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ABSTRACT
The problem of fair division known as “cake cutting” has been
the focus of multiple papers spanning several decades. The most
prominent problem in this line of work has been to bound the query
complexity of computing an envy-free outcome in the Robertson-
Webb query model. However, the root of this problem’s complexity
is somewhat artificial: the agents’ values are assumed to be additive
across different pieces of the “cake” but infinitely complicated within
each piece. This is unrealistic in most of the motivating examples,
where the cake represents a finite collection of homogeneous goods.

We address this issue by introducing a fair division model that
more accurately captures these applications: the value that an agent
gains from a given good depends only on the amount of the good
they receive, yet it can be an arbitrary function of this amount,
allowing the agents to express preferences that go beyond stan-
dard cake cutting. In this model, we study the query complexity of
computing allocations that are not just envy-free, but also approx-
imately Pareto optimal among all envy-free allocations. Using a
novel flow-based approach, we show that we can encode the ex-post
feasibility of randomized allocations via a polynomial number of
constraints, which reduces our problem to solving a linear program.
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1 INTRODUCTION
The “cake-cutting” problem has played a central role in the history
of fair division. The commonly used story behind this problem
involves a heterogeneous cake with a variety of different toppings
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(e.g., a region with sprinkles, a region with more icing, or a cherry
sitting at the top), and the goal is to fairly divide this cake among a
group of children with different preferences. In reality, this is just a
metaphor aiming to capture complicated resource allocation set-
tings, where each region of the cake may correspond to a different
resource and each agent competing for these resources may have a
diverse and complicated valuation function.

The cake is mathematically represented using the interval [0, 1]
and a piece of the cake corresponds to a (possibly not contiguous)
subset of this interval. The agents’ preferences are encoded by a
valuation function that maps each sub-interval to a number, and
the value of an agent for a set of disjoint intervals is equal to the
sum over all these intervals of her value for each interval. So, the
agents’ values for each sub-interval can be highly complicated, but
their value across these intervals is additive.

An important goal in cake-cutting is to find some assignment
of pieces to the agents that is “envy-free”, i.e., each agent (weakly)
prefers her piece over the piece allocated to any other agent. The
main obstacle in achieving this goal is the fact that, due to the high
complexity of the agents’ preferences, they cannot be succinctly
reported to the algorithm. In the classic Robertson-Webb query
model [23], access to the agents’ valuations is provided only through
two types of queries: i) value queries, that take as input some interval
and return the value of the agent for it, and ii) cut queries, that take
as input a point ℓ ∈ [0, 1] and a value 𝑣 , and return the leftmost
point 𝑟 ∈ [ℓ, 1] such that the value of the agent for the interval
[ℓ, 𝑟 ] is equal to 𝑣 .

A trivial way to achieve envy-freeness is to throw away all of
the cake and thus ensure that no agent has anything to be envious
about. As it turns out, even the simple restriction that none of the
cake can be thrown away is enough to really complicate things.
For instances involving up to three agents, this was solved in the
1960s [9] but, up until just a few years ago, we did not even know
whether a bounded (let alone polynomial) number of queries would
be sufficient for instances involving four agents. This was recently
settled in the affirmative by Aziz and Mackenzie [3, 4], but the
proposed protocols are very complicated, and the required number
of queries is superexponential in the number of agents.

Despite the extensive amount of attention that this problem has
garnered, its apparent intractability is partly due to the artificial
complexity of the model. For example, in many of the motivating
application domains, the cake actually comprises a set of distinct
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homogeneous resources and each agent cares only about how much
of each resource she receives rather than which part of it. In other
words, when allocating a piece of the proverbial cherry on top of
the cake to an agent, she may care about the size of this piece, but
not worry about whether it came from the front or the back side
of the cherry (it is all just cherry anyway!). But, introducing this
type of structure into the cake-cutting model reduces it to the very
special case of piecewise constant valuations: the [0, 1] interval is
partitioned into sub-intervals, each of which corresponds to one
of the resources, and each agent’s value is constant within each
sub-interval. This captures a limited range of agent preferences and
even computing a welfare-maximizing envy-free outcome becomes
trivial [14], since the agents can just directly report their (constant)
value for each resource. The complexity of the cake-cutting model
lies in the assumption that there is no such structure in general,
even if the cake is partitioned into arbitrarily small pieces.

In this paper, we propose an alternative model that more accu-
rately captures these applications, while also allowing natural types
of agent preferences that are beyond the scope of the cake cutting
model (e.g., complementarity and substitutability). Achieving envy-
freeness in this model is easy even without discarding any of the
resources, just like it is in most motivating examples; one can just
divide each resource equally among the agents. We instead aim
to compute not just any envy-free allocation, but rather one that
is (approximately) Pareto optimal among all envy-free allocations,
which is not guaranteed if we just divide each resource equally.

1.1 Results and Techniques
We study the problem of fairly allocating a set of divisible ho-
mogeneous resources among a set of agents. Deviating from the
cake-cutting literature, we use a model where each agent’s value
depends only on how much of each resource they receive rather
than which part. We allow each agent’s value to be a complicated
function of the amount of each resource that they receive, and we
use cut and value queries, analogous to the Robertson-Webb query
model, to “discover” the structure of these functions.

This model provides a better abstraction for many real-world
applications. For example, the resource could represent the shares of
a company where the value of an agent may increase dramatically
upon receiving more than half of all the shares. Alternatively, if the
resource being distributed is energy, then there may be a limit on
how much energy an agent can utilize each day, so being allocated
more than that would not offer her any additional value. These are
utilities that the standard cake cutting model cannot capture.

In Section 3, we explain why, in contrast to the cake-cutting
model, the use of randomization in our model can enrich the space
of achievable (expected) utility vectors, motivating the use of lot-
teries over deterministic outcomes. We focus on “fair” lotteries
that satisfy ex-ante envy-freeness (i.e., envy-freeness with respect
to expected utilities) and our main goal is to compute one that is
(approximately) Pareto efficient among them. Rather than aiming
for ex-post Pareto efficiency (which compares the outcome of the
lottery to all deterministic envy-free outcomes) we instead aim for
the stronger guarantee of ex-ante Pareto efficiency (which compares
the lottery to the richer space of all envy-free lotteries).

In Section 4, we prove that finding an ex-ante envy-free lottery
that is 𝜖-approximate ex-ante Pareto efficient among all ex-ante
envy-free lotteries would require Ω(1/𝜖) queries even for instances
with just two agents and two resources.

In Section 5, we complement this negative result by providing an
algorithm that finds such a lottery using only 𝑂 (1/𝜖2) queries for
any constant number of agents and resources. We generalize this
to the case of 𝑛 agents and𝑚 resources using 𝑂 (𝑛𝑚/𝜖2) queries.
The algorithm begins by issuing a sequence of value queries for
each agent-resource pair, providing a discretized approximation of
the true valuations. It then computes a lottery by solving a linear
program using these approximate valuations. The main techni-
cal challenge is to ensure that the lottery computed by this linear
program is ex-post feasible, i.e., that the randomized allocation we
obtain can be decomposed into a distribution over feasible deter-
ministic outcomes. We achieve this through a flow-based technique
which may be of independent interest.

Finally, in Section 6, we conclude with some observations and
open problems for future research within the new model.

1.2 Related Work
Cake-cutting. A procedure for computing envy-free outcomes

with a finite (but potentially unbounded) number of queries in the
cake cutting model was found by Brams and Taylor [10]. Kurokawa
et al. [19] gave a bounded protocol for any number of agents with
piecewise linear valuations. Even for just four agents with general
valuations, it was unknown if a protocol producing an envy-free
allocation using a bounded number of queries exists, until the result
of Aziz and Mackenzie [4]. They then extended their own work to
achieve a procedure for𝑛 agents using a bounded number of queries,
but the number is a tower of exponents of 𝑛 [3]. Amanatidis et al.
[2] improved the number of queries for four agents, but a further
improvement on the general 𝑛-agent case has remained elusive, so
there is still a massive gap between the upper bound and the lower
bound of Ω(𝑛2) queries found by Procaccia [21].

Computing efficient envy-free allocations. The type of guarantee
that we seek in this paper, i.e., to find an envy-free solution that is
efficient among other envy-free ones, has also been examined in
the context of the standard cake-cutting model. Reijnierse and Pot-
ters [22] demonstrated that if the entire valuation function of each
agent is reported to a mechanism, then an approximately Pareto
efficient allocation among all envy-free allocations can be found
by approximating the valuation functions by piecewise constant
valuation functions. Cohler et al. [14] extended this result by pro-
viding an efficient algorithm to compute an approximately welfare-
maximizing allocation among all envy-free allocations. Our work
can then be viewed as an analogue to [14] in our model. Whereas
their result applies in the standard cake-cutting model and thereby
can avoid the use of randomization, ours leverages randomness to
apply to more general valuation functions than can be captured
by cake-cutting. Bei et al. [5] studied a similar objective of finding
welfare-maximizing connected allocations but, instead, among the
set of proportional allocations in the standard cake-cutting model.1

1In standard cake-cutting, any envy-free complete allocation is always proportional,
unlike in our model as we demonstrate in Section 3.
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Notably, fairness constraints may decrease efficiency. Brams
et al. [8] examined the standard cake-cutting model and identified
sufficient conditions for a welfare-maximizing envy-free allocation
to be Pareto efficient among the set of all (not necessarily envy-
free) allocations. They also provided examples where no welfare-
maximizing envy-free allocation is Pareto efficient among the set of
all allocations although the loss in efficiency they show is small. In
a similar vein, Caragiannis et al. [13] quantified the extent to which
various fairness notionsmay affect efficiency and demonstrated that
enforcing envy-freeness as a hard constraint can greatly decrease
the maximum obtainable welfare. Brams et al. [8] also pointed out
the question of finding an efficient algorithm to compute welfare-
maximizing envy-free allocations which are Pareto efficient with
respect to all allocations in the standard cake cutting model as an
important and challenging open problem even in the simple case of
piecewise constant valuations. In Section 6, we pose a related open
question in our model which we believe is of comparable difficulty
and interest.

Homogeneous goods. While the query model we examine in this
paper is directly related to the query model of Robertson and Webb
[23], our valuation function model is most similar to the work of
Feige and Tennenholtz [16]. In that paper, the authors examine
the division of a single homogeneous resource where the agents’
utilities are non-linear. However, they examine an alternative no-
tion of an agent’s “fair share” (based on the average utility she
would receive if all other agents had valuations identical to hers)
and agents report allocations rather than reply to queries regarding
their valuation functions. Buermann et al. [12] similarly examine
the problem of allocating a single homogeneous good but instead
assume that the available amount of the resource is unknown but
drawn from some known prior distribution and the valuation func-
tions of the agents are fully known to the designer. They then study
the computational complexity of finding welfare-maximizing al-
locations subject to ex-ante envy-freeness (where randomness is
with respect to the amount of good) and characterize the loss in
efficiency by imposing envy-freeness as a constraint.

Lotteries and ex-post feasibility. The key technical challenge we
face in finding ex-ante Pareto efficient solutions which can be de-
randomized into a distribution over feasible deterministic outcomes
has been explored in many contexts in fair division. In the case of
one-sided matching, Bogomolnaia and Moulin [7] gave the well-
known “probabilistic serial” algorithm which directly computes
expected assignments and utilizes the Birkhoff-von Neumann theo-
rem [6, 25] to decompose the expected assignments into a lottery
over feasible outcomes. The Birkhoff-von Neumann theorem was
further generalized by Budish et al. [11] beyond one-to-one settings.
As we discuss in Section 5, the methods of [11] cannot be adapted to
our model, so we view our flow-based approach as complementary
to these prior results.

2 PRELIMINARIES
We consider a setting with a set N of 𝑛 agents and a set M of
𝑚 divisible items. Throughout the paper, we use the terms items,
goods, and resources interchangeably. An outcome 𝑥 defines for
each agent 𝑖 ∈ N and item 𝑘 ∈ M the fraction 𝑥𝑖𝑘 ∈ [0, 1] of item

𝑘 that is allocated to agent 𝑖 . An outcome is feasible if no item is
over-allocated, i.e.,

∑
𝑖∈N 𝑥𝑖𝑘 ≤ 1 for all 𝑘 ∈ M. A lottery 𝐿 is a

probability distribution over outcomes and it is (ex-post) feasible if
it assigns positive probability only to feasible outcomes.

For each agent 𝑖 , her preferences are defined through a set of
non-decreasing and Lipschitz2 valuation functions {𝑓𝑖𝑘 }𝑘∈M . Her
utility for receiving a fraction 𝑥𝑖𝑘 of item 𝑘 is 𝑓𝑖𝑘 (𝑥𝑖𝑘 ) and her
utility for an outcome 𝑥 is 𝑢𝑖 (𝑥) =

∑
𝑘∈M 𝑓𝑖𝑘 (𝑥𝑖𝑘 ). In other words,

the utilities are weakly monotone within items and additive across
items. The (expected) utility of agent 𝑖 for a lottery 𝐿 which assigns
probability 𝑝ℓ to each outcome 𝑥 ℓ is

𝑢𝑖 (𝐿) =
∑
ℓ

𝑝ℓ
∑
𝑘∈M

𝑓𝑖𝑘 (𝑥 ℓ𝑖𝑘 ) .

Let 𝑢𝑖 (𝑥 𝑗 ) denote the utility agent 𝑖 would receive in outcome
𝑥 if she were given the allocation of agent 𝑗 . We then say that an
outcome 𝑥 is envy-free if for all agents 𝑖, 𝑗 we have 𝑢𝑖 (𝑥𝑖 ) ≥ 𝑢𝑖 (𝑥 𝑗 ).
Similarly, let𝑢𝑖 (𝐿𝑗 ) denote the utility 𝑖 would receive from lottery 𝐿
if she were given the randomized allocation of agent 𝑗 . A lottery 𝐿 is
ex-post envy-free if it assigns positive probability only to outcomes
that are envy-free and it is ex-ante envy-free if it is envy-free with
respect to the agents’ expected utilities, i.e., for all agents 𝑖, 𝑗 we
have 𝑢𝑖 (𝐿𝑖 ) ≥ 𝑢𝑖 (𝐿𝑗 ).

An outcome 𝑥 is 𝜖-Pareto optimal with respect to a set of out-
comes X if there exists no alternative outcome 𝑦 ∈ X such that
𝑢𝑖 (𝑦) ≥ (1 + 𝜖) · 𝑢𝑖 (𝑥) for all 𝑖 ∈ N and at least one of these in-
equalities is strict [17, 18, 24, 26]. We say that a lottery 𝐿 is ex-post
𝜖-Pareto optimal with respect to a set of outcomes X if it assigns
positive probability only to outcomes that are 𝜖-Pareto optimal with
respect to X. A lottery 𝐿 is ex-ante 𝜖-Pareto optimal with respect
to a set of lotteries L if there is no alternative lottery 𝐿′ ∈ L with
𝑢𝑖 (𝐿′) ≥ (1 + 𝜖)𝑢𝑖 (𝐿) for all 𝑖 ∈ N and at least one strict inequality.
For 𝜖 = 0 we retrieve exact Pareto optimality. Our main result
focuses on the class of ex-ante envy-free lotteries E and, in accor-
dance with Cohler et al. [14], we say a lottery 𝐿 is (approximately)
ex-ante Pareto optimal EF if it is in E and also (approximately)
ex-ante Pareto optimal with respect to all lotteries in E.

Since the 𝑓𝑖𝑘 valuation functions can be highly complicated and
not succinctly representable, in line with the Robertson-Webb cake-
cutting model, we assume that the algorithm can gather parts of
this information using two types of queries – value and cut queries.
A value query Value(𝑓 , 𝑧) takes in a valuation function and a 𝑧
in [0, 1] and returns the value of 𝑓 (𝑧), and a cut query Cut(𝑓 , 𝑣)
returns the minimum 𝑧 in [0, 1] such that 𝑓 (𝑧) = 𝑣 . Our main
algorithm (see Section 5) shows that we can actually compute ap-
proximately ex-ante Pareto optimal EF lotteries using only value
queries. In Section 6 we also demonstrate that cut queries are useful
for computing lotteries in E that are exactly ex-post Pareto optimal
with respect to any feasible outcome. Moreover, our lower bound
on the query complexity of finding approximately ex-ante Pareto
optimal EF lotteries in Section 4 applies to any algorithm that can
use both cut and value queries.

2A function 𝑓 is Lipschitz if |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 | ∀𝑥, 𝑦 and some constant𝐶 .
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3 MOVING BEYOND CAKE CUTTING
As we discussed in the introduction, when allocating a set of homo-
geneous goods (where agents care only about the amount of each
good they receive rather than what specific part of the good), the
preferences in the cake cutting model are reduced to piecewise con-
stant valuations. This is due to the restrictive assumption that the
value of an agent for any two pieces is equal to the sum of her value
for each of the pieces. Therefore, the agent’s value for half a cherry
needs to be exactly half of her value for all of the cherry (otherwise
combining two halves would not add up to the whole value). In our
model, this implies that every agent’s valuation function for a good
needs to be linear, which is unnecessarily restrictive.

Our model moves beyond this restriction, allowing us to encode
complementarity or substitutability in the agents’ preferences. For
example, if an agent’s valuation function for an item is highly
convex, like “type A” in Figure 1, then the agent does not receive
much value from that item unless she gets a lot of it. In fact, using
an extreme convex function allows us to essentially capture the
problem of allocating indivisible items: although the item can still
be divided, if agents do not receive any value from it unless they
get the whole item then dividing it would amount to discarding it.
Similarly to the fair division literature for indivisible items, we use
randomization to overcome this issue and achieve ex-ante fairness
and efficiency guarantees.

The lack of linearity within an item also means that, unlike in
the cake-cutting model, in our model complete allocations which
are envy-free are not guaranteed to be proportional. For instance, if
two agents have highly convex valuation functions for a single item
(e.g., two agents of “type A”) then splitting the single item equally
between them is envy-free, but not proportional3: by convexity, her
value for a 1/2 fraction of the item is less than a 1/2 fraction of her
value for receiving the whole item.
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Figure 1: Examples of agent valuation functions for an item.

Efficiency with non-linear valuation functions. When the valua-
tion functions are linear, as in the cake-cutting model, then agents
are indifferent between a lottery and a (deterministic) outcome as
long as their expected allocation of each good in the former is the
same as their deterministic allocation in the latter. As a result, there
is no reason to use randomization. Moving beyond linear valuation
functions, however, introduces several non-trivial opportunities to
leverage randomization in order to make the agents happier. On
one hand, agents with convex (“type A”) valuation functions are
risk-seeking and would strictly prefer a lottery that gives them the
full item with probability 1/2 and nothing with probability 1/2 over
3Proportionality requires that every agent receives a utility at least 1/𝑛 times her
utility for being allocated everything in full.

a deterministic outcome that always gives them 1/2 of the item. On
the other hand, agents with concave (“type B”) valuation functions
are risk-averse and would strictly prefer the deterministic outcome.

Even for an instance involving two agents and a single item,
how should we allocate the item? Should we use a lottery? If so,
what outcomes should the lottery randomize over, and how large
does the support of a lottery need to be in order to achieve ex-
ante Pareto efficiency among all envy-free lotteries? These are
non-trivial questions that we urge the reader to contemplate before
proceeding.

Outcomes in the utility space. Although thinking about Pareto
optimal lotteries in the allocation space can be quite confusing,
visualizing them in the utility space is very convenient. Each out-
come defines a utility for each agent, and this point lies in some
𝑛-dimensional space regardless of the number of items. For example,
consider an instance with two “type A” agents and a single resource.
Any feasible outcome (i.e., some way of splitting the resource into
two pieces) corresponds to a point in two-dimensional space whose
two coordinates are the utility of the first agent and the utility of
the second agent, respectively, as demonstrated in Figure 2.

0 0.2 0.4 0.6 0.8 1

Fraction of Resource

0

0.2

0.4

0.6

0.8

1

V
al

ue

Convex value agent, f(x) = x2

0 0.2 0.4 0.6 0.8 1

Utility of Agent 1

0

0.2

0.4

0.6

0.8

1

U
til

ity
 o

f A
ge

nt
 2

Utility pairs

Figure 2: At right is a solid line representing the pairs of util-
ities of all feasible outcomes when a good is completely al-
located among two agents each with the valuation function
pictured at left. The dashed line indicates the possible pairs
of expected utilities by randomizing between the two end-
point deterministic outcomes.

As Figure 2 illustrates, the set of utility points induced by feasible
deterministic outcomes need not be convex and the shape depends
on the actual valuation functions of the agents. This is in contrast
to the cake-cutting model, where the utility points from feasible
outcomes form a convex set [15]. This non-convexity of the set of
utility vectors from deterministic outcomes provides some intuition
on why adding randomness enriches the space of feasible (expected)
utilities in our model, and does not do so in the cake-cutting model.
This is because the set of all lotteries randomizes between the
feasible outcomes can therefore yield any utility vector in the convex
hull of the utility points achievable by deterministic outcomes. In
short, randomness allows us to “convexify” the outcome space
(as the dashed line does in Figure 2). Note that all ex-ante Pareto
efficient lotteries lie on a face of an (up to) 𝑛-dimensional convex
hull. As a result, we can conclude that all utility points on the ex-
ante Pareto frontier can be achieved with a lottery of support size
at most 𝑛.

Things become more complicated when combining an agent
with a convex valuation function and one with a concave one, as
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in Figure 3. The graph at the bottom of this figure demonstrates
the expected utility pairs that can be achieved for these two agents
using ex-ante envy-free lotteries. It is worth noting that the “all-
or-nothing” lottery (which gives each agent the whole item with
probability 0.5 and yields expected utility 0.5 for both of these
agents) is clearly Pareto dominated by other ex-ante envy-free
lotteries. The points in red correspond to the utility pairs induced
by the set of ex-ante Pareto optimal EF lotteries.
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Figure 3: At top left is the concave valuation function of
Agent 1. At top right is the convex valuation function of
Agent 2. At the bottom, the shaded region contains all the
pairs of utilities (forAgent 1 andAgent 2) induced by ex-ante
EF lotteries. The red bolded faces form the ex-ante Pareto
optimal EF lotteries. For example, the circled point corre-
sponds to the lottery where Agent 1 is allocated approxi-
mately 0.75 of the good with probability 0.7 and 0.1 of the
good with the remaining 0.3 probability (the allocation of
Agent 2 is the complement).

The situation becomes even less clear when agents are neither
strictly concave nor convex. For example, how should an item be
allocated when some agents have “type C” valuations? Furthermore,
things get more complicated with multiple resources. For instance,
when all agents have “type A” valuations for all resources, i.e., are
risk-seeking and prefer lotteries, but have different “favorite” re-
sources, allocating each agent her favorite resource with probability
1 could Pareto dominate a uniform lottery over the entire bundle of
goods. The space of outcomes and lotteries is so vast that it can be
difficult to even guess what an ex-ante Pareto efficient EF lottery
looks like.

4 QUERY COMPLEXITY
In this section, we study the question of query complexity in our
model. Specifically, we are interested in the number of queries
necessary for finding an approximately ex-ante Pareto optimal EF
lottery. Our main result is a lower bound.

Theorem 4.1. Computing an ex-ante 𝜖
16 -Pareto optimal EF lottery

with any deterministic adaptive protocol requires at least 1
2𝜖 queries,

even just for two items and two agents.

We briefly sketch the main intuition of the proof. Given an al-
gorithm that terminates after 𝑘 queries we simulate its behavior
when the responses to all queries are as if the underlying valuation
functions were linear. For every item 𝑖 , there must be an interval
[𝑥1, 𝑥2], of size at least 1/𝑘 , such that the algorithm only knows
𝑓𝑖 (𝑥1) and 𝑓𝑖 (𝑥2) (which are 𝑥1 and 𝑥2, respectively, since we were
responding as if everything was linear). That is, in the true under-
lying instance, 𝑓𝑖 could be linear in (𝑥1, 𝑥2), or could be equal to 𝑥1
in (𝑥1, 𝑥2 − 𝛿) and then increase more rapidly to 𝑥2, or any other
non-decreasing function. The crux of the argument is that there
is no lottery that is simultaneously 𝜖/16-Pareto optimal among
all EF lotteries for all different possible instances (three different
possibilities suffice).

Proof of Theorem 4.1. Consider two agents {1, 2} and two goods
{𝑎, 𝑏}. Fix any deterministic (but possibly adaptive) algorithm ask-
ing at most 1/(2𝜖) queries. We respond to all queries as if all val-
uation functions were linear. After 1/(2𝜖) queries the algorithm
terminates and outputs some lottery 𝐿.

We construct three instances, I1, I2 and I3, consistent with the
query responses. Intuitively, in these instances good 𝑎 will act as
a “currency” which the two agents can exchange but good 𝑏 will
have complementarities “hidden” between consecutive, sufficiently-
spaced queries. Notice that, by the pigeonhole principle, for item
𝑏, there must be an interval [𝑥1, 𝑥2] of size at least 𝜖 , where 𝑥1 >

1/2, such that the algorithm only “knows” that 𝑓2𝑏 (𝑥1) = 𝑥1 and
𝑓2𝑏 (𝑥2) = 𝑥2. Formally, the algorithm has never asked a value query
with an endpoint in (𝑥1, 𝑥2), or a cut query for a value in (𝑥1, 𝑥2).
Our three instances defer only inside this interval.

InI1 the valuation functions are linear everywhere. In the second
instance, I2, agent 1 has, again, linear valuation functions for both
goods, and agent 2 has linear valuation for good 𝑎. But, for good
𝑏 we have that 𝑓2𝑏 (𝑥) = 𝑥1 + 2(𝑥 − 𝑥1) for all 𝑥 ∈ [𝑥1, 𝑥1 + 𝜖/2),
and 𝑓2𝑏 (𝑥) = 𝑥1 + 𝜖 for all 𝑥 ∈ [𝑥1 + 𝜖/2, 𝑥1 + 𝜖). In other words,
for the first half of the interval [𝑥1, 𝑥1 + 𝜖] the slope is 2 and for the
second half it is 0. 𝑓2𝑏 is linear otherwise. The third instance, I3, is
symmetric to I2 but with agents 1 and 2 flipped.

For I1, we note that any envy-free lottery must give both agents
an expected total amount of the resources equal to 1. However,
the algorithm cannot distinguish between I1, I2, and I3, so 𝐿 must
allocate an expected total amount of resources equal to 1 to both
agents.

Observe that in instances I3 and I2, the maximum utility that
either agent can achieve when receiving a sum of fractions of the
resources at most 1 is 1+ 𝜖

2 . This ex-ante utility is obtained for agent
1 when she receives exactly 𝑥1 + 𝜖/2 of good 𝑏 and 1 − (𝑥1 + 𝜖/2)
of good 𝑎, and for agent 2 at her corresponding fractions in terms
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of 𝑥1. But, these two outcomes cannot be achieved simultaneously
since 𝑥1 > 0.5.

Now, since both agents receive an expected total amount of
resources equal to 1, in I2, 𝐿 gives agent 1 utility equal to 1 (recall
that in I2 agent 1 is linear everywhere). But, there is an ex-ante
envy-free lottery 𝐿′ for I2 with 𝑢1 (𝐿′) ≥ 1+ 𝜖

8 and 𝑢2 (𝐿′) ≥ 1+ 3𝜖
8 :

give to agent 2 a 𝑥1 + 𝜖
2 fraction of resource 𝑏 and a (1 − 𝑥1 − 5

8𝜖)
fraction of resource 𝑎 and the rest to the agent 1. Since 𝐿 is ex-ante
𝜖
16 -Pareto efficient for I2, it must give agent 2 utility strictly more
than 1 + 𝜖

4 . Similarly, 𝐿 must give agent 1 utility more than 1 + 𝜖
4 in

I3.
It remains to show that it is impossible for 𝐿 to allocate to each

agent total resources equal to 1, and simultaneously yield utility
1 + 𝜖

4 in I3 for agent 1 and 1 + 𝜖
4 in I2 for agent 2. Notice that, in

each of I2 and I3, the expected utility of the non-linear agent is
maximized (subject to the allocation constraint) when randomizing
between the two outcomes/allocations that give the non-linear
agent utility 1 + 𝜖

2 (the linear agent is always indifferent). But, no
matter how this randomization is done, one of the two expected
utilities (either 𝑢1 in I3 or 𝑢2 in I2) is weakly less than 1 + 𝜖

4 . □

5 APPROXIMATELY OPTIMAL EF LOTTERIES
In this section, we develop the main positive result of the paper.
We complement our lower bound from the previous section by
giving an algorithmwhich computes an ex-ante 𝜖-Pareto optimal EF
lottery for any number of agents and items using only a polynomial
number of queries. We do note that there is an asymptotic gap
between the number of queries required by our algorithm and the
lower bound we showed in the previous section. Assume, for now,
that there is a single item. We start by discretizing the item: ask
each agent 𝑖 a series of 1/𝜖 value queries4 Value(𝑓𝑖 , 𝑥) for each
𝑥 ∈ {𝜖, 2𝜖, 3𝜖, . . . , 1}. We do this with the aim of treating 1/𝜖 pieces
of the resource (of size 𝜖 each) as atomic. We then seek to find a
lottery over the possible allocations of the𝑚/𝜖 “indivisible” pieces.

5.1 A Failed First Attempt
We define a variable 𝑝𝑖,𝑦 denoting the probability that agent 𝑖 is
allocated exactly 𝑦 pieces of the resource for 𝑦 ∈ [1/𝜖] and write
the linear program below.

maximize
∑𝑛
𝑖=1

∑1/𝜖
𝑦=0 𝑝𝑖,𝑦 𝑓𝑖 (𝑦 · 𝜖)

subject to
∑𝑛
𝑖=1

∑1/𝜖
𝑦=0 𝑝𝑖,𝑦 · 𝑦 · 𝜖 = 1∑1/𝜖

𝑦=0 𝑝𝑖,𝑦 = 1, ∀𝑖 ∈ N∑1/𝜖
𝑦=0 𝑝𝑖,𝑦 𝑓𝑖 (𝑦 · 𝜖) ≥ ∑1/𝜖

𝑦=0 𝑝𝑖′,𝑦 𝑓𝑖 (𝑦 · 𝜖),∀𝑖, 𝑖 ′ ∈ N

The first set of constraints requires that the whole item is allocated.
The second set restricts the variables 𝑝𝑖,𝑦 so that they define a
probability distribution for each agent 𝑖 . The third set of constraints
encodes the ex-ante envy-freeness requirements. Maximizing the
total expected utility of the agents in the resulting lottery yields an
ex-ante Pareto efficient EF lottery.

To arrive at an ex-post outcome, one could then allocate to each
player 𝑖 a segment of size 𝑦𝜖 with probability 𝑝𝑖,𝑦 . Unfortunately,
4For simplicity, we assume that 1/𝜖 is integer throughout this section.

as the constraints of this linear program only guarantee that the
entire resource is allocated in expectation, derandomizing is not
guaranteed to produce a lottery over ex-post feasible outcomes.
For example, consider the following two-agent instance: agent 1
has value 1 if she receives half of the item, and agent 2 has value
1 if she receives the entire item. Allocating to the first agent half
the item with probability 1 and to the second agent the entire item
with probability 1/2 is feasible for this linear program (LP). This
solution to the LP, of course, cannot be derandomized.

5.2 Corrected Attempt: A Flow-Based
Approach

In this section we construct an alternative linear program which
randomizes over explicitly feasible ex-post outcomes, thus cor-
recting the issues of the previous LP. We start by describing our
approach for the single item case and then describe how to extend
the approach to multiple items.

We aim to find a lottery over 1/𝜖 pieces, which we treat as
indivisible. This time, however, we select an arbitrary ordering
over the 𝑛 agents and construct a directed graph with 𝑛 columns of
1/𝜖+1 vertices each.We add a directed edge from vertex𝑢 in the 𝑖-th
column and 𝑗-th row to each vertex 𝑣 in the 𝑖 + 1-th column and the
𝑗 +𝑦-th row for all 𝑦 ∈ {0, 1, . . . , 1/𝜖 − 𝑗}. We also have a source and
sink vertex connected to all vertices in the first and the last columns,
respectively (see Figure 4). This construction guarantees that a
path from the source to the sink vertex corresponds to a feasible
allocation of the indivisible pieces of the good to the agents. The
residual amounts of the good given to each agent in our arbitrary
order is determined by the edges in the path as follows. Suppose
the path contains an edge connecting vertex 𝑢 in the 𝑖-th column
and 𝑗-th row to vertex 𝑣 in the 𝑖 + 1-th column and 𝑘-th row; this
corresponds to allocating a fraction 𝜖 · (𝑘 − 𝑗) of the item to agent
𝑖 + 1. An edge from the source to vertex 𝑢 in the first column and
𝑗-th row corresponds to allocating a fraction of 𝜖 · 𝑗 of the item to
agent 1.

We can then assign to each edge from 𝑖, 𝑗 to 𝑖 + 1, 𝑗 +𝑦 a variable
𝑝𝑖, 𝑗,𝑦 ∈ [0, 1] corresponding to the probability that a 𝑗 · 𝜖 fraction
was allocated up to (and including) agent 𝑖 and an additional 𝑦 · 𝜖
fraction was given to agent 𝑖 + 1, giving her a value of 𝑓𝑖+1 (𝑦 ·
𝜖). A Pareto efficient lottery can then be found by maximizing a
linear objective (e.g., the total value of all agents) subject to flow
preservation constraints through this graph. To ensure ex-ante
envy-freeness, the desired fairness constraint can be encoded in the
linear program. Overall, we find an approximately ex-ante Pareto
optimal EF lottery which is a randomization over ex-post feasible
outcomes (since every path is ex-post feasible).

Although we have only described how to construct the flow
graph for a single item, this flow graph approach is easily extensible
to multiple items when agents have additive valuations across items.
One begins by constructing a separate flow graph for each item.
Then, by connecting the sink vertex of the𝑚′-th item graph to the
source vertex of the𝑚′+1-th item graph for all𝑚′ < 𝑚, we can then
obtain an approximately ex-ante Pareto efficient lottery for any
number of agents and items in polynomial time by optimizing the
linear program over the set of constraints implied by this “chained”
flow graph.
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Figure 4: Example flow graph for 𝜖 = 1/3 and three agents. A
vertex 𝑣 labeled “𝑖, 𝑦𝜖” indicates that 𝑦 pieces of the resource
have been consumed along the path from 𝑠 to 𝑣 .

We present the linear program for a single item below. Let P =

{2, 3, . . . , 𝑛} × {0, 1, 2, . . . , 1/𝜖}. The objective is again to maximize
the total value of the agents. The first set of constraints impose flow
preservation and the second constraint requires that a unit of flow
is pushed from the source. The third set of constraints encodes ex-
ante envy-freeness as agent 𝑖 must weakly prefer her own lottery
to that of 𝑖 ′:

maximize
∑𝑛
𝑖=1

∑1/𝜖
𝑗=0

∑1/𝜖
𝑦=𝑗

𝑝𝑖, 𝑗,𝑦 𝑓𝑖 ((𝑦 − 𝑗) · 𝜖)

subject to
1/𝜖∑
𝑘=0

𝑝𝑖−1,𝑘, 𝑗−𝑘 =
1/𝜖∑
ℓ=0

𝑝𝑖, 𝑗,ℓ ,∀(𝑖, 𝑗) ∈ P∑1/𝜖
𝑗=0 𝑝0,0, 𝑗 = 1

1/𝜖∑
𝑗=0

1/𝜖∑
𝑦=𝑗

𝑝𝑖, 𝑗,𝑦 𝑓𝑖 ((𝑦 − 𝑗)𝜖) ≥
1/𝜖∑
𝑗=0

1/𝜖∑
𝑦=𝑗

𝑝𝑖′, 𝑗,𝑦 𝑓𝑖 ((𝑦 − 𝑗)𝜖),

∀𝑖, 𝑖 ′ ∈ N

Theorem 5.1. The linear program above outputs an ex-ante 𝜖-

Pareto optimal EF lottery in polynomial time using 𝑂
(
𝑚𝑛
𝜖2

)
queries

for any 𝜖 < 1
𝑚𝑛 .

Proof. First note that ex-ante envy-freeness is implied directly
from the constraints of the program and that the lottery implied by
the variables is a randomization over ex-post feasible outcomes by
the discussion above. Let𝐶 denote the maximum Lipschitz constant
across all pairs of agents and resources. To demonstrate that the
lottery is ex-ante 𝜖-Pareto optimal using at most 𝐶𝑚𝑛

𝜖2
queries, first

observe that the lottery which gives each agent all the items with
probability 1/𝑛 is a feasible solution to our program and is consis-
tent with our discretization. On the other hand, as the objective
function is optimizing the sum of ex-ante utilities (subject to the
constraints), the linear program outputs a lottery which is ex-ante
Pareto optimal with respect to the discretization. Therefore, the
linear program must give at least one agent utility greater than or
equal to 1/𝑛. The only reason that the solution for our program
would not be ex-ante Pareto efficient with respect to the full val-
uation functions would be if there were jumps in the valuation

functions between our queries. However, since all agents have Lip-
schitz valuation functions with Lipschitz constant at most 𝐶 , in
any ex-post outcome, if we were to give every agent an additional
piece of size 𝜖2

𝐶
of every item, the utility of an agent would in-

crease by at most𝑚𝜖2. For an agent with utility 𝑣 ≥ 1/𝑛, we have
𝑣 · (1 + 𝜖) ≥ 𝑣 + 𝜖

𝑛 > 𝑣 +𝑚𝜖2. So, there is no lottery that improves
her utility by a factor 1+ 𝜖 , even with respect to the exact valuation
functions. Finally, since there are a polynomial number of variables
and constraints the program runs in polynomial time. □

We also note that our algorithm for finding ex-ante approxi-
mate Pareto efficient EF lotteries can be extended to agents with
non-additive, bounded gradient valuation functions for a constant
number of items. The procedure is largely the same, except we ask
1
𝜖𝑚 value queries for all possible combinations of 𝜖 sized pieces, e.g.,
for two items (0, 0), (0, 𝜖), (0, 2𝜖), . . . , (0, 1), (𝜖, 0), (𝜖, 𝜖), . . . , (1, 1).
We then appropriately modify the flow graph to include vertices
representing all possible tuples for each agent and direct edges
accordingly. However, this procedure only works for a constant
number of items as the number of queries then depends exponen-
tially on the number of items.

Since we discretize the resources into 1/𝜖 pieces each and treat
these pieces as indivisible items, one could consider using the ap-
proach of Budish et al. [11] to find a lottery over ex-post feasible
outcomes. However, our valuation functions over the items can
be more general than their approach can support since we allow
complementarity within a single resource (e.g., by allowing for con-
vex valuation functions). On the other hand, their approach allows
for more expressive constraint structures over the feasible alloca-
tions of goods to agents. We believe that investigating the degree
to which the two approaches can be combined is an interesting
question for future work.

6 OBSERVATIONS AND FUTURE WORK
In this section, we provide some auxiliary results in our model and
suggest several interesting related open questions. An interesting
first question to consider would be to tighten the gap between
the upper and lower bounds on the number of queries required
to compute an ex-ante 𝜖-Pareto efficient EF lottery for a constant
number of players. Do 𝑜

(
1
𝜖2

)
queries suffice? In the case of general

𝑚 and 𝑛, do 𝑜
(
𝑚𝑛
𝜖2

)
suffice?

While our lower bound suggests that exact ex-ante Pareto effi-
cient lotteries are unattainable using a bounded number of queries,
if we simplify our objective from ex-ante Pareto efficiency to ex-
post Pareto efficiency then wemay find an ex-ante envy-free lottery
which is exactly ex-post Pareto efficient with respect to the set of
all outcomes. We note that our algorithm closely resembles the
well-known random serial dictatorship mechanism for one-sided
matching markets of Abdulkadiroğlu and Sönmez [1].

Theorem 6.1. There exists an algorithm that produces an ex-ante
envy-free lottery that is exactly ex-post Pareto efficient among the set
of all outcomes using a polynomial number of queries.

Proof. Consider an arbitrary set of 𝑛 agents N . We uniformly
and randomly permute the agents and label them 1, 2, . . . , 𝑛. We
ask agent 1 a value query Value(𝑓1𝑘 , 1) for each item 𝑘 ∈ M. In
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doing so, we determine her value 𝑣1𝑘 for receiving each good 𝑘
entirely. We then ask her a cut query Cut(𝑓1𝑘 , 𝑣1𝑘 ) for each item
𝑘 ∈ M, thereby determining how much of each good she needs
to receive to obtain her “full value”. We continue by allocating to
her as much of each item as the corresponding cut query returns.
For any remaining pieces of each item, we repeat this process for
each successive agent in the ordering. As valuation functions are
additive across items, it is easy to verify that this is ex-post Pareto
efficient; removing any amount of any of the goods from agent
𝑖 must decrease her value. This lottery is also ex-ante envy-free,
since every agent has the same probability of appearing at any
index in the random ordering, and at every point in the algorithm
each consecutive agent receives a favorite bundle of goods among
the remaining resources. Therefore, no agent envies the lottery of
any other agent. □

On the other hand, while ex-post Pareto efficiency is easier to
achieve than ex-ante Pareto efficiency, ex-post envy-freeness is
a more stringent requirement than ex-ante envy-freeness. For a
lottery to be ex-post envy-free, it must be that all outcomes in its
support are ex-post envy-free. Onemay then ask the same questions
we explore in this paper through the context of the class of ex-post
envy-free lotteries. For instance, can one obtain an ex-ante 𝜖-Pareto
efficient lottery among the set of all ex-post envy-free lotteries
using only a polynomial number of queries?

One can also imagine asking a similar question of finding ex-ante
Pareto optimal lotteries among the set of all ex-ante proportional
lotteries. Ex-ante proportionality is another standard notion of
fairness which requires all agents to receive expected utility at least
1/𝑛. By changing the third set of constraints in our linear program
in Section 5 to encode proportionality, one directly obtains the same
guarantee of Theorem 5.1, i.e., one obtains an approximately ex-ante
Pareto optimal proportional lottery. However, perhaps even more
excitingly, one could change the welfare-maximization objective
and instead maximize the leximin utility by repeatedly maximizing
the minimum value (as in, e.g., Kurokawa et al. [20]) and drop the
fairness constraint altogether. Since the equiprobable lottery is in
the space of feasible lotteries, the leximin solution will necessarily
give all agents expected utility at least 1/𝑛. Thus, the lottery would
be approximately ex-ante Pareto optimal among all lotteries and
satisfy ex-ante proportionality!

We view the question of determining if one can find a lottery
which is approximately ex-ante Pareto optimal among all lotter-
ies and which is also ex-ante envy-free to be a very interesting
and challenging question. In fact, Brams et al. [8] point to the re-
lated question of finding a tractable algorithm to compute welfare-
maximizing envy-free and Pareto efficient allocations (among the
set of all allocations) in the standard cake-cutting model even in
the seemingly quite simple case of known piecewise constant valu-
ations as their “most important, and presumably quite challenging,
open problem”. More broadly, investigating the extent to which
different fairness notions change the shape of the ex-ante Pareto
frontier is an interesting line of future study.

7 CONCLUSION
In this paper, we propose a new model for allocating homogeneous
divisible goods and we show that it is simple in natural ways –

envy-freeness is easy to achieve – yet highly complex in others
– many descriptive, non-trivial value functions can be captured.
We provide an algorithm for finding approximately ex-ante Pareto
optimal EF lotteries and complement this result with a lower bound
on the query complexity of doing so. Notably, while our algorithm
uses only value queries, our lower bound applies to any algorithm
using either cut and/or value queries. We also provide an algorithm
for finding exactly ex-post Pareto optimal EF lotteries which uses
both cut and value queries.

Throughout this paper, we assume that valuation functions are
Lipschitz. Therefore, determining if approximate Pareto optimality
can be achieved when the Lipschitz assumption is removed would
be a first step in extending our results. Perhaps most importantly,
removing the assumption that agents are additive across resources
is a major open line of further work. We have a way of convert-
ing our approach for an arbitrary number of additive items to a
computationally efficient method of finding approximately ex-ante
Pareto efficient EF lotteries for general valuations if there is a con-
stant number of items. On the other hand, extending this result to
arbitrarily many items may require very different techniques.
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