
Asymptotics of smoothed Wasserstein distances
in the small noise regime

Yunzi Ding1 Jonathan Niles-Weed2

1Courant Institute of Mathematical Sciences, NYU
2Courant Institute of Mathematical Sciences and the Center for Data Science, NYU

yunziding@gmail.com
jnw@cims.nyu.edu

Abstract

We study the behavior of the Wasserstein-2 distance between discrete measures
µ and ⌫ in Rd when both measures are smoothed by small amounts of Gaussian
noise. This procedure, known as Gaussian-smoothed optimal transport, has re-
cently attracted attention as a statistically attractive alternative to the unregularized
Wasserstein distance. We give precise bounds on the approximation properties of
this proposal in the small noise regime, and establish the existence of a phase
transition: we show that, if the optimal transport plan from µ to ⌫ is unique and a
perfect matching, there exists a critical threshold such that the difference between
W2(µ, ⌫) and the Gaussian-smoothed OT distance W2(µ ⇤ N�, ⌫ ⇤ N�) scales
like exp(�c/�

2) for � below the threshold, and scales like � above it. These
results establish that for � sufficiently small, the smoothed Wasserstein distance
approximates the unregularized distance exponentially well.

1 Introduction: optimal transport

Optimal Transport (OT) has seen a recent surge of applications in machine learning, in areas such as
generative modeling [2, 16], image processing [13, 27, 31], and domain adaptation [7, 8]. A natural
statistical question raised by these applications is to estimate the OT distances with samples. These
distances, known as the Wasserstein distances, are defined by

W
p
p (µ, ⌫) = inf

⇡2⇧(µ,⌫)

Z
kx� ykpd⇡(x, y) ,

where ⇧(µ, ⌫) denotes the set of joint measures with marginals µ and ⌫, known as transport plans.
It is well known that plug-in estimators for this quantity, obtained by replacing µ and ⌫ with em-
pirical measures consisting of i.i.d. samples, have performance in high dimensions, with rates of
convergence typically of order n�2/d [3, 11, 12, 15, 22] when d > 2p. Moreover, minimax lower
bounds show that this curse of dimensionality is unavoidable in general [25, 32].

The existence of the curse of dimensionality for OT has led to a series of proposals to obtain
better rates of convergence by imposing additional structural assumptions—such as latent low-
dimensionality [25] or smoothness [24, 33]—or by replacing Wp by a better-behaved surrogate,
such as an entropy-regularized version with much better statistical and computational proper-
ties [1, 9, 17, 23, 28].

A particularly intriguing option, developed by [18], consists in smoothing the Wasserstein distance
by adding Gaussian noise. The following result shows the statistical benefits of this approach.
Proposition 1.1 ([21]). For d > 1 and � > 0, denote by N� the centered Gaussian measure on Rd

with covariance �2
Id. For any compactly supported probability measure µ in Rd, let x1, x2, . . . , xn
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be i.i.d. samples from µ, and define the empirical measure

µ̂n =
1

n

nX

i=1

�(xi).

Then there exists a constant c = c(µ,�, d) such that

EW2(µ̂n ⇤N�, µ ⇤N�)  cn
�1/2

.

[18] call this framework Gaussian-smoothed optimal transport (GOT), and follow up work has
shown that it possesses significant statistical benefits, with fast rates of convergence and clean limit
laws [19, 20, 38].

To leverage the beneficial properties of the GOT framework, it is necessary to understand how well
the smoothed distance W2(µ⇤N�, ⌫⇤N�) approximates the standard Wasserstein distance W2(µ, ⌫).
An application of the triangle inequality [18, Lemma 1] shows that

|W2(µ, ⌫)�W2(µ ⇤N�, ⌫ ⇤N�)| . � . (1)

Indeed, the triangle inequality implies |W2(µ⇤N�, ⌫⇤N�)�W2(µ, ⌫)|  W2(µ, µ⇤N�)+W2(⌫, ⌫⇤
N�) and the latter two terms are of order at most �. In general, this upper bound is unimprovable,
as we show below. On the other hand, it can also be very loose: if µ is a translation of ⌫, then
W2(µ ⇤N�, ⌫ ⇤N�) = W2(µ, ⌫) for all � � 0. These examples raise a natural question: how well
does W2(µ ⇤N�, ⌫ ⇤N�) approximate W2(µ, ⌫) when � is small, and how does the answer to this
question depend on the measures µ and ⌫?

The main goal if this paper is to give a sharp answer to this question for finitely supported measures.
We focus on the finite support case for two reasons. First, when µ and ⌫ are finitely supported,
µ ⇤N� and ⌫ ⇤N� are each finite mixtures of Gaussians, and the behavior of Wasserstein distances
for such measures is a topic of active research [6, 10]. Second, as our results indicate, the behavior
of this quantity for finitely supported measures is unexpectedly rich, with a sharp dichotomy in rates
depending on the structure of the optimal transport plan between µ and ⌫: we show that when the
unique optimal transport plan between µ and ⌫ is a perfect matching, then there exist positive �⇤
and c such that

0  W2(µ, ⌫)�W2(µ ⇤N�, ⌫ ⇤N�) . e
�c/�2

8� 2 (0,�⇤) .

In other words, for sufficiently small �, the GOT distance approximates the standard W2 distance
exponentially well, substantially sharpening (1). More strikingly, we establish the existence of a
phase transition: for � < �⇤, the gap is exponentially small, whereas for � > �⇤, the gap scales
linearly. By contrast, if the optimal transport plan between µ and ⌫ is not unique or is not a perfect
matching, then no phase transition appears: the upper bound of (1) is tight even in a neighborhood
of � = 0.

Our work provides a precise understanding on how GOT resembles vanilla OT in the vanishing noise
(� # 0) regime. These results complement those recently obtained by [5] in the large noise regime,
who show that if µ and ⌫ have n matching moments, n � 1, then W2(µ ⇤N�, ⌫ ⇤N�) = O(��n)
as � ! 1. Along with results in [5], our work completes the limiting picture of the Euclidean
heat semigroup acting on atomic measures under the Wasserstein distance. All the relevant rates are
presented in Table 1.

We note that our work leaves open the question of characterizing the rates for non-atomic measures.
It is possible to show that, for general measures, there are measures exhibiting polynomial rates in-
termediate between � and e

�c/�2

; however, these rates appear to depend delicately on the geometry
of the measures and their support. Giving a full characterization of the rate for general probability
measures is an attractive open question.

2 Preliminaries and main results

We are concerned with the optimal transport problem between discrete measures

µ =
kX

i=1

↵i�(xi), ⌫ =
X̀

j=1

�j�(yj)
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Regime Condition lim(W2(µ ⇤N�, ⌫ ⇤N�)) Rate Reference
� # 0 Unique perfect matching W2(µ, ⌫) e

�c/�2

Theorem 4.1
� # 0 No unique perfect matching W2(µ, ⌫) � Theorem 4.4
� " 1 µ and ⌫ agree up to nth moment 0 �

�n [5]

Table 1: Limiting behavior of W2(µ ⇤N�, ⌫ ⇤N�) for atomic measures µ and ⌫.

in the space Rd, equipped with the squared Euclidean cost function c(x, y) = kx � yk2. Here
{↵i}ki=1 and {�j}`j=1 are positive numbers such that

Pk
i=1 ↵i =

P`
j=1 �j = 1, and the sets X :=

{xi} and Y := {yj} consist of distinct elements of Rd. (Note that we do not require that X \Y = ;.)
Explicitly, we may write

W
2
2 (µ, ⌫) = inf

⇡2⇧(µ,⌫)

Z
kx� yk2d⇡(x, y) = min

⇡2⇧(µ,⌫)

X

i2[k],j2[`]

kxi � yjk2⇡(xi, yj) . (2)

We call a minimizer in (2) an optimal coupling.

We shall show that the behavior of the quantity W2(µ ⇤N�, ⌫ ⇤N�) as � ! 0 depends strongly on
the structure of the optimal couplings between µ and ⌫. We rely on the following definition.
Definition 2.1. The measures µ and ⌫ possess a unique perfect matching if there exists a unique
solution ⇡

⇤ to (2), and if the support of this unique solution is a perfect matching, i.e., the set {x 2
X , y 2 Y : ⇡⇤(x, y) > 0} is a bijection between X and Y .

Our main results (Theorems 4.1 and 5.1) show that the GOT distance approximates the Wasser-
stein distance exponentially well for small � if and only if the measures possess a unique perfect
matching. To obtain these bounds, we show that if � is small and µ and ⌫ possess a unique perfect
matching, then the optimal plan for µ and ⌫ is also approximately optimal, in an appropriate sense,
for the convolved measures µ ⇤ N� and ⌫ ⇤ N� . By contrast, if µ and ⌫ do not possess a unique
perfect matching, then we explicitly exhibit an alternate coupling between µ ⇤N� and ⌫ ⇤N� with
significantly smaller cost, therefore showing that W2(µ ⇤N�, ⌫ ⇤N�) is smaller than W2(µ, ⌫) by
an amount that scales linearly in �.

To identify the range of � for which the exponential error bound holds, we introduce a robust version
of optimality for ⇡⇤ in the perfect matching case. This definition, strong cyclical monotonicity, ex-
tends the classical cyclical monotonicity criterion from optimal transport [see, e.g. 37], and captures
how sensitive the optimal plan is to perturbations of the source and target measure. We show that
this notion is closely related to the strong convexity and smoothness of the dual optimal solutions to
the optimal transport problem, known as “potentials.” The strong convexity of these potentials has
previously been explored in computational and statistical contexts [26, 36], but to our knowledge its
connection to the stability of discrete optimal tranport plans is new.

3 Strong cyclical monotonicity

In this section, we consider transport plans in the form of a perfect matching between {xi} and {yi}.
By relabeling the points, we may assume without loss of generality that the optimal transport plan
between µ and ⌫ is the matching given by

� = {(x1, y1), (x2, y2), . . . , (xk, yk)} .

In this section, we develop a robust notion of optimality for �. This notion is based on a strength-
ening of the classic optimality condition for optimal transport, based on cyclical monotonicity. We
recall the following definition.
Definition 3.1 (See, e.g., 30). A set S ✓ Rd ⇥ Rd is cyclically monotone if for any
(a1, b1), . . . , (an, bn) 2 S, we have

nX

i=1

kai � bik2 
nX

i=1

kai � bi+1k2 ,

where we set bn+1 := b1.

3



The significance of this notion is the following fundamental result.
Theorem 3.2 (See 37, Theorem 5.10). If ⇡ 2 ⇧(µ, ⌫) has cyclically monotone support, then it is
an optimal transport plan between µ and ⌫.

Our main definition strengthens this characterization by requiring the inequalities in the definition
of cyclical monotonicity to be strict.
Definition 3.3. We say f : [k] ⇥ [k] ! R�0 is a positive residual function on [k], if f(i, i) = 0,
f(i, j) > 0 for i 6= j, and f(i, j) = f(j, i) for all i, j 2 [k].
Definition 3.4 (Strong cyclical monotonicity). For a positive residual function f on [k], we say that
� is f -strongly cyclically monotone, if for any 1  n  k and distinct ⌧(1), ⌧(2), . . . , ⌧(n) 2 [k]
(with the convention ⌧(n+ 1) = ⌧(1)), we have

nX

i=1

kx⌧(i) � y⌧(i)k2 
nX

i=1

kx⌧(i) � y⌧(i+1)k2 �
nX

i=1

f(⌧(i), ⌧(i+ 1)),

or equivalently,
nX

i=1

hx⌧(i), y⌧(i) � y⌧(i+1)i �
nX

i=1

f(⌧(i), ⌧(i+ 1)).

Strong cyclical monotonicity indicates that the optimal plan with support � is superior to any other
plan by a positive margin in its transport cost. The importance of Definition 3.4 is that is equivalent
to robustness of the optimality of � under small perturbations of the points {xi} and {yi}. To make
this connection precise, we make the following definition.
Definition 3.5. For ✏ � 0, we say � is ✏-robust, if for any distinct ⌧(1), ⌧(2), . . . , ⌧(n) 2 [k], and
any ↵⌧(1),↵⌧(2), . . . ,↵⌧(n) 2 Rd such that

max
i

k↵⌧(i)k  ✏,

there holds
nX

i=1

kx⌧(i) � y⌧(i)k2 
nX

i=1

k(x⌧(i) + ↵⌧(i))� (y⌧(i+1) + ↵⌧(i+1))k2.

We write
R(�) := sup {✏ � 0 : � is ✏-robust} .

The quantity R(�), which we call “robustness of optimality,” captures the behavior of the optimal
plan when the supports of µ and ⌫ are slightly perturbed. As the following proposition indicates,
robustness in this sense is equivalent to strong cyclical monotonicity.
Proposition 3.6. � is strongly cyclically monotone if and only if R(�) > 0.

Proposition 3.6 may be viewed as a robust analogue to Theorem 3.2—if ⇡ 2 ⇧(µ, ⌫) has strong
cyclically monotone support, then it is a robustly optimal transport plan between µ and ⌫, in the
sense that it remains an optimal plan even when µ and ⌫ are corrupted by noise. As we establish in
Section 4, this observation is central to the analysis of GOT.

3.1 Implementability and explicit bounds on R(�)

Despite the mathematical simplicity of Definition 3.4, it is not clear how to verify it for a particular
set �, nor how to establish that this property holds for an optimal plan between µ and ⌫. To this
end, we propose another condition, strong implementability, which is equivalent to strong cyclical
monotonicity but is more amenable to analysis. We also show that both conditions are equivalent to
µ and ⌫ possessing a unique perfect matching.

[29] introduced the notion implementability and established it as an equivalent condition of cyclical
monotonicity. In parallel to the results in [29], we also introduce the following stronger condition of
implementability.
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Definition 3.7 (Strong implementability). For a positive residual function f on [k], we say that � is
f -strongly implementable, if there exists a potential function ', such that for any i, j 2 [k], we have

hxi, yi � yji � '(yi)� '(yj) + f(i, j).

Analogous to the equivalence result in [29], we show that strong cyclical monotonicity and strong
implementability are both equivalent to the uniqueness and optimality of �.
Proposition 3.8. The following three statements are equivalent:

(i) � is f -strongly cyclically monotone for some f ;

(ii) � is f -strongly implementable;

(iii) � is the unique optimal transport plan from {xi} to {yi}.

Remark 3.9. We can imply from the direction (i) to (iii) of Proposition 3.8 that, if the directed
bipartite graph with vertex set {x1, x2, . . . , xk, y1, y2, . . . , yk} and arcs between xi and yj with
weight kxi � yjk2 does not possess an alternating cycle of zero total cost, then � is the unique
optimal transport plan from {xi} to {yi}. One may use this sufficient condition to verify uniqueness
of an optimal transport plan � in practice.

The equivalence in Proposition 3.8 holds for any positive residual function f ; however, in the context
of optimal transport with the squared Euclidean cost, it is most natural to focus on the quadratic case.
The positive residual function constructed in the equivalence between (iii) and (i) in Proposition 3.8
is of the form f(i, j) = �

2 kyi � yjk2 for some � > 0, in which case the implementability condition
reads

hxi, yi � yji � '(yi)� '(yj) +
�

2
kyi � yjk2.

Quadratic residual functions are closely connected to convex analysis and to the theory of optimal
transport. This condition is equivalent to the existence of a �-strongly convex potential ' satisfying
r'(yi) = xi for all i 2 [k] [35], or, equivalently, the existence of a Lipschitz Brenier map from µ

to ⌫ [4]. The regularity of Brenier maps is a deep question in analysis [see, e.g. 14]. Proposition 3.8
establishes that, in the finite-support case, this question is equivalent to the uniqueness of the optimal
transport plan for µ and ⌫.

More generally, we have the following theorem characterizing the properties of strongly imple-
mentable plans with residual functions of quadratic type.
Theorem 3.10. The following conditions are equivalent:

(i) For some 0  ↵ < �, there exists a potential function ' : Rd ! Rd which is ↵-strongly
convex and �-smooth, such that xi = r'(yi) for all i 2 [k].

(ii) � is strongly implementable for

f(i, j) :=
1

2(� � ↵)

�
kxi � xjk2 + ↵�kyi � yjk2 � 2↵hyi � yj , xi � xji

�
, (3)

or equivalently, there exists {'̃(yi)}ki=1 ⇢ Rd, such that for all i, j 2 [k] (i 6= j),

hxi, yi � yji � '̃(yi)� '̃(yj)

+
1

2(� � ↵)

�
kxi � xjk2 + ↵�kyi � yjk2 � 2↵hyi � yj , xi � xji

� (4)

Proof. This is a direct application of Theorem 4 in [35]. The condition (i) in Theorem 3.10 is equiv-
alent to the set {(yi, xi,'(yi))} being F↵,�-interpolable in Definition 2 of [35], and the condition
(ii) is equivalent to equation (4) in Theorem 4 of [35].

Theorem 3.10 also formally encompasses the choice � = +1 when ' is strongly convex but not
smooth, in which case (3) reads

f(i, j) :=
↵

2
kyi � yjk2 , (5)

which recovers the positive residual function used in the proof of Proposition 3.6.
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Remark 3.11. We should emphasize that the f defined in Theorem 3.10 is indeed a positive residual
function given ↵ < �, since Cauchy-Schwartz gives

2↵hyi � yj , xi � xji  kxi � xjk2 + ↵
2kyi � yjk2 < kxi � xjk2 + ↵�kyi � yjk2.

As a direct consequence of the direction (ii) to (i) in Theorem 3.10, if � is strongly implementable
for a positive residual function f which is quadratic in yi � yj and xi � xj , there exists a smooth
and strongly convex potential function verifying implementability.
Corollary 3.12. Suppose � is strongly implementable for

f(i, j) =
1

2

�
�xxkxi � xjk2 + �yykyi � yjk2 � 2�xyhyi � yj , xi � xji

�

where �xx,�xy and �yy are nonnegative numbers which satisfy �
2
xy + �xy = �xx�yy . Then there

exists a potential function ' : Rd ! Rd which is �xy

�xx
-strongly convex and �yy

�xy
-smooth, such that

xi = r'(yi) for all i 2 [k].

By the Smith–Knott optimality criterion for optimal transport [34], the conclusion that xi = r'(yi)
for all i 2 [k] is equivalent to the potential function ' solving the following dual version of (2):

inf
�

kX

i=1

↵i�
⇤(xi) +

X̀

j=1

�j�(yj) , (6)

where �
⇤ denotes the Legendre conjugate.

Finally, we show that the above characterizations give rise to lower bounds on R(�), which are easy
to compute in O(k2) time. The following bound gives a quantitative link between robustness of
optimality and the residual function f .
Proposition 3.13. Suppose � is strongly implementable for a positive residual function f . Then �
is ✏-robust for

✏  1

2
inf
i 6=j

f(i, j)

kxi � xjk+ kyi � yjk
. (7)

This implies that

R(�) � 1

2
inf
i 6=j

f(i, j)

kxi � xjk+ kyi � yjk
.

By combining this bound with Theorem 3.10, we obtain a simple lower bound when f is of quadratic
type.
Proposition 3.14. When the equivalence in Theorem 3.10 holds, � is ✏-robust for

✏  1

2
inf
i 6=j

max
n

1
� kxi � xjk2,↵kyi � yjk2

o

kxi � xjk+ kyi � yjk
. (8)

This implies that

R(�) � 1

2
inf
i 6=j

max
n

1
� kxi � xjk2,↵kyi � yjk2

o

kxi � xjk+ kyi � yjk
.

Remark 3.15. When condition (i) in Theorem 3.10 holds, ↵-strong convexity and �-smoothness
implies

1

�
kxi � xjk  kyi � yjk  1

↵
kxi � xjk.

Thus the condition (8) may be replaced by the bound

✏  1

2
inf
i 6=j

max

⇢
↵

1 + �
kxi � xjk,

↵

�(1 + ↵)
kyi � yjk

�
, (9)

which is more interpretable. We should emphasize that, to check the ✏-robustness of T with either (8)
or (9) requires prior knowledge on the parameters ↵ and �, which are inherent to the optimal
transport plan �.
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4 Exponential rates for unique perfect matchings

Our main results show that the robustness of optimality R(�) controls the gap between W2(µ, ⌫)
and W2(µ ⇤N�, ⌫ ⇤N�).
Theorem 4.1. If �⇤ = R(�) > 0, then for � 2 (0,�⇤),

W2(µ, ⌫)�W2(µ ⇤N�, ⌫ ⇤N�) .
p
�⇤�e

��2
⇤/4�

2

.

The proof depends on the following simple lemma, which shows that robustness to optimality im-
plies that the Wasserstein distance is unchanged when µ and ⌫ are corrupted by small noise.
Lemma 4.2. If �⇤ = R(�) > 0, then for any measure Q in Rd supported on B(0,�⇤),

W2(µ, ⌫) = W2(µ ⇤Q, ⌫ ⇤Q).

Proofs of these results appear in the supplementary material.

In the regime where � does not exceed R(�), the above theorem tells that the GOT distance is an
excellent approximation of the OT distance. Our second main result is a converse to that statement,
showing that if � goes beyond R(�), the loss W2(µ, ⌫) � W2(µ ⇤ N�, ⌫ ⇤ N�) is bounded below
by a linear function of �. We start with the following proposition, which quantifies a “violation of
cyclical monotonicity” under possibly large perturbations in the sources and targets.
Proposition 4.3. If � is an optimal transport plan, for any M � 0, denote

G(M) := sup

(
nX

i=1

kx⌧(i) � y⌧(i)k2 �
nX

i=1

k(x⌧(i) + ↵⌧(i))� (y⌧(i+1) + ↵⌧(i+1))k2 : k↵⌧(i)k  M

)

Then G(M) is a concave function of M for M 2 [0,+1).

Note that G(M) vanishes for M < �⇤. The next theorem shows that as long as G(M) is not
negligible for M & �⇤, the approximation loss for � � �⇤ is linear in �.
Theorem 4.4. If �⇤ = R(�) > 0, then

W
2
2 (µ, ⌫)�W

2
2 (µ ⇤N�, ⌫ ⇤N�) & sup

M>�⇤

e
�M2/�2

G(M).

Here G(M) is defined as in Proposition 4.3. In particular, if G(3�⇤) � c0�⇤ for an absolute
constant c0 > 0, then there exists a constant C = C(c0) > 0 such that for � 2 (0, 2�⇤),

W
2
2 (µ, ⌫)�W

2
2 (µ ⇤N�, ⌫ ⇤N�) � C�e

��2
⇤/�

2

.

The proof of Theorem 4.1, Lemma 4.2, Proposition 4.3, and Theorem 4.4 can be found in the
supplementary material.

5 Beyond perfect matchings

In the case that R(�) = 0, or equivalently by Proposition 3.8 and Proposition 3.6 that the optimal
transport map between µ and ⌫ is not a perfect matching, Theorems 4.1 and 4.4 are not applicable.
In this situation, we are able to show that the approximation error is linear, even in a neighborhood
of zero. In fact, this holds whenever there exists an optimal transport plan between µ and ⌫ which is
not a perfect matching.

To analyze this case, we return to the setting of general discrete measures:

µ =
mX

i=1

↵i�(xi), ⌫ =
nX

j=1

�j�(yj) . (10)

Theorem 5.1. Let µ and ⌫ be as in (10). If µ and ⌫ do not possess a unique perfect matching, then
there exists c0 > 0 such that for � 2 (0, c0),

W
2
2 (µ, ⌫)�W

2
2 (µ ⇤N�, ⌫ ⇤N�) & �.
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Theorem 5.1 tells that, unless the optimal transport plan between µ and ⌫ is unique and a perfect
matching, the loss from approximating the OT distance with the GOT distance is at least linear in
�. We derive Theorem 5.1 from the following lemma, which shows that Theorem 5.1 holds in the
special case where µ is a single point mass, and ⌫ is uniform on two points.
Lemma 5.2. Let x, y1 and y2 be different points in Rd. For µ0 := �(x) and ⌫0 := 1

2�(y1)+
1
2�(y2),

there exists c0 > 0, such that for � 2 (0, c0), we have

W
2
2 (µ0, ⌫0)�W

2
2 (µ0 ⇤N�, ⌫0 ⇤N�) & �. (11)

We obtain the full strength of Theorem 5.1 by reducing to the special case of Lemma 5.2 on a
particular subset of the support of µ and ⌫. Full details appear in the supplementary material.

6 Numerical example

In this section, we present a numerical example to demonstrate different regimes of the rate
W2(µ, ⌫) � W2(µ ⇤ N�, ⌫ ⇤ N�), in respect of Theorem 4.1 and Theorem 4.4. For the sake of
clarity, we consider atomic measures µ and ⌫ both defined on R2. One of the simplest cases where
a coupling � has R(�) = 0 is

µ =
1

2
[�((�1,�1)) + �((1, 1))] ,

⌫ =
1

2
[�((�1, 1)) + �((1,�1))]

It is easy to see that the optimal transport plan from µ to ⌫ is not unique, which is also a consequence
of Proposition 3.8, Proposition 3.6 and the fact that R(�) = 0 for the map

� = {((�1,�1), (�1, 1)), ((1, 1), (1,�1))}
that achieves the optimal cost. We also consider the family of perturbed measures

µ(p) =
1

2
[�((�1,�1 + p)) + �((1, 1� p))] , p 2 [0, 1]

The source and target distributions corresponding to p = k/10 for k = 1, 2, 3, 4 are depicted in
Figure 1. For each k, the unique optimal transport plan from µk = µ(k/10) to ⌫ is given by

�k =

⇢
((�1,�1 +

k

10
), (�1, 1)), ((1, 1� k

10
), (1,�1))

�
.

For each of these GOT tasks, we draw 200 samples from the source distribution µk ⇤ N�

and target distribution ⌫ ⇤ N� , and use the empirical W2 distance as an estimate of the true
W2(µk ⇤ N�, ⌫ ⇤ N�). We repeat the process 100 times and report the mean, as shown in the
following figures.

By Theorem 4.1 and Theorem 4.4, we expect W 2
2 (µk, ⌫) � W

2
2 (µk ⇤ N�, ⌫ ⇤ N�) to be of scale

e
�c/�2

for � 2 (0, R(�k)), and W
2
2 (µk, ⌫) � W

2
2 (µk ⇤ N�, ⌫ ⇤ N�) & � for � � R(�k). This

transition from exponential to linear is visible in Figure 2.

Using Proposition 3.14, we obtain a lower bound on R(�k), which we plot with a vertical dashed line
in Figure 2. Exponential decay is visible to the left of the dashed lines, as anticipated. Figure 3 shows
this behavior more clearly on a logarithmic scale, where we observe that log(� log(W2(µ, ⌫) �
W2(µ ⇤N�, ⌫ ⇤N�))) is linear in log(�) for small �.

7 Conclusion

This paper develops approximation results for Gaussian-smoothed optimal transport, showing that
GOT approximates the Wasserstein distance exponentially well for small � when µ and ⌫ possess a
unique perfect matching. By contrast, if µ and ⌫ do not possess a unique perfect matching, then the
gap between W2(µ, ⌫) and W2(µ ⇤ N�, ⌫ ⇤ N�) is linear in � as � ! 0. The difference between
these two behaviors can be traced to the fact that if µ and ⌫ possess a unique perfect matching, then

8



Figure 1: Source and Target distributions

Figure 2: Rate of W2(µ, ⌫)�W2(µ⇤N�, ⌫ ⇤N�)
in the vanishing � regime.

Figure 3: Rate of log(� log(G�)) versus log(�)
in the vanishing noise regime. Here G� :=
W2(µ, ⌫)�W2(µ ⇤N�, ⌫ ⇤N�).

the optimal transport plan between them is stable under small perturbations of µ and ⌫. In particular,
for noise distributions Q with sufficiently small support, W2(µ, ⌫) = W2(µ ⇤ Q, ⌫ ⇤ Q). On the
other hand, if µ and ⌫ do not possess a unique perfect matching, then their optimal plan is not stable,
and can change even under infinitesimal perturbation.

Our techniques are based on a new notion of stability for discrete optimal transport plans, which we
call robustness of optimality and characterize by developing strong variants of the classic notions of
cyclical monotonicity and implementability for optimal transport plans. Just as cyclical monotonic-
ity is closely connected to the convexity of the dual potentials for the optimal transport problem, we
show that strong cyclical montonicity is equivalent to strong convexity. This characterization shows
that a discrete optimal transport plan is robust to perturbations of the source and target measures
if and only if its support lies in the subdifferential of a strongly convex function. We anticipate
that this characterization will have statistical and computational implications for the estimation of
optimal transport plans between discrete measures.
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