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ABSTRACT. We extend results on complex analytic measures on the complex
unit circle to a non-commutative multivariate setting. Identifying continuous
linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz C∗-
algebra, the free disk operator system, with non-commutative (NC) analogues
of complex measures, we refine a previously developed Lebesgue decompo-
sition for positive NC measures to establish an NC version of the Frigyes and
Marcel Riesz Theorem for “analytic” measures, i.e. complex measures with
vanishing positive moments. The proof relies on novel results on the order
properties of positive NC measures that we develop and extend from classical
measure theory.
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INTRODUCTION

The Riesz–Markov theorem identifies any finite and regular Borel measure
on the complex unit circle with a bounded linear functional on the Banach space
of continuous functions. By the Weierstrass approximation theorem, the Banach
space of continuous functions on the circle is the supremum norm-closure of the
linear span of the disk algebra and its conjugate algebra. The disk algebra is often
defined as the unital Banach algebra of analytic functions in the complex unit disk
with continuous boundary values. This is completely isometrically isomorphic to
the unital norm-closed operator algebra generated by the shift operator, S = Mz,
of multiplication by the independent variable z on H2. Here, H2 denotes the
Hardy space, the Hilbert space of analytic functions in the complex unit disk that
have square-summable Taylor series coefficients at 0, equipped with the `2-inner
product of these coefficients.

An immediate non-commutative (NC) multivariate generalization of H2 is
then H2

d, the NC Hardy space or full Fock space, which consists of square-summable
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power series in several formal NC variables z = (z1, . . . , zd). Elements of H2
d are

power series,

h(z) = ∑
ω∈Fd

ĥωz
ω,

with square-summable coefficients ĥω ∈ C. The free monoid, Fd, is the set of all
words, ω = i1 · · · in, 1 6 ik 6 d, in the d letters {1, . . . , d}. This is a monoid
with product given by concatenation of words and the unit ∅ is the empty word
containing no letters. Given any ω = i1 · · · in ∈ Fd, the free monomial zω is zi1 · · · zin
and z∅ = 1, viewed as a constant NC function. As in the classical setting, left
multiplication Lk := ML

zk
by any of the d independent NC variables defines an

isometry on H2
d, and we call these isometries the left free shifts. These collectively

play the role of the shift in this NC Hardy space theory.
The NC analogues of the disk algebra, the continuous functions (equiva-

lently, the disk operator system, the supremum norm-closed linear span of the disk
algebra and its conjugates) and positive measures are then the free disk algebra,
Ad := Alg{I, L1, . . . , Ld}−‖·‖, the free disk system,

Ad := (Ad +A∗d)
−‖·‖,

and NC measures, i.e. bounded linear functionals on the free disk system. Here
and after, given a set S of operators on a Hilbert space, we set S∗ := {A∗ : A ∈
S}. For the Banach space dual, we use †. In particular, the Banach space of all
NC measures is denoted by A †

d and the cone of positive NC measures by (Ad)
†
+.

In [16, 17], the first two named authors constructed the Lebesgue decomposition
of any positive NC measure with respect to a canonical NC Lebesgue measure
and showed that the sets of absolutely continuous and singular NC measures are
positive and hereditary cones, in syzygy with classical measure theory.

The isometric left free shifts Lk = ML
zk

on H2
d have pairwise orthogonal

ranges and it follows that the linear map L := (L1, . . . , Ld) : H2
d ⊗ Cd → H2

d is
an isometry from several copies of H2

d into itself. Such an isometry is called a row
isometry. By the classical Wold decomposition theorem, any isometry on Hilbert
space decomposes as the direct sum of a pure isometry, i.e. an isometry unitarily
equivalent to copies of the shift on H2, and a unitary operator. There is an exact
analogue of the Wold decomposition theorem for row isometries, established by
G. Popescu; any row isometry decomposes as the direct sum of a pure row isom-
etry, unitarily equivalent to several copies of the left free shift and a surjective or
Cuntz row isometry, the row analogue of a unitary operator [27]. The C∗-algebra
Ed = C∗{I, L1, . . . , Ld} and its quotient, Od, by the compact operators are the cel-
ebrated Cuntz–Toeplitz and Cuntz algebras, respectively. When d > 2, these are
universal C∗-algebras for row isometries and are important objects in C∗-algebra
theory: any ∗-representation π of Ed determines, and is uniquely determined by,
the row isometry Π := π(L) = (π(L1), . . . , π(Ld)). For more on the representa-
tions of these algebras, see [4] and [28].
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The Lebesgue–von Neumann–Wold decomposition of an isometry on
Hilbert space further splits the unitary direct summand into the direct sum of
a unitary with absolutely continuous spectral measure (with respect to Lebesgue
measure) and a singular unitary. In [23], M. Kennedy extended this decomposi-
tion for single isometries to row isometries. A new feature in this multivariable
theory is that the Cuntz direct summand of any row isometry generally splits as
the direct sum of three different types which we call absolutely continuous (AC)
Cuntz, von Neumann-type (called singular in [23]) and dilation-type.

A Gelfand–Naimark–Segal (GNS) construction applied to the free disk al-
gebra and any positive NC measure µ produces a Hilbert space H2

d(µ) and a
row isometry Πµ acting on H2

d(µ). Any cyclic row isometry (or ∗-representation
of Ed) can be obtained as the GNS row isometry of a positive NC measure, as
recorded in Lemma 1.2. The role of normalized Lebesgue measure on the circle
is played by the so-called vacuum state of the Fock space, m(Lω) = 〈1, Lω1〉H2

where 1 is identified with the vacuum vector z∅. We call the vacuum state, m,
non-commutative (NC) Lebesgue measure. Observe that if we identify normalized
Lebesgue measure on the complex unit circle with a positive linear functional,
m, on the norm-closure of the linear span of the disk algebra and its conjugate
algebra, via the Riesz–Markov Theorem, then m(Sk) = 〈1, Sk1〉H2 . Thus, our def-
inition of NC Lebesgue measure recovers normalized Lebesgue measure when
d = 1. In [16, 17], the first two named authors constructed the Lebesgue de-
composition of any positive NC measure, µ ∈ (Ad)

†
+, µ = µac + µs, where

µac, µs ∈ (Ad)
†
+ are absolutely continuous and singular, respectively, with respect

to NC Lebesgue measure [17, Corollary 8.12, Corollary 8.13]. In particular, it is
shown that the sets of absolutely continuous and singular NC measures are pos-
itive cones that are hereditary in the sense that if µ, λ ∈ (Ad)

†
+ and λ is absolutely

continuous or singular, then µ 6 λ implies that µ is also absolutely continuous
or singular, respectively, in parallel with classical measure theory. In our NC
Lebesgue decomposition, µ is absolutely continuous if and only if its GNS row
isometry, Πµ, is the direct sum of pure and AC Cuntz row isometries, while µ is
singular if and only if Πµ is the direct sum of von Neumann-type and dilation-
type row isometries [17, Corollary 8.12, Corollary 8.13].

In this paper we further refine the NC Lebesgue decomposition of [17] by
proving that the sets of dilation-type and von Neumann-type NC measures
(NC measures whose GNS row isometries are dilation or von Neumann-type)
are both positive hereditary cones in Theorem 2.15. This yields, in Corollary 2.16,
a refined Kennedy–Lebesgue decomposition of any positive NC measure. We
then apply this decomposition to obtain analogues of classical results due to
Frigyes and Marcel Riesz characterizing analytic (complex) NC measures, which
are those bounded linear functionals on the free disk system that annihilate {Lβ :
β ∈ Fd\{∅}}. In particular, in Theorem 4.2, we show that a complex NC mea-
sure is analytic if and only if its absolutely continuous, singular, dilation and
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von Neumann parts are each also analytic. This result has some overlap with
[24, Theorem 4.1], where the objects of study are bounded linear functionals on
the weak* closure of Ad that annihilate a two-sided ideal, in contrast to our focus
here. We apply Theorem 4.2 in Theorem 4.9 to establish an analogue of the clas-
sical F&M Riesz analytic measure theorem. The traditional theorem states that
analytic measures are absolutely continuous [13, Chapter 4], [30, Theorem 5.5],
[12, Theorem 6.14] (compare with the original [32]). We remark that the NC F&M
Riesz theorem obtained here is related, but not equivalent to, one previously de-
veloped in [3, Theorem A] using different techniques. Both Theorem 4.9 of the
present paper and Theorem A of [3] conclude that an analytic NC measure need
not be absolutely continuous, however the results of this paper and those of [3]
describe the obstruction in different ways. We discuss the relationship between
these two papers in Remark 4.10.

1. BACKGROUND AND NOTATION

We borrow notation from [16, 17]. Throughout, given h, h′ in a Hilbert space
H, we denote the inner product of h and h′ by 〈h, h′〉, with 〈·, ·〉 being conjugate
linear in the first argument and linear in the second. The Fock space or NC Hardy
space is

H2
d :=

{
h(z) = ∑

ω∈Fd

ĥωz
ω : ĥω ∈ C, ∑

ω∈Fd

|ĥω |2 < +∞
}

,

equipped with the `2-inner product of the power series coefficients ĥω. Elements
of the NC Hardy space can be viewed as free non-commutative functions in the
NC unit row-ball, Bd

N, of all finite-dimensional strict row contractions:

Bd
N=

∞⊔
n=1

Bd
n; Bd

n :={Z=(Z1, . . . , Zd)∈Cn×n⊗C1×d : ZZ∗=Z1Z∗1+ · · ·+ZdZ∗d<In};

see, for example, [1, 16, 17, 19, 29, 33] for more details on non-commutative func-
tion theory.

The left free shift L = (L1, . . . , Ld) is the row isometry on the full Fock space
H2

d whose component operators act by left multiplication by the independent
variables, Lk = ML

zk
. The free or NC disk algebra is Ad := Alg{I, L1, . . . , Ld}−‖·‖,

the free disk system is Ad := (Ad + A∗d)
−‖·‖. This is a self-adjoint unital norm-

closed subspace of operators, i.e. an operator system. A (complex) NC measure
is a bounded linear functional on the free disk system. The set of all complex NC
measures is denoted by A †

d , and the positive NC measures by (Ad)
†
+. We remark

that any µ ∈ (Ad)
†
+ is uniquely determined by the moments (µ(Lα))α∈Fd , and

thus we often describe a given positive NC measure µ by specifying its moments
when positivity is clear from the context.



A NON-COMMUTATIVE F. & M. RIESZ THEOREM 573

Given a ∈ Ad, we write a = a(L) = ML
a for the operator of left multiplica-

tion by a(z) on H2
d, where

a(z) = ∑
ω∈Fd

âωz
ω,

is the NC function determined by a. The partial Cesàro sums of the series for
a(L) converge in the strong operator topology to a(L) = ML

a(z), as shown in
[11, Lemma 1.1]. More generally, given a row isometry Π, we write a 7→ a(Π) for
the unique representation of Ad satisfying zα(Π) = Πα for all α ∈ Fd.

The free disk system has the semi-Dirichlet property [8]:

A∗dAd ⊆ (Ad +A∗d)
−‖·‖.

The semi-Dirichlet property enables one to apply a Gelfand–Naimark–Segal
(GNS)-type construction to (µ,Ad), where µ ∈ (Ad)

†
+ is any positive NC mea-

sure. One obtains a GNS–Hilbert space H2
d(µ) as the completion of the free disk

algebra, modulo vectors of zero length, with respect to the pre-inner product:

(a1, a2) 7→ µ(a∗1 a2).

The set of equivalence classes {a + Nµ : a ∈ Ad}, where Nµ = {a ∈ Ad : µ(a∗a) =
0}, is norm-dense in H2

d(µ). This construction provides a representation πµ :
Ad → L(H2

d), where
πµ(a)(a′ + Nµ) := aa′ + Nµ.

When d > 2, it follows from [28, Theorem 3.1] that πµ is a unital completely iso-
metric isomorphism of Ad onto the unital, norm-closed operator algebra Ad(Πµ),
where Πµ;k := πµ(Lk) and

Ad(Πµ) := Alg{I, Πµ;1, . . . , Πµ;d}−‖·‖,

so that the image of the left free shifts,

Πµ := (Πµ;1, . . . , Πµ;d) : H2
d(µ)⊗Cd → H2

d(µ) ,

defines a row isometry. We call Πµ the GNS row isometry of µ, acting on the GNS
space H2

d(µ). The original positive NC measure µ ∈ (Ad)
†
+ then has the spacial

representation,
µ(Lω) = 〈I + Nµ, Πω

µ (I + Nµ)〉H2
d(µ)

.

If µ, λ ∈ (Ad)
†
+ and µ 6 λ, then the map

a + Nλ 7→ a + Nµ, a ∈ Ad,

extends by continuity to a contraction Eµ,λ : H2
d(λ) → H2

d(µ) with dense range.
In this case, setting Dµ,λ := E∗µ,λEµ,λ, we have

µ(Lω) = 〈I + Nλ, Dµ,λ Πω
λ (I + Nλ)〉,

and Dµ,λ > 0 can be viewed as the “NC Radon–Nikodym derivative” of µ with
respect to λ.
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REMARK 1.1. The NC Radon–Nikodym derivative Dµ,λ, as described above,
is Πλ-Toeplitz (also written λ-Toeplitz) in the sense that

Π∗λ;jDµ,λΠλ;k = δj,kDµ,λ ,

where δj,k = 1 when j = k and 0 otherwise. Recall that a bounded linear oper-
ator, T, on the Hardy space, H2, is called Toeplitz if T is the compression, Tf :=
PH2 M f |H2 , of the bounded multiplication operator, M f , on L2(∂D) to H2 for some
f ∈ L∞(∂D). A theorem of Brown and Halmos identifies the Toeplitz operators
as the set of all bounded linear operators, T ∈ L (H2), satisfying

S∗TS = T,

where S = Mz is the shift [2, Theorem 6].

We refer to Eµ,λ as the co-embedding determined by the inequality µ 6 λ, as
its adjoint is injective. Given µ, ν, λ ∈ (Ad)

†
+ satisfying µ 6 ν 6 λ, it follows that

Eµ,νEν,λ = Eµ,λ.

We remark that that E∗µ,λ is unitarily equivalent to an embedding of NC repro-
ducing kernel Hilbert spaces; see [16, Lemma 3], [17].

We now record the fact that any cyclic row isometry is unitarily equivalent
to the GNS row isometry of a positive NC measure. The proof is straightforward
and thus omitted.

LEMMA 1.2. Let Π be a cyclic row isometry on a Hilbert space H with a cyclic
vector x. Define a positive NC measure µ ∈ (Ad)

†
+ by setting µ(Lω) = 〈x, Πωx〉. The

map Ux : H2
d(µ) → H defined by Ux a + Nµ = a(Π)x, a ∈ Ad, extends to a surjective

isometry that intertwines Πµ and Π.

Let L∞
d := Alg{I, L1, . . . , Ld}−weak∗ denote the left free analytic Toeplitz algebra

or the Free Hardy Algebra. From a result of Davidson–Pitts [11, Corollary 2.12], it
follows that

L∞
d = Alg{I, L1, . . . , Ld}−WOT,

the closure of Alg{I, L1, . . . , Ld} in the weak operator topology (WOT). That is,
L∞

d is a free semigroup algebra, the unital WOT-closed operator algebra generated
by a row isometry [5]. The algebra L∞

d can also be identified with the left mul-
tiplier algebra of H2

d, viewed as a non-commutative reproducing kernel Hilbert
space (RKHS) [1, 19, 33]. We remark that this left multiplier algebra is equal to the
unital Banach algebra, H∞

d , of all free NC functions in the NC unit row-ball Bd
N

that are uniformly bounded in supremum norm [29, 33]. The NC or free Toeplitz
system is

Td := (L∞
d + (L∞

d )∗)−weak∗ = A −weak∗
d .

We also use the right free shift R = (R1, . . . , Rd), the row isometry of right mul-
tiplications Rk := MR

zk
by the independent NC variables on the Fock space. The
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right free analtyic Toeplitz algebra is

R∞
d := Alg{I, R1, . . . , Rd}−WOT.

1.1. STUCTURE OF GNS ROW ISOMETRIES. By [23, Theorem 6.5], any row isom-
etry, Π, on a separable Hilbert space, H, can be decomposed as the direct sum of
four types of row isometries:

(1.1) Π = ΠL ⊕ΠACC ⊕Πdil ⊕ΠvN.

We call this decomposition the Kennedy–Lebesgue–von Neumann–Wold decompo-
sition of Π. Here, ΠL is pure type L or simply, type L, if it is unitarily equivalent to
an ampliation of L. The remaining three types are all Cuntz, i.e. surjective, row
isometries. A Cuntz row isometry is the multi-variable or “row” analogue of a
unitary operator and we sometimes call a Cuntz row isometry a Cuntz unitary.
We also call any pure type L row isometry a pure row isometry. The summand
ΠACC is absolutely continuous Cuntz (or AC Cuntz or ACC), meaning that ΠACC is
a Cuntz row isometry and the free semigroup algebra it generates is completely
isometrically isomorphic and weak* homeomorphic to L∞

d . Both type L and ACC
row isometries are absolutely continuous (AC) or weak* continuous, meaning that
Π is an AC row isometry if and only if the representation π : Ad → L (H),
defined by Lk

π7→ Πk, extends to a weak* continuous representation of L∞
d . The

summand ΠvN is totally singular, or of von Neumann-type, if it has no weak* con-
tinuous restriction to a non-trivial invariant subspace. For d > 2, it follows from
[23, Theorem 5.1] that a row isometry is of von Neumann-type if and only if the
free semigroup algebra it generates is self-adjoint and hence a von Neumann al-
gebra. The leftover piece, Πdil, is of dilation-type. That is, a row isometry, Π, is
of dilation-type if it has no direct summand of the previous three types, L, ACC
or vN. A row isometry containing only dilation-type and von Neumann-type
summands is said to be singular, in keeping with the terminology established in
[17]. We remark that, when d = 1, the dilation-type summand is absent, see
Section 1.3.

REMARK 1.3. By [23, Proposition 6.2], any dilation-type row isometry Π
has a block upper triangular decomposition,

Π '
(

L⊗ I ∗
0 T

)
,

so that Π has a pure restriction to an invariant subspace and Π is the minimal
row isometric dilation of its compression, T, to the orthogonal complement of
this invariant space. This motivates the name, dilation-type. Since Π is of Cuntz-
type, T is necessarily a non-isometric row co-isometry [27, Proposition 2.5].

REMARK 1.4. It is implicit in the results of [23] that the above Kennedy–
Lebesgue–von Neumann–Wold decomposition of any row isometry, Π, on H,
is unique. Indeed, the Wold decomposition of Π, Π = ΠL ⊕ΠCuntz on H =
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HL ⊕ HCuntz is unique by [27, Theorem 1.3]. Next, there is a unique maximal
ΠCuntz-reducing subspace, HACC, so that the restriction, ΠACC := ΠCuntz|HACC ,
is absolutely continuous, so that ΠCuntz = ΠACC ⊕Π′ on HACC ⊕H′. Then, Π′

can be decomposed by settingH′WC ⊆ H′ to be the largest Π′-invariant subspace
so that Π′|H′WC

is weak* continuous and thenHdil ⊆ H′ is defined as the smallest
Π′-reducing subspace containing H′WC. Finally, Πdil := Π′|Hdil

, HvN := H′ 	
Hdil and ΠvN := Π′|HvN .

1.2. STRUCTURE PROJECTIONS. We form the set of labels

Types = {L, Cuntz, ac, s, ACC, dil, vN, all}.

For a given row isometry Π, if we write “Π is type t”, then we mean “Π is pure
type L” when t = L, “Π is Cuntz-type” when t = Cuntz, “Π is absolutely con-
tinuous” when t = ac, “Π is singular” when t = s, “Π is absolutely contin-
uous Cuntz” when t = ACC, “Π is dilation-type” when t = dil, and “Π is
von Neumann-type” when t = vN. We include the trivial type, t = all. If Π
is of type all this simply means that Π can be any row isometry.

DEFINITION 1.5. Let t ∈ Types. A positive NC measure µ ∈ (Ad)
†
+ is said to

be type t if its GNS row isometry Πµ is type t. A positive NC measure, µ ∈ (Ad)
†
+,

is weak* continuous, if it has a weak* continuous extension to Td = A −weak∗
d .

EXAMPLE 1.6. Let m ∈ (Ad)
†
+ be given by m(b) = 〈1, b1〉, b ∈ Ad. We call

this positive NC measure, m, NC Lebesgue measure, and note that it is absolutely
continuous, as Πm is unitarily equivalent to L. NC Lebesgue measure is so named
because it plays the role of normalized Lebesgue measure in the NC measure
theory used here and in [16, 17].

A positive NC measure, µ ∈ (Ad)
†
+, is absolutely continuous if and only if

it is weak* continuous [17]. We provide an example of such an NC measure in
Example 2.18, while an example of dilation-type is found in Section 5.

Let t ∈ Types \ {Cuntz} and consider a row isometry Π. By the Kennedy–
Lebesgue–von Neumann–Wold decomposition, there is an orthogonal projection
Pt that commutes with Π such that Π restricted to the range of Pt is the type t

summand of Π. In the case of a GNS row isometry Πµ, we write Pµ;t. Given a
positive NC measure µ, we denote by µt the positive NC measure satisfying

µt(Lβ) = 〈I + Nµ, Pµ;tΠ
β
µ(I + Nµ)〉, β ∈ Fd.

One may readily verify that Eµt,µ is a co-isometry satisfying

E∗µt,µEµt,µ = Pµ;t.

Note that E∗µt,µ satisfies

E∗µt,µ(a + Nµt) = Pµ;t(a + Nµ).
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Because Pµ;t is reducing for Πµ, it follows that E∗µt,µΠ
β
µt = Π

β
µ E∗µt,µ for all words

β. From this, we see that Πµt is unitarily equivalent to the restriction of Π to
Ran Pµ;t. Therefore, the GNS row isometry of µt is type t, and thus µt is type t.

There is an additional projection associated with any row isometry Π, and
that is the free semigroup algebra structure projection Q of Π. With S(Π) :=
Alg{I, Π1, . . . , Πd}−WOT denoting the free semigroup algebra of Π, we denote
by Q the largest projection in S(Π) so that QS(Π)Q is self-adjoint [9, Structure
Theorem 2.6]. It has the following properties. First, S(Π) has the decomposition

S(Π) = vN(Π)Q + Q⊥S(Π)Q⊥,

where vN(Π) denotes the von Neumann algebra generated by {Π1, . . . , Πd}.
When Q 6= I,

Q⊥S(Π)Q⊥ = S(Π)Q⊥

is completely isometrically isomorphic and weak* homeomorphic to L∞
d . Here

and elsewhere, P⊥ = I − P whenever P is an orthogonal projection.
The structure projection is related to the subspace of all weak* continuous

vectors for a row isometry Π. A vector x ∈ H is weak* continuous if the linear
functional `x ∈ (Ad)

†
+, defined by `x(Lα) := 〈x, Παx〉, is weak* continuous [7]. A

bounded operator X : H2
d → H is an intertwiner for Π if

XLα = ΠαX, α ∈ Fd.

The following theorem combines results of Davidson–Li–Pitts and Kennedy to
characterize the set, WC(Π), consisting of all weak* continuous vectors of Π in
terms of bounded intertwiners. For µ ∈ (Ad)

†
+, we also write WC(µ) = WC(Πµ).

THEOREM 1.7 (Davidson–Li–Pitts, Kennedy). Let Π be a row isometry onH.
(i) If x, y ∈WC(Π), then the linear functional `x,y : Ad → C satisfying

`x,y(Lα) = 〈x, Παy〉H, α ∈ Fd

is weak* continuous.
(ii) WC(Π) is a closed Π-invariant subspace, and

WC(Π) = {Xh : h ∈ H2
d, X an intertwiner} .

(iii) If Q is the structure projection of Π, then

WC(Π) = Ran Q⊥.

Proof. Items (i) and (ii) are directly from [7, Theorem 2.7].
For item (iii), we note the following. The second dual A††

d of Ad is a free
semi-group algebra, and thus there exists a structure projection q for A††

d . Let π̂

denote the weak* continuous representation of E ††
d determined by π. By

[7, Proposition 5.2], π̂(q)⊥ = QWC, where QWC denotes the projection onto the
closed subspace WC(Π). In comments following [7, Proposition 5.2], it is shown
that π̂(q) = Q if and only if π is “regular”, meaning that the a 7→ π(a)|WC(Π)
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and a 7→ π(a)|Ran Q⊥ coincide. By [7, Theorem 3.4] and [23, Corollary 4.17], we
see that π is always regular.

1.3. MEASURE THEORY AND ISOMETRIES IN ONE VS. SEVERAL NC VARIABLES.
As described in the introduction, positive NC measures and their GNS row isome-
tries are canonical and, in some sense, minimal non-commutative multivariate
analogues of positive regular finite Borel measures on the complex unit circle
and the (isometric) restriction of multiplication by the independent variable to
the closure of the analytic polynomials, respectively. There are, however, several
key differences between the one and several-variable theories, and this NC mea-
sure theory exhibits some new phenomena that have no direct single-variable
analogues.

Firstly, in one-variable, the disk operator system, A1 := (A1 + A∗1)−‖·‖, is
completely isometrically isomorphic to the commutative C∗-algebra, C (∂D), of
continuous functions on the circle, which is C∗-isomorphic to the quotient of the
Toeplitz algebra, E1, by the compact operators. For d > 2, the free disk system, Ad,
is not completely isometrically isomorphic to the quotient of Ed by the compacts
and, moreover, Ad is not a C∗-algebra, it is an operator system, a norm-closed and
self-adjoint subspace of operators. Another point of difference is that for d > 2,
if µ ∈ (Ad)

†
+ is any positive NC measure, then the GNS representation πµ im-

plements a completely isometric isomorphism between the free disk algebra, Ad,
and the unital, norm-closed operator algebra generated by the GNS row isometry
Πµ = πµ(L) [28, Theorem 3.1]. This is not true if d = 1. Indeed, if µ is Lebesgue
measure on the right half circle, then multiplication by a(z) := z− 1 has norm 2
in A1, but πµ(a) has norm

√
2 in L (H2(µ)).

The multi-variable Kennedy–Lebesgue–von Neumann–Wold decomposi-
tion of row isometries also enjoys several novel features that have no classical
analogue in the Lebesgue–von Neumann–Wold decomposition of an isometry. If
V ∈ L (H) is an isometry, then its Wold decomposition is V0⊕U onH = H0⊕H′
where V0 is a pure isometry, i.e. unitarily equivalent to several copies of the uni-
lateral shift on H2, and U is unitary on H′. The unitary direct summand further
decomposes, via spectral theory, as U = Uac ⊕Us, where Uac has absolutely con-
tinuous spectral measure and Us has singular spectral measure (with respect to
Lebesgue measure). As described in [23, Section 2], by Wermer’s Theorem, it is
possible for the weak*-closed unital operator algebra H∞(V) := Alg{I, V}−weak∗

of an isometry V to be self-adjoint [34]. Let n ∈ N ∪ {+∞} ∪ {0} be the multi-
plicity of the pure part V0 of V, i.e. V0 ' S⊗ ICn , and let µac, µs be scalar, positive
measures equivalent to the spectral measures of Uac and Us, respectively. Then,
provided that either (i) n 6= 0 or (ii) Lebesgue measure is mutually absolutely
continuous with µac, then

H∞(V) ' H∞(V0 ⊕Uac)⊕ L∞(Us, µs),
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where L∞(Us, µs) is the commutative von Neumann algebra obtained by apply-
ing the L∞(µs) functional calculus to Us. If neither of these conditions hold, then
H∞(V) is self-adjoint, i.e. a von Neumann algebra. For example, if n = 0, Us = 0
and µac is Lebesgue measure restricted to the upper or lower half-circle, then nor-
malized Lebesgue measure, m, is not absolutely continuous with respect to µac, so
that H∞(V) = H∞(Uac) = L∞(Uac, µac) is self-adjoint; see [23, Example 2.2]. This
is in contrast to the multivariate setting where H∞

d (V) := Alg{I, V1, . . . , Vd}−WOT

is self-adjoint for a row isometry V = (V1, . . . , Vd), if and only if V has no weak*
continuous restriction to a non-trivial invariant subspace, i.e. if and only if V is
of von Neumann-type; see the previous Subsection 1.1. (There is a slight dif-
ference here in that in one variable, if V ∈ L (H) is an isometry, we define
H∞(V) := Alg(I, V)−weak∗ , while if V : H⊗Cd → H is a row isometry, we define
H∞

d (V) := Alg(I, V1, . . . , Vd)
−WOT since the WOT and weak* closures of L∞

d coin-
cide.) Row isometries of von Neumann-type are, at this time, poorly understood.
There is essentially only one known example of a von Neumann row isometry
whose free semigroup algebra is equal to all of L (H) [6, 31]. In particular, it is
not known whether or not there exist von Neumann-type row isometries whose
free semigroup algebras are infinite von Neumann algebras of type II or III.

There is also no single-variable analogue of a dilation-type row isometry.
In the Lebesgue–von Neumann–Wold decomposition of an isometry, V = V0 ⊕
Uac ⊕Us, the unitary direct summand, Uac ⊕Us acts onH′ac ⊕H′s where the sub-
spaces H′ac and H′s are reducing for V and U. In contrast, the Cuntz unitary part
U of a row isometry V decomposes as U = UACC ⊕ Udil ⊕ UvN, where Udil is
the dilation-type direct summand. Any dilation-type row isometry necessarily
has a weak* continuous restriction to the non-trivial invariant but not reducing
subspace of its weak* continuous vectors. Indeed, by definition, if V is a row
isometry of dilation-type, then there is no non-trivial reducing subspace for V so
that the restriction of V to this subspace is AC. Since a dilation-type row isometry
V has, again by definition, a weak* continuous restriction to a non-trivial invari-
ant subspace, it is not immediately obvious as to whether such a row isometry
should be called “absolutely continuous” or “singular”. However, as shown in
[16, 17], any positive NC measure µ ∈ (Ad)

†
+ has a unique Lebesgue-type de-

composition µ = µac + µs, µac, µs ∈ (Ad)
†
+, where µac is the maximal positive

NC measure bounded above by µ that extends weak* continuously from the free
disk system, Ad, to its weak* closure, Td, and µs is singular in the sense that
the only positive and absolutely continuous NC measure dominated by µs is the
identically zero NC measure. Moreover, the sets of positive AC and singular NC
measures are both positive and hereditary cones and a positive NC measure is
singular in this sense if and only if its GNS row isometry decomposes as the direct
sum of von Neumann-type and dilation-type row isometries [17, Corollary 8.13].
These results justify the definition of a singular row isometry as the direct sum of
von Neumann and dilation-type row isometries.
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Furthermore, and finally, the natural NC analogues of the singular Clark
measures of large classes of inner functions are of dilation-type. Here, recall that
there is, essentially, a bijection between contractive analytic functions in the com-
plex unit disk and positive measures on the unit circle. (To be precise, two con-
tractive analytic functions b1, b2 correspond to the same positive measure if and
only if 1+b1

1−b1
and 1+b2

1−b2
differ by an imaginary constant.) If a positive measure, µ,

corresponds to a contractive analytic function, b ∈ [H∞]1, µ = µb is called the
Clark or Aleksandrov–Clark measure of b. As a corollary to Fatou’s Theorem, µb is
singular with respect to Lebesgue measure if and only if b is inner. In [16, Corol-
lary 3] we extended one half of this corollary to the NC setting — if a contractive
left multiplier, b ∈ [H∞

d ]1, is inner, then its NC Clark measure, µb ∈ (Ad)
†
+, is sin-

gular. The converse is currently an open problem, in general, although we have
been able to show that the converse holds in the case where b = b ∈ [H∞

d ]1 is a
non-commutative rational function [18, Corollary 6]. Here, an NC rational expres-
sion, is, essentially, any well-defined expression obtained by applying the oper-
ations of multiplication, summation and inversion to free polynomials [21]. In
[20, Corollary 1], it is proved that the NC Clark measure of any inner NC rational
left multiplier of the free Hardy space, b ∈ [H∞

d ]1 is always purely of dilation-
type. See also Section 5 of this paper, which shows that the NC Clark measure of
b(Z) = Z1 is of dilation-type. It would be of significant interest to characterize,
in general, when an inner left multiplier of the free Hardy space has an NC Clark
measure purely of dilation or von Neumann-type, respectively.

2. CONVEX AND ORDER STRUCTURE OF NC MEASURES

If 0 6 µ 6 λ are positive NC measures, it is natural to ask whether the
contractive co-embedding Eµ,λ : H2

d(λ) → H2
d(µ) intertwines the various struc-

ture projections of µ and λ. That is, do we generally have that Eµ,λPλ;t = Pµ;tEµ,λ,
where t ∈ Types? For t ∈ {ac, dil, vN}, we provide affirmative answers.
By [17, Corollary 8.11] the sets of absolutely continuous (AC) and singular posi-
tive NC measures are positive hereditary cones. It is therefore also natural to ask
whether the sets of von Neumann-type and dilation-type NC measures are also
positive hereditary cones. In Theorem 2.15 at the end of this section, we provide
a positive answer to this question.

DEFINITION 2.1. Let µ, λ ∈ (Ad)
†
+. We say that t ∈ Types is a hereditary type

if µ 6 λ and λ being type t together imply that µ is type t. A positive sub-cone
P0 of positive cone P is hereditary if p0 ∈ P0, p ∈ P and p 6 p0 imply that
p ∈ P0. We say that t determines a hereditary cone if the set of type t positive NC
measures form a hereditary cone.
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LEMMA 2.2. Let λ, µ∈ (Ad)
†
+ with µ6λ. If c∈Ad is positive semi-definite, then

E∗µ,λπµ(c)Eµ,λ 6 πλ(c).

Proof. By [14, Lemma 4.6] the cone of “positive finite sums of squares” of
free polynomials, i.e. elements of the form

N

∑
j=1

pj(L)∗pj(L), pj ∈ C{z1, . . . , zd},

is norm-dense in the cone of positive elements of the free disk system, Ad. Hence,
to prove the claim, it suffices to show that

E∗µ,λπµ(p(L)∗p(L))Eµ,λ 6 πλ(p(L)∗p(L)),

for any p ∈ C{z1, . . . , zd}. This is easily verified:

E∗µ,λπµ(p(L)∗p(L))Eµ,λ = E∗µ,λπµ(p(L))∗πµ(p(L))Eµ,λ

= πλ(p(L))∗E∗µ,λEµ,λπλ(p(L))

6 πλ(p(L))∗πλ(p(L)) = πλ(p(L)∗p(L)).

PROPOSITION 2.3. Let t ∈ Types.
(i) If µ, λ ∈ (Ad)

†
+ are such that Eµ,λPλ;t = Pµ;tEµ,λPλ;t and λ is of type t, then µ

is also of type t. In particular, if this formula holds for all µ, λ ∈ (Ad)
†
+ such that µ 6 λ,

then t is a hereditary-type.
(ii) If Eµ,λPλ;t = Pµ;tEµ,λ whenever µ, λ ∈ (Ad)

†
+ are such that µ 6 λ, then t

determines a hereditary cone.
(iii) Suppose that t, u are types and λ, µ ∈ (Ad)

†
+ are such that P⊥λ;t = Pλ;u and

similarly for µ. If µt 6 λt and µu 6 λu, then Eµ,λPλ;t = Pµ;tEµ,λ.
(iv) Suppose that µ, λ ∈ (Ad)

†
+, µ 6 λ, t is a type and Pµ;tEµ,λPλ;t = Pµ;tEµ,λ. If µ

is of type t then µ 6 λt.

Proof. (i) Suppose µ 6 λ and λ is type t. Then Pλ;t = I and thus Eµ,λ =
Pµ;tEµ,λ, and therefore

µ(Lβ) = 〈Eµ,λ(I + Nλ), Π
β
µ Eµ,λ(I + Nλ)〉

= 〈Eµ,λ(I + Nλ), Pµ;tΠ
β
µ Eµ,λ(I + Nλ)〉 = µt(Lβ)

for each β ∈ Fd. Thus, µ is type t.
(ii) The hereditary property follows from (i). To see that t determines a cone,

suppose µ, ν are type t. Clearly, µ, ν 6 µ + ν. Then,

I = E∗µ,µ+νEµ,µ+ν + E∗ν,µ+νEν,µ+ν,

Pµ;t = I and Pν;t = I. Thus,

Pµ+ν;t = (E∗µ,µ+νEµ,µ+ν + E∗ν,µ+νEν,µ+ν)Pµ+ν;t
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= E∗µ,µ+νPµ;tEµ,µ+ν + E∗ν,µ+νPν;tEν,µ+ν

= E∗µ,µ+νEµ,µ+ν + E∗ν,µ+νEν,µ+ν = I.

Therefore, (µ + ν)t = µ + ν is type t.
(iii) Define Uµ : H2

d(µ)→ H2
d(µt)⊕H2

d(µu) by setting Uµh = Eµt,µh⊕ Eµu,µh
for h ∈ H2

d(µ). Then it follows from comments following Definition 1.5 that Uµ is
a surjective isometry. The surjective isometry Uλ : H2

d(λ) → H2
d(λt)⊕H2

d(λu) is
defined similarly. We note that, with respect to this direct sum decomposition,

UµEµ,λ =

[
Eµt,µ
Eµu,µ

]
Eµ,λ =

[
Eµt,λ
Eµu,λ

]
=

[
Eµt,λt

Eλt,λ
Eµu,λu

Eλu,λ

]
=

[
Eµt,λt

0
0 Eµu,λu

] [
Eλt,λ
Eλu,λ

]
=

[
Eµt,λt

0
0 Eµu,λu

]
Uλ.

Thus,

Eµ,λU∗λ = U∗µ

[
Eµt,λt

0
0 Eµu,λu

]
.

Let Cµ : H2
d(µ) → H2

d(µt) ⊕ H2
d(µu) be defined by Cµh = Eµt,µh ⊕ 0, with Cλ

similarly defined. Then

Pµ;tEµ,λ = C∗µUµEµ,λ = C∗µ

[
Eµt,λt

0
0 Eµu,λu

]
Uλ = E∗µt,µEµt,λt

Eλt,λ and

Eµ,λPλ;t = Eµ,λU∗λCλ = U∗µ

[
Eµt,λt

0
0 Eµu,λu

]
Cλ = E∗µt,µEµt,λt

Eλt,λ.

Therefore, Pµ;tEµ,λ = Eµ,λPλ;t.
(iv) Since µ is type t, we have Pµ;t = I and so Eµ,λPλ;t = Eµ,λ. Let c ∈ Ad be

positive semi-definite. By Lemma 2.2, we have

E∗µ,λπλ(c)Eµ,λ 6 πλ(c),

and so

µ(c) = 〈I + Nλ, E∗µ,λπµ(c)Eµ,λ(I + Nλ)〉
= 〈Pλ;t(I + Nλ), E∗µ,λπµ(c)Eµ,λPλ;t(I + Nλ)〉
6 〈I + Nλ, Pλ;tπλ(c)(I + Nλ)〉 = λt(c).

That is, µ 6 λt.

LEMMA 2.4. Suppose that t, u,w ∈ Types and that Eµ,λPλ;t = Pµ;tEµ,λ for all
µ, λ ∈ (Ad)

†
+ of type w for which µ 6 λ. Further assume that P⊥ν;t = Pν;u for all

ν ∈ (Ad)
†
+ of type w. Then the following assertions hold:

(i) if ν1, ν2, µ ∈ (Ad)
†
+, of type w, are such that ν1 + ν2 = µ and ν1 and ν2 are type

t and u, respectively, then ν1 = µt and ν2 = µu;
(ii) for any µ, λ ∈ (Ad)

†
+ of type w, one has (µ + λ)t = µt + λt.
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Proof. (i) Plainly ν1 6 µ and ν2 6 µ. It follows from Proposition 2.3(iv) that
ν1 6 µt and ν2 6 µu since

Eµ,λPλ;u = Eµ,λ − Eµ,λPλ;t = Eµ,λ − Pµ;tEµ,λ = (I − Pµ;t)Eµ,λ = Pµ;uEµ,λ.

For any positive semi-definite c ∈ Ad, set

δ1 = µt(c)− ν1(c), δ2 = µu(c)− ν2(c).

Note that δ1, δ2 are non-negative real numbers. As

0 = ν1(c) + ν2(c)− µ(c) = −(δ1 + δ2),

it follows that δ1 = δ2 = 0. As every element of Ad is a linear combination of
positive semi-definite elements, assertion (i) is proved.

(ii) It follows from Proposition 2.3(ii) that µt + λt is type t and µu + λu is
type u. As (µt + λt) + (µu + λu) = µ + λ, it follows from (i) that

µt + λt = (µ + λ)t.

REMARK 2.5. Let t, u,w ∈ Types be such that Pµ;w = Pµ;t + Pµ;u for all
µ ∈ (Ad)

†
+. It follows from Proposition 2.3 that the following assertions are

equivalent:

(i) Eµ,λPλ;t = Pµ;tEµ,λ whenever µ, λ ∈ (Ad)
†
+ are of type w and µ 6 λ.

(ii) µt 6 λt and µu 6 λu whenever µ, λ ∈ (Ad)
†
+ are of type w and µ 6 λ.

Indeed, that (ii) implies (i) is precisely Proposition 2.3(iii). In the other di-
rection, we first note that µt 6 λ and µu 6 λ. Assume (i). Since µt and µu are
type t and u, respectively, it then follows from Proposition 2.3(iv) that µt 6 λt

and µu 6 λu. In particular, (i) and (ii) hold in the case where w = all, in which
case our starting assumption is that Pµ;w = I = Pµ;t + Pµ;u.

PROPOSITION 2.6. Suppose that γ, λ ∈ (Ad)
†
+ and γ 6 λ. Let E := Eγ,λ :

H2
d(λ)→H2

d(γ) be the contractive co-embedding. Then EPλac =Pγac E and EPλs =Pγs E.
That is, t=ac and u=s are hereditary-types and determine positive hereditary cones.

Proof. By [17, Corollary 8.8], if γ = γac + γs and λ = λac + λs are the NC
Lebesgue decompositions of γ, λ, then γs 6 λs. Since λ = γ + (λ − γ) > γ, it
follows from [17, Corollary 8.14] that λac = γac + (λ− γ)ac > γac. Thus, λac >
γac as well. The proposition now follows from Proposition 2.3.

COROLLARY 2.7. With γ 6 λ as in Proposition 2.5, if D = E∗γ,λEγ,λ, then
DPλ;ac = Pλ;acD.

In the next lemma, recall that if Qλ is the structure projection of Πλ, then
Q⊥λ = Qλ;WC is the projection onto WC(Πλ) by Theorem 1.7.

LEMMA 2.8. Suppose µ, λ ∈ (Ad)
†
+ with µ 6 λ. Let Qλ and Qµ be the structure

projections of Πλ and Πµ, respectively.
Then, Eµ,λQ⊥λ = Q⊥µ Eµ,λQ⊥λ .



584 MICHAEL T. JURY, ROBERT T.W. MARTIN, AND EDWARD J. TIMKO

Proof. Set E = Eµ,λ. Let h ∈ H2
d(λ) be a WC vector of Πλ. By Theorem 1.7

there is an intertwiner X : H2
d → H2

d(λ) and a vector g ∈ H2
d such that Xg = h.

As EX intertwines Πλ and Πµ, it follows that Eh = EXg is a WC vector of Πµ.
Thus, EQ⊥λ = Q⊥µ EQ⊥λ .

Recall that a vector, h ∈ H, is said to be a wandering vector for a row isometry
V : H⊗Cd → H, if

〈Vαh, Vωh〉 = δα,ω‖h‖2,

and that the closed linear span of all wandering vectors for V is Ran V⊥. If x is a
unit wandering vector for V, then

Hx :=
∨

ω∈Fd

Vωx,

is V-invariant and the linear map, Ux : Hx → H2
d, defined by UxVωx := Lω1 is

an onto isometry intertwining V and L, UxVω = LωUx [27].

LEMMA 2.9. Let Π be a row isometry on a Hilbert spaceH and set

H0 :=
∨

β,γ∈Fd

ΠβΠγ∗WC(Π).

Then H0 is Π-reducing and the restriction of Π to H⊥0 is the von Neumann-type sum-
mand of Π.

Proof. By a result of M. Kennedy, a row isometry Π is of von Neumann-
type if and only if it has no wandering vectors [22, Corollary 4.13]. Specifically,
any pure or AC Cuntz row isometry has wandering vectors. Since a dilation-type
row isometry has a pure type L restriction to the non-trivial invariant subspace
of its weak* continuous vectors, it also has wandering vectors. It is clear that any
wandering vector for Π belongs to WC(Π), and it is clear thatH0 and henceH⊥0
is Π-reducing. By construction H⊥0 ∩WC(Π) = {0} so that Π restricted to H⊥0
has no wandering vectors and is hence of von Neumann-type. That is, H⊥0 ⊂
Ran PvN. Let h ∈ Ran PvN, let v ∈ H2

d, and let X : H2
d → H be an intertwiner.

Then, for any words β, γ, we have

〈ΠβΠγ∗Xv, h〉 = 〈ΠβΠγ∗Xv, PvNh〉 = 〈ΠβΠγ∗PvNX v, h〉.

Since PvNXv ∈WC(Π) ∩ Ran PvN, we have PvNXv = 0 and thus h ∈ H⊥0 . There-
fore,H⊥0 = Ran PvN.

REMARK 2.10. If Π is of dilation-type onH, then WC(Π) is Π-invariant but
cannot contain any Π-reducing subspace. Thus, H0 = H for dilation-type row
isometries.
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REMARK 2.11. By Theorem 1.7, we have WC(Π) equal to the range of Q⊥,
where Q is the structure projection of Π. Suppose Π and Ξ are unitarily equiva-
lent row isometries. That is, there exists a surjective isometry, U, such that UΠα =
ΞαU for each word α. It then follows from Lemma 2.8 that UPΠ;vN = PΞ;vNU.

The following fact is well-known and can be found in [17, Lemma 8.9].

LEMMA 2.12. Let Π and Ξ be row isometries on Hilbert spacesH,J , respectively,
and suppose that Π is a Cuntz unitary. If X : H → J is a bounded linear map satisfying

XΠα = ΞαX, α ∈ Fd,

then
ΠαX∗ = X∗Ξα, α ∈ Fd,

and X∗X is in the commutant of the von Neumann algebra of Π. Similarly, XX∗ is in
the commutant of the von Neumann algebra of Ξ.

LEMMA 2.13. Suppose µ, λ ∈ (Ad)
†
+ satisfy µ 6 λ. If λ is of von Neumann-type,

then so is µ. That is, t = vN is a hereditary-type.

Proof. The set of all positive singular NC measures is a positive hereditary
cone so that µ is necessarily singular. It follows that µ = µdil + µvN. Suppose that
x ∈WC(µ). By Theorem 1.7, there is a bounded intertwiner X : H2

d → H2
d(µ) and

a vector f ∈ H2
d so that X f = x. Since µ 6 λ, the co-embedding E : H2

d(λ) →
H2

d(µ) is contractive and EΠα
λ = Πα

µE for any word α. By Lemma 2.11, we also
have that E∗Πα

µ = Πα
λE∗, so that Y := E∗X : H2

d → H2
d(λ) is an intertwiner:

YLα = E∗XLα = E∗Πα
µX = Πα

λY.

Setting y = Y f ∈ H2
d(λ), we see that y is in the range of a bounded interwtiner

and thus in WC(λ). Because λ is of von Neumann-type, we have y ∈ WC(λ) =
{0}. Since E∗ is injective, we have x = 0. It follows that WC(µ) = {0}, and thus
µdil = 0. We conclude that µ is of von Neumann-type.

The next lemma and Proposition 2.3(i) imply that t = dil is also a hereditary-
type.

LEMMA 2.14. Suppose µ, λ ∈ (Ad)
†
+ satisfy µ 6 λ. Then,

Eµ,λPλ;dil = Pµ;dilEµ,λPλ;dil.

Proof. We know that Pλ;dil 6 Pλ;s, that EPλ;s = Pµ;sE and that EΠ
β
λ = Π

β
µ E

for every word β. Using Remark ??, we assume, without loss of generality, that
both µ and λ are singular. The GNS row isometry of any singular NC measure
is Cuntz, and thus Πλ, Πµ are Cuntz. Note that WC(λ) ⊂ Ran Pλ;dil is Πλ;dil-
invariant and that Ran Pλ;dil is the smallest Πλ-reducing subspace of H2

d(λ) which
contains WC(λ) by Lemma 2.8. Let x ∈ H2

d(λdil), and denote by πλ and πµ the
GNS representations of Ed induced by λ and µ, respectively. Since x ∈ H2

d(λdil),
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it belongs to Ran Pλ;dil, and thus by Lemma 2.8 there is a sequence of operators
A1, A2, . . . ∈ Ed and a y ∈WC(λ) such that

x = lim
n

πλ(An)y.

Since Πλ is Cuntz, we can again apply Lemma 2.11 to find that

Ex = lim
n

πµ(An)Ey.

Because y ∈ WC(λ), it follows from Lemma 2.7 that Ey ∈ WC(µ). Thus, Ex ∈
Ran Pµ;dil by Lemma 2.8 again.

LEMMA 2.15. Let λ ∈ (Ad)
†
+. If x ∈ Ran Pλ;vN, then the positive NC measure

λx determined by λx(Lα) = 〈x, Πα
λx〉λ, α ∈ Fd, is of von Neumann-type.

Proof. Let Hx denote the cyclic subspace of H2
d(λ) generated by x. Note

that there is a surjective isometry U : H2
d(λx) → Hx such that U(a + Nλx ) =

πλ(a)x for each a ∈ Ad. Because λ is von Neumann-type, for any given word
β, there exists a net (aγ)γ in Ad such that (Πβ

λ)
∗ is the weak* limit of (πλ(aγ))γ.

As U∗πλ(a)U = πλx (a) for any a ∈ Ad, it follows that (Πβ
λx
)∗ is the weak* limit

of (πλx (aγ))γ. This shows that the weak* closure of πλx (Ad) is self-adjoint, and
thus Πλx is of von Neumann-type.

LEMMA 2.16. Let µ, ν ∈ (Ad)
†
+. If ν 6 µ and ν is of von Neumann-type, then

ν 6 µvN.

Proof. By Proposition 2.5, Eν,µPµ;ac = Pν;acEν,µ. By Lemma ??, Eν,µPµ;dil =
Pν;dilEν,µPµ;dil. As ν is of von Neumann-type, we know that Pν;dil = 0 = Pν;ac, and
thus

Eν,µ = Eν,µ(Pµ;ac + Pµ;dil + Pµ;vN) = Eν,µPµ;vN.

Thus, for any positive semi-definite c ∈ Ad, we have

ν(c) = 〈I + Nν, πν(c)(I + Nν)〉 = 〈I + Nµ, E∗ν,µπν(c)Eν,µ(I + Nµ)〉
= 〈Pµ;vN(I + Nµ), E∗ν,µπν(c)Eν,µPµ;vN(I + Nµ)〉.

By Lemma 2.2, we have E∗ν,µπν(c)Eν,µ 6 πµ(c), and thus

ν(c) 6 〈Pµ;vN(I + Nµ), πµ(c)Pµ;vN(I + Nµ)〉 = µvN(c).

That is, ν 6 µvN.

THEOREM 2.17. Suppose µ, λ ∈ (Ad)
†
+ satisfy µ 6 λ. Let E : H2

d(λ) → H2
d(µ)

denote the contractive co-embedding. Then, EPλ;vN = Pµ;vNE, and EPλ;dil = Pµ;dilE
and the sets of positive NC measures of dilation and von Neumann-type are positive
hereditary cones.

Proof. Assume first that µ and λ are singular. Set x = Pλ;vNE∗(I+Nµ) ∈
H2

d(λ). Plainly, λx 6µ6λ, where, as before, λx(Lω) := 〈x, Πω
λ x〉λ. By Lemma 2.13,
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we see that λx is of von Neumann-type, and thus by Lemma 2.14 we see that
λx 6 µvN. Then, for any a ∈ Ad,

〈(a + Nµ), EPλ;vNE∗(a + Nµ)〉 = λx(a∗a) 6 µvN(a∗a) = 〈a + Nµ, Pµ;vN(a + Nµ)〉,

whence
EPλ;vNE∗ 6 Pµ;vN.

Let Q be the projection onto the range of EPλ;vN. Applying the Douglas factor-
ization lemma then yields Ran EPλ;vN ⊆ Ran Pµ;vN. In particular, Q 6 Pµ;vN , and
it follows that

(2.1) Pµ;vNEPλ;vN = Pµ;vNQEPλ;vN = QEPλ;vN = EPλ;vN.

As µ and λ are assumed singular, we have Pλ;dil = P⊥λ;vN (and similarly for µ).
Then,

Pµ;vNE = Pµ;vNE(Pλ;dil + Pλ;vN)

= Pµ;vNPµ;dil︸ ︷︷ ︸
=0

EPλ;dil + Pµ;vNEPλ;vN (by Lemma ??)

= EPλ;vN (by equation (??)).

As Pλ;dil = I− Pλ;vN, the theorem is proved in the case where λ and µ are singular.
In the general case, where λ and µ are not necessarily singular, we note that

µ 6 λ implies µs 6 λs, thus Eµs,λs Pλs;vN = Pµs;vNEµs,λs . As seen in the proof of
Proposition 2.3, there are unitary intertwiners Uµ : H2

d(µ) → H2
d(µac)⊕H2

d(µs)

and Uλ : H2
d(λ)→ H2

d(λac)⊕H2
d(λs) such that

UµEU∗λ =

[
Eµac,λac 0

0 Eµs,λs

]
.

Since µs =µvN+µdil and H2
d(µs)'H2

d(µvN)⊕H2
d(µdil), it follows that UµPµ;vNU∗µ

= 0⊕ Pµs;vN and a similar formula holds for λ. Thus,

UµPµ;vNEU∗λ = (UµPµ;vNU∗µ)(UµEU∗λ) = (UµEU∗λ)(UλPλ;vNU∗λ) = UµEPλ;vNU∗λ.

That is, Pµ;vNE = EPλ;vN. As Pµ;acE = EPλ;ac, we have

Pµ;dilE = (I − Pµ;ac − Pµ;vN)E = E(I − Pλ;ac − Pλ;vN) = EPλ;dil.

It now follows from Proposition 2.3(ii) that the dilation-type and von Neumann-
type positive NC measures form hereditary cones.

The following result refines the NC Lebesgue decomposition of [17, Sec-
tion 8] by further decomposing any positive and singular NC measure into posi-
tive dilation-type and von Neumann-type NC measures.

COROLLARY 2.18 (NC Kennedy–Lebesgue decomposition). Any positive NC
measure µ ∈ (Ad)

†
+ has a unique NC Kennedy–Lebesgue decomposition,

µ = µac + µdil + µvN,
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where µac, µdil, µvN ∈ (Ad)
†
+ are positive non-commutative measures of absolutely

continuous-type, dilation-type and von Neumann-type, respectively. In particular, if
ν1, ν2, ν3 are, respectively, absolutely continuous, dilation-type and von Neumann-type
positive NC measures, and µ = ν1 + ν2 + ν3, then

ν1 = µac, ν2 = µdil and ν3 = µvN.

The absolutely continuous, dilation-type and von Neumann-type positive NC measures
each form a positive hereditary cone. Moreover, if t ∈ {ac, dil, vN}, then for any ν, λ ∈
(Ad)

†
+

(ν + λ)t = νt + λt.

Proof. It is already known from [17] that the absolutely continuous posi-
tive NC measures form a hereditary cone and the fact that the dilation- and
von Neumann-type positive NC measures form hereditary cones was proven in
Theorem 2.15. The additivity of (·)t follows from Theorem 2.15 and Lemma 2.4(ii).
That ν1 = λac follows from Proposition 2.5, leaving ν2 + ν3 = λs. From this and
Lemma 2.4(i), we have ν3 = (λs)vN = λvN, the second equality following from
Lemma 2.8. It now follows that ν2 = λdil.

PROPOSITION 2.19. Suppose µ, λ ∈ (Ad)
†
+ with µ 6 λ. Let Pλ := Pλ;Cuntz

be the Πλ-reducing projection onto the support of its Cuntz direct summand. Then,
Eµ,λPλ = PµEµ,λPλ. In particular, if λ is Cuntz-type, then µ is Cuntz-type, and t =
Cuntz is a hereditary-type.

Proof. It follows from Popescu’s Wold decomposition theorem, [27, Theo-
rem 1.3], that the range of Pλ is the set of all x ∈ H2

d(λ) so that for any non-
negative integer, N, there exist {xα : α ∈ Fd, |α| = N} ⊂ H2

d(λ) such that

x = ∑
|α|=N

Πα
λxα.

Set E = Eµ,λ. Then,
Ex = ∑

|α|=N
Πα

µExα,

for any non-negative integer N. It follows that EPλ = PµEPλ, from which the
remaining claim follows on application of Proposition 2.3(i).

EXAMPLE 2.20. In contrast to the results of Corollary 2.16, the set of Cuntz-
type positive NC measures is not a cone. Denote by U± the unitary operator of
co-ordinate multiplication f 7→ ζ f on the Hilbert space χ∂D±L2(∂D), where χ∂D±
is the characteristic function of ∂D±, the upper half-unit circle (when +) or lower
half-unit circle (when −). Consider `2(F2) and let P denote the projection onto
the closed span of {e1k : k = 0, 1, 2, . . .}, the standard basis vectors containing
only the “letter” 1. Let S denote the weak*-closed operator system generated
by {Lα|Ran(P) : α ∈ F2}. Then Ψ : T2 → S , given by Ψ(x) := Px|Ran(P) for
x ∈ T2, is unital, weak* continuous, and positive. Evidently, S is weak*-weak*
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homeomorphic and isometrically linearly ∗-isomorphic to L∞(∂D); call the map
implementing this isomorphism Θ : S → L∞(∂D). Since the spectral measures
for U± are absolutely continuous with respect to Lebesgue measure, the map
x 7→ Θ(Ψ(x))(U±) is defined and weak*-continuous, where for f ∈ L∞(∂D), the
operator f (U±) is given by the usual functional calculus for unitary operators.
Thus, the functional λ± ∈ (A †

2 )+ given by

λ±(x) = 〈χ∂D± , Θ(Ψ(x))(U±)χ∂D±〉, x ∈ A2,

is absoutely continuous. Note that

λ±(Lα) =


∫

∂D±
ζkm(dθ) α = 1k,

0 α ∈ F22F2,
α ∈ F2

where m is normalized Lebesgue measure on ∂D. In particular, λ+ + λ− = m,
where here, m denotes NC Lebesgue measure, the vacuum state, x 7→ 〈e∅, xe∅〉.
We now show that λ± are both Cuntz. In what follows, it will suffice to consider
the case of + (rather than ± simultaneously). First, let C denote the norm-closed
span of {e∅} ∪ {eα : α ∈ F22}, and set H = χ∂D+

L2(∂D) and K = H⊗ C. Define
the pair of operators Z = (Z1, Z2) over K by setting

Z1(h⊗ eα) =

{
Uh⊗ e∅ α = ∅,
h⊗ e1α α ∈ F22,

Z2(h⊗ eα) = h⊗ e2α.

It is readily verified by direct computation that Z is a Cuntz row isometry. An
application of Lavrentiev’s Theorem shows that U+ has χ∂D+

as a cyclic vector,
and thus Z has χ∂D+

⊗ e∅ as a cyclic vector. Set

ν(x) = 〈χ∂D+
⊗ e∅, πν(x)(χ∂D+

⊗ e∅)〉, x ∈ A2.

Note that ν ∈ (A †
2 )+. Since Zα(h⊗ e∅)⊥H⊗ e∅ when α contains the letter 2, we

find that ν(Lα) = 0 for α ∈ F22F2, while

ν(Lk
1) = 〈χ∂D+

⊗ e∅, Zk
1(χ∂D+

⊗ e∅)〉 = 〈χ∂D+
, Uk

+χ∂D+
〉

for k ∈ N ∪ {0}. As both λ+ and ν are positive, it follows that λ+ = ν. In
particular, for a, b ∈ A2, we have

λ+(b∗a) = ν(b∗a) = 〈πZ(b)(χ∂D+
⊗ e∅), πZ(a)(χ∂D+

⊗ e∅)〉,

from which it follows that there exists a surjective isometry W : H2
2(λ+) → K

satisfying
W(Lα + Nλ+) = Zα(χ∂D+

⊗ e∅).

We now see that Πλ+ is unitarily equivalent to Z, and thus Πλ+ is Cuntz.

REMARK 2.21. The example above is interesting for additional reasons. First,
since λ+ 6 λ+ + λ− = m, we see that the pure type L positive NC measures
are not hereditary. Next, one can show that Z is unitarily equivalent to a direct
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integral of atomic dilation-type row isometries, in a manner similar to [11, Exam-
ple 3.3]. However, Πλ+ , and thus Z, must be absolutely continuous. A similar
phenomenon can be observed on comparison of [11, Example 3.3] and [7, Exam-
ple 2.11]; an absolutely continuous row isometry decomposed as a direct integral
of dilation-type row isometries. Now, translating this to functionals, these exam-
ples demonstrate that the dilation-type, Cuntz, and singular families of positive
NC measures all fail to be weak*-closed. Compare this with what happens for
d = 1, where we may write, for example, Lebesgue measure as weak* limit of
linear combinations of Dirac masses.

3. COMPLEX NC MEASURES

Our goal for the remainder of the paper is to apply the preceding results to
study analytic (and complex) NC measures.

DEFINITION 3.1. An NC measure µ ∈ A †
d is absolutely continuous (AC) if it

has a weak* continuous extension to the free Toeplitz system, Td = A −weak∗
d .

In [11, Theorem 2.10], Davidson–Pitts show that any bounded linear func-
tional on Ad that extends weak* continuously to A−weak∗

d = L∞
d is a vector func-

tional, for d > 2. The next lemma shows that their proof extends to our setting.

LEMMA 3.2. Any absolutely continuous NC measure µ ∈ A †
d , for d > 2, is a

vector functional. That is, if µ ∈ A †
d is absolutely continuous, then there exist f , g ∈ H2

d
such that

µ(b) = 〈 f , bg〉, b ∈ Ad.

Proof. By general considerations, µ can be extended (with generally ε > 0
increase in norm) to a weak* continuous linear functional, µ̂, acting on L (H2

d).
Indeed, since Td = A −weak∗

d is weak*-closed, it can be identified with the anni-
hilator S ⊥ of some norm-closed subspace S of the trace-class operators Tr(H2

d)

on H2
d. Here, we recall that Tr(H2

d) is the pre-dual of L (H2
d) [26, Corollary 2.4.11].

Thus, for any K ∈ S and any a ∈ Td, we have tr(Ka) = 0. If q : Tr(H2
d) →

Tr(H2
d)/S is the quotient map, then q† : (Tr(H2

d)/S )† → L (H2
d) can be iden-

tified with the inclusion map of Td into L (H2
d) [26, Proposition 2.4.13]. That

is, the pre-dual of Td is isomorphic to Tr(H2
d)/S and linear functionals on Ad

which extend weak* continuously to Td can be identified with this quotient space.
It follows that we can identify µ with the equivalence class K + S for some
K ∈ Tr(H2

d). Hence, for any S ∈ S and a ∈ Td,

tr((K + S)a) = tr(Ka) = µ(a).

Since
‖µ‖ = inf

S∈S
‖K + S‖Tr(H2

d)
,
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there exists, given ε > 0, an S′ ∈ S so that

‖K + S′‖Tr(H2
d)
6 ‖µ‖+ ε.

Set K′ = K + S′. Then µ̂ : L (H2
d)→ C given by

µ̂(A) = tr(AK′), A ∈ L (H2
d),

is a weak* continuous extension of µ to L (H2
d) with norm ‖µ̂‖ 6 ‖µ‖+ ε. The

trace-class operator K′ has a singular-value decomposition

K′ =
∞

∑
k=1

sk〈xk, ·〉yk; xk, yk ∈ H2
d, sk > 0.

Choose any sequence of words ωk ∈ Fd so that Ran Rωk ⊥ Ran Rωj for k 6= j. For
example, one can choose the words ωk+1 = 2k1 for k ∈ N. Then,

x :=
∞

∑
k=1

s1/2
k Rωk xk and y :=

∞

∑
k=1

s1/2
k Rωk yk

both converge to elements in H2
d. In what follows, δk,j = 0 when k 6= j and δj,j = 1

for all j. For any a1, a2 ∈ Ad, we have

〈x, a∗1 a2y〉 =
∞

∑
k,j=1

s1/2
k s1/2

j 〈R
ωk xk, a∗1 a2Rωj yj〉H2

d

=
∞

∑
k,j=1

s1/2
k s1/2

j 〈xk, a∗1 Rωk∗Rωj︸ ︷︷ ︸
=δk,j I

a2yj〉H2
d

=
∞

∑
k=1

sk〈xk, a∗1 a2yk〉H2
d
= tr(a∗1 a2K) = µ̂(a∗1 a2) = µ(a∗1 a2).

The lemma now follows from the fact that A∗dAd is norm dense in Ad.

Given µ ∈ A †
d , define µ∗ ∈ A †

d by

µ∗(b) = µ(b∗), b ∈ Ad.

We also set

Re µ =
1
2
(µ + µ∗) and Im µ =

1
2i
(µ− µ∗).

COROLLARY 3.3. Any absolutely continuous NC measure µ ∈ A †
d can be de-

composed as µ = (µ1 − µ2) + i(µ3 − µ4) where each µk > 0 is AC. In particular,
µ1 + µ2 + µ3 + µ4 is AC.

Proof. Applying Lemma 3.2 to µ, we obtain vectors x, y ∈ H2
d such that

µ(b) = 〈x, by〉 for b ∈ Ad. Set λ := (1/2)(mx + my), where,

mh(b) := 〈h, bh〉, b ∈ Ad, h ∈ H2
d.
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Then we observe that, for any positive semi-definite c ∈ Ad,

2λ(c)± 2Re µ(c) = mx±y(c) > 0,

and similarly,
2λ(c)∓ 2Im µ(c) = mx±iy(c) > 0.

Therefore, we can set µ1 = λ + Re µ, µ2 = λ − Re µ, µ3 = λ + Im µ, and µ4 =
λ− Im µ.

3.1. GENERAL WITTSTOCK DECOMPOSITION. Any µ ∈ A †
d can be written as a

linear combination of four positive NC measures,

µ = (µ1 − µ2) + i(µ3 − µ4); µk ∈ (Ad)
†
+,

where

Re µ =
µ + µ∗

2
= µ1 − µ2, and Im µ =

µ− µ∗

2i
= µ3 − µ4.

This also works for operator-valued NC measures, i.e. operator-valued completely
bounded maps on the free disk system, by the Wittstock decomposition theorem
[25, Theorem 8.5], [35].

DEFINITION 3.4. If ~λ := (λ1, λ2, λ3, λ4) ∈ (A †
d )

4
+ is such that µ = (λ1 −

λ2) + i(λ3 − λ4), then we call~λ a Wittstock decomposition of µ. The set of all Witt-
stock decompositions of µ is denoted by W (µ). Given a Wittstock decomposition
~λ ∈ W (µ), the total variation of µ with respect to~λ is

|~λ| := λ1 + λ2 + λ3 + λ4 > 0.

REMARK 3.5. The total variation |~λ| defined above for ~λ ∈ W (µ) is not
uniquely determined by µ. Indeed, if~λ = (λk)

4
k=1 is any Wittstock decomposition

of µ, then so is ~µ where µ1 = λ1 + γ, µ2 = λ2 + γ and λ3 = µ3, λ4 = µ4, for any
γ ∈ (Ad)

†
+. This is a rather trivial example of non-uniqueness and in this case

|~µ| = |~λ|+ 2γ > |~λ|. However, even if ~µ,~λ ∈ W (µ) are two different Wittstock
decompositions of µ ∈ A †

d so that |~λ| 6 |~µ|, this need not imply that µk > λk
for each k. That is, one could have, for example, that µ1 − µ2 = λ1 − λ2 without
having µ1 = λ1 + γ and µ2 = λ2 + γ for some γ ∈ (Ad)

†
+.

PROPOSITION 3.6. Let µ ∈ A †
d . Then, µ is absolutely continuous if and only if

there exists a ~µ ∈ W (µ) such that |~µ| is absolutely continuous.

Proof. If µ is absolutely continuous, then we can apply Corollary 3.3. Con-
versely, suppose that ~µ = (µ1, µ2, µ3, µ4) ∈ W (µ) is such that |~µ| is absolutely
continuous. Recall that the absolutely continuous NC measures form a heredi-
tary cone. As µj 6 |~µ|, it follows that µj is absolutely continuous for each j. Thus,
µ is then absolutely continuous.
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DEFINITION 3.7. Let t ∈ {ac, s, dil, vN}. A complex NC measure µ ∈ A †
d is

type t, if there exists a Wittstock decomposition ~µ = (µk)
4
k=1 ∈ W (µ) such that

|~µ| = µ1 + µ2 + µ3 + µ4 is type t.

REMARK 3.8. Since |~µ| > µk for each 1 6 k 6 4, where ~µ = (µk)k is a
Wittstock decomposition of µ, and the sets of AC, singular, dilation-type and
von Neumann-type NC measures are positive hereditary cones, it follows that
if |~µ| is one of these four types, then so is each µk. It follows that ~µ cannot, for ex-
ample, be both absolutely continuous and von Neumann-type without also being
(0, 0, 0, 0).

LEMMA 3.9. Let t, u ∈ {ac, s, dil, vN}, and let µ ∈ A †
d .

(i) If (µj)
4
j=1, (λj)

4
j=1 ∈ W (µ), then

λ1;u − λ2;u = µ1;u − µ2;u, λ3;u − λ4;u = µ3;u − µ4;u.

(ii) Suppose (νt)u = 0 for all ν ∈ (Ad)
†
+. If µ is type t and (λj)

4
j=1 ∈ W (µ), then

λ1;u = λ2;u, and λ3;u = λ4;u.

Proof. (i) By separating the real and imaginary parts, we obtain

λ1 − λ2 = µ1 − µ2, λ3 − λ4 = µ3 − µ4.

Thus
λ1 + µ2 = µ1 + λ2, λ3 + µ4 = µ3 + λ4.

Applying Corollary 2.16, we obtain

λ1;u + µ2;u = µ1;u + λ2;u, λ3;u + µ4;u = µ3;u + λ4;u,

from which (i) easily follows.
(ii) Since µ is type t, there exists (µ1, µ2, µ3, µ4) ∈ W (µ), where each µj is

type t. Thus, (µj)t = µj whence µj;u = (µj;t)u = 0 for each j. Assertion (ii) now
follows on applying (i).

By the preceeding lemma, the condition (νt)u = 0 is symmetric in t, u and it
occurs when (t, u) ∈ {(ac, s), (ac, dil), (ac, vN), (dil, vN)}, i.e. whenever Pν;tPν;u =
0 for every ν ∈ (Ad)

†
+.

Any µ ∈ A †
d with Wittstock decomposition µ = (µ1 − µ2) + i(µ3 − µ4) has

a corresponding Lebesgue decomposition

µ = µac + µs,

where
µac = (µ1;ac − µ2;ac) + i(µ3;ac − µ4;ac),

and similarly for µs and µs = µdil + µvN. More generally, for t ∈ Types, we set

µt := (µ1;t − µ2;t) + i(µ3;t − µ4;t).

We remark that Lemma 3.9(i) assures us that this is well-defined.
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3.2. GNS FORMULA. Let µ ∈ A †
d and let ~µ = (µk)

4
k=1 be a Wittstock decomposi-

tion of µ. Since |~µ| > µk, there exists a corresponding contractive co-embedding
Ek : H2

d(|~µ|)→ H2
d(µk) for k ∈ {1, 2, 3, 4}. Then, given a1, a2 ∈ Ad,

µk(a∗1 a2) = 〈I + N|~µ|, π|~µ|(a1)
∗Dkπ|~µ|(a2)(I + N|~µ|)〉; Dk := E∗k Ek.

It then follows that

(3.1) µ(a∗1 a2) = 〈I + N|~µ|, π|~µ|(a1)
∗T~µπ|~µ|(a2)(I + N|~µ|)〉,

where
T~µ := (D1 − D2) + i(D3 − D4)

is a |~µ|-Toeplitz operator, i.e.

π|~µ|(L∗k )T~µπ|~µ|(Lj) = δk,jT~µ.

4. ANALYTIC NC MEASURES

Set, A(0)
d = L1Ad + L2Ad + · · ·+ LdAd.

DEFINITION 4.1. We say that an NC measure, µ ∈ A †
d , is analytic if it anni-

hilates A(0)
d .

The following is an analogue of [13, Corollary 2, Chapter 4]. Compare also
with the structure of [24, Theorem 4.1], which applies to the quotient of the weak*
closure of Ad with respect to a weak*-closed two-sided ideal.

THEOREM 4.2. If µ ∈ A †
d is analytic, then each of µac, µs, µdil and µvN are also

analytic.

Proof. Let ~µ = (µ1, µ2, µ3, µ4) ∈ W (µ). As in Section 3.2, if λ := |~µ|, then

µ(Lα) = 〈I + Nλ, T~µΠα
λ(I + Nλ)〉λ, α ∈ Fd,

where
T~µ = (D1 − D2) + i(D3 − D4); Dk = E∗k Ek

and each Ek : H2
d(λ) → H2

d(µk) is the contractive co-embedding arising from
µk 6 |~µ|. By Proposition 2.5, Theorem 2.15 and Corollary 2.6, it further follows
that if t ∈ {ac, s, dil, vN}, then

µt(Lα) = 〈I + Nλ, T~µ;tΠ
α
λ(I + Nλ)〉, α ∈ Fd,

where T~µ;t = T~µPλ;t = Pλ;tT~µ. In particular, since µ|
A(0)

d
≡ 0, we can find a

sequence of NC polynomials (an)n in Ad such that an + Nλ → Pλ;t(I + Nλ). Then,
for any α 6= ∅,

0 = lim
n→∞

µ(Lαan) = 〈I + Nλ, T~µΠα
λPλ;t(I + Nλ)〉λ

= 〈I + Nλ, T~µPλ;tΠ
α
λ(I + Nλ)〉λ = µt(Lα).
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This proves that µt also annihilates A(0)
d for any t ∈ {ac, s, dil, vN}.

If µ ∈ A †
d is of Cuntz-type, meaning that it has a Wittstock decomposition

(µk)
4
k=1 whose corresponding total variation µ1 +µ2 +µ3 +µ4 is Cuntz-type, then

each µk is of Cuntz-type by Proposition 2.17.

LEMMA 4.3. If µ ∈ A †
d is Cuntz-type and analytic, then µ also annihilates Ad.

Proof. Let ~µ ∈ W (µ) and set λ := |~µ|. By hypothesis, λ is Cuntz. Since Πλ

is Cuntz, I + Nλ is the limit of a sequence of equivalence classes of an ∈ A(0)
d , as

follows from [15, Theorem 6.4].
With T~µ as in Section 3.2, we have

µ(I) = lim
n→∞
〈I + Nλ, T~µ (an + Nλ)〉 = lim

n→∞
µ(an) = 0.

REMARK 4.4. At this point, the proof of the classical F&M Riesz theorem,
as presented in [13, Chapter 4], is straightforward. Given any complex measure
µ obeying the above assumptions we have that∫

∂D

a(ζ)µs(dζ) = 0,

for any a in the disk algebra A(D). We then consider the complex measure

µ
(ζ)
s (dζ) := ζµs(dζ). This is again a complex singular measure that annihilates
A(D)(0) = { f ∈ A(D) : f (0) = 0}. By the above lemma µ also annihilates A(D).
In particular it annihilates 1, so that by construction∫

∂D

ζkµs(dζ) = 0; k ∈ {−1, 0, 1, 2, . . .}.

Proceeding inductively, we conclude that all moments of µs vanish so that µs ≡
0. In the NC setting, this argument breaks down for singular NC measures of
dilation-type (see Section 5), and thus we follow a different approach.

Given a ∈ Ad, note that x 7→ a∗xa is norm continuous and positive on
the algebra of bounded operators, and if x ∈ Ad, then a∗xa ∈ Ad by the semi-
Dirichlet property. Thus, x 7→ a∗xa is a continuous positive endomorphism of Ad.

LEMMA 4.5. Let a0 ∈ Ad and λ ∈ (Ad)
†
+. Define µ ∈ (Ad)

†
+ by setting µ(b) =

λ(a∗0ba0) for b ∈ Ad. If λ is absolutely continuous, then so is µ. If λ is von Neumann-
type, then so is µ.

Proof. It is an elementary exercise to produce an isometry V : H2
d(µ) →

H2
d(λ) satisfying

V(a + Nµ) = aa0 + Nλ, a ∈ Ad.

We see immediately that Ran V is a closed Πλ-invariant subspace of H2
d(λ) and

that Πλ|Ran V is unitarily equivalent to Πµ.
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Suppose that λ is absolutely continuous. Then every element of H2
d(λ) is a

weak* continuous vector. In particular, V(I + Nµ) is weak* continuous. For any
b ∈ Ad, we note that V∗πλ(b)V = πµ(b), and thus

µ(b) = 〈I + Nµ, πµ(b)(I + Nµ)〉 = 〈V(I + Nµ), πλ(b)V(I + Nµ)〉.

Therefore, µ is absolutely continuous.
Now suppose instead that λ is of von Neumann-type. Let Wµ and Wλ de-

note the weak* closures of πµ(Ad) and πλ(Ad), respectively. Clearly, Ran V is Wλ

invariant. As Πλ is of von Neumann-type, it follows that Wλ is a von Neumann
algebra, and thus Ran V is Πλ-reducing. In particular, Wλ|Ran V is a von Neu-
mann algebra. As Wλ|Ran V is unitarily equivalent to Wµ, we see that Πµ is of
von Neumann-type. Thus, µ is of von Neumann-type.

Note that X 7→ L∗j X is a contractive linear map on L (H2
d). As L∗j (Ad +

A∗d) ⊂ Ad + A∗d , it follows by continuity that b 7→ L∗j b is a contractive linear
endomorphism of Ad.

DEFINITION 4.6. Let λ ∈ A †
d and k = 1, 2, . . . , d. Define λ(k) ∈ Ad by

λ(k)(b) = λ(L∗k b), b ∈ Ad.

REMARK 4.7. If λ ∈ (Ad)
†
+ is of dilation-type, it can happen that λ(k) is not

of dilation-type and hence the classical proof as described in Remark 4.4 breaks
down. The next section, Section 5 provides an example of a dilation-type NC
measure, ξ ∈ (Ad)

†
+, so that Ξ[2] := ξ ◦ AdL∗2 ,L2 ∈ (Ad)

†
+ is weak* continuous

and such that ξ(2) = ξ(L∗2(·)) ∈ A †
d is analytic but not weak* continuous, see

Proposition 5.4.

PROPOSITION 4.8. Let µ ∈ A †
d and k ∈ {1, 2, . . . , d}. If µ is absolutely contin-

uous, then µ(k) is absolutely continuous. If µ is of von Neumann-type, then µ(k) is of
von Neumann-type.

Proof. Let t ∈ {ac, vN}, and let µ be of type t. First assume that µ is positive.
For each b ∈ Ad, set

φ1(b) =
1
2

µ((I + Lk)
∗b(I + Lk)), φ2(b) =

1
2

µ((I − Lk)
∗b(I − Lk)),

φ3(b) =
1
2

µ((I + iLk)
∗b(I + iLk)), and φ4(b) =

1
2

µ((I − iLk)
∗b(I − iLk)).

Then,

φ1(b)−φ2(b)+i(φ3(b)−φ4(b))=
1
2

µ(L∗k b + bLk)+
i
2

µ(−iL∗k b+ibLk)=µ(k)(b),

for all b ∈ Ad and so (φ1, φ2, φ3, φ4) ∈ W (µ(k)). Because µ is type t, it follows
from Lemma 4.5 that each φj is type t, and thus µ(k) is type t.
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Now consider the general case of µ ∈ A †
d . Since µ is type t, there exists a

(µ1, µ2, µ3, µ4) ∈ W (µ) such that each µj is of type t. It follows that µ
(k)
j is type

t for each j, k. Let (φj,`)
4
`=1 be a Wittstock decomposition of µj where each φj,` is

type t. Then

µ(k) = µ
(k)
1 − µ

(k)
2 + i(µ(k)

3 − µ
(k)
4 )

= φ1,1 − φ1,2 + i(φ1,3 − φ1,4)− (φ2,1 − φ2,2 + i(φ2,3 − φ2,4))

+ i(φ3,1 − φ3,2 + i(φ3,3 − φ3,4))− i(φ4,1 − φ4,2 + i(φ4,3 − φ4,4))

= (φ1,1 + φ2,2 + φ3,4 + φ4,3)− (φ1,2 + φ2,1 + φ3,3 + φ4,4)

+ i(φ1,3 + φ2,4 + φ3,1 + φ4,2)− i(φ4,1 + φ3,2 + φ2,3 + φ1,4).

As each φj,` is of type t, it follows that µ(k) has a Wittstock decomposition ~ψ such
that |~ψ| is of type t, and therefore µ(k) is of type t.

The main result of this section is the following analogue of the F&M Riesz
analytic measure theorem. It follows from this that if d > 2, an analytic NC
measure will be AC if and only if it has no dilation part. We demonstrate in
Proposition 5.4 that an analytic linear functional on Ad need not extend weak*
continuously to Td, in contrast to the classical result.

THEOREM 4.9 (NC F&M Riesz Theorem). Every analytic NC measure, µ ∈
A †

d , for d > 2, has vanishing von Neumann part.

Proof. By Theorem 4.2 and Lemma 4.3, if µ ∈ A †
d annihilates A(0)

d , then µvN

annihilates Ad. By Proposition 4.8, for any k ∈ {1, 2, . . . , d}, we see that µ
(k)
vN is of

von Neumann-type. Since µvN annihilates Ad, we have that µ
(k)
vN annihilates A(0)

d .

By Lemma 4.3 again, µ
(k)
vN annihilates Ad so that

0 = µ
(k)
vN(I) = µvN(L∗k ).

Proceeding inductively we obtain that

µvN(Lα∗) = 0,

for any α ∈ Fd and we conclude that µvN ≡ 0.

REMARK 4.10. An NC F&M Riesz theorem was previously obtained in
[3, Theorem A], by R. Clouâtre and the second two named authors of the present
paper, using different techniques. Both Theorem 4.9 and [3, Theorem A] disallow
the presence of von Neumann-type summands in their corresponding models of
analytic linear functionals on Ad, though what this means in these two cases is
different. Both papers find that analytic linear functionals on Ad need not have
weak* continuous extensions to the weak* closure, Td, of Ad, as we detail in the
next section.
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We also remark that the results of [3] and the current paper describe the
obstruction to weak* continuous extension in different ways.

To compare the two sets of results, fix λ ∈ A †
d and suppose λ(Ad) = {0},

as this is the definition of analyticity used in [3]. There, the free disk system is
viewed as embedded, completely isometrically, inside the Cuntz algebra, Od, via
the quotient map q : Ed → Od whose kernel is the compact operators. Let Λ
be an extension of λ to Od. In [3, Theorem A], it is proved that there exists a
∗-representation π : Od → L (H), a π(Od)-cyclic vector h1 ∈ H and a vector
h2 ∈ H such that

Λ(x) = 〈h2, π(x)h1〉, x ∈ Od,

‖Λ‖ = ‖h1‖2 = ‖h2‖2, and the restriction of π(L) := (π(L1), . . . , π(Ld)) to the
norm closure of π(Ad)h1 is unitarily equivalent to L. The triple (π, h1, h2) is re-
ferred to as a “Riesz representation” of the functional Λ. The particular form of
the representation implies that π(L) has no von Neumann-type summand, as is
noted in [3, Section 4]. We note that

λ(b) = 〈h2, π(q(b))h1〉, b ∈ Ad.

The representation π and the vector h1 are such that |Λ̂|( f ) = 〈h1, π̂( f )h1〉, where
Λ̂ and π̂ denote their weak* continuous extensions to the second dual of Od and
|Λ̂| is the “radial” part of the polar decomposition a normal linear functional. In
the present paper, we find that there exists a Wittstock decomposition~λ of λ and
a Π|~λ|-Toeplitz operator T such that

λ(a∗2 a1) = 〈I + N|~λ|, π|~λ|(a2)
∗Tπ|~λ|(a1)(I + N|~λ|)〉, a1, a2 ∈ Ad,

with Π|~λ| = (π|~λ|(L1), . . . , π|~λ|(Ld)) having no von Neumann-type summand.

One will recall that we assume in Theorem 4.9 that λ ∈ A †
d annihilates A(0)

d , not
Ad. However, this is equivalent to the analyticity assumptions of [3, Theorem A],
since a vector functional applied to a ∗-representation of Od annihilates A(0)

d if
and only if it annihilates Ad; see Lemma 4.3.

As another point of contrast, our total variation |~λ| = λ1 + λ2 + λ3 + λ4 is
not uniquely determined by λ. From the polar decomposition Λ̂(x) = |Λ̂|(v∗x),
we may readily produce a Wittstock decomposition~ν of λ, but it is not generally
of the types that have proven useful in this paper, nor of course is |~ν| equal to
|Λ̂|. We also remark that, unless the GNS row isometry of |~λ| is Cuntz, |~λ| need
not have a unique positive Kreı̆n–Arveson extension to Ed; see Proposition 4.11
below.

For yet another point of contrast, it follows from [3, Corollary 5.2] that λ
can be analytic and admit a weak* continuous extension to Ad, with π(L) hav-
ing a dilation-type summand. In the representation of this paper, λ admits a
weak* continuous extension to Td precisely when Π|~λ| is absolutely continuous

(for some ~λ ∈ W (λ)). Despite these differences, we can collect some necessary
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and sufficient conditions for the absolute continuity of an analytic λ. By com-
bining Proposition 3.6, Lemma 3.2 and [3, Theorem B], we see that the following
conditions are equivalent, where we suppose λ ∈ A †

d satisfies λ(A(0)
d ) = {0}:

(i) λ extends weak* continuously to Td;
(ii) there exists a~λ ∈ W (λ) such that |~λ| is absolutely continuous;

(iii) there exist f , g ∈ H2
d such that λ(b) = 〈 f , bg〉, b ∈ Ad;

(iv) the weak* continuous extension of λ to the second dual of Ad annihilates
{â∗q− qâ∗ : a ∈ Ad}, where q is the free semi-group structure projection of the
second dual of Ad.

It should be noted that the equivalences (i)⇔ (ii)⇔ (iii) do not require an-
alyticity of λ. For (iv), we remark that λ extends weak* continuously to Td if and
only if b 7→ λ(b)− λ(I)m(b) does, and so the different conditions for analyticity
from these two papers do not present any difficulties here.

PROPOSITION 4.11. If λ ∈ (Ad)
†
+ is Cuntz-type, then λ has a unique positive

Kreı̆n–Arveson extension Λ to the Cuntz–Toeplitz algebra, Ed.

Proof. Let Λ : Ed → C be any Kreı̆n–Arveson (positive) extension of λ. Ap-
ply the GNS construction to (Λ, Ed) to obtain a GNS Hilbert space L2(Λ) and a
∗-representation πΛ satisfying

Λ(x) = 〈I + NΛ, πΛ(x)(I + NΛ)〉; x ∈ Ed.

By construction, I + NΛ is cyclic for the GNS row isometry ΠΛ.
For any a ∈ Ad,

‖a + Nλ‖2 = λ(a∗a) = Λ(a∗a) = ‖a + NΛ‖2.

Thus, there is an isometry V : H2
d(λ) → L2(Λ) determined by V(a + Nλ) =

a + NΛ, a ∈ Ad. Plainly, VΠλ;k = ΠΛ;kV for each k.
Next, we claim that VH2

d(λ) is ΠΛ-reducing and ΠΛ|VH2
d(λ)

is unitarily

equivalent to Πλ. Indeed, Πλ is Cuntz, and so any given element x ∈ H2
d(λ)

is the norm-limit of vectors xn + Nλ, where xn ∈ A(0)
d , as shown in [15, Theo-

rem 6.4]. Hence, for any z ∈ Ed and k = 1, 2, . . . , d,

〈z + NΛ, Π∗Λ;kVx〉 = lim
n→∞
〈z + Nλ, Π∗Λ;kV(xn + Nλ)〉 = lim

n→∞
〈Lkz + NΛ, xn + NΛ〉

= lim
n→∞
〈z + NΛ, (L∗k xn) + NΛ〉

= lim
n→∞
〈z + NΛ, VΠ∗λ;k(xn + Nλ)〉 = 〈z + NΛ, VΠ∗λ;kx〉.

That is, Π∗Λ;kV = VΠ∗λ;k for each k, whence Vπλ(y) = πΛ(y)V for each y ∈ Ed.
Finally, note that I + NΛ = V(I + Nλ). Since πΛ(Ed)(I + NΛ) is dense in

L2(Λ) and πλ(Ed)(I + Nλ) is dense in H2
d(λ), it follows that VH2

d(λ) = L2(Λ),
showing that V is in fact a surjective isometry. Therefore, for any z ∈ Ed,

Λ(z) = 〈I + Nλ, πλ(z)(I + Nλ)〉H2
d(λ)

.
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5. A DILATION-TYPE EXAMPLE

Recall that there is, in essence, a bijection between positive finite regular
Borel measures on the circle and the set of Herglotz functions in the disk, i.e. ana-
lytic functions in the complex unit disk with positive semi-definite real part. This
correspondence extends to positive NC measures and non-commutative (left)
Herglotz functions in Bd

N, µ ↔ Hµ; see [14, 15]. A fractional linear transfor-
mation, the so-called Cayley transform, then implements a bijection between the
left NC Schur class of contractive NC functions in Bd

N and the left NC Herglotz
class. If µ ∈ (Ad)

†
+ is the (essentially) unique NC measure corresponding to the

contractive NC function b ∈ [H∞
d ]1, we write µ = µb, and µb is called the NC

Clark measure of b; see [16, Section 3] for details.
By [16, Corollary 3], if b ∈ [H∞

d ]1 is inner, i.e. an isometric left multiplier,
then its NC Clark measure is singular, so that its GNS representation Πb := Πµb

is a Cuntz row isometry which can be decomposed as the direct sum of a dilation-
type row isometry and a von Neumann-type row isometry [17].

Classically, any sum of Dirac point masses is singular with respect to
Lebesgue measure on the circle. Motivated by this, consider the positive linear
functional ξ ∈ (A †

2 )+ defined by

ξ(Lα) =

{
0 2 ∈ α,
1 2 /∈ α,

α ∈ F2,

and ξ(I) = 1. Here, 2 /∈ α is used to indicate that α does not contain the “letter” 2.
One may think of ξ as a “Dirac point mass” at the point (1, 0) ∈ ∂B2

1, where B2
1 is

the first level of the NC unit ball B2
N. Setting Z := (1, 0), we note that ξ(Lα) = Zα

for all words α. Since Z is a row contraction, it follows from results of Popescu
that the map ξ extends to a positive linear functional on A2 [28, Theorem 2.1].

Before continuing, we remark that the example of this section is related to
[3, Example 2], which is itself related to atomic representations of [11]. This ex-
ample is also a special case of [10, Example 5.1]. However, we here choose to
start from the linear functional, ξ, rather than the functional’s representation as a
vector functional on a representation, to emphasize the NC function theory asso-
ciated with the NC measure.

CLAIM 5.1. L2 + Nξ is a wandering vector for Πξ and Πξ has vanishing
von Neumann part.

Proof. Note that any wandering vector for Πξ is always a weak* continuous
vector. Indeed, if w is wandering for Πξ , then

ξw(Lα) = 〈w, Πα
ξ w〉H2

2(ξ)
= ‖w‖2

H2
2(ξ)

δα,∅ = ‖w‖2m(Lα),

is a constant multiple of NC Lebesgue measure, and hence is absolutely continu-
ous.
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To see that L2 + Nξ is wandering for Πξ , note that

〈L2 + Nξ , Πα
ξ (L2 + Nξ)〉 = ξ(L∗2 LαL2) = δα,∅.

However L2 + Nξ is also ∗-cyclic for Πξ since πξ(L2)
∗(L2 + Nξ) = I + Nξ , which

is cyclic for Πξ . This means that the smallest reducing subspace that contains
the weak* continuous vector L2 + Nξ is all of H2

2(ξ), so that H2
2(ξvN) = {0} by

Lemma 2.8.

In what follows, if ω = i1 · · · in ∈ Fd, ik ∈ {1, . . . , d}, is any word, then we
set ωt := in · · · i1. This letter reversal map is an involution on the free monoid.

CLAIM 5.2. The NC measure ξ is the NC Clark measure of bξ(Z) = Z1, Z ∈ B2
N;

a left-inner NC function. Thus, Πξ is purely of dilation-type.

Proof. Given Z ∈ B2
n, let Z ⊗ L∗ := Z1 ⊗ L∗1 + · · · + Zd ⊗ L∗d . The (left)

Herglotz function, Hξ of ξ is

Hξ(Z)=(idn ⊗ ξ)((In ⊗ IH2
d
+ Z⊗ L∗)(In ⊗ IH2

d
− Z⊗ L∗)−1)

=2 ∑
α

Zαξ(Lαt
)∗− In =2

∞

∑
k=0

Zk
1− In =2(I−Z1)

−1− In =(I+Z1)(I−Z1)
−1.

It follows that the Cayley transform,

bξ(Z) := (Hξ(Z)− I)(Hξ(Z) + I)−1,

of Hξ is bξ(Z) = Z1, which is inner. By [16, Corollary 3], Πξ is the direct sum of
a dilation-type and a von Neumann-type row isometry and the previous claim
shows that the von Neumann part vanishes.

CLAIM 5.3. For any word α such that 2 ∈ α, the vector Lα + Nξ is weak* contin-
uous. In particular, the closed span of {Lα + Nξ : 2 ∈ α} is contained in WC(Πξ).

The proof below uses the concept of the NC Herglotz space of NC Cauchy
transforms with respect to a positive NC measure, see [16, Section 3.8, Lemma 5.2].
The NC Herglotz space, H +(Hµ) of any positive NC measure, µ ∈ (Ad)

†
+, is

a non-commutative reproducing kernel Hilbert space (NC-RKHS) of NC func-
tions in the NC unit row-ball [14, 15, 16, 17]. The details of this construction will
not be relevant or needed for our purposes here. It will suffice to remark that if
µ ∈ (Ad)

†
+ is a positive NC measure, then there is an onto and isometric linear

map, Cµ : H2
d(µ)→H +(Hµ), the free Cauchy transform.

Proof of Claim 5.3. Given any β ∈ F2 so that 2 ∈ β, the vector Lβ + Nξ is a
WC vector if and only if

ξβ(Lα) := 〈Lβ + Nξ , Πα
ξ (Lβ + Nξ)〉ξ = ξ(Lβ∗LαLβ),
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is an absolutely continuous (weak* continuous) NC measure. The free Cauchy
transform of I + Nξβ

∈ H2
2(ξβ), is then,

h(Z) := ∑
α∈F2

Zαξ(Lβ∗Lα∗Lβ).

The Taylor coefficients (hα)α of h vanish if α, β are not comparable. Thus, hα 6= 0
if and only if α = βγ or if β = αγ. Since β ∈ F2 is fixed, there are only finitely
many words α such that β = αγ. On the other hand if α = βγ, then

hα = hβγ = ξ(Lβ∗Lγ∗) = 0,

since 2 ∈ β. This proves that h has at most finitely many non-zero Taylor co-
efficients and so h ∈ C{z1, z2} ⊆ H2

2 and I + Nξβ
is a weak* continuous vector

for Πξβ
. Indeed, since Cξβ

(I + Nξβ
) ∈ H2

2, I + Nξβ
is a weak* analytic vector for

ξβ in the sense of [17, Definition 8.2] and is hence a weak* continuous vector by
[17, Corollary 8.3].

Since this vector is cyclic and WC(ξβ) must be Πξβ
-invariant, we see that

WC(Πξβ
) = H2

2(ξβ). Therefore, ξβ is weak* continuous and Lβ + Nξ is a weak*
continuous vector for Πξ .

PROPOSITION 5.4. The positive NC measure defined by Ξ(Lα) := ξ(L∗2 Lα L2)
is equal to NC Lebesgue measure, m, and hence is weak* continuous. The NC measure
γ := ξ(2)∗ ∈ A †

2 , i.e. c 7→ ξ(cL2), annihilates the NC disk algebra A2, but is not weak*
continuous.

Proof. The vector L2 + Nξ is a unit wandering vector for the dilation-type
positive NC measure ξ. Hence, Ξ(Lα) = δα,∅ = m(Lα). Consider the sequence
(Lk

1)
∗L∗2 ∈ A2. This converges weak* to 0, and yet,

γ(Lk∗
1 L∗2) = ξ(Lk

1) = 1,

which of course cannot converge to 0.
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