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Abstract

In this paper we establish best approximation type estimates for the fully dis-

crete Galerkin solutions of transient Stokes problem in L
2(I;L2(Ω)d) and

L
2(I;H1(Ω)d) norms. These estimates fill the gap in the error analysis of

the transient Stokes problems and have a number of applications. The anal-

ysis naturally extends to inhomogeneous parabolic problems. The best type

L
2(I;H1(Ω)) error estimate are new even for scalar parabolic problems.
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1 Introduction

In this paper we consider the following transient Stokes problem with no-slip boundary
conditions,

∂t~u−∆~u+∇p = ~f in I × Ω,

∇ · ~u = 0 in I × Ω,

~u = ~0 on I × ∂Ω,

~u(0) = ~u0 in Ω.

(1)

We assume that Ω ⊂ R
d, d ∈ {2, 3}, is a bounded polygonal/polyhedral Lipschitz

domain, T > 0 and I = (0, T ]. In the next section we make precise assumptions on
the data, which allow for a weak formulation of the problem and provide regular-
ity for the velocity ~u ∈ L2(I;H1(Ω)d). We consider fully discrete approximations of
problem (1), where we use compatible finite elements (i.e. satisfying a uniform inf-sup
condition) for the space discretization and the discontinuous Galerkin method for the
temporal discretization. In our previous work [2], we have established the best type
error estimate in L∞(I;L2(Ω)) norm,

‖~u− ~uτh‖L∞(I;L2(Ω)) ≤ C`τ

(

‖~u− ~χ‖L∞(I;L2(Ω)) + ‖~u−RS
h (~u, p)‖L∞(I;L2(Ω))

)

, (2)

where ~uτh is the fully discrete finite element approximation of the velocity ~u, RS
h is

the Ritz projection for the stationary Stokes problem, ~χ is an arbitrary function from
the finite element approximation of the velocity spaces Xq

τ (~Vh), and `τ is a logarithmic
term. Such results are desirable for example in the analysis of PDE constrained optimal
control problems since they do not require any additional regularity assumptions on
the solution beyond the regularity which follows directly from the problem data. The
estimate (2) was an improvement of the main results in [4, Thm. 4.9], where the
error was estimated simultaneously in L∞(I;L2(Ω)) and L2(I;H1(Ω)) norms, and the
bounds there required the presence of the ”mixed terms”. A natural question, which
actually was raised by one of the referees for [2], is it possible to obtain a best type
approximation result just w.r.t. L2(I;H1(Ω)) norm? Surprisingly, such results are not
available even for scalar parabolic problems. In this paper, we give positive answer to
this question and establish the following best type error estimates

‖~u−~uτh‖L2(I×Ω) ≤ C
(

‖~u−~χ‖L2(I×Ω)+‖~u−πτ~u‖L2(I×Ω)+‖~u−RS
h (~u, p)‖L2(I×Ω)

)

(3)

and

‖∇(~u− ~uτh)‖L2(I×Ω) ≤ C
(

‖∇(~u− ~χ)‖L2(I×Ω) + ‖∇(~u− πτ~u)‖L2(I×Ω)

+ ‖∇(~u−RS
h (~u, p))‖L2(I×Ω)

)

,
(4)

where as above ~uτh is the fully discrete finite element approximation of the velocity ~u,
~χ is an arbitrary function from the finite element approximation of the velocity spaces
Xq

τ (~Vh), πτ~u is a certain time projection of the ~u on the time discrete space Xq
τ , and
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RS
h is the Ritz projection for the stationary Stokes problem. The results (3) and (4)

link the approximation error for the fully discrete transient Stokes problem to the best
possible approximation of a continuous solution ~u in the discrete space Xq

τ (
~Vh) as well

as the approximation of the stationary Stokes problem in ~Vh and a time projection.
Such results go in hand with only natural assumptions on the problem data and are
desirable in a number of applications. In contrast to (2), where some mild assumptions
on time steps are need, the estimates (3) and (4) do not require any restrictions and
valid for discontinuous time discretizations on arbitrary partitions. In addition, the
estimate (3) does not require any additional regularity of the domain, thus allowing,
e.g., for reentrant corners and edges. Moreover, (3) does not require the mesh to be
quasi-uniform nor shape regular. Therefore, the result is also true for graded and even
anisotropic meshes (provided the discrete inf-sup condition holds uniformly on such
meshes). However, the second estimate (4), does require the stability of the discrete
Leray projection in H1 norm, which so far is established for the quasi-uniform meshes
on convex domains. These results also naturally hold for the inhomogeneous heat
equation, where the proofs can be simplified and extended to more general meshes,
(see Section 7).

Under the additional assumption of convexity of Ω and some approximation prop-
erties of the discrete spaces, from (3) and (4) we easily derive optimal order (in terms
of regularity) error estimates of the form

‖~u− ~uτh‖L2(I;Hs(Ω)) ≤ C
(

τ1−s/2 + h2−s
)(

‖~f‖L2(I;L2(Ω)) + ‖~u0‖~V 1

)

, s = 0, 1,

where ~V 1 is an appropriate space introduced in the next section. This estimate is
optimal with respect to both the assumed regularity of the data and the order of
convergence and has already been used by the authors in several applications [17, 20].

The above results naturally hold for simpler case of inhomogeneous heat equation
with straightforward change of operators and function spaces. The L2(I;L2(Ω)) best
type approximation result is essentially shown in [18], instead of the best approxima-
tion the optimal error estimate in terms of data of the form (5) is given, however, the
L2(I;H1(Ω)) best approximation result seems to be new.

The rest of the paper is structured as follows. In Section 2, we introduce the
function spaces, key operators and weak formulations of the problem with regularity
results. In Section 3, we introduce fully discrete Galerkin approximation of the prob-
lem. Section 4 is devoted to stability results of the fully discrete velocity solutions.
In Section 4 we review some stability and approximation results for the stationery
Stokes problem, which we requite for our main results Theorem 11 and Theorem 13 in
the next Section 6. Finally, in Section 7, we briefly discuss the extension of the main
results to scalar parabolic problems.

2 Continuous problem

In this section, we introduce function spaces we require for the analysis of (1) and
state some of the main properties of these spaces. In our presentation we follow the
notation and presentation of [14, Section 1 and Section 2].
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2.1 Function spaces and Stokes operator

In the following, we will use the usual notation to denote the Lebesgue spaces Lp and
Sobolev spaces Hk and W k,p. The space L2

0(Ω) will denote a subspace of L2(Ω) with
mean-zero functions. The inner product on L2(Ω) as well as on L2(Ω)d is denoted
by (·, ·). To improve readability, we omit the superscript d when having for example
L2(Ω)d appear as subscript to norms. We also introduce the following function spaces

V = {~v ∈ C∞

0 (Ω)d|∇ · ~v = 0}, ~V 0 = V
L2

, ~V 1 = V
H1

, (5)

where the notation in the last line denotes the completion of the space V with respect
to the L2(Ω)d and H1(Ω)d topology, respectively. Notice that functions in ~V 1 have
zero boundary conditions in the trace sense. Alternatively we have

~V 1 = {~v ∈ H1
0 (Ω)

d|∇ · ~v = 0}

by [8, Theorem III.4.1].
We define the vector-valued Laplace operator

−∆: D(∆) → L2(Ω)d,

where the domain D(∆) is understood with respect to L2(Ω)d and is given as

D(∆) = {~v ∈ H1
0 (Ω)

d|∆~v ∈ L2(Ω)}.

If the domain Ω is convex, then the standard H2(Ω) regularity implies D(∆) =

H1
0 (Ω)

d ∩H2(Ω)d. In addition, we introduce the space ~V 2 as

~V 2 = ~V 1 ∩D(∆).

We will also use the following Helmholtz decomposition (cf. [19, Chapter I, Theorem
1.4] and [8, Theorem III.1.1])

L2(Ω)d = ~V 0 ⊕∇
(

H1(Ω) ∩ L2
0(Ω)

)

. (6)

As usual we define the Helmholtz projection P : L2(Ω)d → ~V 0 (often also called the

Leray projection) as the L2-projection from L2(Ω)d onto ~V 0. Using P and −∆, we

define the Stokes operator A : ~V 2 → ~V 0 as

A = −P∆|~V 2 . (7)

The operator A is a self adjoint, densely defined and positive definite operator on
~V 0. We note that D(A) = ~V 2. Similar to the Laplace operator, for convex polyhedral
domains Ω we have the following H2 regularity bound due to [5, 15]

‖~v‖H2(Ω) ≤ C‖A~v‖L2(Ω), ∀~v ∈ ~V 2. (8)
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2.2 Weak formulation and regularity

In this section we discuss the weak formulation and the regularity of the transient
Stokes problem (1). We will use the notation Ls(I;X) for the corresponding Bochner
space with a Banach space X. Moreover, we will use also the standard notation
H1(I;X). The inner product in L2(I;L2(Ω)d) is denoted by (·, ·)I×Ω.

Proposition 1. Let ~f ∈ L2(I; (~V 1)′) and ~u0 ∈ ~V 0. Then there exists a unique solution

~u ∈ L2(I; ~V 1) ∩ C(Ī , ~V 0) with ∂t~u ∈ L2(I; (~V 1)′) fulfilling ~u(0) = ~u0 and

〈∂t~u,~v〉+ (∇~u,∇~v)I×Ω = (~f,~v)I×Ω for all ~v ∈ L2(I; ~V 1). (9)

There holds

‖∇~u‖L2(I;L2(Ω)) + ‖~u′‖L2(Ī;(~V 1)′) + ‖~u‖C(Ī;L2(Ω)) ≤ C
(

‖~f‖L2(I;(~V 1)′) + ‖~u0‖~V 0

)

.

Proof. For the proof of the above result we refer to [19, Chapter III, Theorem 1.1].

It is well known, cf. again [19], that the equation (9) can be understood as an
abstract parabolic problem

∂t~u+A~u = P~f for a.a. t ∈ I,

~u(0) = ~u0,
(10)

with the Stokes operator A defined in (7).
The next theorem provides the space-time weak formulation in both variables,

velocity and pressure. Please note, that no additional regularity of the domain is
required.
Theorem 2. Let ~f ∈ L2(I;L2(Ω)d) and ~u0 ∈ ~V 1. Then there exists a unique solution
(~u, p) with

~u ∈ L2(I; ~V 1), ∂t~u,A~u ∈ L2(I;L2(Ω)d) and p ∈ L2(I;L2
0(Ω))

fulfilling ~u(0) = ~u0 and

(∂t~u,~v)I×Ω + (∇~u,∇~v)I×Ω − (p,∇ · ~v)I×Ω + (∇ · ~u, ξ)I×Ω = (~f,~v)I×Ω (11)

for all
~v ∈ L2(I;H1

0 (Ω)
d) and ξ ∈ L2(I;L2

0(Ω)).

There holds the estimate

‖∂t~u‖L2(I×Ω) + ‖A~u‖L2(I×Ω) + ‖p‖L2(I×Ω) ≤ C
(

‖~f‖L2(I×Ω) + ‖~u0‖~V 1

)

.

Proof. The proof is given in [2], Theorem 2.10.
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Corollary 3. Let the assumptions of Theorem 2 hold and let in addition the domain
Ω be convex. Then we have ~u ∈ L2(I;H2(Ω)d) and p ∈ L2(I,H1(Ω)) with the
corresponding estimates

‖~u‖L2(I;H2(Ω)) + ‖p‖L2(I;H1(Ω)) ≤ C
(

‖~f‖L2(I×Ω) + ‖~u0‖~V 1

)

.

Proof. This result is shown in [19], Proposition 1.2 in Chapter 3, for C2 domains, but
the proof is valid for convex domains as well. See also Corollary 2.11 in [2].

3 Fully discrete discretization

In this section we consider the discrete version of the operators presented in the
previous section and introduce fully discrete Galerkin solution.

3.1 Spatial discretization

Let {Th} be a family of triangulations of Ω̄, consisting of closed simplices, where we

denote by h the maximum mesh-size. Let ~Xh ⊂ H1
0 (Ω)

d and Mh ⊂ L2
0(Ω) be a pair

of compatible finite element spaces, i.e., them satisfying a uniform discrete inf-sup
condition,

sup
~vh∈ ~Xh

(qh,∇ · ~vh)

‖∇~vh‖L2(Ω)
≥ β‖qh‖L2(Ω) ∀qh ∈ Mh, (12)

with a constant β > 0 independent of h.
We introduce the usual discrete Laplace operator −∆h : ~Xh → ~Xh by

(−∆h~zh, ~vh) = (∇~zh,∇~vh), ∀~zh, ~vh ∈ ~Xh. (13)

To define a discrete version of the Stokes operator A, we first define the space of
discretely divergence-free vectors ~Vh as

~Vh = {~vh ∈ ~Xh|(∇ · ~vh, qh) = 0 ∀qh ∈ Mh}. (14)

Using this space we can define the discrete Leray projection Ph : L
1(Ω)d → ~Vh to be

the L2-projection onto ~Vh, i.e.,

(Ph~u,~vh) = (~u,~vh) ∀~vh ∈ ~Vh. (15)

Using Ph, we define the discrete Stokes operator Ah : ~Vh → ~Vh as Ah = −Ph∆h|~Vh

.

By this definition we have that for ~uh ∈ ~Vh, Ah~uh ∈ ~Vh fulfills

(Ah~uh, ~vh) = (∇~uh,∇~vh), ∀~vh ∈ ~Vh. (16)

Notice, since ~Vh ⊂ ~Xh, for ~vh ∈ ~Vh we obtain

(Ah~vh, ~vh) = (∇~vh,∇~vh) ≥ λ0‖~vh‖
2
L2(Ω), (17)
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where λ0 is the smallest eigenvalue of −∆. This implies that the eigenvalues of Ah are
also positive and bounded from below by λ0.

For deriving error estimates, we make additional assumptions on the approximation
properties of the finite element spaces. We assume, there exist approximation operators
Ph and rh that fulfill the following properties. For Ph ∈ L(H1

0 (Ω)
d; ~Xh) and rh ∈

L(L2(Ω); M̄h) with M̄h corresponding to Mh without the zero-mean value constraint,
we assume the following assumptions hold.
Assumption 1 (Stability of Ph in H1(Ω)d). There exists a constant C independent
of h such that

‖∇Ph(~v)‖L2(Ω) ≤ C‖∇~v‖L2(Ω), ∀~v ∈ H1
0 (Ω)

d. (18)

Assumption 2 (Preservation of discrete divergence for Ph). It holds

(∇ · (~v − Ph(~v)), qh) = 0, ∀qh ∈ M̄h, ∀~v ∈ H1
0 (Ω)

d. (19)

Assumption 3 (Inverse Inequality). There is a constant C independent of h such
that

‖~vh‖H1(Ω) ≤ Ch−1‖~vh‖L2(Ω) ∀~vh ∈ ~Xh. (20)

Assumption 4 (L2 approximation). For any ~v ∈ H2(Ω)d and any q ∈ H1(Ω) exists
C independent of h, ~v and q such that

‖Ph(~v)− ~v‖L2(Ω) + h‖∇(Ph(~v)− ~v)‖L2(Ω) ≤ Ch2‖∇2~v‖L2(Ω), (21)

‖rh(q)− q‖L2(Ω) ≤ Ch‖∇q‖L2(Ω). (22)

Assumptions 1-4 hold for example for Taylor-Hood and Mini elements [10, Sec. 6]
and the constructions of the operators Ph and rh are also provided there.

3.2 Temporal discretization: the discontinuous Galerkin

method

In this section we introduce the discontinuous Galerkin method for the time discretiza-
tion of the transient Stokes equations, a similar method was considered, e.g., in [4]
and [2]. For that, we partition I = (0, T ] into subintervals Im = (tm−1, tm] of length
τm = tm − tm−1, where 0 = t0 < t1 < · · · < tM−1 < tM = T . The maximal and mini-
mal time steps are denoted by τ = maxm τm and τmin = minm τm, respectively. For a
given Banach space B and the order q ∈ N we define the semi-discrete space Xq

τ (B) of
piecewise polynomial functions in time as

Xq
τ (B) = {~vτ ∈ L2(I;B) | ~vτ |Im ∈ Pq(B),m = 1, 2, . . . ,M}, (23)
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where Pq(B) is the space of polynomial functions of degree less or equal q in time with
values in B, i.e.,

Pq(B) = {~vτ : Im → B|~vτ (t) =

q
∑

j=0

~vjφj(t), ~v
j ∈ B, j = 0, . . . , q}. (24)

Here, {φj(t)} is a polynomial basis in t of the space Pq(Im) of polynomials with degree
less or equal w over the interval Im. We use the following standard notation for a
function ~u ∈ Xq

τ (L
2(Ω)d)

~u+
m = lim

ε→0+
~u(tm + ε), ~u−

m = lim
ε→0+

~u(tm − ε), [~u]m = ~u+
m − ~u−

m. (25)

We define the bilinear form B by

B(~u,~v) =

M
∑

m=1

(∂t~u,~v)Im×Ω + (∇~u,∇~v)I×Ω +

M
∑

m=2

([~u]m−1, ~v
+
m−1)Ω + (~u+

0 , ~v
+
0 )Ω.

With this bilinear form we define the fully discrete approximation for the transient
Stokes problem on the discrete divergence free space Xq

τ (~Vh):

~uτh ∈ Xq
τ (~Vh) : B(~uτh, ~vτh) = (~f,~vτh)I×Ω + (~u0, ~v

+
τh,0)Ω ∀~vτh ∈ Xq

τ (~Vh). (26)

By a standard argument one can see that this formulation possesses a unique solution
(existence follows from uniqueness by the fact that (26) is equivalent to a quadratic
system of linear equations).

Remark 1. Note, that the data ~f and ~u0 in (26) can be replaced by Ph
~f and Ph~u0

respectively (with Ph being the discrete Leray projection (15)) without changing the
solution.

The above formulation is not a conforming discretization of the divergence free
formulation (9) due to the fact that Xq

τ (~Vh) is not a subspace of L2(I; ~V 1). In order
to introduce a velocity-pressure discrete formulation (as a discretization of (11)) we
consider the following bilinear form

B((~u, p), (~v, q)) =

M
∑

m=1

(∂t~u,~v)Im×Ω + (∇~u,∇~v)I×Ω − (p,∇ · ~v)I×Ω + (∇ · ~u, q)I×Ω

+

M
∑

m=2

([~u]m−1, ~v
+
m−1)Ω + (~u+

0 , ~v
+
0 )Ω. (27)

The corresponding fully discrete formulation reads: find (~uτh, pτh) ∈ Xq
τ ( ~Xh × Mh)

such that

B((~uτh, pτh), (~vτh, qτh)) = (~f,~vτh)I×Ω + (~u0, ~v
+
τh,0)Ω ∀(~vτh, qτh) ∈ Xq

τ ( ~Xh ×Mh).
(28)
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We note, that for the temporal discretization we use polynomials of the same order
for the velocity and pressure. The next proposition states the equivalence of the
formulation (26) and (28).
Proposition 4. For a solution (~uτh, pτh) of (28) the discrete velocity ~uτh fulfills (26).
Moreover, for a solution ~uτh of (26) there exists a unique pτh ∈ Xq

τ (Mh) such that
the pair (~uτh, pτh) fulfills (28). In particular the solution of (28) is unique.

Proof. The proof is given in [2], Proposition 4.2.

The next proposition provides the Galerkin orthogonality relation for the velocity
pressure discretization (28), which is essential for our analysis. Please note, that for
the velocity formulation (26) the Galerkin orthogonality does not hold due to the fact

that Xq
τ (
~Vh) is not a subspace of L2(I, ~V 1).

Proposition 5. Let the assumptions of (2) be fulfilled, i.e., ~f ∈ L2(I;L2(Ω)d) and

~u0 ∈ ~V 0. Then there holds for the solution (~u, p) of (11)

B((~u, p), (~vτh, qτh)) = (~f,~vτh)I×Ω + (~u0, ~v
+
τh,0)Ω ∀(~vτh, qτh) ∈ Xq

τ ( ~Xh ×Mh)

and consequently

B((~u− ~uτh, p− pτh), (~vτh, qτh)) = 0 ∀(~vτh, qτh) ∈ Xq
τ (

~Xh ×Mh). (29)

Proof. The proof is given in [2], Proposition 4.3.

In the following, we also consider a dual problem, where we use a dual representa-
tion of the bilinear form B

B((~u, p), (~v, q)) =−

M
∑

m=1

〈~u, ∂t~v〉Im×Ω + (∇~u,∇~v)I×Ω − (p,∇ · ~v)I×Ω

+ (∇ · ~u, q)I×Ω −

M−1
∑

m=1

(~u−

m, [~v]m)Ω + (~u−

M , ~v−M )Ω,

(30)

which is obtained by integration by parts and rearranging the terms in the sum.
We will also need the following projection πτ for v ∈ C(I, L2(Ω)) with πτv|Im ∈

Pq(L
2(Ω)) for m = 1, 2, . . . ,M on each subinterval Im by

(πτv − v, φ)Im×Ω = 0, ∀φ ∈ Pq−1(Im, L2(Ω)), q > 0, (31a)

πτv(t
−

m) = v(t−m). (31b)

In the case q = 0, πτv is defined solely by the second condition. The following
approximation property also holds

‖πτu− u‖L2(Im×Ω) ≤ Cτ‖∂tu‖L2(Im×Ω) ∀u ∈ H1(Im;L2(Ω)). (32)
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4 Fully discrete stability results

In this section, we establish stability results, which are essential for our main result.
Theorem 6. For ~f ∈ L2(I, L2(Ω)d) and ~u0 ∈ ~V 1. Let ~uτh ∈ Xq

τ (~Vh) be the solution
to (26). Then there holds

(

M
∑

m=1

‖∂t~uτh‖
2
L2(Im×Ω)

)1/2

+ ‖Ah~uτh‖L2(I×Ω) +

(

M
∑

m=1

τm‖τ−1
m [~uτh]m−1‖

2
L2(Ω)

)1/2

≤ C
(

‖Ph
~f‖L2(I×Ω) + ‖∇Ph~u0‖L2(Ω)

)

.

(33)

Proof. The proof follows the lines of the corresponding proof in [18] replacing −∆h

by Ah.

For the L2(I;H1(Ω)d) norm estimates we also need the following result.

Theorem 7. For ~f ∈ L2(I, L2(Ω)d) and ~u0 ∈ ~V 0. Let ~uτh ∈ Xq
τ (~Vh) be the solution

to (26). Then there holds

(

M
∑

m=1

‖∂t∇A−1
h ~uτh‖

2
L2(Im×Ω)

)1/2

+ ‖∇~uτh‖L2(I×Ω)

+

(

M
∑

m=1

τm‖τ−1
m [∇A−1

h ~uτh]m−1‖
2
L2(Ω)

)1/2

≤ C
(

‖∇A−1
h Ph

~f‖L2(I×Ω) + ‖Ph~u0‖L2(Ω)

)

.

(34)

Proof. The proof goes along the lines of the proof of Theorem 4.1 [18]. We will provide
the proof for completeness. We will provide to the proof for q ≥ 1, the case of q = 0,
i.e. the lowest order piecewise constant case, we leave to the reader.

Writing (26) in an alternative formulation of the dG time stepping scheme at each
Im and testing with ~vτh = ~uτh, we obtain

(∂t~uτh, ~uτh)Im×Ω + ‖∇~uτh‖
2
L2(Im×Ω) + ([~uτh]m−1, ~u

+
τh,m−1)Ω = (~f, ~uτh)Im×Ω.

Using the identities

(∂t~uτh, ~uτh)Im×Ω =
1

2
‖~u−

τh,m‖2L2(Ω) −
1

2
‖~u+

τh,m−1‖
2
L2(Ω)

and

([~uτh]m−1, ~u
+
τh,m−1)Ω =

1

2
‖~u+

τh,m−1‖
2
L2(Ω) +

1

2
‖[~uτh]m−1‖

2
L2(Ω) −

1

2
‖~u−

τh,m−1‖
2
L2(Ω)

gives us

1

2
‖~u−

τh,m‖2L2(Ω)−
1

2
‖~u−

τh,m−1‖
2
L2(Ω)+

1

2
‖[~uτh]m−1‖

2
L2(Ω)+‖∇~uτh‖

2
L2(Im×Ω) = (~f, ~uτh)Im×Ω.

10



Summing over m, we obtain

1

2
‖~u−

τh,M‖2L2(Ω)+
1

2

M
∑

m=1

‖[~uτh]m−1‖
2
L2(Ω)+‖∇~uτh‖

2
L2(I×Ω) = (~f, ~uτh)I×Ω+

1

2
‖Ph~u0‖

2
L2(Ω).

To treat the term involving ~f , we write it as

(~f, ~uτh)I×Ω = (Ph
~f, ~uτh)I×Ω = (AhA

−1
h Ph

~f, ~uτh)I×Ω = (∇A−1
h Ph

~f,∇~uτh)I×Ω,

where in the last step we used that ~uτh is discrete divergence free. Using the Cauchy-
Schwarz and geometric-arithmetic mean inequalities

(~f, ~uτh)I×Ω ≤
1

2
‖∇~uτh‖

2
L2(I×Ω) +

1

2
‖∇A−1

h Ph
~f‖2L2(I×Ω).

Thus, we obtain

‖∇~uτh‖
2
L2(I×Ω) ≤ ‖∇A−1

h Ph
~f‖2L2(I×Ω) + ‖Ph~u0‖

2
L2(Ω). (35)

Next, we test (26) with ~vτh |Im= (t− tm−1)A
−1
h ∂t~uτh. Noticing that the jump terms

disappear and using the identity,

(∂t~uτh, A
−1
h ∂tukh)Ω = (AhA

−1
h ∂t~uτh, A

−1
h ∂t~uτh)Ω = ‖∇A−1

h ∂t~uτh‖
2
L2(Ω),

on each time interval Im, which follows from ∂t~uτh being discretely divergence free for
each t ∈ Im, we obtain

∫

Im

(t− tm−1)‖∇A−1
h ∂t~uτh‖

2
L2(Ω)dt =−

∫

Im

(t− tm−1)(∇~uτh,∇A−1
h ∂t~uτh)Ωdt

+

∫

Im

(t− tm−1)(~f,A
−1
h ∂t~uτh)Ωdt

=

∫

Im

(t− tm−1)(−∇~uτh +∇A−1
h Ph

~f,∇A−1
h ∂t~uτh)Ωdt.

Using the Cauchy-Schwarz inequality

∫

Im

(t− tm−1)(−∇~uτh +∇A−1
h Ph

~f,∇A−1
h ∂t~uτh)Ωdt ≤

(
∫

Im

(t− tm−1)‖ − ∇~uτh +∇A−1
h Ph

~f‖2L2(Ω)dt

)1/2(∫

Im

(t− tm−1)‖∇A−1
h ∂t~uτh‖

2
L2(Ω)dt

)1/2

and canceling, we have

∫

Im

(t− tm−1)‖∇A−1
h ∂t~uτh‖

2
L2(Ω)dt ≤

∫

Im

(t− tm−1)‖ − ∇~uτh +∇A−1
h Ph

~f‖2L2(Ω)dt.

11



Using the following inequality

∫

Im

‖vk‖
2dt ≤ Cτ−1

m

∫

Im

(t− tm−1)‖vk‖
2dt ∀vk ∈ Pq(Im; ~Vh), (36)

which can be easily verified by a usual scaling argument, we obtain

∫

Im

‖∇A−1
h ∂t~uτh‖

2
L2(Ω)dt ≤ Cτ−1

m

∫

Im

(t− tm−1)‖∇A−1
h ∂t~uτh‖

2
L2(Ω)dt

≤ Cτ−1
m

∫

Im

(t− tm−1)‖ − ∇~uτh +∇A−1
h Ph

~f‖2L2(Ω)dt

≤ C

∫

Im

‖ − ∇~uτh +∇A−1
h Ph

~f‖2L2(Ω)dt.

Summing over m and using the estimate for the gradient (35), we obtain

M
∑

m=1

‖∇A−1
h ∂t~uτh‖

2
L2(Im×Ω) ≤ C

(

‖∇A−1
h Ph

~f‖2L2(I×Ω) + ‖Ph~u0‖
2
L2(Ω)

)

. (37)

It remains to estimate the jump terms. We test (26) with ~vτh |Im= [A−1
h ~ukh]m−1. On

each time interval Im this time we obtain,

‖∇[A−1
h ~uτh]m−1‖

2
L2(Ω) = (~f +Ah~uτh + ∂t~uτh, [A

−1
h ~uτh]m−1)Im×Ω.

Integrating by parts and using the Cauchy-Schwarz and geometric-arithmetic mean
inequalities

(~f +Ah~uτh + ∂t~uτh, [A
−1
h ~uτh]m−1)Im×Ω

= (∇A−1
h Ph

~f +∇~uτh +∇A−1
h ∂t~uτh, [∇A−1

h ~uτh]m−1)Im×Ω

≤ ‖∇A−1
h Phf +∇~uτh +∇A−1

h ∂t~uτh‖L2(Im×Ω)‖[∇A−1
h ~uτh]m−1‖L2(Im×Ω)

≤
τm
2
‖∇A−1

h Ph
~f +∇~uτh +∇A−1

h ∂t~uτh‖
2
L2(Im×Ω) +

1

2τm
‖[∇A−1

h ~uτh]m−1‖
2
L2(Im×Ω)

=
τm
2
‖∇A−1

h Phf +∇~uτh +∇A−1
h ∂t~uτh‖

2
L2(Im×Ω) +

1

2
‖[∇A−1

h ~uτh]m−1‖
2
L2(Ω),

where we used that [∇A−1
h ~uτh]m−1 is constant in time on Im. Thus, we obtain

τ−1
m ‖[∇A−1

h ~uτh]m−1‖
2
L2(Ω) ≤ ‖∇A−1

h Ph
~f +∇~uτh +∇A−1

h ∂t~uτh‖
2
L2(Im×Ω).

Summing over m and using (35) and (37)

M
∑

m=1

τ−1
m ‖[∇A−1

h ~uτh]m−1‖
2
L2(Ω) ≤ C

(

‖∇A−1
h Ph

~f‖2L2(I×Ω) + ‖Ph~u0‖
2
L2(Ω)

)

. (38)
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Combining (35), (37), and (38), we obtain the result.

5 Stationary Stokes results

For the best approximation type error estimates in the next section, we need to review
basic results on the stationery Stokes projection and on the discrete Leray projection.

5.1 Discrete Stokes projection

We introduce an analogue of the Ritz projection for the stationary Stokes problem
(RS

h (~w, ϕ), R
S,p
h (~w, ϕ)) ∈ ~Xh ×Mh of (~w, ϕ) ∈ H1

0 (Ω)
d ×L2(Ω) given by the relation

(∇(~w −RS
h (~w, ϕ)),∇~vh)− (ϕ−RS,p

h (~w, ϕ),∇ · ~vh) = 0, ∀~vh ∈ ~Xh, (39a)

(∇ · (~w −RS
h (~w, ϕ)), qh) = 0, ∀qh ∈ Mh. (39b)

Remark 2. If ~w is discrete divergence free, i.e., (∇ · ~w, qh) = 0 for all qh ∈ Mh, then

we have RS
h (~w, ϕ) ∈

~Vh. We will use this projection operator only for such ~w. In this
case the same projection operator is defined, e.g., in [12].
Proposition 8. The Stokes projection is stable in H1 norm, i.e.

‖∇RS
h (~w, ϕ)‖L2(Ω) ≤ C

(

‖∇~w‖L2(Ω) + ‖ϕ‖L2(Ω)

)

and if ~w ∈ H2(Ω)d and ϕ ∈ H1(Ω), the following error estimate holds

‖∇(~w −RS
h (~w, ϕ))‖L2(Ω) ≤ Ch

(

‖∇2 ~w‖L2(Ω) + ‖∇ϕ‖L2(Ω)

)

.

Proposition 9. If Ω is convex, then

‖~w −RS
h (~w, ϕ)‖L2(Ω) ≤ Ch

(

‖∇~w‖L2(Ω) + ‖ϕ‖L2(Ω)

)

and
‖~w −RS

h (~w, ϕ)‖L2(Ω) ≤ Ch2
(

‖∇2 ~w‖L2(Ω) + ‖∇ϕ‖L2(Ω)

)

.

For the proofs of the above results we refer to [7], Propositions 4.14 and 4.18.

5.2 Discrete Leray projection

We need the restriction on the mesh and H2 regularity such that the Leray projection
Ph is stable in H1(Ω) norm. Such result is shown for quasi-uniform meshes in [4].
Lemma 10 (Stability of the Leray projection in H1 norm). Let Ω be convex and the
triangulations {Th} be quasi-uniform. Then, there exist a constant C such that

‖∇Ph~v‖L2(Ω) ≤ C‖∇~v‖L2(Ω) ∀~v ∈ ~V 1.

13



Proof. The proof of this results is given in the Appendix of [4]. For the completeness,

we repeat the argument here. Let ~v ∈ ~V 1 and consider ~vh = RS
h (~v, 0) ∈

~Vh. Then by
Proposition 8

‖∇~vh‖L2(Ω) ≤ C‖∇~v‖L2(Ω) + ‖0‖L2(Ω) = C‖∇~v‖L2(Ω).

On the other hand by Proposition 9,

‖~v − ~vh‖L2(Ω) ≤ Ch‖∇~v‖L2(Ω).

As a result, using the inverse inequality and the above two estimates, we obtain

‖∇Ph~v‖L2(Ω) ≤ ‖∇(Ph~v − ~vh)‖L2(Ω) + ‖∇~vh‖L2(Ω)

≤ Ch−1‖Ph~v − ~vh‖L2(Ω) + C‖∇~v‖L2(Ω)

≤ Ch−1‖Ph(~v − ~vh)‖L2(Ω) + C‖∇~v‖L2(Ω)

≤ Ch−1‖~v − ~vh‖L2(Ω) + C‖∇~v‖L2(Ω)

≤ C‖∇~v‖L2(Ω).

Remark 3. The stability of the discrete Leray projection is a delicate matter. As
operator, Ph is well-defined for L2(Ω)d and even L1(Ω)d functions. In such a case, the
following stability result can be obtained in fractional norms (cf. [14, Lemma 3.1]

‖Ph~v‖Hs(Ω) ≤ C‖~v‖Hs(Ω) ∀s ∈ [0,
1

2
), ∀~v ∈ Hs(Ω)d, (40)

and can not be extended to any s ≥ 1/2 (cf. [14, Remark 3.1].
Remark 4. The stability of the Leray projection (40) is the only result that requires
restriction on a mesh.

6 Main results

Now we state our main best type approximation results.

6.1 L
2 error estimates

The first result establishes the following error estimate in L2(I × Ω) norm.

Theorem 11. Let ~f ∈ L2(I;L2(Ω)d) and ~u0 ∈ ~V 1. Let (~u, p) be the solution of
(11) and (~uτh, pτh) solve the respective finite element problem (28). Then, for any

~χ ∈ Xq
τ (
~Vh), there holds

‖~u− ~uτh‖L2(I×Ω) ≤ C
(

‖~u− ~χ‖L2(I×Ω) + ‖~u− πτ~u‖L2(I×Ω) + ‖~u−RS
h (~u, p)‖L2(I×Ω)

)

.

(41)
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Proof. The proof essentially follows by a duality argument and Theorem 6.
Consider the following dual problem

−∂t~g(t, ~x)−∆~g(t, ~x) +∇λ(t, ~x) = ~uτh, (t, ~x) ∈ I × Ω,

∇ · ~g(t, ~x) = 0, (t, ~x) ∈ I × Ω,

~g(t, ~x) = 0, (t, ~x) ∈ I × ∂Ω,

~g(T, x) = 0, ~x ∈ Ω.

(42)

The corresponding finite element approximation (~gτh, λτh) ∈ Xq
τ ( ~Xh × Mh) is given

by

B((~vτh, qτh), (~gτh, λτh)) = (~uτh, ~vτh)I×Ω ∀(~vτh, qτh) ∈ Xq
τ ( ~Xh ×Mh). (43)

By the Galerkin orthogonality from Proposition 5, we have

‖~uτh‖
2
L2(I×Ω) = (~uτh, ~uτh)I×Ω = B((~uτh, pτh), (~gτh, λτh)) = B((~u, p), (~gτh, λτh))

= −

M
∑

m=1

(~u, ∂t~gτh)Im×Ω + (∇~u,∇~gτh)I×Ω − (p,∇ · ~gτh)I×Ω −

M
∑

m=1

(~u−

m, [~gτh]m)Ω

= J1 + J2 + J3 + J4,

where we have used the dual representation of the bilinear form B from (30). In the
last sum we set ~gτh,M+1 = 0 so that [~gτh]M = −~gτh,M . Applying the Cauchy-Schwarz
inequality and Theorem 6, we obtain

J1 ≤

M
∑

m=1

‖~u‖L2(Im×Ω)‖∂t~gτh‖L2(Im×Ω)

≤

(

M
∑

m=1

‖~u‖2L2(Im×Ω)

)1/2( M
∑

m=1

‖∂t~gτh‖
2
L2(Im×Ω)

)1/2

≤ C‖~u‖L2(I×Ω)‖~uτh‖L2(I×Ω).
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To treat J4, we use the projection defined in (31), the Cauchy-Schwarz inequality and
the inverse inequality for time discrete functions and Theorem 6, we obtain

J4 = −

M
∑

m=1

(~u−

m, [~gτh]m)Ω = −

M
∑

m=1

((πτ~u)m, [~gτh]m)Ω

≤

(

M
∑

m=1

τm‖(πτ~u)m‖2L2(Ω)

)1/2( M
∑

m=1

τ−1
m ‖[~gτh]m−1‖

2
L2(Ω)

)1/2

≤

(

M
∑

m=1

τm‖πτ~u‖
2
L∞(Im;L2(Ω))

)1/2( M
∑

m=1

τm‖τ−1
m [~gτh]m−1‖

2
L2(Ω)

)1/2

≤ C

(

M
∑

m=1

‖πτ~u‖
2
L2(Im×Ω)

)1/2( M
∑

m=1

τm‖τ−1
m [~gτh]m−1‖

2
L2(Ω)

)1/2

≤ C‖πτ~u‖L2(I×Ω)‖~uτh‖L2(I×Ω).

For J2 + J3 we can argue by using the projection RS
h defined in (39). Then, we have

J2 + J3 = (∇~u,∇~gτh)I×Ω − (p,∇ · ~gτh)I×Ω (44)

= (∇RS
h (~u, p),∇~gτh)I×Ω − (RS,p

h (~u, p),∇ · ~gτh)I×Ω = (∇RS
h (~u, p),∇~gτh)I×Ω,

(45)

where the last term vanishes, since ~gτh is discretely divergence-free. Here and in what
follows, the projection (RS

h , R
S,p
h ) is applied to time dependent functions (~u, p) point-

wise in time. Since ∇·~u(t) = 0 for almost all t ∈ I we have RS
h (~u(t), p(t)) ∈

~Vh, cf. (2).
With this we can use the definition of the discrete Stokes operator Ah resulting in

(∇RS
h (~u, p),∇~gτh)I×Ω = (RS

h (~u, p), Ah~gτh)I×Ω

≤ ‖RS
h (~u, p)‖L2(I×Ω)‖Ah~gτh‖L2(I×Ω)

≤
(

‖~u‖L2(I×Ω) + ‖~u−RS
h (~u, p)‖L2(I×Ω)

)

‖~uτh‖L2(I×Ω).

(46)

Combining the estimates for J1, J2, J3 and J4, we conclude

‖~uτh‖L2(I×Ω) ≤ C
(

‖~u‖L2(I×Ω) + ‖πτ~u‖L2(I×Ω) + ‖~u−RS
h (~u, p)‖L2(I×Ω)

)

.

Using that the Galerkin method is invariant on Xq
τ (~Vh ×Mh), by replacing ~u and ~uτh

with ~u − ~χ and ~uτh − ~χ for any ~χ ∈ Xq
τ (~Vh), and using the triangle inequality we

complete the proof of the theorem.

If the exact solution is sufficiently smooth then the above result easily leads to
optimal convergence rates.
Corollary 12. Let Ω be convex, ~f ∈ L2(I, L2(Ω)d) and ~u0 ∈ ~V 1. Let (~u, p) be the
solution of (11) and (~uτh, pτh) solve the respective finite element problem (28). Assume
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in addition the approximation Assumptions 1-4 hold. Then,

‖~u− ~uτh‖L2(I×Ω) ≤ C
(

τ + h2
)

(

‖~f‖L2(I×Ω) + ‖~u0‖~V 1

)

.

Proof. From Theorem 11, we need to estimate three terms. The temporal error is
estimated by (32) resulting in

‖~u− πτ~u‖L2(I×Ω) ≤ Cτ‖∂t~u‖L2(I;L2(Ω)).

The spatial error using Proposition 9 is estimated by

‖~u−RS
h (~u, p)‖L2(I×Ω) ≤ Ch2

(

‖∇2~u‖L2(I×Ω) + ‖∇p‖L2(I×Ω)

)

.

Similarly, choosing ~χ = PτR
S
h (~u, p), where Pτ is the orthogonal L2 projection onto

Xq
τ , by the triangle inequality we obtain

‖~u− ~χ‖L2(I×Ω) ≤ ‖~u− Pτ~u‖L2(I×Ω) + ‖Pτ (~u−RS
h (~u, p)‖L2(I×Ω)

≤ Cτ‖∂t~u‖L2(I×Ω) + Ch2‖∇2~u‖L2(I×Ω).

Using Corollary 3, we obtain the result.

6.2 H
1 error estimates

The second result establishes the optimal error estimates L2(I;H1(Ω)d) norm on quasi-
uniform meshes.
Theorem 13. Let ~f ∈ L2(I;L2(Ω)d) and ~u0 ∈ ~V 1. Let (~u, p) be the solution of
(11) and (~uτh, pτh) solve the respective finite element problem (28) on a family of

quasi-uniform triangulations {Th}. Then, for any ~χ ∈ Xq
τ (
~Vh), there holds

‖∇(~u− ~uτh)‖L2(I×Ω) ≤ C
(

‖∇(~u− ~χ)‖L2(I×Ω) + ‖∇(~u− πτ~u)‖L2(I×Ω)

+ ‖∇(~u−RS
h (~u, p))‖L2(I×Ω)

)

.
(47)

Proof. The proof is similar to the proof for the L2(I;L2(Ω)d) norm. This time, we
consider the following dual problem

−∂t~g(t, ~x)−∆~g(t, ~x) +∇λ(t, ~x) = Ah~uτh, (t, ~x) ∈ I × Ω,

∇ · ~g(t, ~x) = 0, (t, ~x) ∈ I × Ω,

~g(t, ~x) = 0, (t, ~x) ∈ I × ∂Ω,

~g(T, x) = 0, ~x ∈ Ω.

(48)

The corresponding finite element approximation (~gτh, λτh) ∈ Xq
τ ( ~Xh × Mh) is given

by

B((~vτh, qτh), (~gτh, λτh)) = (Ah~uτh ~vτh)I×Ω ∀(~vτh, qτh) ∈ Xq
τ ( ~Xh ×Mh). (49)
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By the Galerkin orthogonality from Proposition 5, we have

‖∇~uτh‖
2
L2(I×Ω) = (Ah~uτh, ~uτh)I×Ω = B((~uτh, pτh), (~gτh, λτh)) = B((~u, p), (~gτh, λτh))

= −

M
∑

m=1

(~u, ∂t~gτh)Im×Ω + (∇~u,∇~gτh)I×Ω − (p,∇ · ~gτh)−

M
∑

m=1

(~u−

m, [~gτh]m)Ω

= J1 + J2 + J3 + J4,

where we have used the dual representation of the bilinear form B from (30). In the
last sum we set ~gτh,M+1 = 0 so that [~gτh]M = −~gτh,M . Applying the Cauchy-Schwarz
inequality and Theorem 7, we obtain

J1 = −

M
∑

m=1

(Ph~u, ∂t~gτh)Im×Ω

= −

M
∑

m=1

(∇Ph~u,∇A−1
h ∂t~gτh)Im×Ω

≤

M
∑

m=1

‖∇Ph~u‖L2(Im×Ω)‖∇A−1
h ∂t~gτh‖L2(Im×Ω)

≤

(

M
∑

m=1

‖∇Ph~u‖
2
L2(Im×Ω)

)1/2( M
∑

m=1

‖∇A−1
h ∂t~gτh‖

2
L2(Im×Ω)

)1/2

≤ C‖∇~u‖L2(I×Ω)‖∇~uτh‖L2(I×Ω),

where in the last step we used the stability of Ph inH1(Ω)d for divergence free functions
from H1

0 (Ω)
d.
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To treat J4, we use the projection defined in (31), the Cauchy-Schwarz inequality
and the inverse inequality for time discrete function and to obtain

J4 = −

M
∑

m=1

(~u−

m, [~gτh]m)Ω = −

M
∑

m=1

(πτPh~um, [~gτh]m)Ω

= −

M
∑

m=1

(πτ∇Ph~um, [∇A−1
h ~gτh]m)Ω

≤

(

M
∑

m=1

τm‖πτ∇Ph~um‖2L2(Ω)

)1/2( M
∑

m=1

τ−1
m ‖[∇A−1

h ~gτh]m−1‖
2
L2(Ω)

)1/2

≤

(

M
∑

m=1

τm‖πτ∇Ph~u‖
2
L∞(Im;L2(Ω))

)1/2( M
∑

m=1

τm‖τ−1
m [∇A−1

h ~gτh]m−1‖
2
L2(Ω)

)1/2

≤ C

(

M
∑

m=1

‖πτ∇Ph~u‖
2
L2(Im×Ω)

)1/2( M
∑

m=1

τm‖τ−1
m [∇A−1

h ~gτh]m−1‖
2
L2(Ω)

)1/2

≤ C‖πτ∇Ph~u‖L2(I×Ω)‖∇~uτh‖L2(I×Ω)

≤ C‖πτ∇~u‖L2(I×Ω)‖∇~uτh‖L2(I×Ω),

where again in the last step we used the stability of Ph in H1(Ω)d for divergence free
functions from H1

0 (Ω)
d.

For J2 + J3 we can argue by using the projection RS
h defined in (39). Then since

~gτh is discretely divergence-free, we have

J2 + J3 = (∇~u,∇~gτh)I×Ω − (p,∇ · ~gτh)I×Ω

= (∇RS
h (~u, p),∇~gτh)I×Ω − (RS,p

h (~u, p),∇ · ~gτh)I×Ω = (∇RS
h (~u, p),∇~gτh)I×Ω

≤ ‖∇RS
h (~u, p)‖L2(I×Ω)‖∇~gτh‖L2(I×Ω)

≤C
(

‖∇~u‖L2(I×Ω)) + ‖∇(~u−RS
h (~u, p))‖L2(I×Ω)

)

‖∇~uτh‖L2(I×Ω).

Combining the estimates for J1, J2, J3 and J4, we conclude

‖∇~uτh‖L2(I×Ω) ≤ C
(

‖∇~u‖L2(I×Ω) + ‖πτ∇~u‖L2(I×Ω) + ‖∇(~u−RS
h (~u, p))‖L2(I×Ω)

)

.

Using that the Galerkin method is invariant on Xq
τ (~Vh ×Mh), by replacing ~u and ~uτh

with ~u − ~χ and ~uτh − ~χ for any ~χ ∈ Xq
τ (~Vh), and using the triangle inequality we

complete the proof of the theorem.

Corollary 14. Let Ω be convex, ~f ∈ L2(I, L2(Ω)d) and ~u0 ∈ ~V 1. Let (~u, p) be the
solution of (11) and (~uτh, pτh) solve the respective finite element problem (28). Assume
in addition the approximation Assumptions 1-4 hold. Then,

‖∇(~u− ~uτh)‖L2(I×Ω) ≤ C
(

τ1/2 + h
)(

‖~f‖L2(I×Ω) + ‖~u0‖~V 1

)

.
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Proof. The proof is analogous to the proof of Corollary 12. The main difference is to
use the estimate

‖∇(~u− πτ~u)‖L2(I×Ω) ≤ Cτ1/2
(

‖~f‖L2(I×Ω) + ‖~u0‖~V 1

)

from Lemma 3.13 from [16].

7 Inhomogeneous heat equation

The above results naturally hold for the scalar parabolic equation

ut(t, x)−∆u(t, x) = f(t, x), (t, x) ∈ I × Ω,

u(t, x) = 0, (t, x) ∈ I × ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(50)

All arguments stay almost unchanged. We only need to replace A and Ah with −∆
and −∆h, the discrete Leray projection Ph with the L2-projection Ph, and the Stokes
projection RS

h (~u, p) with the Ritz (elliptic) projection Rh. The mesh restrictions in
the case of H1 norm estimates can be relaxed. The only technical requirement is the
stability of the L2-projection in H1 norm, i.e.

‖∇Phu‖L2(Ω) ≤ C‖∇u‖L2(Ω).

Such result is shown for locally quasi-uniform meshes [3], on adaptive meshes obtained
by bisection method in 2D [1, 9], and also on more general meshes in any space
dimensions [6].

In this situation the best type approximation result take the form

‖u− uτh‖L2(I×Ω) ≤ C
(

‖u− χ‖L2(I×Ω) + ‖Rhu− u‖L2(I×Ω) + ‖πτu− u‖L2(I×Ω)

)

,
(51)

and since the Ritz projection Rh is stable in H1 norm,

‖∇(u− uτh)‖L2(I×Ω) ≤ C
(

‖∇(u− χ)‖L2(I×Ω) + ‖∇(πτu− u)‖L2(I×Ω)

)

, (52)

for any space-time fully discrete function χ. Similarly, to the Stokes problem, under
the additional assumption of convexity of Ω and some approximation properties of the
discrete spaces, we easily derive optimal error estimates of the form

‖u− uτh‖L2(I;Hs(Ω)) ≤ C
(

τ1−s/2 + h2−s
)

(

‖f‖L2(I×Ω) + ‖u0‖H1(Ω)

)

, s = 0, 1.
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