQE/EQF for the
SE mode where an NE can be efficiently found.

• Convergence. We show that starting from an arbitrary ac-
tion profile, the best-response dynamics of synchronous
anti-coordination games under either SE or SN mode con-
verge in O(m) time steps, where m is the number of edges
in the underlying graph. Further, we establish a similar
O(m) bound on the convergence time for sequential anti-
coordination games under the SN mode. We do not con-
sider the convergence problem for the sequential games
under the SE mode since such systems can have exponen-
tially long cycles (Barrett et al. 2003).

• Empirical analysis. We study the contrast in the empirical
convergence time for both modes under different classes
of networks. Further, we perform simulations to explore
how convergence time changes with network density. We
also investigate the number of equilibria for problem in-
stances of reasonable sizes.

Problems SN-SyACG SE-SyACG SN-SACG SE-SACG
EQE / EQF Trivial / P NP-hard Trivial / P NP-hard
CONV O(m) O(m) O(m) NA

Table 1: Overview of key results. All results, except those
marked with “Trivial” and “NA”, are established in this
paper. SyACG (SACG) denotes synchronous (sequential)
anti-coordination game, and SE (SN) stands for the self es-
sential (self non-essential) mode. The number of edges is m.
The entry “Trivial” for EQE denotes that the game always
has an NE (Monderer and Shapley 1996). “NA” denotes that
the problem is not applicable due to exponentially long cy-
cles (Barrett et al. 2003). For CONV, O(m) is the number of
steps for the best-response dynamics to reach a limit cycle.

2 Related Work
The existence of NE. The self non-essential sequential anti-
coordination games are potential games and always have
an NE (Vanelli et al. 2020). This result follows from Mon-
derer and Shapley (1996), which guarantees the existence of
NE at the maximum potential. Further, Monderer and Shap-
ley (1996) show that general potential games converge in

finite time. Note that this result does not imply a polynomial-
time algorithm in finding an NE. Kun et al. (2013) study a
special form of anti-coordination games where each agent
chooses the decision that is the opposite of the majority
of neighboring decisions, and show that in such a game,
an NE can be found efficiently. Vanelli et al. (2020) ex-
amine synchronous games with both coordinating and anti-
coordinating agents. They present several special cases of
threshold distributions for the existence of NE.

Auletta et al. (2016) define the class of generalized dis-
crete preference games and show that such games always
have an NE. They also show that every ordinal potential
game with binary actions can be reduced to a discrete pref-
erence game. Goles and Martinez (2013) prove that for syn-
chronous coordination games, the length of any limit cycle
is at most 2. Many researchers have studied the existence
of NE in other games (e.g., (Simon and Wojtczak 2017;
Conitzer and Sandholm 2003)).

Limiting behavior. Adam et al. (2012b) show that the
length of a limit cycle in a synchronous anti-coordination
game is at most 2. However, they did not bound the con-
vergence time to reach a limit cycle. Ramazi, Riehl, and
Cao (2016) investigate the convergence time for asyn-
chronous self non-essential anti-coordination games; they
establish that an NE will be reached in finite time. We note
that the asynchronous dynamics they consider is different
from the sequential dynamics studied in our work, and their
convergence result does not imply ours.

Goles and Martinez (2013) establish that for coordination
games, the dynamics converges in a polynomial number of
steps. Barrett et al. (2003) study phase space properties of
sequential dynamical systems (which can model sequential
AC games); these results imply that the length of a limit cy-
cle in a self essential sequential anti-coordination game can
be exponential in the number of agents. The convergence of
the best-response dynamics for games of other types has also
been studied (e.g., (Ieong et al. 2005; Awerbuch et al. 2008;
Jackson and Zenou 2015).

Minority games. Anti-coordination games are closely re-
lated to minority games (Chmura and Pitz 2006; Arthur
1994). Many versions of minority games have been studied.
For example, Challet and Marsili (2000) study the dynamics
of minority games where agents make decisions based on the
action profile history of the population. Shang et al. (2000)
examine the action distribution of minority games over dif-
ferent network topologies. Several other forms of minority
games are studied in (Li, Riolo, and Savit 2000).

A more thorough discussion of related work is given
in (Qiu et al. 2022). To our knowledge, the complexity of
EQF for SACG/SyACG has not been established; nor has
a polynomial bound on the convergence time of these games
been established. We resolve these problems in this work.

3 Preliminaries and Problem Definition
A networked game operates on a graph G where vertices
are agents and edges represent interactions. At each dis-
crete time step, an agent chooses a binary action (i.e., an
action from the set {0, 1}) based on neighbors’ actions,
and receives a payoff. Under the best-response dynamics,
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agents choose actions that yield the maximum payoff. For
the best-response dynamics of an anti-coordination (AC)
game, each agent v has a nonnegative threshold τ1(v), and v
chooses action 1 if and only if the number of neighbors (plus
possibly v itself) that chose action 0 is at least τ1(v) (Ra-
mazi, Riehl, and Cao 2016). We now define the problems of
interest.
EQUILIBRIUM EXISTENCE/FINDING (EQE/EQF): Given
an anti-coordination game, does it have an NE, and if so, can
one be found it efficiently?
CONVERGENCE (CONV): Given an anti-coordination game
and an initial action profile, how fast does the best-response
dynamics converge to a limit cycle of length at most 2?

We examine two decision modes, based on whether or not
each agent considers its own previous action in making a
new decision. Under the self non-essential (SN) mode, each
agent only considers its neighbors’ actions, whereas, un-
der the self essential (SE) mode, each agent considers both
its own previous action and its neighbors’ actions. We fur-
ther consider two types of update schemes: (i) synchronous
(SyACG): agents choose actions simultaneously; (ii) se-
quential (SACG): at each time step, agents choose their ac-
tions in a predefined order. Overall, we examine four classes
of AC games based on update scheme (i.e., synchronous or
sequential) and decision mode (i.e., SN or SE).

Graphical dynamical systems. We use dynamical
systems as a mathematical framework to study anti-
coordination games. We follow the notation used in (Bar-
rett et al. 2006; Rosenkrantz et al. 2021). A synchronous
dynamical system (SyDS) over the Boolean state domain
B = {0, 1} is a pair S = (GS ,F); GS = (V,E) is the un-
derlying graph, with n = |V | and m = |E|. We assume GS
is connected and undirected, unless specified otherwise. The
set F = {f1, ..., fn} consists of functions with fi being the
local function of vertex vi ∈ V, 1 ≤ i ≤ n. The output of fi
gives the state value of vi. In a SyDS, vertices update states
simultaneously at each time step.

A sequential dynamical system (SDS) S ′ is a tuple
(GS′ ,F ′,Π) where GS′ andF ′ are the same as those for the
synchronous systems defined above (Mortveit and Reidys
2007). In addition, Π is a permutation of V that determines
the sequential order in which vertices update their states at
each time step. Specifically, each time step of S ′ consists
of n substeps, in each of which one vertex updates its state
using the current vertex states.

Update rules. To model anti-coordination dynamics, we
consider inverted-threshold local functions for the state-
update of vertices. Formally, each vertex vi has a fixed in-
teger threshold τ1(vi) ≥ 0. Starting from an initial configu-
ration, all vertices update states at each time step using their
local functions, and the next state of vi is 1 iff the number of
neighbors (plus possibly vi itself) in state-0 at the previous
time step (for the synchronous scheme) or at the current time
step (for the sequential scheme) is at least τ1(vi).

Lastly, analogous to anti-coordination games, we consider
the same two decision modes (i.e., SN and SE) for dynami-
cal systems. Based on the schemes (i.e., SyDS or SDS) and
decision modes, we have four classes of systems that map

to the four classes of anti-coordination games described pre-
viously. We use the notation (SN/SE, IT)-SDS/SyDS to
denote different classes of systems. (IT stands for “inverted-
threshold”). An example of SN mode appears in Figure 1.

Limit cycles. A configuration C of a system S is a vec-
tor C = (C(v1), ..., C(vn)) where C(vi) ∈ B is the state of
vertex vi under C. The dynamics of S from an initial con-
figuration C can be represented by a time-ordered sequence
of configurations. Specifically, a configuration C ′ is the suc-
cessor of C if S evolves from C to C ′ in one step. A limit
cycle of S is a closed sequence of configurations in the phase
space (Foster and Young 1990). In particular, let C ′ be the
successor of C, and C ′′ be the successor of C ′. If C = C ′,
that is, no vertices undergo state changes from C, then C is
a fixed point (i.e., a length-1 limit cycle) of S; if C ̸= C ′,
but C = C ′′, then C ⇌ C ′ forms a 2-cycle of S .

synchronous scheme
 

sequential scheme

Figure 1: Example dynamics of SDS and SyDS under the
SN mode. Specifically, C is an initial configuration, and C ′

is its successor under either the synchronous or the sequen-
tial mode (with vertex update order ⟨v1, v2, v3, v4⟩). State-1
vertices are highlighted in blue.

The dynamics of an AC game is captured by the dynamics
of the underlying dynamical system S . Specifically, an agent
v’s action at time t corresponds to v’s state at time t in S , and
v’s decision threshold is described by τ1(v). Moreover, the
evolution of the action profile for the game coincides with
the transition of configurations under S . Thus, we have:

Observation 1. A fixed point and a limit cycle of S corre-
spond respectively to an NE and a limit cycle of the action
profile for the underlying anti-coordination game.

Further, the convergence time of S precisely characterizes
the convergence time of the corresponding game. Given
this connection, proofs of our results for anti-coordination
games are given in the context of dynamical systems.

4 Equilibrium Existence and Finding
For self essential (SE) anti-coordination games, we estab-
lish that EQE (and therefore EQF) is NP-hard, even on
bipartite graphs. Further, the corresponding counting prob-
lem is #P-hard. In contrast, for self non-essential (SN) anti-
coordination games, one can find an NE in polynomial time.
We remark that the simple difference between the two modes
(i.e., whether each agent considers its own state or not)
yields a major difference in the complexity of finding an
NE. We discuss the reasons for this difference in a later sec-
tion. Lastly, to cope with the hardness under the SE mode,
we identify special classes where an NE (if it exists) can be
found efficiently.
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We first observe that if a SyDS S and an SDS S ′ have the
same underlying graph and the same local functions, then
they have the same set of fixed points, regardless of the ver-
tex permutation Π of S ′.
Observation 2. A SyDS and an SDS with the same under-
lying graph and the same local functions have the same set
of fixed points.

Since a fixed point of a dynamical system corresponds
to an NE of the underlying anti-coordination game, it fol-
lows that the complexities of EQE/EQF are the same for
SN-SyACG and SN-SACG. The same observation holds
for SE-SyACG and SE-SACG.

4.1 Intractability for the Self Essential Mode
We establish that EQE (and therefore EQF) is hard for the
anti-coordination games under the SE mode (i.e., for SE-
SyACG and SE-SACG). In particular, we present a reduc-
tion from 3SAT to EQE for the SE-SyACG (modeled as a
SyDS), and by Observation 2, the hardness carries over to
SE-SACG. Further, the reduction is parsimonious, which
further implies that #EQE is #P-hard. We present detailed
proofs in (Qiu et al. 2022).

Theorem 3. For both SE-SyACG and SE-SACG, EQE is
NP-complete, and the counting problem #EQE is #P-hard.
These results hold even when the graph is bipartite.

Proof (sketch). Given a 3SAT formula f , we construct an
appropriate (SE, IT)-SyDS S . The construction creates a
positive and a negative literal vertex for each variable in f ,
and a clause vertex for each clause. Each clause vertex is
adjacent to the corresponding literal vertices. We construct
two carefully designed gadgets to ensure that (i) in any fixed
point of S , a positive and a negative literal vertex for the
same variable have complementary values; and (ii) there is
a one-to-one correspondence between the satisfying assign-
ments of f and the fixed points of S .

4.2 Finding NE under the Non-essential Mode
It is known that a SN-SACG always has an NE, and one can
be found in finite time (Monderer and Shapley 1996). Thus,
EQE is trivial for SN-SACG, and by Observation 2, EQE
is also trivial for SN-SyACG. However, these observations
don’t resolve the complexity of the search problem EQF.

In this section, we look beyond the existence problem and
show that an NE for an SN game (i.e., SN-SyACG and SN-
SACG) can be found in polynomial time. Specifically, we
show that starting an (SN, IT)-SDS S ′ (modeling a SN-
SACG) from any configuration C, a fixed point of S ′ is al-
ways reached in at most 3m steps. Since each step of S ′
can be carried out in O(m) time, a fixed point of S ′ can
be found in O(m2) time (Theorem 6). As for a (SN, IT)-
SyDS S (modeling a SN-SyACG), we can transform it into
a corresponding SDS S ′, and then find a fixed point of S ′
(obtained as described above), which is also a fixed point of
S . We provide more details below.

The potentials. Let S ′ be an (SN, IT)-SDS. Recall that
for each vertex u ∈ V (GS′), τ1(u) is the minimum number
of state-0 neighbors of u such that fu evaluates to 1. For the

SN mode, τ0(u) = deg(u) + 1 − τ1(u) is the minimum
number of state-1 neighbors of u such that fu evaluates to 0.
Given a configuration C of S ′, the potentials P of vertices,
edges, and C are defined as follows.
Vertex potential: The potential of u ∈ V (GS′) under C is
P(C, u) = τ0(u) if C(u) = 0; P(C, u) = τ1(u) otherwise.
Edge potential: The potential of e = (u, v) ∈ E(GS′) under
C is P(C, e) = 1 if C(u) = C(v); P(C, e) = 0 otherwise.
Configuration potential: The potential of C is the sum of
the vertex potentials and edge potentials over all vertices
and edges. That is, P(C,S ′) =

∑
u∈V (GS′ ) P(C, u) +∑

e∈E(GS′ ) P(C, e).
The following lemma establishes lower and upper bounds

on the potential of any configuration. A detailed proof of the
lemma is in (Qiu et al. 2022).
Lemma 4. For any configuration C of S ′, we have

0 ≤ P(C,S ′) ≤ 3m (1)

Proof (sketch). One can verify that the configuration poten-
tial is always at least 0. As for the upper bound, we argue that∑

u∈V (GS) P(C, u) ≤
∑

u∈V (GS) max{τ0(u), τ1(u)} ≤∑
u∈V (GS) deg(u) = 2m, and that an upper bound on the

total edge potential is m. The upper bound of 3m for the
configuration potential follows.

Lemma 4 establishes that the configuration potential gap
between any two configurations is at most 3m for S ′.

Decrease of potential. Next, we argue that whenever a
substep of S ′ changes the state of a vertex, the configuration
potential decreases by at least 1. Consequently, the system
reaches a fixed point (i.e., no vertices further update their
states) in at most 3m total steps. A detailed proof appears
in (Qiu et al. 2022).
Lemma 5. Suppose that in a substep of S ′ for a vertex u, the
evaluation of fu results in a state change of u. Let C denote
the configuration before the substep, and Ĉ the configura-
tion after the substep. Then, P(Ĉ,S ′)− P(C,S ′) ≤ −1.

Proof (sketch). Since u is the only vertex that undergoes a
state change, the overall configuration potential is affected
by only the change of u’s potential and the potentials of
edges incident on u. W.l.o.g., suppose u’s state changes from
0 to 1 in the transition from C to Ĉ. We can show that the
change in the configuration potential is given by

P(Ĉ,S ′)−P(C,S ′) = τ1(u)+d1(u)−τ0(u)−d0(u), (2)

where d0(u) and d1(u) are the numbers of u’s neighbors in
state-0 and state-1 in C, respectively. Since Ĉ(u) = 1, it fol-
lows that d0(u) ≥ τ1(u) and d1(u) ≤ τ0(u)− 1. Therefore,
P(Ĉ,S ′)− P(C,S ′) ≤ −1.

From the above two lemmas, it follows that starting from
an arbitrary configuration of (SN, IT)-SDS S ′, a fixed point
is reached in at most 3m steps. Thus, we can find a fixed
point by starting with an arbitrary initial configuration, and
simulating the operation of S ′ for at most 3m steps. Each
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step consists of n substeps, each of which evaluates one
of the local functions. Thus, each step can be simulated in
O(m) time. Overall, a fixed point of S ′ can be found in
O(m2) time. Similarly, given a (SN, IT)-SyDS S , we can
first convert S into an SDS S ′ by assigning an arbitrary ver-
tex permutation, and then find a fixed point of S ′, which is
also a fixed point S . Lastly, given that a fixed point of a dy-
namical system is an NE of the underlying self non-essential
game, we have:

Theorem 6. For both SN-SACG and SN-SyACG, an NE
can be found in O(m2) time.

Remark. A key reason for the drastic contrast in the com-
plexity of EQE/EQF between the SN and SE modes is the
difference in the behavior of threshold-1 vertices (i.e., ver-
tices with τ1 = 1). In the SE mode, a threshold-1 vertex
u cannot be in state 0 under any fixed point because u will
change to state 1 in the next step. (Since u counts its own
state, there is at least one 0 input to fu). In particular, the
gadgets used in the hardness proof for the SE mode criti-
cally depend on this fact. In contrast, such a constraint does
not hold for threshold-1 vertices under the SN mode. Hence,
our hardness proof does not carry over to the SN mode.

4.3 Efficient Algorithms for Special Classes
Given the hardness of EQE/EQF for SE anti-coordination
games, we identify several sufficient conditions under which
an NE (if one exists) can be obtained efficiently.

Theorem 7. For both SE-SyACG and SE-SACG, there is
a O(m+n) time algorithm for EQE/ EQF for any of the fol-
lowing restricted cases: (i) The underlying graph is a com-
plete graph. (ii) The underlying graph has no even cycles.
(iii) The underlying graph is a directed acyclic graph. (iv)
The threshold for each u satisfies τ1(u) ∈ {1, du + 1}.

Proof (sketch). A detailed proof appears in (Qiu et al. 2022).
Here, we provide a sketch for (i), i.e., complete graphs. Let
P = {V1, ..., Vk} be the partition of the vertex set V where
each block of P consists of a maximal set of vertices with
the same value of τ1, and the blocks of P are indexed so that
for each i, 1 ≤ i < k, the members of Vi have a lower value
of τ1 than the members of Vi+1. Suppose that configuration
C is a fixed point. Let q be the highest block index such that
the number of 0’s in C is at least the τ1 value of the vertices
in Vq . Since the underlying graph is a complete graph, for
each vertex u, C(u) = 1 iff u ∈ Vi for some i where i ≤ q.
Thus there are only k + 1 candidate configurations that can
possibly be fixed points. Our algorithm constructs each of
these candidates, and checks if it is a fixed point.

5 Convergence
We have shown in the previous section that for SN-SACG,
starting from any action profile, the best-response dynamics
converges to an NE in O(m) steps. In contrast, it is known
that the best-response for SE-SACG could have exponen-
tially long limit cycles (Barrett et al. 2003).

Remark. The dynamics of an SDS and its correspond-
ing SyDS can be drastically different. Therefore, the O(m)

convergence time for a SACG (SDS) established in the pre-
vious section does not imply an O(m) convergence time for
a SyACG (SyDS). In fact, synchronous anti-coordination
games are not potential games. Therefore, the approach we
used for SACG does not carry over to the analysis of Sy-
ACG. Also, both SN-SyACG and SE-SyACG can have
length-2 limit cycles, and there are instances of SE-SyACG
that do not have an NE (e.g., the underlying graph is an odd
cycle and τ1 = 2 for all vertices.).

5.1 Convergence of Synchronous Games
Synchronous anti-coordination games are not potential
games. Therefore, the results on potential games by Mon-
derer and Shapley (1996) do not apply. As shown in (Adam,
Dahleh, and Ozdaglar 2012b), the limit cycles of such a
game are of length at most 2. In this section, we study
the convergence time to either an NE or a 2-cycle for SN-
SyACG and SE-SyACG. Using a potential function argu-
ment inspired by (Goles and Martinez 2013), in Theorem 10
we establish that for both SN-SyACG and SE-SyACG,
starting from an arbitrary action profile, the best-response
dynamics converges in O(m) steps. (A detailed proof of the
theorem appears in (Qiu et al. 2022).) Here, we present a
proof sketch for the SN mode. Let S = (GS ,F) be a (SN,
IT)-SyDS corresponding to a given SN-SyACG.

The potentials. Due to the existence of length-2 limit cy-
cles, our definitions of potentials at each step account for not
only the states of vertices at the current step but also that of
the next step. For SN mode, let τ0(u) = deg(u)+1− τ1(u)
be the minimum number of state-1 neighbors of vertex u
such that fu evaluates to 0. We henceforth assume that no
local function is a constant function (i.e., 1 ≤ τ1(u) ≤
deg(u), ∀u ∈ V (GS)); a justification is given in (Qiu
et al. 2022). Consequently, 1 ≤ τ0(u) ≤ deg(u). We de-
fine τ̃0(u) = τ0(u)− 1/2. Given any configuration C of S ,
let C

′
be the successor of C , and C ′′ the successor of C ′.

Vertex potentials. The potential of a vertex u under C is de-
fined by P(C, u) = [C (u) + C

′
(u)] · τ̃0(u).

Edge potentials. The potential of an edge e = (u, v) under
C is defined by P(C, e) = C (u) · C ′

(v) + C (v) · C ′
(u).

Configuration potential. The potential of a configuration
C is defined by P(C,S) =

∑
e∈E(GS) P(C, e) −∑

u∈V (GS) P(C, u).

We now establish lower and upper bounds on the potential
under an arbitrary configuration C.

Lemma 8. For any configuration C of a (SN, IT)-SyDS S ,
−4m+ n ≤ P(C,S) ≤ 0.

Proof (sketch). One can verify that the maximum value of
the sum of vertex potentials is 4m − n, hence the lower
bound. We now discuss the upper bound. For each vertex u,
let σu =

∑
v∈N(u) C(v), where N(u) is the set of neighbors

of the vertex u. Note that for inverted-threshold function fu,
C ′(u) = 1 iff σu < τ0(u), i.e., iff σu ≤ τ0(u) − 1. Let
βu = σu · C ′(u)− C

′
(u) · τ̃0(u)− C (u) · τ̃0(u).
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The configuration potential can be restated as:P(C,S) =∑
u∈V (GS) βu. If C

′
(u) = 0, then βu = −C (u) · τ̃0(u),

which is at most 0. If C
′
(u) = 1, then βu ≤ (τ0(u) − 1) −

τ̃0(u), which is at most−1/2. This concludes the proof.

Decrease of potential. We now show that from any con-
figuration C , the potential decreases by at least 1/2 in every
step until a fixed point or a 2-cycle is reached.

Lemma 9. Let C be an arbitrary configuration of S . Let
C

′
be the successor of C and Let C

′′
be the successor of

C
′
. Let ∆(S) = P(C ′

,S)− P(C,S) denote the change of
configuration potential from C to C

′
. Then ∆(S) = 0 if and

only if C = C
′′

, that is, C is a fixed point or is part of a
2-cycle C ←→ C

′
. Furthermore, if C ̸= C

′′
(i.e., the dy-

namics has not converged), then, the configuration potential
has decreased by at least 1/2, i.e., ∆(S) ≤ −1/2.

Proof (sketch). We define the change of potential for an
edge e = (u, v) as ∆(e) = P(C ′

, e) − P(C, e), and the
change of potential for a vertex u as ∆(u) = P(C ′

, u) −
P(C, u). Then,

∆(S) = P(C
′
,S)− P(C,S)

=
∑

e∈E(GS)

∆(e)−
∑

u∈V (GS)

∆(u) (3)

Rearranging terms from the definition of potentials, we get

∆(e) = C
′
(u) · [C ′′

(v)− C (v)] + C
′
(v) · [C ′′

(u)− C (u)]

and ∆(u) = [C
′′
(u)− C (u)] · τ̃0(u).

Now we argue that ∆(S) = 0 iff C = C
′′

. First suppose
that C = C

′′
, so that for every vertex u, C (u) = C

′′
(u).

Consequently, ∆(e) = 0, ∀e ∈ E(GS) and ∆(u) = 0, ∀u ∈
V (GS). Now suppose that C ̸= C

′′
. Let V0−1 denote the set

of vertices u such that C (u) = 0 and C
′′
(u) = 1. Similarly,

let V1−0 denote the set of vertices u such that C (u) = 1 and
C

′′
(u) = 0. We establish the following two equations:

(i)
∑

u∈V (GS)

∆(u) =
∑

u∈V0−1
τ̃0(u)−

∑
u∈V1−0

τ̃0(u)

(ii)
∑

e∈E(GS)

∆(e) =
(∑

u∈V0−1

∑
(u,v)∈Eu

C
′
(v)

)
−

(∑
u∈V1−0

∑
(u,v)∈Eu

C
′
(v)

)
,

where Eu is the set of edges incident on u.

Recall that ∆(S) equals the change in edge potentials mi-
nus the change in vertex potentials, so by (i) and (ii) above,

∆(S) =
∑

u∈V0−1

 ∑
(u,v)∈Eu

C
′
(v)

− τ̃0(u)


+

∑
u∈V1−0

τ̃0(u)−

 ∑
(u,v)∈Eu

C
′
(v)

 (4)

We argue that if u ∈ V0−1, then:

∑
(u,v)∈Eu

C
′
(v) ≤ τ0(u)− 1 = τ̃0(u)− 1

2

and thus
(∑

(u,v)∈Eu
C

′
(v)

)
− τ̃0(u) ≤ − 1

2 . Likewise, if
u ∈ V1−0, then:∑

(u,v)∈Eu
C

′
(v) ≥ τ0(u) = τ̃0(u) +

1
2

and thus τ̃0(u) −
∑

(u,v)∈Eu
C

′
(v) ≤ − 1

2 . Since V0−1 ∪
V1−0 ̸= ∅, we have

∆(S) ≤ −
∑

u∈V0−1

1
2 −

∑
u∈V1−0

1
2 ≤ −

1
2

and the lemma follows.

The above discussion establishes that starting from an ar-
bitrary configuration of S , the dynamics stabilizes in at most
8m − 2n steps. Our convergence time results for the SN
synchronous anti-coordination games follow immediately.
In (Qiu et al. 2022), we also show that the above proof can
be easily extended to SE-SyACG.
Theorem 10. For SN-SyACG and SE-SyACG, starting
from any initial action profile, the dynamics converges in
O(m) steps.

Remark. The polynomial-time convergence (to either an
NE or a 2-cycle) for SE-SyACG does not contradict the
results in the previous section where we showed that deter-
mining if a SE-SyACG has an NE is hard. In particular,
despite the fast convergence to a limit cycle, the limit cycle
will often be a 2-cycle.

6 Experimental Studies
We conduct experiments to study the contrast between
the empirical convergence time of synchronous anti-
coordination games under the two modes (SN and SE) on
networks with varying structures, shown in Table 2. Specifi-
cally, astroph, google+ and Deezer are real-world so-
cial networks (Rozemberczki and Sarkar 2020; Leskovec
and Mcauley 2012; Leskovec, Kleinberg, and Faloutsos
2007), and synthetic networks from the classes Gnp, scale-
free (Barabási and Albert 1999), and small-world (Watts and
Strogatz 1998). Further, we investigate the contrast in the
number of Nash equilibria for small problem instances un-
der the two modes.

All experiments were conducted on Intel Xeon(R) Linux
machines with 64GB of RAM. For source code and selected
networks see: https://github.com/bridgelessqiu/AntiCoord.

6.1 Experimental Results on Convergence
Convergence time on networks. For each network, we
randomly generate 200 instances of threshold assignments,
where τ1(u) is chosen uniformly at random in the range
[1, d(u) + 1] for the SE mode, and in the range [1, d(u)] for
the SN mode. This gives us 200 problem instances for each
network. Next, for each instance, we construct random ini-
tial configurations using various probabilities p of each ver-
tex having state 0. In particular, we let p = 0.1, 0.3, ..., 0.9,
and for each p, we generate 500 random initial configura-
tions. This gives us 2,500 initial configurations for each in-
stance and a total of 500,000 simulations of the dynamics
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on each network. The average number of steps to converge
is shown in Table 2. Note that this average for all the exam-
ined networks is less than 20 for both modes. Further, the
maximum number of steps (over all simulations) for the SE
and SN modes are 53 and 24 respectively.

Network n m Avg. steps (SE) Avg. steps (SN)
Small-world 10,000 90,000 14.41 12.71
Scale-free 10,000 97,219 12.78 11.66
Gnp 10,000 99,562 13.09 12.71
astroph 17,903 196,972 17.31 13.72
google+ 23,613 39,182 7.36 7.05
Deezer 28,281 92,752 14.41 12.29

Table 2: Convergence for different networks. Average num-
ber of time steps for the best-response dynamics to converge
to an NE or a 2-cycle under the SE and SN modes.

Impact of network density on convergence time. We
study the contrast in the average convergence time between
the two modes under different network densities. Specifi-
cally, we simulate the dynamics on Gnp networks of size
10,000, with average degrees varying from 5 to 100. The re-
sults appear in Fig. 2. The variances of the two modes are
shown as shaded regions, with one stdev above and below
the mean. Overall, as the network density increases, we ob-
serve a close to linear increase in the convergence time and
the variance for the SE mode. In contrast, the convergence
time and the variance for the SN mode change marginally.

To gain additional insight, we computed the average (over
all pairs of consecutive steps) number n of vertices whose
states change every 2 steps until convergence. As suggested
by Lemma 9 in Section 5, a higher n implies a faster de-
crease in the system potential. Overall, the value of n for
the SE mode and SN mode are 312.24 and 544.4, respec-
tively. This provides one reason for the observed difference
in the convergence time between the two modes. Further, the
maximum convergence time over all simulations for the SE
mode is 186, whereas that for the SN mode is only 25.

6.2 Experimental Results on NE Existence
As we have shown, determining whether a game has an NE
is intractable for the SE mode but easy for the SN mode.
Here, we compare the number of NE in small instances be-
tween the two modes. In particular, we construct 100 Gnp
networks of size 20 with average degrees of 4. For each
Gnp network, we construct 200 different threshold assign-
ments where τ1(u) is selected uniformly at random in range
[1, d(u)]. This gives us a total of 20,000 instances for each
mode. Lastly, for each instance, we check all 220 possible
configurations and count the number of NE among them.

The contrast in the number of NE. For the SE mode,
710 instances have NE. Among these 710 instances, 706
have exactly one NE each, and the remaining 4 instances
have 2 NE each. In contrast, all the 20, 000 instances for the
SN mode have at least one NE, and the average number of
NE per instance is 7.26. Specifically, 75.61% of the SN in-
stances have at most 9 NE, and 98% have at most 28 NE. For
1 ≤ η ≤ 28, the number of instances with η NE is shown
in Fig. 3. This shows a contrast in the number of NE for the
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Figure 2: Impact of network density on the average number
of steps for the SE and SN modes to converge. The under-
lying Gnp networks have 10, 000 vertices with average de-
grees varying from 5 to 100. The variances for the SE and
the SN modes are shown in the beige and blue shaded re-
gions, respectively.

two modes. Further, most configurations that are NE under
the SN mode are no longer NE under the SE mode.
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Figure 3: The distribution of the number of instances with
at most 28 NE. The underlying Gnp networks are of size 20
with an average degree of 4.

7 Conclusions and Future Work
We studied the problem of finding Nash equilibria in evo-
lutionary anti-coordination games. We also considered the
convergence problem for such games. Our results present
a contrast between the self essential (SE) and self non-
essential (SN) modes w.r.t. the complexity of finding NE.
Further, we rigorously established an upper bound on the
convergence time for both modes by showing that the best-
response dynamics reaches a limit cycle in a polynomial
number of steps. One possible future direction is to tighten
the bound on convergence time as the empirical convergence
time is much smaller than the theoretical bound. Another di-
rection is to study the problem of finding an approximate
NE (Feder, Nazerzadeh, and Saberi 2007) for the SE anti-
coordination games, since finding an exact NE is hard under
the SE mode. Lastly, it is also of interest to examine the exis-
tence of other forms of NE such as mixed-strategy equilibria
in anti-coordination games.
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