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Abstract

In this paper we establish best approximation type estimates for the fully dis-
crete Galerkin solutions of transient Stokes problem in L?(I; L*(Q)%) and
L3(I; H*(2)%) norms. These estimates fill the gap in the error analysis of
the transient Stokes problems and have a number of applications. The anal-
ysis naturally extends to inhomogeneous parabolic problems. The best type
L2(I; H*(R2)) error estimate are new even for scalar parabolic problems.
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1 Introduction

In this paper we consider the following transient Stokes problem with no-slip boundary
conditions,

&gquﬁwLVp:j? inlxQ,
V-i=0 in I xQ,

o= (1)
u=0 on I x 012,

We assume that Q@ C R? d € {2,3}, is a bounded polygonal/polyhedral Lipschitz
domain, 7" > 0 and I = (0,7]. In the next section we make precise assumptions on
the data, which allow for a weak formulation of the problem and provide regular-
ity for the velocity @ € L?(I; H'(2)%). We consider fully discrete approximations of
problem (1), where we use compatible finite elements (i.e. satisfying a uniform inf-sup
condition) for the space discretization and the discontinuous Galerkin method for the
temporal discretization. In our previous work [2], we have established the best type
error estimate in L>(I; L?(£2)) norm,

14 = trn || oo (1;2(0)) < Cér(Hﬁ— Xl Lo (1;22(0)) + 117 — Rf(ﬁ,p)\lmu;m(m)), (2)

where ;5 is the fully discrete finite element approximation of the velocity , R,f is
the Ritz projection for the stationary Stokes problem, Y is an arbitrary function from
the finite element approximation of the velocity spaces X4 (Vh), and /. is a logarithmic
term. Such results are desirable for example in the analysis of PDE constrained optimal
control problems since they do not require any additional regularity assumptions on
the solution beyond the regularity which follows directly from the problem data. The
estimate (2) was an improvement of the main results in [4, Thm. 4.9], where the
error was estimated simultaneously in L*>°(I; L?(Q2)) and L*(1; H*(£2)) norms, and the
bounds there required the presence of the "mixed terms”. A natural question, which
actually was raised by one of the referees for [2], is it possible to obtain a best type
approximation result just w.r.t. L(1; H'(Q)) norm? Surprisingly, such results are not
available even for scalar parabolic problems. In this paper, we give positive answer to
this question and establish the following best type error estimates

[d—trnllL2(1x0) < C<Hﬁ*fHL2(Mﬂ)+||ﬁ*7TTﬁHL2(1xQ)JFW*RS(’@P)||L2(1x§z)) (3)
and

IV(@ = )2y < C(IV(@ = Dlzzrxey + 19 = 70 z2(1x0) "

+ IV (@ = B (@ p) | 2x)-

where as above ., is the fully discrete finite element approximation of the velocity ,
X is an arbitrary function from the finite element approximation of the velocity spaces
X4(Vp), o is a certain time projection of the @ on the time discrete space X9, and



R7 is the Ritz projection for the stationary Stokes problem. The results (3) and (4)
link the approximation error for the fully discrete transient Stokes problem to the best
possible approximation of a continuous solution « in the discrete space XZ (Vh) as well
as the approximation of the stationary Stokes problem in Vh and a time projection.
Such results go in hand with only natural assumptions on the problem data and are
desirable in a number of applications. In contrast to (2), where some mild assumptions
on time steps are need, the estimates (3) and (4) do not require any restrictions and
valid for discontinuous time discretizations on arbitrary partitions. In addition, the
estimate (3) does not require any additional regularity of the domain, thus allowing,
e.g., for reentrant corners and edges. Moreover, (3) does not require the mesh to be
quasi-uniform nor shape regular. Therefore, the result is also true for graded and even
anisotropic meshes (provided the discrete inf-sup condition holds uniformly on such
meshes). However, the second estimate (4), does require the stability of the discrete
Leray projection in H' norm, which so far is established for the quasi-uniform meshes
on convex domains. These results also naturally hold for the inhomogeneous heat
equation, where the proofs can be simplified and extended to more general meshes,
(see Section 7).

Under the additional assumption of convexity of {2 and some approximation prop-
erties of the discrete spaces, from (3) and (4) we easily derive optimal order (in terms
of regularity) error estimates of the form

@ — trnll L2115 ) < C (71_5/2 + hg_s) (Hﬂ|L2(I;L2(Q)) + H170||‘71) , s=0,1,

where V1 is an appropriate space introduced in the next section. This estimate is
optimal with respect to both the assumed regularity of the data and the order of
convergence and has already been used by the authors in several applications [17, 20].

The above results naturally hold for simpler case of inhomogeneous heat equation
with straightforward change of operators and function spaces. The L?(I; L?(2)) best
type approximation result is essentially shown in [18], instead of the best approxima-
tion the optimal error estimate in terms of data of the form (5) is given, however, the
L?(I; H*(9)) best approximation result seems to be new.

The rest of the paper is structured as follows. In Section 2, we introduce the
function spaces, key operators and weak formulations of the problem with regularity
results. In Section 3, we introduce fully discrete Galerkin approximation of the prob-
lem. Section 4 is devoted to stability results of the fully discrete velocity solutions.
In Section 4 we review some stability and approximation results for the stationery
Stokes problem, which we requite for our main results Theorem 11 and Theorem 13 in
the next Section 6. Finally, in Section 7, we briefly discuss the extension of the main
results to scalar parabolic problems.

2 Continuous problem

In this section, we introduce function spaces we require for the analysis of (1) and
state some of the main properties of these spaces. In our presentation we follow the
notation and presentation of [14, Section 1 and Section 2].



2.1 Function spaces and Stokes operator

In the following, we will use the usual notation to denote the Lebesgue spaces LP and
Sobolev spaces H* and W*P. The space L2(Q2) will denote a subspace of L?(f2) with
mean-zero functions. The inner product on L?(Q2) as well as on L%(Q)? is denoted
by (). To improve readability, we omit the superscript d when having for example
L?(92)? appear as subscript to norms. We also introduce the following function spaces

V={teCrQv.-t=0}, V=", V=97, (5)

where the notation in the last line denotes the completion of the space V with respect
to the L2(Q)? and H'(Q)? topology, respectively. Notice that functions in V! have
zero boundary conditions in the trace sense. Alternatively we have

V= {ve H (V-7 =0}

by [8, Theorem II1.4.1].
We define the vector-valued Laplace operator

—A: D(A) — L}(Q)4,
where the domain D(A) is understood with respect to L%(Q)? and is given as
D(A) = {7 € Hy()*|AvT € L*(Q)}.

If the domain (2 is convex, then the standard H?(Q) regularity implies D(A) =
H Q)4 H2(Q)?. In addition, we introduce the space V2 as

V2 =vVinD(A).

We will also use the following Helmholtz decomposition (cf. [19, Chapter I, Theorem
1.4] and [8, Theorem II1.1.1])

LA =V Vv (HY Q) NL3(Q)). (6)

As usual we define the Helmholtz projection P: L2(Q)? — VO (often also called the
Leray projection) as the L2-projection from L?(Q)? onto V°. Using P and —A, we
define the Stokes operator A: V2 — VO as

A= —PAly,. (7)
The operator A is a self adjoint, densely defined and positive definite operator on

V0. We note that D(A) = V2. Similar to the Laplace operator, for convex polyhedral
domains €2 we have the following H? regularity bound due to [5, 15]

|‘17||H2(Q) < C||A17|‘L2(Q), Vo € V2. (8)



2.2 Weak formulation and regularity

In this section we discuss the weak formulation and the regularity of the transient
Stokes problem (1). We will use the notation L*(I; X) for the corresponding Bochner
space with a Banach space X. Moreover, we will use also the standard notation
H'(I; X). The inner product in L2(I; L?()?) is denoted by (-,-)rxq-

Proposition 1. Let f € L2(I; (V')') and @y € V. Then there exists a unique solution
@ e L2(I; VY)Y N C(I, V°) with 8,@ € L2(I; (VYY) fulfilling @(0) = @y and

(841, ) + (VE, Vi) 1xa = (f.D)1xa  for all T e L*(I; V). (9)

There holds

—)

||Vﬁ||L2(I;L2(Q)) + ||U,||L2(f;(\71)/) + ||ﬁ“C(T;L2(Q)) <C (”fHLz([;(Vl)/) + HﬁOHVO) .

Proof. For the proof of the above result we refer to [19, Chapter III, Theorem 1.1]. [

It is well known, cf. again [19], that the equation (9) can be understood as an
abstract parabolic problem

o+ A ]P’f for a.a. t € I,

(0

i
Il

(10)

S~—"
Il
i
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with the Stokes operator A defined in (7).

The next theorem provides the space-time weak formulation in both variables,
velocity and pressure. Please note, that no additional regularity of the domain is
required.

Theorem 2. Let f € L2(I; L2()?) and 1y € V1. Then there exists a unique solution
(i, p) with

i e LA(I;VY), oy, A € L*(I; L*(0)%)  and p e L*(I; L3(Q))
fulfilling 4(0) = @y and
(0, V) 1xq + (VE, V) 1xa — (0, V Dixa + (V@8 1xa = (F.0)xa  (11)
for all
ve LA (I HY ()Y and € € L*(I; L3(Q)).
There holds the estimate

0¢til| 2 (1 x) + | AU L2(1x0) + 1Pl L2(1x0) < C (|\ﬂ|L2(IxQ) + ||ﬁ0||x71) -

Proof. The proof is given in [2], Theorem 2.10. O



Corollary 3. Let the assumptions of Theorem 2 hold and let in addition the domain
Q be conver. Then we have @ € L*(I; H*(Q)?) and p € L*(I,HY(Q)) with the
corresponding estimates

Il sz + Pl @y < © (1 licny + ol ) -

Proof. This result is shown in [19], Proposition 1.2 in Chapter 3, for C? domains, but
the proof is valid for convex domains as well. See also Corollary 2.11 in [2]. O

3 Fully discrete discretization

In this section we consider the discrete version of the operators presented in the
previous section and introduce fully discrete Galerkin solution.

3.1 Spatial discretization

Let {71} be a family of triangulations of ), consisting of closed simplices, where we

denote by h the maximum mesh-size. Let X}, ¢ H} (€)% and M), € L2(€) be a pair

of compatible finite element spaces, i.e., them satisfying a uniform discrete inf-sup
condition,

(Qha V- "7h)

sup —s——-—

- > Bllanllzz)  Yan € Mp, (12)
17he)?h ||V,Uh||L2(Q) ( )

with a constant # > 0 independent of h.
We introduce the usual discrete Laplace operator —Ay: X, — X by

(—AhZh,’l_fh) = (Vz*;“Vﬁh), Vgh76h S Xh. (13)

To define a discrete version of the Stokes operator A, we first define the space of
discretely divergence-free vectors V}, as

Vio = {th € Xu|(V - Th,qn) =0 Vg, € My} (14)

Using this space we can define the discrete Leray projection P : L'(Q)? — Vi, to be
the L2-projection onto V4, i.e.,

(P, ﬁh) = (’l_f7 _‘h) Vo), € Vh. (15)

Using P, we define the discrete Stokes operator Ay : Vh — ‘7h as A, = —PhAh|‘7h’.
By this definition we have that for i), € Vh, Apily, € Vh fulfills

(Apin, @) = (Vin, Vin), Vi, € Vy. (16)
Notice, since Vh C Xh, for 7}, € Vh we obtain

(AnTn, Tn) = (Vn, Vn) > XollTnll72 () (17)



where \g is the smallest eigenvalue of —A. This implies that the eigenvalues of A, are
also positive and bounded from below by Ag.

For deriving error estimates, we make additional assumptions on the approximation
properties of the finite element spaces. We assume, there exist approximation operators
Py, and rp, that fulfill the following properties. For P € E(H&(Q)d;)zh) and r, €
L(L?(Q); My) with My, corresponding to M}, without the zero-mean value constraint,
we assume the following assumptions hold.

Assumption 1 (Stability of P, in H'(Q)%). There exists a constant C independent
of h such that

IV Pu(@)l 220 < ClIVEl L2y, VT € Hy(2)7 (18)
Assumption 2 (Preservation of discrete divergence for Py,). It holds
(V- (0= Pu(¥)),qn) =0, Vagn € My, V&€ Hg()" (19)

Assumption 3 (Inverse Inequality). There is a constant C independent of h such
that

[8nllmr@) < Ch™Onllr2@)  Voh € Xn. (20)
Assumption 4 (L? approximation). For any v € H*(Q)? and any g € H'(Q) exists
C independent of h, U and q such that

1P () — ¥l r2(0) + AV (Pu(D) = 0)||12(0) < Ch?||[ V25 2(0) (21)
Irn(q) — qllL2@) < ChlIVql|L2(q)- (22)

Assumptions 1-4 hold for example for Taylor-Hood and Mini elements [10, Sec. 6]
and the constructions of the operators P, and r, are also provided there.

3.2 Temporal discretization: the discontinuous Galerkin
method

In this section we introduce the discontinuous Galerkin method for the time discretiza-
tion of the transient Stokes equations, a similar method was considered, e.g., in [4]
and [2]. For that, we partition I = (0,7 into subintervals I,,, = (tm—1,%m] of length
Tm =ty — tm_1, Where 0 =tg < t; < --- <tpy_1 <ty =T. The maximal and mini-
mal time steps are denoted by 7 = max,, 7, and Ty, = min,, 7,,, respectively. For a
given Banach space B and the order ¢ € N we define the semi-discrete space X4(B) of
piecewise polynomial functions in time as

X4(B) = {v, € L*(I;B) | ¥.|r,, € Py(B),m=1,2,..., M}, (23)



where P, (B) is the space of polynomial functions of degree less or equal ¢ in time with
values in B, i.e.,

q

Py(B) = {U;: Iy — Bl (t) = > W ¢;(t), ¥ € B,j =0,...,q}. (24)

=0

Here, {¢;(t)} is a polynomial basis in ¢ of the space P,(I,,) of polynomials with degree
less or equal w over the interval I,,. We use the following standard notation for a
function @ € X4(L?(Q)%)

@f = lim @ty +¢e), @, = lim @(t, —¢), [dm=1aq,, —1,. (25)
e—0t e—0t

We define the bilinear form 8 by

M
Z (O, D)1, xa + (VU, V) rxa + Z [@m—1,7%, 1) + (@5, 75 )a-
m=1

m=2

With this bilinear form we define the fully discrete approximation for the transient
Stokes problem on the discrete divergence free space X4(V}):

Trn € XUVi) + B(trn, Urn) = (F, ) 1x + (0, Ty g)a Virn € XI(V3).  (26)

By a standard argument one can see that this formulation possesses a unique solution
(existence follows from uniqueness by the fact that (26) is equivalent to a quadratic
system of linear equations).

Remark 1. Note, that the data f and iy in (26) can be replaced by th and Ppily
respectively (with Py, being the discrete Leray projection (15)) without changing the
solution.

The above formulation is not a conforming discretization of the divergence free
formulation (9) due to the fact that X%(V}) is not a subspace of L2(I; V1). In order
to introduce a velocity-pressure discrete formulation (as a discretization of (11)) we
consider the following bilinear form

M
B((@,p), (3,9)) = >_ (040, 7)1, x5 + (ViZ, V)12 — (0, V - D1xer + (V - &, @) 12
m=1

M
+ Z([a’}nz—hﬁj—n_l)ﬁ + (ﬁa_,ﬁg_)g (27)

m=2

The corresponding fully discrete formulation reads: find (U p,prn) € X2 (X'h x Mp)
such that

B((ﬁThapTh)7 (ﬁThquh)) = (JF; ﬁTh)IXQ + (ﬁOa 17:—}1)0)9 V(’J—,—}“th) € Xg()?h X Mh)
(28)



We note, that for the temporal discretization we use polynomials of the same order
for the velocity and pressure. The next proposition states the equivalence of the
formulation (26) and (28).

Proposition 4. For a solution (i-p, prr) of (28) the discrete velocity @,y fulfills (26).
Moreover, for a solution t,y, of (26) there exists a unique prp, € X2(Mp) such that
the pair (Urp, prr) fulfills (28). In particular the solution of (28) is unique.

Proof. The proof is given in [2], Proposition 4.2. O

The next proposition provides the Galerkin orthogonality relation for the velocity
pressure discretization (28), which is essential for our analysis. Please note, that for
the velocity formulation (26) the Galerkin orthogonality does not hold due to the fact
that X4(V},) is not a subspace of L2(I, V).

Proposition 5. Let the assumptions of (2) be fulfilled, i.c., f € L2(I; L2(Q)%) and
ity € VO. Then there holds for the solution (i, p) of (11)

B((ﬁap)a (17Th7 QTh)) = (f: 6Th)IXQ + (ﬁ07ﬁ:—i_h70)9 v(17‘7'}13 th) € Xg(Xh X Mh)
and consequently
B((ﬁ_ a'Th?p - p‘rh)7 (U‘rh7q7'h)) =0 v(ﬁrh>qrh) € X?—(Xh X Mh) (29)

Proof. The proof is given in [2], Proposition 4.3. O

In the following, we also consider a dual problem, where we use a dual representa-
tion of the bilinear form B

(U@, 0:0) 1, x0 + (VU, V) rxa — (0, V - ¥)1x0

S
=
i)

|
M=

m=1

Mol (30)
+(V-td,q)1xa — Z Upy, [Ulm)a + (Uhy, Uap)a,

m=1

which is obtained by integration by parts and rearranging the terms in the sum.
We will also need the following projection m, for v € C(I, L?(2)) with m,v|;,, €
P,(L?(2)) for m =1,2,..., M on each subinterval I,,, by

(Tr0 —0,0)1,,x0 =0, Vo€ Py1(ln, L*(), ¢>0, (31a)
m(t,) =v(t)). (31b)

In the case ¢ = 0, 7, v is defined solely by the second condition. The following
approximation property also holds

et — ullpar, x) < CTlOullp2r, vy Yu € HY (In; LX(Q)). (32)



4 Fully discrete stability results

In this section, we establish stability results, which are essential for our main result.
Theorem 6. For f € L?(I,L*(Q)?) and iy € V. Let @i, € X4(V},) be the solution
to (26). Then there holds

M 1/2 M 1/2
< Z ||atﬁ7—h%2(1m><g)> + ”AhﬁThHLZ(IxQ) + ( Z Tmel[ﬁTh}m—l”%Z(Q))
m=1 m=1

<C (||Ph.ﬂ|L2(I><Q) + ||VPhUoHL2(Q)) :
(33)

Proof. The proof follows the lines of the corresponding proof in [18] replacing —Aj
by Ay, O

For the L%(I; H'(2)?) norm estimates we also need the following result.
Theorem 7. For f € L2(I, L*(Q)%) and @y € VO. Let @y, € X4(Vy) be the solution
0 (26). Then there holds

M 1/2
(ZH@VAhlﬁThQLZ(Ime)) + [IViirn| 21 <o)
m=1

M 1/2
+ < > Tm”Tr;l[VA}:lﬁrh]m—l|%2(Q)> <C (||VA;1th||L2(1xQ) + ||Phﬁo||L2(Q)) :
m=1
(34)

Proof. The proof goes along the lines of the proof of Theorem 4.1 [18]. We will provide
the proof for completeness. We will provide to the proof for ¢ > 1, the case of ¢ = 0,
i.e. the lowest order piecewise constant case, we leave to the reader.

Writing (26) in an alternative formulation of the dG time stepping scheme at each
I, and testing with v, = U, we obtain

Otrn, @)1, x0 + VTl 21, ey + ([Trnlim—1, T 1)@ = (@)1, x0-
Using the identities

L 1, 1
(Otirh, Urh)1,, x0 = QHUT}L,m”QL?(Q) - §||ajh,m71||i2(ﬂ)

S L 1 " 1,
(bl 1, T 1) = 51T 13200 + 5 b1 132() = 515713200

gives us

1, 1, 1, . 2
§| UTh,m||2L2(Q)*§| U’Th,m—l||2L2(Q)+§H[uTh]m—lH%2(Q)+”vu‘rh”%2(1mXQ) = (f,trn)1,,x0-

10



Summing over m, we obtain

M
1, 1 . . - 1 .
§||“Th,MH2L2(Q)+§ Z ”[u‘f'h]m—l”%Q(Q)JFHVUThH%Q(IXQ) = (f,Urh)lxn+§||PhU0||%2(Q)~
m=1
To treat the term involving f, we write it as

(Frtrn)ixa = (Pufytirn)rxa = (AhA;IPhJF, Urh)IxQ = (VAEIPhJF, Vi-n)rx,

where in the last step we used that i, is discrete divergence free. Using the Cauchy-
Schwarz and geometric-arithmetic mean inequalities

_— 1 N 1 _ -
(f,drn)ixa < §HVUTh||2L2(I><Q) + §||VAh1thH%2(1xQ)~
Thus, we obtain

IVErnF2xay < VAL PLflIZ2(1x0) + [BriollF2(q)- (35)

Next, we test (26) with U, |1,,= (¢t — tm,l)AglatﬁTh. Noticing that the jump terms
disappear and using the identity,

(Ortirn, Ay Opurn)a = (An A}, Opiirn, Ay, 'Ol )0 = ||VA}:18taThH2L2(Q)a

on each time interval I,,,, which follows from 9,4, being discretely divergence free for
each t € I,,,, we obtain

/ (t = tm—1)|IVAL  Oyiirn|| 72y dt = — / (t — ti—1)(Viirn, VA, ' 0piirn)odt
I I

m

+ / (t = tm1)(fs A5 Oyl n)qdt
I

m

:/ (t =t 1) (=Vilen + VAP, f, VAL 0,000 )0 dt.
I,

Using the Cauchy-Schwarz inequality

/ (t =t 1) (=Virn + VAP, f, VAT 0yt 1) 0dt <
I,
1/2

1/2
(/1 (t—tm1)||—VUTh+VAh1]P’hf||2L2(Q)dt> (/I (t—tm1)||VAh18tUTh||i2(Q)dt)

and canceling, we have

/I(t—tm_l)||VA,:18t12’Th||2LQ(Q)dtg/ (t =t 1) = Vi + VA Py 220t

m

11



Using the following inequality
/ v ||2dt < Ot / (t —tm—1)|Jox]2dt Vo € Py(Im; Vi), (36)
which can be easily verified by a usual scaling argument, we obtain

| 194 Byt < Ot [ (¢~ ) IV A Byl

m m

< cr,ﬁl/l (t = tm1)l| = Vit + VA Po 7ot

<C [ | = Vi + VAP f]1 20y dt.
IYYL

Summing over m and using the estimate for the gradient (35), we obtain
M
Z IV A, Octirn|72r,, 0y < C (||VA1:1th||2L2(IxQ) + ||Ph170||2L2(Q)> : (37)
m=1

It remains to estimate the jump terms. We test (26) with 4 |1,, = [A,:lﬂkh]m_l. On
each time interval I, this time we obtain,

VAL Ernlm—1l32 () = (F + Antien + Ostirn, [Af  Trnlm—1)1,, x0-

Integrating by parts and using the Cauchy-Schwarz and geometric-arithmetic mean
inequalities

(f"_ Ahﬁ'rh + atﬁTha [A}Zlﬁ'rh]nL—l)ImXQ
= (VAP f + Vigy + VA, O, VA  irn) 1)1, x0

<N\ VAL 'PLf + Ve + VA, Ot 21, x ) IV AL  rnlm—1l 22(1 x)
Tm — r JEN — . ]- —1 -
S 7HVAh1]P>hf + VU-,—h + VAhlatuTh”QLz(ImXQ) + ?”[VA}L1u7—h]m_1||%2(1m><9)

Tm — - 14 - 1 14

7HVAh1]P’hf + Vil + VA Opiirnl32(r, o) + §||[VAhlurh]m—1||2L2(Q)v
where we used that [VA;lﬁTh}m,l is constant in time on I,,. Thus, we obtain
T IV A Gen]m-1l720) < IVAL BLf + Vi, + VA, 0stirnl|72(1,, <0

Summing over m and using (35) and (37)

M
> T VAT i ey < C (IV AT BaF e 10y + [Prdiolieey) - (39)

m=1

12



Combining (35), (37), and (38), we obtain the result. O

5 Stationary Stokes results

For the best approximation type error estimates in the next section, we need to review
basic results on the stationery Stokes projection and on the discrete Leray projection.

5.1 Discrete Stokes projection

We introduce an analogue of the Ritz projection for the stationary Stokes problem
(RS (W, ), RSP (1, ) € Xp, x My, of (&, ) € HL(Q)4 x L2(Q) given by the relation

Remark 2. If & is discrete divergence free, i.e., (V -, qy) = 0 for all ¢, € M}, then
we have Ry (W, p) € Vi. We will use this projection operator only for such . In this
case the same projection operator is defined, e.g., in [12].

Proposition 8. The Stokes projection is stable in H' norm, i.e.

IVR (@, ¢)l 22 () < C (IV@l2@) + 2llz2(@)
and if W € H*(Q)? and p € H'(Q), the following error estimate holds
IV (@ — Ry (@, )| 2@y < Ch (V2| 22() + IVl 2() -
Proposition 9. If Q is convex, then
1@ — Rj; (@, )| 20y < Ch (V] L2y + 2]l 22 ()

and
16— B (@, 0l 220y < OR* (19| y + [Vl zoqen)
For the proofs of the above results we refer to [7], Propositions 4.14 and 4.18.

5.2 Discrete Leray projection

We need the restriction on the mesh and H? regularity such that the Leray projection
PP}, is stable in H'(£2) norm. Such result is shown for quasi-uniform meshes in [4].
Lemma 10 (Stability of the Leray projection in H! norm). Let Q be convex and the
triangulations {Ty} be quasi-uniform. Then, there exist a constant C' such that

IVPLT] L2y < CIVTL2) VE €V

13



Proof. The proof of this results is given in the Appendix of [4]. For the completeness,
we repeat the argument here. Let ¥ € V! and consider @), = Rf (¥,0) € Vj,. Then by
Proposition 8

[Vl L20) < ClIVUL2() + 110[L2() = CIIVT] L2(0)-
On the other hand by Proposition 9,
|7 = VnllL2() < Ch||VT||L2(q)-
As a result, using the inverse inequality and the above two estimates, we obtain
VP 2(0) < [V(PaT = Ul L2(0) + [[VUR] L2(0)
< ChH[Pu¥ — Tl 2() + ClIVE| 20
< Ch™HPy(T = )| 22() + ClIVT| 20

< Ch7H|T = Onll2 (o) + ClIVUll L2(0)
< C||VV L2 0)-

O

Remark 3. The stability of the discrete Leray projection is a delicate matter. As
operator, Py, is well-defined for L*(Q)? and even L'(Q)¢ functions. In such a case, the
following stability result can be obtained in fractional norms (cf. [14, Lemma 3.1]

. . 1 I
IPhT] s ) < CllF)| ey Vs € [0, 5), Vo e H*(Q)?, (40)

and can not be extended to any s > 1/2 (cf. [14, Remark 3.1].
Remark 4. The stability of the Leray projection (40) is the only result that requires
restriction on a mesh.

6 Main results

Now we state our main best type approximation results.

6.1 L? error estimates

The first result establishes the following error estimate in L?(I x §2) norm.
Theorem 11. Let f € L(I;L*(Q)%) and @y € V1. Let (ii,p) be the solution of
(11) and (trp, prr) solve the respective finite element problem (28). Then, for any
X € X4(V3,), there holds

I = Genllza ey < C (i = Kllearen + 17 = wril iy + 17 = BEE )21 ).
(41)

14



Proof. The proof essentially follows by a duality argument and Theorem 6
Consider the following dual problem

_atg'(tvf) - Ag(taf) + VA 75) = Urp,

(t U (t,Z) e I xQ,
V.t &) =0, £ elxq,
it (.5) )
g(t, @) =0, (t,%) € I x 99,
g(T’ I) =0, ren
The corresponding finite element approximation (grp, Arp) € X?()_(' n X Mp) is given
by

B((Urh, rh)s (Gris Arn)) = (Urn, Urh) 5o V(Trn, grn) € X9U(Xp x My).  (43)

By the Galerkin orthogonality from Proposition 5, we have
||u'th%2([><Q) = (ﬁrha ﬁrh)]xﬂ = B((ﬁrhaprh)a (g‘rhv )\‘rh)) B((ﬁy p) (g‘rh7 )\‘rh))
M M
= (@, 04Grn) 1,2 + (Vi Virn) 1xa — (0, V - Grn)1x —

) § U gTh
m=1

m=1
=J1+ Jo+ J3 + Jy,

where we have used the dual representation of the bilinear form B from (30). In the
last sum we set Grp, p4+1 = 0 so that [Grp]m = —Frn,m- Applying the Cauchy-Schwarz
inequality and Theorem 6, we obtain

M
Z Il 22 (1,0 x ) 10 Frnll L2 (1, x2)
m:

M 12 , 1/2
<Z|u”%2(lm><9)> (Z'athh”%?(Ime)) < Clldllpz(rxo) ldrnll L2 (r<)-

m=1

15



To treat Jy, we use the projection defined in (31), the Cauchy-Schwarz inequality and
the inverse inequality for time discrete functions and Theorem 6, we obtain

M M
Jo=—> (i, [Genlm)a = = Y (1@, [Frnlm)e
m=1 m=1
M 1/2 M 1/2
< (Z Tm||(WTﬂ)m||%2(Q)> (Z Tm1||[§7'h]m1||%2(g)>
m=1 m=1
M 1/2 M 1/2
< (Z Tm”WTﬁ”%m(Im,;LZ(Q))> <Z Tm||7—m1[§'rh]m1%2(ﬂ)>
m=1 m=1
M /2, 1/2
<C (Z ||7T'rﬁ||%2(lm><£2)> (E Tm||7n:1[§7h]m1||%2(sz)>
m=1 m=1

< Cllmridl| L2 sy Urnll L2 (1x0)-

For Jy + J3 we can argue by using the projection Ry defined in (39). Then, we have

Jo +J3 = (VU,VGrn)ixa — (0, V - Grn)1xa (44)
= (VR}?(’J, p)) ngh)IXQ - (Rf’p(ﬁa p)7 V- g‘rh)[XQ - (VRE(YI, p)7 ngh)IXQ7
(45)

where the last term vanishes, since g, is discretely divergence-free. Here and in what
follows, the projection (Ry, Rf’p ) is applied to time dependent functions (@, p) point-
wise in time. Since V-(t) = 0 for almost all ¢ € I we have Ry (i(t),p(t)) € Vi, cf. (2).
With this we can use the definition of the discrete Stokes operator Aj resulting in

(VR (i@,p), Virn)rxa = (Rj (@, p), AnGrn) 0
<R3 (@, p) |l p2(rxe) | Angirn | 22 (1x ) (46)
< (Nl L2(rxoy + 1@ — Ry (@, p) | 22 (1xe)) irnllL2(rxa)-

Combining the estimates for Jy, Js, J3 and Jy, we conclude
l@rnllz2(rxa) < C(||17\|L2(1x9) + |77l 21 <o) + (1@ — Rf(ﬁvp)HL?(IxQ))-

Using that the Galerkin method is invariant on X;?(Vh x My,), by replacing @ and 4.,
with « — ¥ and u,, — X for any ¥\ € Xﬁ(vh), and using the triangle inequality we
complete the proof of the theorem. O

If the exact solution is sufficiently smooth then the above result easily leads to
optimal convergence rates.
Corollary 12. Let Q be convez, f € L2(I,L2(Q)%) and iy € V. Let (@,p) be the
solution of (11) and (tWrn, prr) solve the respective finite element problem (28). Assume
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in addition the approximation Assumptions 1-4 hold. Then,

= Genllzzreny < C (7 +82) (I Flzarcoy + ol ) -

Proof. From Theorem 11, we need to estimate three terms. The temporal error is
estimated by (32) resulting in

||z — 7TTU||L2(I><Q) < CT||8t12’||L2(1;L2(Q)).
The spatial error using Proposition 9 is estimated by
1@ = Ry (@, p)l| L2 (1x0) < CR? (V2| L2130y + VPl L2(rxe)) -

Similarly, choosing ¥ = PTRf (@, p), where P, is the orthogonal L? projection onto
X1, by the triangle inequality we obtain

i — Xl z2(1xe) < 16— PriillL2rx0) + ||1P- (@ — R}, (i, )| 2 (rx )
< CT||0vil]| L2150y + Ch?|| V2| 2 (1x6)-

Using Corollary 3, we obtain the result. O

6.2 H! error estimates

The second result establishes the optimal error estimates L?(I; H'(€2)¢) norm on quasi-
uniform meshes.

Theorem 13. Let f € L2(I;L*(Q)%) and @y € V1. Let (ii,p) be the solution of
(11) and (Urp,prn) solve the respective finite element problem (28) on a family of
quasi-uniform triangulations {Tp}. Then, for any X € Xﬁ(vh), there holds

HV([[— ﬁrh)HLZ(Ixﬂ) < C<||V(ﬁ— Y)”H(Ixsz) + ||V(ﬁ— Wrﬁ)Hm(lxn)

(47)
+ V(@ = B (@,0) | z2(1xe) )

Proof. The proof is similar to the proof for the L%(I; L2(Q)?) norm. This time, we
consider the following dual problem

—0g(t, T) — AG(t, &) + V(t, T) = Apiirn, (t,7) € I x Q,
V- §(t, &) =0, (t,@) e I xQ, 48)

g(t,®) =0, (t, @) € I x 99,

Gg(T,z) =0, Fe.

The corresponding finite element approximation (§ra, Arn) € X9(Xp, x Mj,) is given
by

B((Trh, @rh)s (Gris Arn)) = (Antirh Urn) 1w Y(Trn, grn) € X3(Xn x My).  (49)
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By the Galerkin orthogonality from Proposition 5, we have

V@72 (1x0) = (Antirn, Trn)1xa = B((@rn, prn), (Grns Arn)) = B((@, ), (Grns Arn))

m=1

M M
= > (@, 0sGrn) 1 x02 + (VT Virn) 1xa — (0, V - Grn) —

(U [Grnlm)e
=S+ o+ Js+ Ja,

m=1

where we have used the dual representation of the bilinear form B from (30). In the

last sum we set Grp, ar+1 = 0 so that [Gralar = —Frn,m- Applying the Cauchy-Schwarz
inequality and Theorem 7, we obtain

M
Ty ==Y (Puii, 0,Grn) 1, <0
m=1
M
== > (VPwil, VA, 0rfirn) 1, <0
m=1
M
<

D VP L2, x ) VAL Oren | 21,0 )
m=1

o 12, 1/2
< (Z |vphﬁ%2(lmxﬂ)> <Z ”vA}:lathh'%‘z(lmxﬂ))
m=1 m=1

< OV rzaxo)[Viral L2 (r1x ).,

where in the last step we used the stability of Py, in H'(2)¢ for divergence free functions
from H{ ()4
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To treat Jy, we use the projection defined in (31), the Cauchy-Schwarz inequality
and the inverse inequality for time discrete function and to obtain

M M
Ji= =Y (i, [§rnlm)a = = Y (% Palim, [Gralm)o
m=1 m=1
M
== (7 VPym, [VA;  Grnlm)e
m=1
. 2, 1/2
< (Z Tm||7TTVPhﬁm||2L2(Q)> (Z Tm1||[VA}:1§Th]m—1|%2(Q)>
m—1 m=1

o 12 , 1/2
< (Z Tm||7TTVPhﬁ|%oo(zm;w(g))) (Z Tm||Tm1[VA}:1§Th]m—1||2L2(Q)>
m=1

m=1

M 2,y 1/2
<C (Z ||wTVPhﬁlli2<,mxm> (Z Tm||rm1[VA,jlgih]m_1Iizm))
m=1 m=1

< Ol VPR 2 (1 x0) IVUrnl L2 (1% 0)
< Ol V|| 2 (1 xo) IV Urnl L2(1x ),

where again in the last step we used the stability of P, in H'(Q)? for divergence free
functions from H{ (Q)%.

For Jy + J3 we can argue by using the projection R; defined in (39). Then since
grp, is discretely divergence-free, we have

Jo+ J3 = (VU,Virn)ixa — (0, V- grn)ixa
YRy (@,p), Vrn)ixa — (RyP(@,p),V - Grn)ixa = (VR (@,0), Virn) rxo
||VR§(ﬂﬂp)HL2(I><Q)||V§Th||L2(I><Q)

<
<C (IIVilll L2 (1x0y) + V(@ — R (@, )l L2 (1xe)) ViErnll L2 (1 x0)-

(
(

Combining the estimates for Jy, Ja, J3 and Jy, we conclude
[Virnllr2(x0) < C(HVﬁHB(sz) + 177 V|| 2 (rx0) + [|V(7 — Rf(ﬁap))ﬂmum))

Using that the Galerkin method is invariant on X g(Vh x My,), by replacing @ and .y,
with @ — ¥ and @, — X for any ¥ € X4 (Vh), and using the triangle inequality we
complete the proof of the theorem. O

Corollary 14. Let Q be convex, f € L>(I,L2(0)%) and @y € V1. Let (,p) be the
solution of (11) and (@rn, prr) solve the respective finite element problem (28). Assume
in addition the approximation Assumptions 1-4 hold. Then,

19 = dm)llza ey < C (772 + 8 (I Flzarcoy + 1ol ) -
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Proof. The proof is analogous to the proof of Corollary 12. The main difference is to
use the estimate

IV (i = 70rid) | 2130y < CT/2 (IIﬂlLZ(Ixsz) + ||ﬁo||\71)
from Lemma 3.13 from [16]. O

7 Inhomogeneous heat equation

The above results naturally hold for the scalar parabolic equation

u(t,z) — Au(t,z) = f(t,z), (t,x) €l xQ,
u(t,z) =0, (t,x) € T x 09, (50)
u(0, ) = up(x), x e Q.

All arguments stay almost unchanged. We only need to replace A and A, with —A
and —Ayp,, the discrete Leray projection P, with the L?-projection P, and the Stokes
projection Ry (i, p) with the Ritz (elliptic) projection Rj. The mesh restrictions in
the case of H' norm estimates can be relaxed. The only technical requirement is the
stability of the L2-projection in H' norm, i.e.

IV Pyul| 120y < ClVullL2(q)-

Such result is shown for locally quasi-uniform meshes [3], on adaptive meshes obtained
by bisection method in 2D [1, 9], and also on more general meshes in any space
dimensions [6].

In this situation the best type approximation result take the form

lu = wrnllzarxa) < C (lu = Xllz2axe) + [Baw = ull2gxe) + Imru = ull2xe))
(51)
and since the Ritz projection Ry, is stable in H! norm,

IV (u = urp)l2(rx0) < C (IV(w = X) | 22(1x0) + IV (mru — w) || 12(1x0)) 5 (52)

for any space-time fully discrete function y. Similarly, to the Stokes problem, under
the additional assumption of convexity of 2 and some approximation properties of the
discrete spaces, we easily derive optimal error estimates of the form

v = wrnllL2(r;ms (@) < C (7175/2 + h275> (Ifllz2rxey + llwollary) s s=0,1.
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