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—— Abstract

In their seminal paper that initiated the field of algorithmic mechanism design, Nisan and Ronen [27]
studied the problem of designing strategyproof mechanisms for scheduling jobs on unrelated machines
aiming to minimize the makespan. They provided a strategyproof mechanism that achieves an
n-approximation and they made the bold conjecture that this is the best approximation achievable
by any deterministic strategyproof scheduling mechanism. After more than two decades and several
efforts, n remains the best known approximation and very recent work by Christodoulou et al. [11]
has been able to prove an (y/n) approximation lower bound for all deterministic strategyproof
mechanisms. This strong negative result, however, heavily depends on the fact that the performance
of these mechanisms is evaluated using worst-case analysis. To overcome such overly pessimistic,
and often uninformative, worst-case bounds, a surge of recent work has focused on the “learning-
augmented framework”, whose goal is to leverage machine-learned predictions to obtain improved
approximations when these predictions are accurate (consistency), while also achieving near-optimal
worst-case approximations even when the predictions are arbitrarily wrong (robustness).

In this work, we study the classic strategic scheduling problem of Nisan and Ronen [27] using the
learning-augmented framework and give a deterministic polynomial-time strategyproof mechanism
that is 6-consistent and 2n-robust. We thus achieve the “best of both worlds”: an O(1) consistency
and an O(n) robustness that asymptotically matches the best-known approximation. We then
extend this result to provide more general worst-case approximation guarantees as a function of
the prediction error. Finally, we complement our positive results by showing that any 1-consistent
deterministic strategyproof mechanism has unbounded robustness.
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1 Introduction

In their seminal paper which initiated the field of algorithmic mechanism design, Nisan and
Ronen [27] focused on a natural job scheduling problem involving strategic agents: a set of
m jobs needs to be scheduled on a set of n machines aiming to minimize the makespan, and
each machine is owned by an agent who requires a monetary compensation in exchange for
processing the jobs assigned to them. What makes this problem particularly demanding is
that the compensation each agent receives needs to be at least as high as the cost that they
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suffer for processing the jobs assigned to them (i.e., the required processing time), yet the
actual processing times are private information that only that agent knows. Therefore, an
agent can choose to misreport (either overstate or understate) their processing times if doing
so would change the outcome (i.e., their assignment and their compensation) to one that
they prefer. To avoid this issue, the goal is to design strategyproof mechanisms that carefully
choose the outcome to ensure that no agent has an incentive to misreport their costs, while
also ensuring that the makespan of the chosen assignment is as small as possible.

Nisan and Ronen [27] proposed a strategyproof mechanism for this problem and showed
that the allocation generated by this mechanism is an n-approximation of the optimal
makespan. Even though this guarantee is much less appealing than the 2-approximation
that one can achieve in polynomial time if the costs are publicly known [21], they went on to
make the bold conjecture that this is the best possible worst-case approximation that any
deterministic strategyproof mechanism can achieve (polynomial time or not). After more than
two decades, and despite several efforts to tackle this, now classic, problem, no strategyproof
mechanism with an approximation better than O(n) is known (not even randomized).
Instead, after a sequence of inapproximability results, proving gradually increasing constant
approximation lower bounds for deterministic mechanisms (e.g., [27, 13, 19, 16, 14]), a
very recent breakthrough by Christodoulou et al. [11] made major progress by proving
a lower bound of 1 + /n — 1 for deterministic mechanisms. This result paints a very
pessimistic picture, implying that even if a better strategyproof mechanism exists, its worst-
case approximation will not be practical. However, this heavily depends on the, rather
unrealistic assumption, that the mechanism has no information regarding the costs of the
agents.

Facing analogous worst-case impossibility results that are overly pessimistic and rather
uninformative, a recent surge of work has focused on the “learning-augmented framework”,
aiming to achieve more refined and informative bounds, while retaining the benefits of
worst-case analysis (see [26] for a survey). This framework assumes that the designer is
provided with some machine-learned predictions that can be used to design more practical
algorithms that achieve near optimal performance when the predictions are correct (this is
called the consistency guarantee). However, rather than assuming that the predictions are
always accurate and forfeiting the benefits of worst-case analysis altogether, this framework
seeks to also provide strong guarantees, even if the predictions are arbitrarily inaccurate
(this is called the robustness guarantee). More formally, the consistency of an algorithm is
the worst-case approximation guarantee that it achieves assuming that the prediction it was
provided with is accurate, while its robustness is the worst-case approximation guarantee
without any assumptions regarding the prediction accuracy (see Section 2 for more details).
The quality of an algorithm is then evaluated based on both its consistency and its robustness.
This framework was initially restricted to algorithms, but it was very recently extended
to settings involving strategic agents [1, 17, 32], motivating the design of new mechanisms
leveraging predictions to overcome the incentive issues that arise. In this paper, we revisit the
classic scheduling problem of Nisan and Ronen [27] using the learning-augmented framework
and design mechanisms enhanced with predictions regarding the machines’ processing times.

Given predictions regarding the machines’ processing times, a naive solution would be to
assume the predictions are accurate and output a schedule with small makespan according
to the predicted processing times alone (i.e., without eliciting the agents’ true processing
times). This is a strategyproof mechanism that would achieve a consistency of O(1), but its
robustness would be unbounded (e.g., even if a single job’s processing time is mispredicted, it
could end up being assigned to a machine where its actual processing time is arbitrarily high).
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On the other hand, the mechanism of Nisan and Ronen [27] would achieve a robustness of
O(n), but its consistency would also be no better than O(n), since its output disregards the
predictions. In an attempt to provide a middle ground between these two extremes, very
recent work by Xu and Lu [32] proposed a strategyproof mechanism that can guarantee a
consistency of O(1) with bounded robustness, but the robustness guarantee of O(n?) that it
achieves is much worse than the O(n) robustness achieved in [27]. Our main result in this
paper is a strategyproof that combines the “best of both worlds”: a consistency of O(1) with
the best-known robustness of O(n).

1.1  Our results

In this paper we leverage the learning-augmented framework to develop a deeper understand-
ing of this classic strategic scheduling problem, and design much more practical mechanisms
enhanced with predictions. In particular, we assume that the mechanism is provided with
predictions p(i, j) regarding the amount of time that each machine ¢ would require in order
to fully process each job j; crucially, these predictions may be highly inaccurate.

Our main result is a deterministic polynomial-time strategyproof mechanism that guaran-
tees a consistency of (4 4+ 2v) and a robustness of (1 + %)n for any choice of v € (O7 5 - 1),
which is a parameter that the designer can determine to receive their desired trade-off between
consistency and robustness. For example, setting v = 1 yields a mechanism with a small
constant consistency of 6 (i.e., a 6-approximation of the optimal makespan when the predic-
tions are accurate) while maintaining a robustness of 2n (i.e., a worst-case approximation
guarantee that asymptotically matches the best-known approximation, irrespective of how
inaccurate the predictions may be).

Our main mechanism, SCALEDGREEDY, uses the predicted processing times to pre-
compute a schedule that (approximately)! minimizes the makespan, assuming these predic-
tions are correct. The mechanism then uses this schedule as a guide and adds a “bias” in
favor of scheduling jobs on the machines that they were assigned to in this schedule. After
introducing this bias, the mechanism follows a simple greedy procedure, so the main technical
novelty is the subtle way in which this bias towards the predictions is introduced, while
ensuring that we asymptotically match the best known robustness when the predictions are
arbitrarily inaccurate. Roughly speaking, the mechanism carefully chooses a subset of jobs
and proceeds to assign each of them to the same machine as in the pre-computed schedule,
unless the processing times reported by the machines for that job differ significantly from
the predicted ones. Before presenting this mechanism and its analysis in Section 4, we
first dedicate Section 3 to a simpler mechanism, SIMPLESCALEDGREEDY, which provides a
warm-up toward our main result while combining a consistency of O(1) with a robustness of
O(n?).

In Section 5, we take one step further and propose a mechanism that provides worst-case
approximation guarantees as a function of the prediction error. In other words, rather than
focusing only on the two extremes of consistency (where the error is zero) and robustness
(where the error is unbounded), this mechanism guarantees a good approximation as long as
the prediction error is not too high. Given a prediction p of the actual processing times p,
we let the prediction error ) be the largest ratio between the predicted processing time and

actual processing time for any machine 4, job j pair, i.e., n = max; ; max {28;;, ZE;;; } . Our
mechanism takes as input an error tolerance parameter 7 > 0 and achieves an approximation

of O(n?) as long as 7 < 7 and O(77*n) otherwise.

1 Note that even if the processing times are known in advance, no known polynomial time algorithm can
achieve an approximation factor better than 2, and it is NP-hard to achieve a factor better than 1.5 [21].
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Finally, in Section 6 we complement our positive results with an impossibility result,
showing that achieving a consistency of 1, i.e., returning an optimal schedule whenever
the predictions are accurate, necessary leads to unbounded robustness (irrespective of any
computational limitations).

1.2 Related work

Strategyproof scheduling. Apart from proposing their n-approximate mechanism and
conjecturing that this is the best possible guarantee across all deterministic and strategyproof
mechanisms, Nisan and Ronen [27, 28] also proved an approximation lower bound of 2.
This lower bound was later improved to 2.41 by Christodoulou et al. [13], then 2.61 by
Koutsoupias and Vidali [19]. More recently, Giannakopoulos et al. [16] further raised this
lower bound to 2.755 and then Dobzinski and Shaulker [14] pushed it to 3. Whether a
constant approximation is possible remained an open problem until very recently, when the
breakthrough result of [11] eventually proved a lower bound of 1+ /n — 1. Earlier work by
Ashlagi et al. [3] had also shown a lower bound of n for the special class of mechanisms that
are anonymous. Note that although these lower bounds focus on deterministic mechanisms,
even if we allow randomization, the best known approximation guarantee achievable by a
randomized strategyproof mechanism remains O(n) [10].

Learning-augmented framework. Motivated by the shortcomings of worst-case analysis,
an exciting new literature has focused on the design and analysis of “learning-augmented
algorithms”, or “algorithms with predictions” (see [26] for a survey of some early work and [23]
for a more up-to-date list of papers in this area). This literature assumes that the algorithm
is provided with predictions regarding the instance at hand and its performance is evaluated
using consistency and robustness, which are the two primary metrics introduced by Lykouris
and Vassilvtiskii [24]. During the last five years, more than 100 papers have revisited classic
algorithmic problems using this framework, including online paging [24], scheduling [29],
and secretary problems [15, 2], optimization problems with covering [7] and knapsack
constraints [18], as well as Nash social welfare maximization [9] and several graph problems [4].
This line of work also studied online scheduling problems (e.g., [30, 25, 20, 6, 22, 8, 5]),
but it was restricted to non-strategic settings and the predictions were used to overcome
information limitations regarding the future, rather than limitations regarding privately
held information. Very recently, Agrawal et al. [1] and, independently, also Xu and Lu [32]
extended the framework to settings involving strategic agents. Agrawal et al. [1] provided
optimal learning-augmented mechanisms, focusing on the strategic facility location problem,
while Xu and Lu [32] considered a variety of different problems.

One of the problems considered in [32] was the strategic scheduling problem that we
study in this paper. The authors gave a strategyproof mechanism that is O(+)-consistent
and O(n?/~?)-robust, for any v € [1,n]. The mechanism in this paper used greedy allocation
with weights determined by the predictions. However, to achieve any interesting consistency
bounds (i.e., o(n)), their mechanism cannot guarantee a robustness better than w(n?); in
particular, to achieve an optimal consistency of O(1), the mechanism’s robustness must be
Q(n3). While our high-level approach shares similarities with this work, our mechanism
use the predictions in a more cautious way trying to avoid the unnecessary scaling. Our
main result significantly improves upon theirs achieving the best of both worlds: an optimal
consistency of O(1) and the best-known robustness of O(n).
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2 Preliminaries

Makespan minimization on unrelated machines. In the classic problem of scheduling on
unrelated machines there is a set N of n machines, a set M of m jobs, and processing times
p(i,j) for a job j € M to be processed on machine i € N. We use x € {0,1}"*™ to denote
the allocation of jobs to machines, where z(i,7) = 1 if and only if job j is allocated to
machine i. Given an instance p of processing times and an allocation x, the makespan is
the maximum over all machines of the total processing time assigned to that machine, i.e.,
MS(p, x) = max; ), p(i, ) (4, j). The goal is to find an allocation x such that the makespan
is minimized. We denote the optimal makespan for an instance p by 0OPT(p) = miny MS(p, X)
and we let x*(p) denote an optimal allocation for instance p (so MS(p,x*(p)) = OPT(p)). We
abuse notation with OPT and x* when the instance p is clear from context.

Strategic makespan minimization. In the strategic version of this problem, each machine i
is controlled by a distinct self-interested agent. Each such agent incurs a cost for processing
jobs that is equal to its load, i.e., the sum of the processing times of the jobs assigned to %
and needs to receive a payment in exchange. Specifically, given an allocation x, if agent ¢
receives a payment p;, and their utility is equal to p; — Zj:x(i,j):l p(%,7). The processing
times p; = (p(i,1),...,p(i,m)) are private information that is known only to the agent
controlling machine i, and each agent can misreport this information aiming to increase
her utility. A scheduling mechanism consists of an allocation rule x(p) € {0,1}"*™ for
assigning jobs to machines and a payment rule p(p) € R™ for compensating the machines for
their costs. A scheduling mechanism is strategyproof if truthfully reporting p; is a dominant
strategy for every machine i, i.e., it is always an optimal strategy for agent i to report the
truth, regardless of what every other agent reports.

Characterization of strategyproof mechanisms. Seminal work on strategic scheduling has
characterized the family of allocations rules x(p) that admit a payment rule p(p) such that
(x(p), p(p)) is a strategyproof scheduling mechanism.

» Definition 1 (Monotonicity Property). An allocation algorithm is monotone if fixing the
processing time of all other agents p_;, for every two reports of agent i, p; and pj, the
associated allocations x and x' satisfy

> (i, §) — 2'(i,§)) (pli, §) — P (i.5)) < 0.

jEM

» Lemma 2 ([28, 31]). An allocation algorithm x(p) admits a payment rule p(p) s.t.
(x(p), p(P)) is a strategyproof scheduling mechanism if and only if x(p) satisfies the mono-
tonicity property.

This fundamental result reduces the mechanism design problem of strategic scheduling to an
algorithm design problem where the goal is to find a (near)-optimal monotone allocation.
One simple but natural mechanism that satisfies the above property is the greedy mechanism:
it assigns each job j to the machine with minimum processing time for job j, i.e., z(i,j) =1
if { = argmin; ¢y p(¢/, 7). Nisan and Ronen [28] analyzed this mechanism and showed that
it achieves an n-approximation to the optimal makespan.

Learning-augmented mechanism design. In the learning-augmented mechanism design
framework, before requesting the processing time vector p; from each machine ¢, the designer
is provided with a prediction p of the entire n x m processing time values p(i,j). The
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designer can use this information to choose the rules of the mechanism but, as in the
standard stretagyproof scheduling setting, the final mechanism, denoted x(p, p), needs to
be strategyproof. We use consistency and robustness to measure the performance of the
mechanism. where consistency is the worst-case approximation given a accurate prediction,
i.e., p = p and the robustness is the worst-case approximation given any predictions. Given
a instance p, a mechanism is a-consistent if it achieves an a-approximation ratio when the
prediction is correct (p = p), i.e.,

o { TP < o,

p | MS(p,x*(p))

A mechanism is B-robust if it achieves a S-approximation ratio even when the predictions
are arbitrarily wrong, i.e.,

max{MS(p’X(p’f’))} < B.

p | MS(p,x*(p))

p.p

One can also evaluate the worst-case approximation ratio as a function of the predic-
tion error 7 > 0. In this paper we define the error n(p,p) as the largest ratio be-
tween the predicted processing time and actual processing time for any 4 j pair, formally,

1 = maxien ey max {p(w) p(i,5)

p(3,5)° p(i,3)
~(n)—approximation if

MS(p, x(p, P))
o {TaRn BB <50

} . Given a prediction error 7, a mechanism achieves a

Note that for n = 1 the bound corresponds to the consistency guarantee and for n — oo it
captures the robustness guarantee.

3 Warm-Up: a 4-Consistent and n2-Robust Mechanism

As a warm-up, we first present a strategyproof mechanism that is 4-consistent and n2-robust.
In the next section, we build on this mechanism to obtain a mechanism with O(n) robustness.

The mechanism. Nisan and Ronen [27] showed that the greedy mechanism that assigns each
job j to the machine with minimum processing time for job j has a wost-case approximation
factor of n, implying that it is n-consistent and n-robust. On the other hand, returning
a schedule that is optimal for the predicted instance gives a 1-consistent mechanism with
unbounded robustness. SIMPLESCALEDGREEDY, described formally in Mechanism 1, is a
variant of the greedy mechanism where the processing times are scaled as a function of
the predictions. More formally, instead of greedily assigning job j to the machine i with
minimum processing time p(i, j), SIMPLESCALEDGREEDY assigns j to the machine ¢ with
minimum scaled processing time (i, j) - p(4, j), where r(4, j) are scalars that are defined by
the mechanism. We note that even when this scaling depends arbitrarily on the predicted
instance P, this mechanism is monotone (which we formally show in Lemma 8), and thus
strategyproof (these scalars are independent of the reported instance p).

The central part of our mechanism thus consists of constructing scalars r (4, j) as a function
of the predictions. The mechanism first computes an assignment x for the predicted instance
by using a, not necessarily strategyproof, scheduling algorithm MAKESPAN-MIN that is given
as input to the mechanism. We call X the predicted assignment. Let 2; be the machine that
J is assigned to according to the predicted assignment, which we call the predicted machine
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of job j. Note that with scalars r(i,j) = ’;((iz?”’].j')), we have that r(7, ) - p(¢,7) = p(%;, j) for all
jobs j. Thus, with such scaling factors and by breaking ties in favor of i;, each job j would be
assigned to its predicted machine i;. The issue with such scaling factors is that they can be
either arbitrarily large or arbitrarily small, which causes the robustness to be unbounded since
these factors can cause a job to be allocated on an undesirable machine when the predictions
are inaccurate. To avoid this issue, we cap the scaling factors to ensure that they have values
between 1 and n. We break ties in favor of i; when 7(¢;, j) - p(2;, ) = argmin, (¢, j) - p(4, j),
and otherwise we break them in favor of the machine with minimum index.

Note that when the prediction is correct, i.e., p = p, the mechanism assigns a job j
to its predicted machine i; unless min; p(i, j) < w, i.e., unless there exists a machine %
with much smaller predicted processing time for j than the predicted machine 2; of job j. If
min; p(4, j) < w, and the prediction is correct, the mechanism assigns j to the machine
argmin, p(¢, j) with the smallest true (and predicted) processing time for j.

Mechanism 1 SIMPLESCALEDGREEDY.

1 Input: instance p € R"*™, predicted instance p € R™"*™ scheduling algorithm
MAKESPAN-MIN

2 X + MAKESPAN-MIN(D)

3 i; < the machine 4 that job j is assigned to according to X, i.e., Z(7;,7) = 1, for each
jeEM

4 r(i,j) < max (1,min (’;;(’Z’j])),n)), for each (i,j) € N x M

5 i; < argmin,; (2, 7) - p(4, j), break ties in favor of i;, for each j € M

6 if i =i; then x(i,j) =1 else z(i,j) = 0, for each (i,j) € N x M

7 return x

We first analyze the mechanism’s consistency, then its robustness, and finally show that
it is strategyproof.

The consistency. We first introduce some notation. We assume that MAKESPAN-MIN is an
a-approximation algorithm for makespan minimization and let M; = {j € M : z(i,j) = 1}
and M; = {j € M : 2(i,j) = 1} be the sets of jobs j such that j is assigned to machine i
by SIMPLESCALEDGREEDY and the predicted assignment, respectively. To bound the total
processing time of the jobs M; assigned to machine 4, for each i € N, we separately bound the
total processing times of M; N M; and M; \ M;. Bounding the total processing time of jobs
in M; N M, i.e., jobs assigned to machine ¢ according to both the mechanism’s assignment
x and the predicted assignment X, by «0PT is almost immediate when the predictions are
accurate.

» Lemma 3. Assume that p = p, then, for alli € N, ZjeMmM,- p(%,j) < aOPT(p).

Proof. For any machine ¢ € N, observe that

> p,§) < > p65) =Y b(i,j) < MS(D,%) < aOPT(P) = aOPT(p),

FEM;NM; JjEM; jeEM;

where first equality is since p = P, the second inequality is by definition of M; and the
makespan of allocation X, the last inequality is since MAKESPAN-MIN is an a-approximation
algorithm, and the last equality is since p = p. <

ITCS 2023
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The main part of the analysis of the consistency bound is the total processing time of
jobs that are assigned to ¢ even though i is not their predicted assignment, i.e., the total

processing time of M; \ M;. We first show that such jobs must have a scalar r(i,j) =n

» Lemma 4. For any job j € M and machine i € N, if p = p and j € M; \ M;, then

T(lhj) -
Jj € M; \ M;, we have that i; # ¢ and (¢, ) - p(¢,5) < r(i;,7) - p(ij,7) by definition of
p(i,j3)  pG,5)  Bi,5)°
p. Since
<

=n.
Proof. Consider a job j € M and machine i € N such that p = p and j € M, \ M;. Since

. Z ~

SIMPLESCALEDGREEDY. We get that

(i 0) _ o (1,min (Q(f 7).
(25, 7)

r(i,4) <r(i,7) -
700 (i g)
where the first equality is by definition of r(7,j) and the last equality since p =
then again by the definition (i, j) we get that r(i,7) = n.

T(Z,]) P((7 )
We are now ready to bound the total processing time of M; \ M,

» Lemma 5. Assume that p = p, then, for alli € N, ZJGM \ I p(i,7) < « - OPT(p)

Proof. Let ¢ be an arbitrary machine and assume that p = p. First, observe that
: D> plisg) < = > plis5) = L > b(5,9)
J - n 7 n J
JEM JEM

B2 iy = 1

. T
pi,J) < —
2 s D SRS P
FEM;\M; JjEM;\M; JEM;\M;
where the first inequality is since j was assigned to machine 7 by SIMPLESCALEDGREEDY
the first equality since r(2;,5) = 1 and r(4,j) = n for j € M; \ M; by Lemma 4. We also

Jj) =MS(p,%x) < a-0OPT(Pp) = o - OPT(p)

have that

ZZ p(i,7) <maxz
JEN;
. <

rD O
]GM ZGN]e]V[
where the last inequality is since MAKESPAN-MIN is an a-approximation algorithm. Combing

the above two series of inequalities, we get >\, \az; P(8,J) < - OPT(p)

By combining Lemma 3 and Lemma 5, we get that the mechanism is 2a-consistent

» Lemma 6. SIMPLESCALEDGREEDY is a mechanism that is 2c-consistent

Proof. Assume that p = p. For any machine i, we have
> i)+ Y. p(i,j) < aOPT(p) + aOPT(p) = 200PT(p)
<

> plisg) =

JjeM; JEM;NM; JEM\M;
where the inequality is by Lemma 3 and Lemma 5
The crucial part of the mechanism that allows obtaining a robustness of

n?)-robust.

The robustness.
is that the scalars r(7, j) are bounded between 1 and n

n?i
» Lemma 7. SIMPLESCALEDGREEDY is a mechanism that is ©(
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Proof. We first show that the robustness is at most n2. Consider an instance p, an optimal
assignment x* for p, a job j, and a machine ¢ such that j € M;. Let i} be the machine that
j is assigned to according to x*. By the mechanism, we have 1 < (i, j) < n for all machines
1’. We therefore have:

where the second inequality is by line 5 and the fact that j is assigned to i. We get that
_ .o .o ok 2 oy 2
MS(p.x) =max > p(if) <) Y plig) <ny Y plif.g) < n’max Yy p(is.j) = n*0PT.

JEM; i€N jeEM; i€EN jeM; JEM;
In fact, the robustness guarantee is tight. Due to space limitation, we defer the proof to the
appendix A. <

Strategyproofness. We show that the mechanism is strategyproof by proving that it is
monotone and then using Lemma 2.

» Lemma 8. SIMPLESCALEDGREEDY is a strategyproof mechanism.

Proof. Consider a machine ¢ € N and a predicted assignment X. Consider two instances
p and p’ that differ only on machine 7 and the associated allocations x and x’ returned
by SIMPLESCALEDGREEDY when the predicted assignment is X. Given a fixed predicted
assignment X, the mechanism is deterministic, so z(i,j) € {0,1} for all i € N and j € M.
Since the predicted assignment is fixed, we also have that the scalars r(i, j) are fixed.

Let j € M be an arbitrary job. Without loss of generality, we assume that p(4, j) < p'(4, 7).
Consider the case where z(i,j) = 0, i.e., job j is not assigned to machine i for processing
times p. By the mechanism, this implies that ¢ # argmin, (¢, 7) - p(¢/,4). Since (1)
p(i',j) = p(i') for i # i, (2) pl(i.j) < P(i.), and (3) i # argmin, r(7',5) - p(i', ),
we get that ¢ # argmin, r(i',5) - p’(¢,4), which implies 2/(i,j) = 0. We thus obtain
that x(i,7) > 2'(i,7), which implies that (z(i,5) — 2'(¢,5))(p(i,5) — p'(4,7)) < 0 since
p(i,7) < p'(4,7). SIMPLESCALEDGREEDY is thus a monotone mechanism, which, by Lemma 2,
implies that it is strategyproof. |

The main result for SimpleScaledGreedy. Combining Lemmas 6, 7, and 8, we obtain the
main result for SIMPLESCALEDGREEDY.

» Theorem 9. SIMPLESCALEDGREEDY is a strategyproof, 2a-consistent, and ©(n?)-robust
mechanism.

To obtain a polynomial-time mechanism, we can have a = 2 and a consistency of 4
with MAKESPAN-MIN being the 2-approximation algorithm for makespan minimization on
unrelated machines by Lenstra et al. [21]. By ignoring running time considerations, we can
obtain @ = 1 and a consistency of 2 with MAKESPAN-MIN finding an optimal schedule.

4 The Scaled Greedy Mechanism

In this section, we present a deterministic polynomial-time mechanism that is (4 + 2v)-
consistent and (1 + %) n-robust, where v € (0, 5 = 1) is a parameter that controls the
tradeoff between the consistency and robusntess achieved by the mechanism. This mechanism
builds on the mechanism from the previous section. In the next section, we extend this
mechanism to obtain a mechanism that achieves an approximation as a function of the
prediction error.
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4.1 The mechanism

SCALEDGREEDY, which is described formally in Mechanism 2, defines scalars r(, j) and
assigns a job j to the machine ¢ with minimum scaled processing time (i, ) - p(¢,j). As in
SIMPLESCALEDGREEDY, the mechanism first computes a predicted assignment X for the
predicted instance p. Recall that scalars r(i,j) = 1;((% ;Jj)) are designed so that the mechanism
assigns a job j to its predicted assignment 2; when the predictions are correct, even if j has a

smaller predicted processing time on % than on ;. To improve the robustness from quadratic
to linear, SCALEDGREEDY upper bounds the scalars r(i,j) more aggressively, and more
carefully, than SIMPLESCALEDGREEDY, which simply upper bounds them by n. Scalars that
are close to 1 are intuitively better for the robustness of the mechanism since the greedy
mechanism, which achieves an n-approximation, corresponds to the mechanism where the
scalars are all equal to 1. The mechanism upper bounds the scalars by maintaining sets J;, I
and T

Mechanism 2 SCALEDGREEDY.

1 Input: instance p € R™"*™, predicted instance p € R"*™ scheduling algorithm
MAKESPAN-MIN, prediction confidence parameter v € (0, 5 — 1)

2 X + MAKESPAN-MIN(P)

3 i; < the machine i that job j is assigned to according to %, i.e., Z(%;,7) = 1, for each
jeM

4 7(i,) + max (’;}(“j; : 1) for each (i,7) € N x M

Ji+—Oforallie N

I+ N

T« {(i,j) : j € M,i=argming s jy<pi,.j) P 7))}

while T is not empty do
(i*,j*) + arg maxg; jer

10 Ji — Jie U{5*}

11 for alli s.t. p(i*,j*) < p(i,5*) do

12 update r(i,5*) < 1

13 I+ {ieN:> o, p(i,j) < MS(p,%x)}

14 T {(i,j):j € M\ (Uiy),i =argming 500 jy<p, i) P 5)}

15 i; <— argmin, r(¢,7) - p(4, j), break ties in favor of #; first and ¢’ if j € J; second, for
each j € M

16 if ¢ =4, then z(i,j) =1 else z(4,j) = 0, for each (i,5) € N x M

17 return x

© w0 N o O«

J; is the set of jobs j for which SCALEDGREEDY assigns j to ¢ when the predictions are
correct even though their predicted assignment is not . When SCALEDGREEDY adds a job
J* to Ji«, it allows to set the scalars r(i,j*) to r(¢,5*) = 1, for all machines ¢ such that
p(i*,7*) < p(i,5*), while guaranteeing that job j* is assigned to * when the predictions are
correct. The sets J; are initially empty. To maintain a good consistency, we bound the total
predicted processing time of the jobs in a set J; by YMS(p, X). [ is the set of machines for
which this bound has not yet been violated, i.e., the machines 7 that are such that we can
still add jobs to J;. T initially consists of all the machines. T is the set of pairs (i, ) such
that job j is a candidate to be added to J;. A pair (i,7) is in T if (1) j has not yet been
assigned by SCALEDGREEDY to another machine, i.e., j & U;J;, (2) the upper bound on
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the total predicted processing time of the jobs already in J; has not yet been violated, i.e.,
i €1, (3) j has a smaller processing time on ¢ than on its predicted assignment 7;, and (4)
i is the machine with minimum predicted processing time p(7, j) among the machines in I.
At each iteration, job j* is added J;« where (¢*,5*) is the pair (,j) with maximum %
in T. For each job j, if there are multiple machines with minimum scaled processing time
r(i,7) - p(4,7), ties are broken in favor of, in order of priority, (1) machine 2; and, if there is

one, (2) the machine ¢’ such that j € J;/, and (3) the machine with minimum index.

4.2 The analysis

We first analyze the mechanism’s consistency and robustness, and finally show it is strate-
gyproof. The following simple observation is used for both the consistency and the robustness
analyses.

» Observation 10. For every machine i € N and job j € M, at every iteration of SCALED-
GREEDY, we have r(i,7) > 1 and, if p(3,5) > p(i;,7), (4, 75) = 1.

The consistency. As in the analysis of SIMPLESCALEDGREEDY, we assume that
MAKESPAN-MIN is an a-approximation algorithm for makespan minimization and let
M; = {j € M : 2(i,j) = 1} and M; = {j € M : #(i,j) = 1} be the sets of jobs j
such that j is assigned to machine ¢ by SCALEDGREEDY and the predicted assignment,
respectively. To bound the total processing time of the jobs M; assigned to a machine 1,
we again separately bound the total processing time of M; N M; and M; \ M;. The next
lemma, which bounds the total processing time of M; N M; when the predictions are correct,
is identical as Lemma 3 for SIMPLESCALEDGREEDY, and its proof is also identical to the
proof of Lemma 3.

» Lemma 11. Assume that p = p, then, for alli € N, ZjeMli_ p(i,7) < aOPT(p).

Next, to bound the total processing time of M; \ M;, we first characterize the jobs in
M; \ M; as being exactly the jobs in J;.

» Lemma 12. Assume that p = p, then, for every machine i € N, we have that J; = Ml\Ml

Proof. Consider a machine i € N and a job j € J;. We want to show that j € Ml\Ml Note
that since j € J;, we had (i,j) € T at some iteration of the mechanism, which implies by
Line 14 that p(i, j) < p(%;, j). Since p(i,7) < p(i;,7), we have that ¢ # ;. Since £(;,j) =1
by definition of i;, we have that (¢, j) = 0, which implies j ¢ M.

Next, we show that j € M;, which we show by proving that (¢, j)p(i, ) < (i, j)p(¢, 7) for
all &/ & {4,%;} and r(¢, §)p(4, j) < r(ij,7)p(i;,7). There are two cases of machines ¢’ & {7,7,}.
The first case is if ¢’ is such that p(i’, j) < p(4, j), which is the main part of the proof. Since
P(i,7) < p(%;,4) (which was shown earlier in this proof), we have p(i’, j) < p(%;,j), so (¢, j)
was initialized to r(i',j) = ’;E?,j)) in line 4. For all i # i, we have that j & J;» since, by
line 14, (i",7) € T if j € J;, which implies that j cannot be added to J;». Thus, the only
iteration of the mechanism where j* = j is when ¢* = 4, and since p(¢’,j) < p(i,5), this
implies that (¢, j) is never updated in line 12. Together, with the fact that it was initialized
to r(i',j) = ’;((iij)), we have that r(i/,j) = 1;((1{5)) when the mechanism terminated. Thus,
when p = P, we have

T(i,j)p(i,j) =1 ﬁ(llhj) < ﬁ(ijv.]) = ﬁ(l/’]) = T(i/,j)p(i/,j). (1)
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where the first equality is since 7(i, j) = 1 (because j € J;). The second case of i' & {i,%;} is
if ¢ such that p(¢’, j) > p(i, 7). In this case, we have that

plirg) - 7(0r3) = P, 4) < B ) < pli',3) - (i, ), (2)
where the last inequality is by Observation 10. Next, note that

p(l,j) : T(Za]) = f)(%v]) < ﬁ(ija]) = p(,zjvj) : T(’Zﬁj), (3)
where the inequality is since, at some iteration of the mechanism, (i,5) € T and the last
equality since 7(i;,7) = 1. Since we have shown that (i, j)p(¢,j) < r(i,j)p(i’, ) for all
i ¢ {i,%;} and r(4,5)p(i,5) < r(i;,7)p(i,7), we have that, by line 15 of the mechanism,
x(i,7) = 1, which implies that j € M;. Since we have shown that j & M; and j € M;, we get
j e M;\ M. R R

It remains to show that if j € M;\ M;, then j € J;. Consider an arbitrary job j € M,;\ M;.
Since j € M;, i # %;. Since j € M; and i # i;, we have that

r(d,4)p(i, 3) < r(i5, 5)p(i, 5) = p(i;, )
where the inequality is by line 15 of the mechanism and the equality since r(%;,j) = 1. Thus,
r(i,7) < %, which implies 7(i,j) = 1. Thus there is some iteration of the mechanism
where j* = j got added to J;» for some machine 7*. Assume by contradiction that i* # i, so
j € Ji» for i* # 4. Then, by the first part of this proof, we have that j € M;-, which is a
contradiction with 7 € M;. Thus, :* =i and j € J;. |

The next lemma bounds the total processing time of jobs in M; \J\ZZ by using the fact
that J; = M; \J\ZZ and by bounding the total processing time of jobs in J;.
» Lemma 13. For any input parameter v > 0, then, for every machinei € N, if J; = Ml\Ml,
we have that ¢ yr xp, P(i,J) < (14 v)aOPT(P).
Proof. Consider an arbitrary machine i and let 5/ denote the last job added into J; by the
mechanism. First observer that

ST p) =Y b= > p5)+5(, ) < MS(B, %) +5(i,§) < MS(B, %) +5(iy )
JEM\DM; J€J; J€IN{I'}
where the first inequality is by Line 13 and Line 14 of the mechanism, and the last inequality
is since j' € J;. Next, we have
WS(D, %) + P50, §') < (1+7)MS(P, %) < (1 + 7)a0PT(P)

where the first inequality is since the makespan of an assignment is at least the processing time
of a job j on a machine 7, for any j assigned to 7, the second inequality since MAKESPAN-MIN
is an a-approximation algorithm. |

By combining Lemma 11 to bound ZjeMmMip(i’j) and Lemma 13 to bound
ZjeMi\Ml_p(i,j), the next lemma bounds >,/ p(4,7) by (2 + 7)o for any machine 4,
which implies that SCALEDGREEDY is (2 4 «y)a-consistent.

» Lemma 14. For any input parameter -y > 0, the SCALEDGREEDY mechanism is (2 + 7)a-
consistent.

Proof. Assume that p = p and consider an arbitrary machine i, then we have J; = M; \Ml
by Lemma 12. Thus

Yoo )= >, i)+ Y, pli,j) < aOPT(p)+ (1+7)a0PT(p) = (2+7)a0PT,
JEM; jeM;NMN; JEM\M;

where the inequality is by Lemma 11, Lemma 13 and the assumption that p = p. <
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The robustness. Recall that the main reason that SIMPLESCALEDGREEDY achieved
bounded robustness is thanks to the scalars being individually upper bounded by n. To
show that SCALEDGREEDY achieves linear robustness, we give a stronger upper bound on
the sum of the largest scalar on each machine. More precisely, in Lemma 17, we show that
Zi:maxj r(ig)>1 Max; (i, j) < 2, which is the main lemma to show the linear robustness. To
prove Lemma 17, we first need two helper lemmas. The first is that for a fixed machine 1,
the jobs added to J;, i.e. the jobs j with scalars r (4, j) modified from % to 1 are the jobs

with largest ratio A((Z i J]))

» Lemma 15. For any machine i € N, job j € J;, and job j' & J;, if r(i,j') > 1, then

ﬁ(i\]).j) > ﬁ(ij'ajl)
p(i,g) — p(i,j")
Proof. Assume for contradiction that ﬁ;z/]’.{)) > 1;((1; ’jj)) for some j € J; and j’ & J; such that

r(i,7") > 1. Since j € J;, we have that (17]) € T at some iteration of the mechanism. We let
the iteration when j is added to J; by the mechanism be ¢. First note that p(i, j') < p(i;, j’),

otherwise ﬁ}%']’f‘)) <1< ’;((l 7’J)) (where the strict inequality is since j € J;), which is a
contradiction.

Since j was added to J; at iteration ¢, we have ¢ € I at iteration ¢, which implies ¢ € I at
all iterations ¢’ < t. There are two cases. If, at iteration ¢, 7/ € J;s for some machine ', then
j' was added to J;; at some iteration ¢ < t. Thus, (¢/,5’) € T at iteration ¢'. By line 14,
this implies that p(i’, j') < p(i, ') since @ € I at iteration ¢’. By line 12, j’ added to J; and

p(i',5") < p(i,5") imply r(i,5') = 1, which is a contradiction. Thus, at iteration ¢, j' & Uy Jy.

Since p(4,5") < p(ij,j') and j' € Uy Jir, there exists machine ¢’ such that (i/,5') € T at
iteration ¢ and such that p(i;/, ;") < p(4,5). We get that

Py, 5")

7)) p5.9)
RGN g

(6,4~ p(i,j)

> Py,
pt

where the inequality is by the assumption of the proof. Since (i’, ') € T and 1;(2 L )) > [;((i 4 ’jj)) ,
we have that (i*,5*) # (¢,7) at iteration ¢, which is a contradlctlon with j that is added to

J; at iteration t. <

The second helper lemma shows that if there is a job j with scalar (4, j) > 1 with respect
to machine i, i.e. a scalar that the mechanism did not decrease to 1, then we have that
Zj’EJf, p(4,5") > YMS(P, X), i.e., the upper bound yMS(p,X) on the total processing time of
jobs in J; has been violated. Informally, the scalar r(, j) couldn’t be decreased to 1 because
J; was already full.

» Lemma 16. For any v > 0, when SCALEDGREEDY terminates, for any machine i, if there
is a job j such that r(i,j) > 1, then 3, ; p(i,j') = YMS(P, X).

Proof. Assume for contradiction, that there exist a machine ¢ with r(¢, ') > 1 for some
job j"and >, ; p(i,j) < AMS(P,%X). In other words, i € I throughout the execution of

the mechanism. Since 7; ;; > 1, we have p(i, j') < p(ij,j’), otherwise r; j; = 1 by line 4.

If, at the end of the execution of SCALEDGREEDY, j' € J; for some machine ', then j’
was added to Jy at some iteration ¢'. Thus, (i,j') € T at iteration t'. By line 14, this
implies that p(i’,j") < p(i,5’) since i € I at iteration t'. By line 12, 5/ added to J;; and
p(i',7") < p(i,5") imply r(4,5’) = 1, which is a contradiction. Thus, when SCALEDGREEDY
terminates, j' & Uy Jyr.
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Since p(i, j") < p(ij7,5") and j" & Uy Jyr, either there exists machine ¢’ such that (¢/,j') € T
at the end of the execution and such that p(i;, j') < p(i, j') or (¢,5") € T. However, both
cases can’t happen since the mechanism only terminates when 7' is empty. |

The next lemma is the main lemma for the robustness analysis, it upper bounds the sum
of the largest scalars on each machine. To prove it, we use the two previous helper lemmas.

» Lemma 17. For any v > 0, when SCALEDGREEDY terminates, we have that

.o n
Z max (i, j) < —.
t:max; r(4,5)>1 / v
Proof. First note that the sets J; for i € N are disjoint, since once any j is added to J; for
some machine 4, j is no longer consider for T" by line 14. We therefore have:

'Ai‘7. Z"In xi1(1,7 Z ﬁ(ihj)
MS(f)JA() :mlax Z ﬁ(ij,]) > Z] pT(LJ .7) > i:ma J7(Z7J)>Tll JjEJ; 7 7 (4)

jiiy=i

Where the first equation is by the definition of predicted machine, the first inequality is
because the maximum is weakly greater than the average, and the last inequality is due to
the fact that J; and J; are disjoint for any two distinct machines ¢,7 € N. By Lemma 15,
for any j € J;, we have

) > i) e ) ?

3>

Py, 3) = (i, ) -

3>

Combining Inequalities (4) and (5) we get

Zi:man r(i,7)>1 max; T(ivj) ZjeJi ﬁ(la .7)

MS(p, %) >
(P, %) -

By Lemma 16 we know that for any machine i such that max; 7(i,7) > 1, >°,c ;. p(i,5) >
YMS(P, X). Substitute it in the equation above we get that:

. ot g max; (i, 7) - YMS(p, X
MS(IA)’),\() > ZLmaxj r(i,7)>1 J ( .7) Y (p ) N Z
n

maxr(i,j) < —. <

n
Y

immax; r(¢,5)>1
We are now ready to show the robustness of the algorithm.
» Lemma 18. For any v > 0, SCALEDGREEDY is a mechanism that is (1 + %)n—mbust.

Proof. First note that since OPT is the maximum finishing time of any machine in the optimal
schedule, and since the maximum is greater than the average we have:
) %1
OPTZ Z]eMp(jaj) (6)
n

We now partition the set of jobs M into two subsets, let S* be the set of jobs j such that
7(i5,j) = 1 and M \ S* be the rest of the jobs j with r(if,j) > 1.

For any job j € S*, let i; be the machine the mechanism assigns j on, i.e., z(i;,j) = 1.
we have

p(ij, ) < (i, )p(iy, 5) < @@}, 3)p(, 5) = (i}, j), (7)
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where the first inequality is by Observation 10, the second inequality is by the fact that
x(1j,7) = 1 and the last equality is by definition of S*. Combining Inequalities (6) and (7)
we get

> (i, 5) < Y plit5) < > plis,4) < n-OPT. ®)

jes* jes* jeM

Now consider any job j € M\ S*, first note that since 7(i%, j) > 1, 75 € {i : max; r(i,j) >
1}. Similarly as the analysis of S* we have

p(ij, j) < r(i, j)p(iz, 3) < r(ij, j)p(i}, j) (9)
Now consider the optimal makespan OPT again, by the definition of optimal schedule, we
have:

OPT =max ) p(i},j) >  max . > plis,5). (10)

i:max; r(%,J —

j:i;:i Jii} =1

Combining Inequalities (9) and (10), we get:

S oplizg) < > w5, 5) (by Inequality (9))
JEM\S* jEM\S*
< YD gw.g)

itmax; r(i,5)>1 74 =i

< D (maxr(ig)- Y p(i.d)
i:max; r(4,5)>1 J Jiig=i

< Z (max r(4,7))0PT (by Inequality (10))
i:max; 7(4,5)>1

< 2. opr, (11)
v

where the last inequality is due to Lemma 17. Combining Inequalities (8) and (11) we get:

max 3 i) < ¥ i) € X pligd)+ X plipd) < (142 ) w0«

JEM; jeM jes* jEM\S*

Strategyproofness.
» Lemma 19. SCALEDGREEDY is a strategyproof mechanism.

Proof. Consider a machine 7 € N and a predicted assignment X. Consider two instances p
and p’ that differ only on machine 7 and the associated allocations x and x’ returned by
SCALEDGREEDY when the predicted assignment is X. Given a fixed predicted assignment X,
the mechanism is deterministic, so x(¢,5) € {0,1} for all i € N and j € M. Note that line 4

to 14 don’t use p, thus the scalars are, as for SIMPLESCALEDGREEDY, independent of p.

The remaining of the proof follows identically as the analysis of SIMPLESCALEDGREEDY
being strategyproof (Lemma 8) <

The main result for ScaledGreedy. Combining Lemmas 14, 18, and 19, we obtain the main
result for SCALEDGREEDY, which is that it is a strategyproof mechanism that, with input
parameter v being any constant, achieves constant consistency and linear robustness.
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» Theorem 20. For any v € ( 5 — ), SCALEDGREEDY is a strategyproof, (2 + v)a-

consistent, and (1 + %) n-robust algorithm.

To obtain a polynomial-time algorithm, we can have o = 2 and a consistency of 4 + 2~
with MAKESPAN-MIN being the 2-approximation algorithm for makespan minimization on
unrelated machines by Lenstra et al [21]. By ignoring running time consideration, we can
obtain a = 1 and a consistency of 2 + v with MAKESPAN-MIN finding an optimal schedule.

5 The Error Tolerant Scaled Greedy Mechanism

In this section, we give a mechanism that builds on the mechanism from the previous
section and achieves a constant approximation not only when the predictions are accurate,
but also when the predictions are approximately accurate. Recall from Section 2 that,
given a prediction p of the actual instance p, the prediction error 7 is the largest ratio
between the predicted processing time and actual processing time for any 4,j pair, i.e.,

_ Dij Pij
= max; i max 4§ —, =
n i€eM,jEN {pij ? B

7 > 0 and achieves an approximation of (24 v)an? if n < 7 and (1 + %)ﬁQn otherwise, where,

} . This mechanism takes as input an error tolerance parameter

similarly as in the previous section, y is the prediction confidence parameter and « is the
approximation of the scheduling algorithm used in the mechanism.

The mechanism. ERRORTOLERANTSCALEDGREEDY, formally described in Mechanism 3,
is similar to SCALEDGREEDY, but takes as input an additional parameter 77 > 0 that is the
error tolerance of the mechanism. Recall from the previous section that if j € J; for some
machine i, then, when the predictions are correct, SCALEDGREEDY assigns j to machine ¢,
otherwise it assigns j to its predicted assignment 7;. ERRORTOLERANTSCALEDGREEDY aims
to achieve this assignment not only when the predictions are correct, but also when they
are approximately correct, with one exception that is later discussed. In order to achieve
this assignment when the predictions are approximately correct, the mechanism sets the
scalars (i, j) of pairs 4,j such that job j that should be assigned to ¢ to r(i,5) = ﬁ% in
lines 12 and 16. The exception previously mentioned is that it is not only the scalar of
j* € J;= that is updated to ﬁ% in line 12, but the scalars r(i, 7*) for all machines ¢ such that
p(i*,j*) < p(i,5*). The remainder of the mechanism is identical to SCALEDGREEDY.

The analysis. Note that mechanisms SCALEDGREEDY and ERRORTOLERANTSCALED-
GREEDY are identical except lines 12, 15 and 16. It is easy to verify that Lemma 15,
Lemma 16, and Lemma 17 for SCALEDGREEDY also hold for ERRORTOLERANTSCALED-
GREEDY. The Observation 10 also holds true for ERRORTOLERANTSCALEDGREEDY for any
r(i,7) given that ¢ # i; and j ¢ J;. We first show that the characterization of the jobs in J;
as J; = M; \ Mi for SCALEDGREEDY when the predictions are accurate now also holds for
ERRORTOLERANTSCALEDGREEDY when the error is bounded by the error tolerance, i.e.,

n(p,p) <1

» Lemma 21. Given any prediction p and actual instance p, if n(p,p) < 7, then, for every
machine i € N, we have J; = M; \ M;.

Proof. By Inequality (1), (2) and (3) from the proof of Lemma 12 we know that if j € .J;
for some machine ', p(i’,5) < p(i, ) - (i, j) for any 4,5 pair. By line 12 of the mechanism
and the fact that the mechanism did not modify (4, j) for any other machine i ¢ {i’,7;}, we
have for any ¢ ¢ {i',7;}:
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Mechanism 3 ERRORTOLERANTSCALEDGREEDY.

1 Input: instance p € R™*™, predicted instance p € R™*™, scheduling algorithm
MAKESPAN-MIN, prediction confidence parameter v € (0, 5 — 1), error tolerance
parameter 77 > 0

2 X + MAKESPAN-MIN(D)

3 i; < the machine ¢ that job j is assigned to according to X, i.e., Z(i;,7) = 1, for each
jeM

4 r(i,j) < max (%,1) for each (,j) € N x M

Ji+—0Qforalie N

I+ N

T+ {(¢,4) : j€ M,i= argmini,ekﬁ(i,’jKﬁ@j)j)ﬁ(i’,j)}

while T is not empty do

© ® N o o

(5%, %) - argmax(; jcr 59

10 Jie = Ji= U5}

11 for alli s.t. p(i*,5*) < p(4,j*) do
1

12 update r(i,j*) + 7

13 T {ieN:> c; pij) < Ms(p,%x)}

14 T {(i,j) 1 j € M\ (Uii), i = argming cpp0i jy<pis, ) D' 5)}

15 for all jobs j s.t j & UjenJ; do

16 update (i, j) ﬁ—lz

17 i; < argmin, r(i,j) - p(i, j), break ties in favor of 7; first and ¢’ if j € J;» second, for
each j € M

18 if ¢ =4, then z(i,j) =1 else z(i, j) = 0, for each (i,5) € N x M

19 return x

p(llvj) ' T(i/,j) < nﬁ(llmj) : T(i/,j) = 7715(1/73) : ]'/ﬁQ = ﬁ(l

IN

afe s .. _ .o .o N .. ..
P, g) - r(i,g) - 1/ < p(i,j) - r(i,5) - 7S p(i, g) - (i, j),
Where the first inequality is by the definition of 7, the second inequality is due to n < 7, the

third inequality is since r(i,j) > 1 by Observation 10, and the forth inequality is again by
the definition of 7. We also have:

JI\I)‘H

dl\[,‘H

p(i/j) -T(i/,j) = ﬁ(lvj) :

Since p(ilv j)’?"(i,’ .]) < p(Za ]) 'T'(i, ]) and p(llj)T'(Z/, ]) < p(/ijvj) 'r(ij ) j)a by line 17, we have
that z(i’,j) = 1 in ERRORTOLERANTSCALEDGREEDY. Following a similar argument we get
for any job j such that j ¢ U;enJ;, we have 2(%;, j) = 1 in ERRORTOLERANTSCALEDGREEDY.

<

Given that J; = M; \Ml, we have Lemma 13 holds true. The approximation obtained
by ERRORTOLERANTSCALEDGREEDY when the error is within the error tolerance is (2 +
v)an?. The analysis of this approximation is similar to the analysis of the consistency of
SCALEDGREEDY.
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» Lemma 22. Given an error tolerance bound 7, and an actual error n, the approximation
ratio of mechanism ERRORTOLERANTSCALEDGREEDY is (2 +~)an? if n < 7.

Proof. By Lemma 21, when 7(p, p) < 7, the assignment x returned by the mechanism over
input (p, p, MAKESPAN-MIN, 7, 77) is identical to the assignment returned by SCALED GREEDY
over input (p, p, MAKESPAN-MIN, ). By Lemma 13 we have for any machine ¢

S plig)aGg) = > )+ D> pling)

jeM; JEM;NM, JEM\M;
= > p0)+ > b,5) (by Lemma 21)
jeM;NMN; JEJ;
<MS(p, X) + (1 +v)MS(p, X) (by Lemma 13)
<(247)MS(p, %)
<(2+ )aMs(p, "), (12)

where X* is optimal schedule for the predicted instance and the last inequality is by the fact
that MAKESPAN-MIN is a a-approximation algorithm. Let x* be the optimal schedule for
the the actual instance p, we have:

MS(p,%") < MS(P,x").
Now again given the definition of error 77 we have:

MS(P, %) < MS(P,x") = max Y p(i,j) & (i.j) < max Y 0-p(i.j) - 2" (i,j) = 1 OPT.
JjeEM JEM
(13)

Combining Inequalities (12) and (13) we get:

max 3 pli,)- (i, ) < max 3 p(i,5)-2(i,5) < (247)an¥8(p. %) < (2-+7)r0PT.<
JjEM JEM

The approximation obtained by ERRORTOLERANTSCALEDGREEDY when the error is not
within the error tolerance is (1 + %)ﬁQn. The analysis of this approximation is similar to the
analysis of the robustness of SCALEDGREEDY.

» Lemma 23. Given an error tolerance bound 7, the approximation ratio of mechanism
ERRORTOLERANTSCALEDGREEDY is (1 + %)77271.

Proof. We again partition the set of jobs M into two subset, let S* be the set of jobs 7 such
that r(i},j) <1and M \ S* be the rest of the jobs j with r(i}, j) > 1. Since ERRORTOL-
ERANTSCALEDGREEDY only modify some scalar to %, combining with Observation 10 we

have: r(i,j) > 7_7% for any 1, j. Next,
r o N .
?p(lm) <r(i,7)p(is,5) < @i, 5}, ) < iy, ), (14)

where the second inequality is by the fact that x(i;,j) = 1, and the last equality is by
definition of S*. We get that

> oz, d) < Y p(i3,5) <i® > p(iy,§) < i’n- OPT. (15)

jES* jES* jeEM
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where the first inequality is by Equation (14) and the last inequality is by Inequality (6)
from Lemma 18. Now consider any job j € M \ S*. Similarly as the analysis of S* we have

r N o e
?p(lm) <r(i,j)p(iy, 3) < r(i3, 5)p(i, j)-
Next, we have:

.. _ e T _oNn
> plind) < Y r(i,5)p(i},§) <i°— - OPT, (16)
JEM\S* JEM\S* v

where the second inequality is by Inequality (11). Combining (15) and (16) we get:

1
1, 7) < iy 7)< ,5) < (1+=)7*n-0PT. =
max > p(i,g) < Y p(is,7) < Y plijed) + | > pligg) < < + 7) °n
JeM; JEM JES* JEM\S*
The proof for the strategyproofness ERRORTOLERANTSCALEDGREEDY is identical as the
proof for the strategyproofness of SCALEDGREEDY (Lemma 19). Together with Lemma 22
and Lemma 23, we get the main result for ERRORTOLERANTSCALEDGREEDY.

» Theorem 24. For any v € (O, 5 - 1) and error tolerance bound 1 > 0, ERRORTOL-
ERANTSCALEDGREEDY is a strategyproof mechanism that achieves an approximation of

(2+7)an? ifn <7 and (1 + %) n?n otherwise, where 1 is the prediction error.

Thus, with any constants ~,7, and with MAKESPAN-MIN being the 2-approximation
scheduling algorithm from [21], we obtain a polynomial-time mechanism that achieves an O(1)-
approximation when the prediction error 7 is such that n < 7, and an O(n)-approximation
otherwise.

6 Perfect Consistency Implies Unbounded Robustness

Recall that every strategyproof scheduling mechanism must be monotone. Below is a very
useful lemma that comes immediately from the monotonicity property and is used in most of
the lower bound proofs.

» Lemma 25 ([12]). Consider instances p and p’ and let x and x’ be the allocation produced
by a strategyproof scheduling mechanism for the given two instances, respectively. If p and
p only differs in the processing time of machine i in such a way that p'(i,7) > p(i,j) when
x(i,7) =0, and p'(i,7) < p(i,j) when x(i,j) =1, then X' = x.

» Theorem 26. No deterministic strategyproof scheduling mechanism with 1-consistency can
achieve any bounded robustness.

Proof. Consider the the predicted instance p instance with 2 machines and 2 jobs, and the
processing time as in the table on the left of Figure 1. Consider an actual instance that is
the same as the prediction, i.e., p = p.

By 1-consistency, the mechanism needs to output x1; = z22 = 1 (the allocation is marked
with x). Now consider another instance p’ represent by table on the right of Figure 1
and consider machine 1, since p'(1,1) < p(1,1)and x(1,1) = 1 and p’(1,2) > p(1,2) and
x(1,2) = 1, by Lemma 25, any truthful mechanism needs to output z/(1,1) = z(1,1) =1
and 2'(1,2) = x(1,2) = 0, resulting a makespan at lest K. Since the optimal makespan of p’
is 1 + € by assigning both jobs to machine 1, it means the robustness of any strategyproof
mechanism is at most K. Since K can be arbitrarily large, the robustness is therefore
unbounded. <
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m\j| 1 2 m\j | 1 2
1 [ Kk 1 — 1 ][00 1+e
2 o K* 2 oo K*

Figure 1 The predicted (on the left) and actual (on the right) instances showing any deterministic

1-consistent mechanism suffers unbounded robustness.
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A  Missing Analysis from Section 3

» Lemma 7. SIMPLESCALEDGREEDY is a mechanism that is ©(n?)-robust.

Proof. We first show that the robustness is at most n2. Consider an instance p, an optimal
assignment x* for p, a job j, and a machine ¢ such that j € M;. Let 5 be the machine that
j is assigned to according to x*. By the mechanism, we have 1 < r(¢, j) < n for all machines
1'. We therefore have:

p(i, ) < v(i,j) - pli,g) < r(ij,j) - p(i5, 3) < n-p(if, j),
where the second inequality is by line 5 and the fact that j is assigned to . We get that
MS(p,x) =max > p(i,j) <> Y pli,i) <n Y > p(i},j) <n’max Y p(i}, ;) = n’0PT.

iEN ieN
jeM; iEN jeM; iEN jeM; jeM;

Consider the predicted instance in Figure 2 (a).

m\j 1 2 ... n-1 n n+1 2n — 2
1 1 n(n —1)
2 1 n(n —1)
(a)
1 n(n —1)
n—1 1 n(n —1)
n n n o n n
m\j ‘ 1 2 n—1 n n+1 ... 2n-—2
1 14+e€ 0 0 0 0
1+e€ 0 0 0 0
b
1+4+e€ 0 0 0 0 (b)
n—1 14+4¢ O 0 0 0
n n n n n

Figure 2 (a) Predicted instance p, empty entry means p(7, j) = oo. (b) Actual instance p, empty
entry means p(i,j) = oco.

Assume that MAKESPAN-MIN computes the optimal makespan for the predicted instance.
We have &(n,i) =1 for i € [1,n — 1]. Then the mechanism would set r(i,i) = + for any
i € [1,n—1]. Now consider the actual instance in Figure 2(b), note that for any ¢ € [1,n—1],
we have:

r(i,4) - p(i,i) =n- (1 +€) >n=r(n,i) - r(n,i.

Since machine n has a lower scaled processing time for job i € [1,n], the mechanism would
assign all such jobs to machine n, leading to a makespan of n(n — 1), whereas the optimal
makespan is 1 + €. |
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