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WARPED QUASI-ASYMPTOTICALLY CONICAL CALABI-YAU METRICS

RONAN J. CONLON AND FREDERIC ROCHON

ABSTRACT. We construct many new examples of complete Calabi-Yau metrics of maximal volume growth
on certain smoothings of Cartesian products of Calabi-Yau cones with smooth cross-sections. A detailed
description of the geometry at infinity of these metrics is given in terms of a compactification by a manifold
with corners obtained through the notion of weighted blow-up for manifolds with corners. A key analytical
step in the construction of these Calabi-Yau metrics is to derive good mapping properties of the Laplacian
on some suitable weighted Holder spaces.
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1. INTRODUCTION

A complete Kéhler manifold (X, g, J) is Calabi-Yau if it is Ricci-flat and has a nowhere vanishing parallel
holomorphic volume form Qx € H°(X; Kx). This latter condition forces the holonomy of g to be contained
in SU(m) with m = dim¢ X. By the result of Yau [42], we know that a compact Kéhler manifold admits a
Calabi-Yau metric if and only if its canonical bundle is trivial, in which case a unique Calabi-Yau metric can
be obtained in each Kéhler class by solving a complex Monge-Ampere equation. On non-compact complete
Kahler manifolds, the triviality of the canonical bundle is also a necessary condition for the existence of a
Calabi-Yau metric, but one needs also to take into account the geometry at infinity. For instance, on C2, the
flat metric and the Taub-NUT metric are two complete Calabi-Yau metrics in the same Kéhler class, but
with quite distinct geometry at infinity, the volume growth of the latter being only cubic instead of order 4.

In this paper, we will focus on Calabi-Yau metrics of maximal volume growth, that is, such that the volume
of a ball of radius r is comparable to 2™ for r large with m the complex dimension of the manifold. A
tangent cone at infinity of such a metric is then of the same dimension. When such a tangent cone at infinity
has a smooth cross-section, or equivalently when the Calabi-Yau metric has quadratic curvature decay, then
by [12], this is in fact the unique tangent cone at infinity of the metric. By [35], such Calabi-Yau metrics are
asymptotically conical (AC-metrics for short), that is, Calabi-Yau metrics converging smoothly at infinity at
a rate O(r~¢) for some € > 0 to a Calabi-Yau cone with smooth cross-section. Various examples have been
obtained over the years by solving a complex Monge-Ampére equation, notably in [27, 40, 41, 22, 15, 16]. For a
fixed Calabi-Yau cone at infinity (C, go') with smooth cross-section, a complete classification of asymptotically
conical Calabi-Yau manifolds with tangent cone at infinity (C,gc) was obtained in [14], generalizing in
particular Kronheimer’s classification [30] of asymptotically locally Euclidean hyperKéhler 4-manifolds. The
upshot is that all such asymptotically conical Calabi-Yau metrics are obtained by considering a Kéhler
crepant resolution of a deformation of C seen as an affine variety.

Allowing the tangent cone at infinity to have a singular cross-section greatly opens up the possibilities of
examples that can occur. When C' = C™ /T with I' a finite subgroup of SU(m) and g¢ is the metric induced
by the Euclidean metric on C™, Joyce [27] constructed examples of Calabi-Yau metrics on Kihler crepant
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resolutions of C, the so called quasi-asymptotically locally Euclidean metrics (QALE-metrics for short). This
was extended in [13] to obtain Calabi-Yau quasi-asymptotically conical metrics (QAC-metrics for short) in the
sense of [20]. If one considers instead smooth deformations of Calabi-Yau cones with singular cross-sections,
then already on C", many examples were obtained in [31, 18, 36], providing in particular counter-examples
to a conjecture of Tian [38]. As pointed out in [18], these examples are not quite QAC-metrics, but they
are very close to being so in that they are in some sense warped QAC-metrics. The Calabi-Yau metrics
of [8] constructed on complex symmetric spaces seem to have a similar behavior at infinity. More recently,
adapting the strategy of [36], new examples of Calabi-Yau metrics were obtained in [21] by smoothing C x C
when C' is a complete intersection with smooth cross-section equipped with a Calabi-Yau cone metric g¢.

On C", motivated by the conjecture of Tian [38], one could hope that a complete Calabi-Yau metric of
maximal volume growth is completely determined up to scale and isometry by its tangent cone at infinity.
When C = Cx A; with A; the (n—1)-dimensional Stenzel cone with Calabi-Yau cone metric g4,, Székelyhidi
[37] showed that this is indeed the case. However, already on C3, if one takes instead C' = C x Ay with A,
the singular hypersurface

{22423+ 25 =0} C C,
the Calabi-Yau metric with tangent cone at infinity C x Ay constructed in [36] is not unique. Indeed, a
1-parameter family of distinct such metrics was recently constructed by Chiu [11].

In the present paper, we generalize the approach of [18] to construct new examples of complete Calabi-Yau
metrics of maximal volume growth having a tangent cone at infinity with singular cross-section. To state
our results, consider N Calabi-Yau cones (W1, g1),..., Wy, gn) with singular apex (i.e. not corresponding
to the Euclidean space) but with smooth cross-sections. For each ¢ € {1,..., N}, suppose that W, is a
complete intersection in C™a*"q,

Wy ={z2€ Cmatna | Pya(zq) =+ = Pyn,(24) = 0},
for ng, polynomials P, 1,..., Py n,, where mq = dimc W,. Suppose that the natural R-action on W, is
induced by a diagonal action
Rt >t: Cmatna — (CMatha
2q otezg = (Y zg1, BT 2y i)
for some positive weights wg 1, ..., Wqm,+n,- We will not assume that the cone is quasi-regular, so these

weights are not necessarily rational. We will assume that each polynomial P, ; is homogeneous of some
degree d, ; with respect to the RT-action,

Pi(t-zy) =tiP,(2) Yge{l,...,N}, Vie{l,...,n.},

and that

dq,l S e S dq,nq-
Furthermore, we will assume that there is a d > 1 such that for each ¢ € {1,..., N}, there exists k, €
{1,...,N} such that dg1 = - = dg 1, = d.

On W, the Kéhler form of the metric g, is given by w, = @857“3 with r, the radial distance to the

origin with respect to the Calabi-Yau metric g;. On Wy, there is a holomorphic volume form Q¢ defined
implicitly by

(1.1) dzg1 N Ndzgmgtnglw, = Q' NdPyalw, A+ NdPyn,|w, -

The fact that (Wg,gq) is Calabi-Yau means that there is a constant c,,, € C\ {0} depending only on m,
such that

(1.2) Wq' = Cm, 2" /\ﬁznq.

By (1.1), the holomorphic volume form Qg is homogeneous of degree Z;n:qf "

the R*-action, while w, is of degree 2, so we deduce from (1.2) that

Wq,; — Ngd With respect to

Mmq+ng
(1.3) my = Z Wqj | — ngd.
j=1
Using the convention that mo = 1 and ny = 0, consider the Calabi-Yau cone Wy := C™otm0 = C with

canonical Euclidean metric go, radial function 7o = |z| for zo € C and holomorphic volume form Qg = dzy.
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The corresponding RT-action is the standard one, so the weights are just wg = 1. We will also be interested
in the case mo = 0, in which case we will set Wy = {0}.
We will consider the Cartesian product

N N
(14)  Co=Wox Wi x - x Wy C Tt s s €Mt a = €™ =Y g, ni= Y ng,
q=0 q=0

with product Calabi-Yau metric go, = go X - - - gn. Thus, (Cp, g¢,) is a Calabi-Yau cone with radial function

N
(1.5) 7= ng,
q=0

Kéahler form

(1.6) we, = —V2_185T2

and holomorphic volume form
(1.7) Gy = (—1)23\;2 m"("q’lJr”'Jrnl)leo ANQT A LA QRN.
The possible sign in the right hand side of (1.7) is to ensure that this definition agrees with the implicit
definition
(1.8) dzolcy A (dz1a Ao ANdztmytns Mlag Ao - A(dzna A ANAEN my+nn )| Co =
Qe AN(dP1i A ..dPyp)lco N AN(dPNay Ao NAPN iy )|y,

where we use the convention that dzg|c, = 1 if Wy = {0}. Since W} is singular at the origin for ¢ > 0, notice
that (Cp, go) has a singular cross-section. In fact, for each subset {0} C g C {0,1...,N},

(1.9) Wy :={z=1(20,21,...,2¢) € Cp | zg =0for ¢ ¢ q}
consists of singular points of Cy with the singular locus of Cy given by
(110) C'O,Sing = U WQ'

{0}Cq&{0,.. .\ N}

Moreover, for each such g,

(1.11) Co =Wy x Wg-
with
(1.12) WqJ‘ =Wq4e ={2="(20,21,...,2¢) € Co | zg =0for g € q},

where q° = {0,1,..., N} \ q. The decomposition (1.11) is also Riemannian, namely the restriction of the
Calabi-Yau metric gc, to Wy and Wy induces Calabi-Yau cone metrics gq and gqc such that gc, is just the
Cartesian product of g and gqe. Let

(1.13) Vi i=1{2=(20,21,-..,2¢) €EC™™ | 2, =0 for q ¢ q},

(1.14) VqL =Vge = {2 = (20,21,...,24) €EC"" |z, =0for q € q},

be the subspaces such that Wy = Co NV and Wae = Cy N Vge.
We will suppose that for e € C\ {0} close to 0, the cone Cy admits a smoothing C. of the form

(1.15)  Ce={2=(20,...,2n) € C™™ | Pi(2y) = €Qq.i(20) for ge{l,...,N}andiec {1,...,n4}},
where each @; is a polynomial in zp € C™0t" = C of (weighted) degree ¢ < d for some fixed ¢ > 0 not
depending on ¢ and i. If £ = 0, we will assume that Wy = {0}. It comes with a natural holomorphic volume
form QF defined explicitly by

(116) dzg c. N\ (d21,1 AN A dzl,m1+n1) c. N oA (dZNJ VANAN dZNﬁmN+nN) c. =

Qgi A (d(Pl,l — 6@1,1) VAN d(Pl,nl — te,nl))lce A A (d(PNJ — EQNJ) VANRAWAN d(PN,nN — EQN,’ILN))|C€7

c. = 1if Wy = {0}. We will make the following two assumptions

where again we use the convention that dzg
on the polynomials Qg;.
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Assumption 1.1. The polynomials Qq,; will not be assumed to be homogeneous, but we will assume that the
homogenous part of degree £, denoted [Qq.:le, is non-zero for each q and i. Moreover, if £ >0 and N > 1,
then we will assume that mo = 1, so that the zero locus [Qq.:]e(20) = 0 is the origin in C and corresponds to
the hyperplane

V{l N} = {0} x Cmitm Lo CMWERN o oM

.....

in Cmtn,

Assumption 1.2. For each subset {0} C q C {0,1,..., N}, we suppose that for e € C\ {0} sufficiently close
to zero,

(1.17) Wae :=A{2q € Vo | Py,izq) = €Qq,i(20) forqeq\{0}, ie{1,...,n4}}
is a smoothing of Wy. If mo =1 and Wy = C, then for e € C\ {0} sufficiently close to zero and for all
wq € Wy NS(Vy) with S(V4) the unit sphere in Vg, we will also suppose that
(118) Wi, o= Waewye ={2qe € Voo [ Vg €q%, i € {1,...,ng},
Pgi(zq) = €lQqil(wo), i < kg,  Pyi(zq) =0, 1> kq}
s a smoothing of WqJ- = Wye for wo # 0, where wg s the component of wq in Vp.
Remark 1.3. The smoothing (1.18) is a Cartesian product of the smoothings W ., . of Wq for q € q°.

We can now state the main result of this paper; see also Corollaries 6.5 and 6.6 at the very end of the
paper for more details.

Theorem 1.4. Suppose that Assumptions 1.1 and 1.2 hold. If v := é and 8 := min{d,2m1,...,2my} are
such that

2
1—v’

(1.19) g >

then for € # 0 close to zero, C. admits a complete Calabi-Yau metric of maximal volume growth with tangent
cone at infinity (Co, gc, ). Furthermore, if N = 1, this result still holds if instead of (1.19), v and B are such
that

2
(1.20) B<fB < T < 2mi+ 5.
— VvV

When N =1, mg=1,n; =1 and £ = 1 with Q1,1(20,1) = 20,1, this theorem corresponds to most of the
examples obtained in [31, 18, 36], while most of the examples of [21] corresponds to the case N =1, my =1
and £ = 1 with Q1 ; homogeneous for each ¢ € {1,...,n1}. Allowing other values of these parameters yields
many new examples of Calabi-Yau metrics. Let us illustrate this with two classes of examples.

Example 1.5. Letting N =1, mg =1 and ny = 1 as in [31, 18, 36], we can obtain new examples of Calabi-Yau
metrics by taking £ # 1 or Q1,1 not homogeneous. For instance, we can take m; = 2 with

2 2 2 2
Pri(z10,212,2183) = 211 + 212+ 213 and  Qi1(z01) = =251 + 1,
so0 that C. C C* is the affine hypersurface given by
2 2 2 2
21 TR T2 g+ €Exp =€

In this case, we see from (1.3) that w; ; =2 for alli, sod =4,0=2,v = % and B = 4. In particular, (1.20)
holds, so Theorem 1.4 yields a Calabi- Yau metric on C. with tangent cone at infinity C x Ay with Ay the
Stenzel cone 23 | + 27 5 + 23 3 = 0. Notice that C. is also a smoothing of the Stenzel cone

(1.21) Atz +ais e, =0,

so as such, it also admits an asymptotically conical Calabi-Yau metric with tangent cone at infinity (1.21).
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Example 1.6. Taking N > 1, we can obtain Calabi- Yau metrics with tangent cone at infinity whose cross-

section has singularities of depth N. For instance, we can take mg = 1 with ny = --- = ny = 1 and
my=---=mpy = m with
(122) qu(ZQ):Z¢I;1++Z§,m+1 VQe{lavN}a

for some 2 < k < m. It is well-known in this case, see for instance [18, Example 2.1], that W, admits a
Calabi-Yau cone metric. From (1.3), we see that

B m
Waii = m+1—k

forq>0,s0d= mf{lk > k. Assuming k > 3, then d > 3 and to satisfy (1.19), it suffices to take £ < d — 2.

To satisfy Assumption 1.2, we can take for instance Qq,i(20) = 2o for each q.

(1.23)

Remark 1.7. When N = 1, it would have been possible in principle to take my > 1 in Theorem 1.4. One
interesting special case would be to take N =1, £ =1 and ny > 1 as in [21], but with ky =ny =my > 1 and
Q1,i(20) = 20, fori € {1,...,n1}, so that Ce corresponds to the smoothing

(124) Plyi(zl) = €20,; fOT RS {1,...,711}.

Since it is the graph of a holomorphic map from C™+™ to C™0 = C™, the smoothing C. is in particular
biholomorphic to C™ ™ Unfortunately however, the problem is that (1.18) of Assumption 1.2 is never
satisfied in this case, so we cannot actually apply Theorem 1.4 to obtain new examples of Calabi-Yau metrics.
Indeed, the singular locus S of the map F := (Py1,...,P1n,) is such that

dimcS>mi+n—(mi1+1)=n1—1>0

as a subvariety of C™ "1 Moreover, it contains the origin and is also clearly invariant under the RT -action.
Hence, taking s € S\ {0} close to the origin, then we can take wo = (P1,1(8), ..., P1n,(s)) in (1.18) to obtain
a singular variety. Since W1 is assumed to be smooth outside the origin, notice that wy # 0 automatically.

Remark 1.8. When ¢ = 0 and my = 0, the Calabi- Yau metrics of Theorem 1.4 are QAC-metrics. In fact, they
are more precisely a Cartesian product of asymptotically conical Calabi- Yau metrics (by [28, Theorem 6.6],
the class of QAC-metrics is closed under taking the Cartesian product), so this does not yield new examples
of Calabi-Yau metrics.

Since the Calabi-Yau metrics of Theorem 1.4 are obtained by solving a complex Monge-Ampere equation,
they are not given by an explicit formula. However, as in [18], we provide a detailed description of their
asymptotic behavior at infinity. In fact, the Calabi-Yau metrics of Theorem 1.4 are a higher depth version of
the warped QAC-metrics of [18]. Indeed, the local models at infinity are again a warped version of the local
model for QAC-metrics, namely a warped product of a cone metric dr? 4+ r?gp and a warped QAC-metric
of lower depth K,

(1.25) dr® +rgp + r*"K K,

with vg € {0,v}.

Compared to [18], a new feature of this higher depth version is that warped QAC-metrics are no longer
necessarily conformal to a QAC-metric. They are in general only conformal to a slightly different class of
metrics that we call weighted QAC-metrics. As for QAC-metrics, those come from a Lie structure at infinity
in the sense of [4], so admit a nice global coordinate free description. They are in particular automatically
complete of infinite volume with bounded geometry and the same holds true for warped QAC-metrics. There
is also a conformally related class of metrics that we call weighted Qb-metrics. They play a similar role to
Qb-metrics as in [13] by allowing to define the right weighted Holder spaces in which to solve the complex
Monge-Ampere equation. In terms of these Holder spaces, we can in fact as in [18] adapt the arguments of [20]
to derive nice mapping properties of the Laplacian of a warped QAC-metric; see in particular Corollary 3.23
below.

Remark 1.9. We have not explored it here, but instead of [20], one could try to develop a higher depth version
of the approach of [36] to obtain mapping properties of the Laplacian. The approach of [36] allows in principle
to consider weights for which the Laplacian is no longer an isomorphism, but is still surjective and Fredholm,
which would possibly allow condition (1.19) in Theorem 1.4 to be weakened.
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All these classes of metrics are defined in terms of a compactification by a manifold with corners, so to
define them on C., we need to introduce a suitable compactification C, of C.. As in [18], our starting point

is the radial compactification Ciy ™™ of C™*™" specified by the R*-action induced by the weights wq,;. Let

C. be the closure of C, in C ™. This closure has singularities on the boundary dC ™ of Ci™" that can
be resolved by blowing them up. However, this cannot be achieved with the usual notion of blow-up [25,
§ 2.2] of a p-submanifold in a manifold with corners. We need instead to consider a weighted version of it,
one special instance being the parabolic blow-up of Melrose [34, (7.4)]. Compared to the usual blow-up,
this weighted version is sensitive to the choice of a tubular neighborhood of the p-submanifold, but in our
setting, the p-submanifolds that need to be blown up in a weighted manner come with a natural choice of
such tubular neighborhood, ensuring that each weighted blow-up is well-defined.

Once the natural compactification 66 is given, each boundary hypersurface gives a model at infinity,
essentially (1.17) and (1.18). Proceeding inductively on the depth of C, and using a convexity argument of
[40, Lemma 4.3], we can first construct Kéhler examples of warped QAC-metrics on C.. To obtain Calabi-
Yau examples, we need to solve a complex Monge-Ampere equation. As in [13], proceeding by induction on
the depth of 66, we can first solve the complex Monge-Ampere equation on each model at infinity. Using the
fixed point argument of [36, Proposition 25], we can then solve the complex Monge-Ampere equation outside
a large compact set. From that point, we can then completely solve the complex Monge-Ampére equation
using standard techniques.

The paper is organized as follows. in § 2, we introduce the notion of warped QAC-metrics, derive their
main properties and introduce the weighted Holder spaces that we will need. In § 3, following [20], we derive
the mapping properties of the Laplacian of a warped QAC-metric that we will need. In § 4, we describe the
notion of weighted blow-up for manifolds with corners and derive some of its features. In § 5, we introduce
the compactification 65 and construct examples of Kéhler warped QAC-metrics on C.. Finally, in § 6, we
solve a complex Monge-Ampere equation to obtain Theorem 1.4.

Acknowledgements. The first author is supported by NSF grant DMS-1906466 and the second author is
supported by NSERC and FRQNT.

2. WARPED QUASI-ASYMPTOTICALLY CONICAL METRICS

Since it will be a central tool in this paper, let us first recall the notion of manifold with fibered corners.
Thus, let M be a manifold with corners. Unless otherwise stated, we will usually assume that M is compact.
Denote by My (M) the set of boundary hypersurfaces of M, that is, the set of corners of codimension 1. As
in [33], we will assume that its boundary hypersurfaces are all embedded. We denote by M the union of
all the boundary hypersurfaces of M. Suppose that each boundary hypersurface H of M is endowed with a
fiber bundle ¢ : H — Sp with base Sy and fibers also manifolds with corners. Denote by ¢ the collection
of these fiber bundles.

Definition 2.1 ([3, 2, 19]). We say that (M, ¢) is a manifold with fibered corners or that ¢ is an iterated
fibration structure for M if there is a partial order on My (M) such that

o Any subset T C My (M) such that ﬂ H # () is totally ordered;

HeTl
o If H <G, then HNG # 0, the map ¢ulunc : H NG — Sy is a surjective submersion, Sgg :=

oc(H NG) is one of the boundary hypersurfaces of S and there is a surjective submersion ¢pam :
Sar — Sy such that ¢gg o ¢ = ¢y on HNG;
e The boundary hypersurfaces of S are given by Sgu for H < G.

One can check directly from the definition that the base Sy and the fibers of ¢ : H — Sy are also
naturally manifolds with fibered corners. If H is minimal with respect to the partial order, then Sy is in
fact a closed manifold. Conversely, if H is maximal with respect to the partial order, then the fibers of
¢n : H — Sy are closed manifolds. In various settings, this allows us to prove assertions by proceeding by
induction on the depth of (M, ¢), which is the largest codimension of a corner of M. Manifolds with fibered
corners are intimately related with stratified spaces.

Definition 2.2. A stratified space of dimension n is a locally separable metrizable space X together with a
stratification, which is a locally finite partition S = {s;} into locally closed subsets of X, called the strata,
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which are smooth manifolds of dimension dim s; < n such that at least one is of dimension n and
5;N5;#0 = s C5j.
In this case, we write s; < s; and s; < s; if s; # s;. A stratification induces a filtration
lcXgCc---CX,=2X,

where X; is the union of all strata of dimension at most j. The strata included in X \ X,,_1 are said to be
regular, while those included in X, _1 are said to be singular.

Given a stratified space, notice that the closure of each of its strata is also naturally a stratified space.
The depth of a stratified space is the largest integer £ such that one can find k£ + 1 different strata with

S < o < Sg41-

As described in [3, 2, 19], a manifold with fibered corners (M, ¢) arises as a resolution of the stratified space
given by *M := M/ ~, where ~ is the equivalence relation

p~q <= p=gq or p,q€ H with ¢g(p) = du(q) for some H € M1(M).

If 3: M — M denotes the quotient map, which can be thought of as a blow-down map, then 3(M \ M)
yields the regular strata. In fact, the map [ gives a one-to-one correspondence between the boundary
hypersurfaces of M and the singular strata of “M, namely H € M;j(M) corresponds to the stratum sz
whose closure is given by sy := S(H). In this correspondence, the base Sy of the fiber bundle ¢y is itself
a resolution of 5 and sy = B(¢y (Sgr \ dSH)). Moreover, the depth of (M, $) as a manifold with fibered
corners is the same as the depth of “M and the partial order on M;(M) matches the one on the strata of
SM. A stratified space admitting a resolution by a manifold with fibered corners is said to be smoothly
stratified. Not all stratified spaces are smoothly stratified, but as discussed in [2, 19], the property of being
smoothly stratified can be described intrinsically on a stratified space without referring to a manifold with
fibered corners.

Recall from [33] that a boundary defining function for H € M;(M) is a function gy € C*(M) such
that 2 > 0, H = 2;(0) and dzy is nowhere zero on H. Following [13, Definition 1.9], we will say that a
boundary defining function xy of H is compatible with the iterated fibration structure if for each G > H,
the restriction of zx to G is constant along the fibers of ¢¢ : G — Sg. By [19, Lemma 1.4], compatible
boundary defining functions always exist. If p € OM is contained in the interior of a corner Hy N --- N Hy
of codimension k, then without loss of generality, we can assume that H; < ... < Hj. If x; is a choice
of compatible boundary defining function for H;, then by [13, Lemma 1.10], in a neighborhood of p where
each fiber bundle ¢y, : H; — H; is trivial, we can consider tuples of functions y; = (y},.. ,yf) and
z=(z1,...,2q) such that

(21) (xluyla"'uxlmykuz)
provides coordinates near p with the property that on H;, (z1,y1,...,2i—1,%i—1,¥;) induces coordinates on

the base Sy, with ¢g, corresponding to the map

($17y17- oy Ty Yiy e 'VTkuykuz) — (xluylu' o 7xi—17yi—17yi)7

w=~»

where the notation above a variable denotes its omission.

To describe the type of metrics we want to consider on a manifold with fibered corners (M, ¢), let Apng (M)
denote the space of bounded continuous functions on M that are smooth on M \ OM and polyhomogeneous
on M for some index family. We refer to [33] for more details on polyhomogeneous functions on a manifold
with corners.

Definition 2.3. A weight function for (M, ¢) is a function

n: Mi(M) — {0,v}
H — 144

for some v € [0,1) such that for all G,H € My (M),

(22) H<G — vg<ug.
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For choices of compatible boundary defining functions xg € C>°(M) for each H € M1(M), the corresponding
n-weighted distance is the function

_a
p = H Ty H € Apng(M).

HeM:1(M)

1

Alternatively, we say that p~+ is a n-weighted total boundary defining function.

A choice of n-weighted total boundary defining function specifies a Lie algebra of vector fields as follows.

Definition 2.4. Let p~! be an n-weighted total boundary defining function for (M,¢). For such a choice,
a n-weighted quasi-fibered boundary vector field (n QFB-vector fields for short) is a b-vector field
€€ C®(M;*TM) such that

(1) &|u is tangent to the fibers of ¢ : H — Sy for each H € My (M);

(2) Ep~t € vp L Apng(M), where v = HHeMl(M) xyg 18 a total boundary defining function.

We denote by Vaqra(M) the space of all n QFB-vector fields.

Remark 2.5. When n is the trivial weight function given by n(H) = 0 for all H € M1(M), Vaqre(M) =
Vaqre(M) corresponds to the Lie algebra of QFB-vector fields of [13].

The first condition in Definition 2.4 is clearly closed under taking the Lie bracket, while for the second
one, it is closed thanks to the fact that for any b-vector field &, v € vC°°(M). Thus, n QFB-vector fields
indeed form a Lie subalgebra of the Lie algebra of b-vector fields.

The first condition means that £ is an edge vector field in the sense of [32, 2, 1]. We denote by V. (M) the
Lie algebra of edge vector fields. In the local coordinates (2.1), it is locally generated over C* (M) by

0 0 0 0 0

( ) vlaxlavlaylv 7vk9xk;vk9yk;9 )
where v; = | |§ Z—(Ej and where _97/1' and 92 stand fOI'
- — and — e specti ely
e 1 N respectiv .
9y115 ’ 9yfl 6217 ’ 9 q p

Taking into account the second condition in Definition 2.4, n QFB-vector fields are locally generated over
C>®(M) by

0 0 0 0 0
(24) ’Ul(Ela—Il,’Ula—yl,’Ug ((1 — VQ)(EQa—IQ — (1 — Ul)l’la—'rl) ,’Uga—yQ, ey

0 0 g 0
Vk ((1 - Vk)fka—xk - (1 - Vk—l)ﬂﬁk—lax—kl) ,Uka—yka &7

where v; := vg,. Indeed, the natural modification Uixi% of the edge vector fields ‘normal’ to the boundary
hypersurfaces satisfy the second condition, but the difference (1 — Vi)xi% —(1- Vj):vj% even annihilates
i J

p~ !, while multiplied by Umin(i,j)+1 Makes it an edge vector field, so that (2.4) provides a generating set.

In a similar way that the Lie algebra of QFB-vector fields depends on a choice of total boundary defining
function [29, Lemma 1.1], the Lie algebra of n QFB-vector fields depends on a choice of n-weight total
boundary defining function p~!. Two such functions will be said to be n QFB-equivalent if they yield the
same Lie algebra of vector fields. The following generalization of [29, Lemma 1.1] gives a simple criterion for

two n-weighted total boundary defining functions to be n QFB-equivalent.

Lemma 2.6. Two n-weighted total boundary defining functions p=* and (p') =% are n QFB-equivalent provided

the function
/

f:=log <%) € Apng(M)

is such that near each boundary hypersurface H € M1(M), f = ¢35 fu + O(xw) for some fu € Apng(SH).
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Proof. Clearly, p~1 and (p')~! are n QFB-equivalent if and only if for all £ € V. (M),

dp dp'

(2.5) p—v(g) € Apng(M) = o € Aphg (M),
where v = HHeMl(M) xp is a total boundary defining function for M. Now, since p’ = e/p,

dp/ 1 /d
(2.6) L (—p + df) .

pv v\ p
In particular, if near each H € My(M), f = ¢5;fu + O(xm) for some fu € Apng(M), then (2.5) holds for
each & € V.(M). O

By the local description (2.4), we see that Vy,qrp(M) is a locally free sheaf of rank m = dim M over
C*>°(M). Thus, by the Serre-Swan theorem, there is a natural smooth vector bundle, the n-weighted QFB-
tangent bundle (n QFB-tangent bundle for short), denoted "T'M, and a natural bundle map ¢, : "T'M — T M,
restricting to an isomorphism on M \ M, such that

(2.7) Vaqrs(M) = (13).C%(M; "TM).

In fact, at p € M, the fiber of "I'M above p is given by "T,M = Vyqre(M)/Z, - Vaqre(M), where Z, is
the ideal of smooth functions vanishing at p. The vector bundle dual to "T'M, denoted "1T* M, will be called
the n-weighted QFB-cotangent bundle (n QFB-cotangent bundle for short). We see from (2.4) that in the
coordinates (2.1), the n QFB-cotangent bundle is locally spanned over C*°(M) by

B dut dutt B dul dut? B dul dyfk
(28) P1 ndpla ﬂv" '7i7p2"dp27ﬁ,. "7ﬂ7" '7pkndpka ﬂa' "7—kvd'zlv" .,qu,
V1 U1 () V2 Vk Uk

1 Yi
k ko TTowg - ko Ty
where v; = [[;_; 25, pi = [[;=; 7; " and pi " =11= le 7 with v; := n(H;).
The natural map ¢, : "T'M — TM gives "I'M the structure of a Lie algebroid and indicates that
(M, Vaqre(M)) is a Lie structure at infinity for M \ OM in the sense of [4, Definition 3.1]. As such, it comes

with the following natural class of metrics.

Definition 2.7. A n-weighted quasi-fibered boundary metric (n QFB-metric for short) is a choice of
FEuclidean metric gy qrs for the vector bundle "T'M. A smooth n QFB-metric is a Riemannian metric on
M\ OM induced by some n QFB-metric goqrp via the map ty : "T'M — TM. Trusting this will lead to no
confusion, we will also denote by gn qrn the smooth n QFB-metric induced by gn qrs € C°(M;"TM"TM).

In terms of a choice of n QFB-metric, notice that the Lie algebra of n QFB-vector fields can alternatively
be defined by

(2.9) Vaqre(M) ={£ € C*(M;TM) | sup gnqrs(,§) < oo}
M\OM

Since n QFB-metrics are induced by a Lie structure at infinity, they come with the following geometric
properties.

Lemma 2.8. Any smooth n QFB-metric is complete of infinite volume with bounded geometry.

Proof. Since these metrics come from the Lie structure at infinity (M, Vaqre(M)) in the sense of [4, Defini-
tion 3.3], the result follows from [4] and [9]. O

As in [13], we will be mostly interested in the case where the manifold with fibered corners (M, ¢) is such
that for each maximal hypersurface H, Sy = H and ¢y : H — Spg is the identity map. We say in this
case that (M, ¢) is a QAC-manifold with fibered corners and that an n-weighted quasi-fibered boundary
metric is a n-weighted quasi-asymptotically conical metric (n QAC-metric for short). More generally, we
will replace QFB by QAC and quasi-fibered boundary by quasi-asymptotically conical whenever (M, ¢) is
a QAC-manifold with fibered corners. In fact, from now on, unless otherwise specified, we will assume
that (M, ¢) is a QAC-manifold with fibered corners. Now, on such a manifold, the class of metrics we are
interested in is not quite n QAC-metrics, but a conformally related one.
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Definition 2.9. Let (M, ¢) be a QAC-manifold with fibered corners together with some Lie algebra of n QAC-
vector fields associated to some weight function n and some n-weighted total boundary defining function

;f1 = H xﬁ
HeM, (M)
In such a setting, a smooth n-warped QAC-metric is a Riemannian metric g,, on (M \ OM) of the form
(2.10) Gw = P*"gn QAC
for some smooth n QAC-metric gnqac, where

YH
Pt = H x TvH,

HeMy (M)

Example 2.10. In the local basis (2.8), an example of n-warped QAC-metric is given by

k l; 7\2 q
g =Y 0" | pi o} + ) d(gé) +p™ Y d()?,
i=1 Jj=i ¢ Jj=1
where p?" = (p?)? = Hf:l :vjlfuj .

In fact, n-warped QAC-metrics have a nice iterative structure as illustrated by the next example.

Example 2.11. Near H € My(M) and a local trivialization of ¢ : H — Sy over U C Sy, but away from G
for G < H, a local model of an n-warped QAC-metric is given by

(2.11) dpt; + Plrgu + pry™ K,

_ 1
where py = [[gspy a:Gl*"G , Qu 18 a smooth metric in U and kg is an ngz, -warped QAC-metric on the fiber
Zy = (;5;11(3) for some s € U with weight function nz,, given by

Vg —VH

nZH(ZHﬁG) = 1 —vn

for G > H.

With respect to a fized point on Zg, the ng, -weighted distance function of kg in (2.11) is given by
1
T Iz (@)
PZy = H T T
G>H

In particular, in the model (2.11), to be close to H means that g < ¢ for some small constant ¢ > 0, which
in terms of the functions pu and pz, corresponds to the inequality

(2.12) pzy < cpp V.

Remark 2.12. The definition of n QAC-metrics and n-warped QAC-metrics would still make sense for a
weight function n: My (M) — [0,1) satisfying (2.2), but we need to restrict the values of n to {0,v} to have
a nice iterative structure as in Example 2.11.

We can formally define the n-warped QAC-tangent bundle by
(2.13) YTM = (p~™)("T'M) with space of sections C>(M;“TM) :=p "C>®(M;"TM)

and denote by “T*M its dual, so that smooth n-warped QAC-metrics correspond to an element of
C®(M;S*(WT*M)).

As in [13] and [18], it will be useful to introduce yet another class of metrics to describe the weighted
Holder spaces that we will use.
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Definition 2.13. Let (M, ¢) be a QAC-manifold with fibered corners and let Tmax be a product of boundary
defining functions associated to all the mazximal boundary hypersurfaces of M. Let n be a weight function
and let p be an n-weighted distance. In such a setting, a smooth n-weighted quasi b-metric (n Qb-metric
for short) on M is a Riemannian metric gnqn of the form

gn Qb = Ir2naxgn QAC

for some smooth n-weighted QAC-metric gnqQac-

Remark 2.14. When n is the trivial weight function given by w(H) = 0 for all H € M;1(M), a nQb-metric
corresponds to a Qb-metric in the sense of [13].

As for n QAC-metrics, n Qb-metrics can be defined in terms of a Lie structure at infinity. To see this,
consider the space

(2.14) Vagp(M) :={{ € C*(M;TM) | sup gnqn(§,§) < oo}
M\OM

of smooth vector fields on M uniformly bounded with respect to some choice of n Qb-metric g, qp. From
Definition 2.4, Definition 2.13 and (2.9), the space (2.14) can alternatively be defined as the space of b-vector
fields £ on M such that

(1) &g is tangent to the fibers of ¢y : H — Sy for all H € M;(M) not maximal with respect to the
partial order;
—1
(2) &' € e ().

As for n QAC-vector fields, one can check that these two conditions are closed under taking the Lie bracket,
so that Vnqu(M) is a Lie subalgebra of the Lie algebra of b-vector fields. By (2.14) and (2.4), n Qb-vector
fields are locally generated over C*°(M) by (2.4) when Hj, is not maximal and by

vizr 0 vy 0 w2 13} 0 ve O
2.15 2 I e — (1 — ) — ), 2
(2.15) T 011 K OY1 Tk <( v2)T2 0z (1=w)a 8171) Txp Oy

0 0 0
((1 — Uk)xk(?—a:k — (1 = vg—1)x)—1 3Ik1> and 3—yk

otherwise. Thus, Vaqb(M) is a locally free sheaf of rank m over C*°(M). By the Serre-Swan theorem, there
is a corresponding vector bundle " QPTM = 2-2 "T'M and a map ¢, Qb : QTN — TM such that

Vaaqb (M) = (ta qp)«C (M; LT M).

In other words, the map tnqp gives "QPTM the structure of a Lie algebroid over M and (M, Vyqn(M)) is
a Lie structure at infinity for M \ OM. In particular, by [4] and [9], smooth n Qb-metrics have the following
geometric properties.

Lemma 2.15. Any smooth n Qb-metric is automatically complete of infinite volume with bounded geometry.

We will need various function spaces associated to these metrics. First, recall that if (X, g) is a Riemannian
manifold and £ — X is a Euclidean vector bundle over X together with a connection V compatible with the
Euclidean structure, we can for each ¢ € Ny associate the space C*(X; E) of continuous sections 0 : X — F
such that

Ve e COX;T)X ® E) and su§|Vja|g <oo Vjedo,..., ¢},
pe
where V denotes as well the connection induced by the Levi-Civita connection of g and the connection on
E, while | - |4 is the norm induced by g and the Euclidean structure on E. This is a Banach space with norm

llo]

£
L= sup |V/o .
g Z €§| ()l

j=0"
The intersection of these spaces yields the Fréchet space

Cr(X;E):= () Co(X; E).

£eNg
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For £ € Ny and « € (0, 1], there is also the Holder space Cg’o‘(X; E) consisting of sections o € C*(X; E) such

that
o [IBY 00 = Vot | o
Voly = sup { . 7€ C*(01X), 2(0) £ (D)} < o

where £(7) is the length of v with respect to g and Py : TP X @ El,o) = T)X ® E|,(1) is parallel transport
along 7. Again, this is a Banach space with norm given by

‘
lollg.ea = llollge+ [Violga-
For p € C*°(X) a positive function, there are corresponding weighted versions
o

1
When X = M\ OM and g = gnqp is a n Qb-metric, we obtain the n Qb-Holder space Cﬁ’gb(M \OM; E),
as well as the space Cﬁ Qb(M \ OM; E). Similarly, if g = g,, is an n-warped QAC-metric, we can define the

n-warped QAC-Hélder space C5%(M \ OM; E). Since a n Qb-metric is conformally related to an n-warped
QAC-metric via

« o @ i
pCy (X5 E) = {U | e Cy (X?E)} with norm{lo] ¢ =

9.4,

Juw = gn% with x := xm—fx > 0 bounded,
X P
there is an obvious continuous inclusion
(2.16) Cyon(M\ M;E) C C4*(M \ OM; E).

Conversely, there is the following partial counterpart.

Lemma 2.16. For 0 < § < 1, there is a continuous inclusion x°C%Y (M \ OM; E) C Cg’gb(M \ OM; E) for
a <96.

Proof. Since x is a product of powers of boundary defining functions, its logarithmic differential is automat-
ically a b-differential in the sense of [34], so

d

€ Apg(M: T M) € A (M " T M) € Cigy (M \ OM; " T M),
Using this observation, we can run the same argument as in the proof of [18, Lemma 3.9] to obtain the result,

the starting point of this proof being a similar observation, namely [18, (3.38)].
O

We can also consider the Sobolev space HY qv(M \ OM) associated to a n Qb-metric. For an n-warped
QAC-metric, instead of the natural Sobolev space associated to such a metric, we will consider the weighted
version of the n Qb-Sobolev space

dim M

(2.17) Hy, (M \ OM) := x5 Hy g (M \ OM)),

where the factor Xdi”ﬁM ensures that we integrate with respect to the volume density of an n-warped QAC-

metric, but with pointwise norms of the derivatives measured with respect to a n Qb-metric instead of an
n-warped QAC-metric.

So far, we have only considered smooth n Qb-metrics and n-warped QAC-metrics, that is, metrics corre-
sponding to elements of C*°(M; S2("QPT*M)) and C>(M; S2(*T*M)), but to look for Calabi-Yau examples,
it will be important to be less restrictive on the regularity of these metrics at the boundary. More precisely, we
will look at n Qb-metrics corresponding to sections of Co4y, (M \ OM; S2("QPT* M) (quasi-isometric to some
fixed smooth n Qb-metric). For n-warped QAC-metrics, we could look at those corresponding to sections of
Co(M\OM; S*(WT*M)) (quasi-isometric to some smooth n-warped QAC metrics), but keeping in mind the
continuous inclusion (2.16), we will in fact be stricter and consider n-warped QAC-metrics corresponding to
sections of Cgy, (M \ OM; S*(“T*M)), that is, g, € Co? (M \ OM; S*(WT*M)) of the form
_ 9nQb

%
for some n Qb-metric gnqn € C&, (M \ OM; S3(" QbT*M)). We will say that such an n-warped QAC-metric

is n Qb-smooth. Clearly, Lemma 2.15 still holds for n Qb-metrics in 3%, (M \ OM; S2(rQbT* M), since by

Jw
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assumption we control the curvature and its derivatives. For n-warped QAC-metrics, we also have such a
result.

Proposition 2.17. Any n-warped QAC-metric g, € C3%;, (M \ OM; S2(WT*M)) is complete of infinite volume
with bounded geometry.

Proof. By assumption,
_
%

for some n Qb-metric gnqn € C&;, (M \ OM; S?("*PT*M)). By Lemma 2.15 and the comment above, we
know that g.qp is complete of infinite volume with bounded geometry. On the other hand, x is a bounded
positive function, so g, is automatically complete of infinite volume. By the continuous inclusion (2.16)
and [7, Theorem 1.159], we see that the curvature of g,, is bounded, as well as its covariant derivatives.
To see that it is of bounded geometry, it suffices then to show that the injectivity radius is positive, which
follows from the facts that g, qn has positive injectivity radius and that x is a bounded positive function on
M\ OM. O

Jw

3. MAPPING PROPERTIES OF THE LAPLACIAN

The mapping properties of the Laplacian of a QAC-metric obtained in [20] have a natural analogue for
warped QAC-metrics. Indeed, such results were already obtained for some specific examples of warped QAC-
metrics of depth one in [18]; see also [31, 36, 21] for different approaches. In this section, we will combine the
arguments [20] and [18] to obtain mapping properties of the Laplacian for warped QAC-metrics of arbitrary
depth. It would presumably be possible to obtain such mapping properties using barrier functions as in [27],
though probably only ensuring invertibility of the Laplacian for a smaller range of weights. Thus, let

n: Mi(M)— {0,v}
be a weight function for some v € [0,1). The set of boundary hypersurfaces of M therefore decomposes as

Mi(M) = My o(M)UMy,

with My (M) =n~1(a). This is a disjoint union if v > 0, and otherwise My (M) = M o(M) = My, (M).

For the convenience of the reader, let us first recall the general strategy of [20]. If g is a complete
Riemannian metric on a manifold Z and h is a positive smooth function on it, then we can introduce a
measure dy = h?dg using the volume density dg of g. The triple (Z,g,u) is then a complete weighted
Riemannian manifold in the sense of [24]. On such manifolds, the Riemannian metric g induces a distance
function d(p, q) between two points p,q € Z. We will denote by

B(p,r):={qe Z|d(p,q) <r}

the geodesic ball of radius r centered at p € Z. To measure the volume of such balls, we use however the
measure 4, not the volume density of g. Similarly, the natural L?-inner product of two functions is the one
induced by the measure u, namely

(3.1) (u,v), ::/Zuvdu.

If V is the Levi-Civita connection of g, we will be interested int studying the mapping properties of the
corresponding Laplacian A = divoV of g. More generally, for R a function, we will consider the operator
L:=—-A+7R, as well as its Doob transform with respect to h,

(3.2) L:=h'oLoh=-A,+V+TR,
where V := % and —A, = V**V with V*# the adjoint of V with respect to the L?-inner product (3.1)

and the L?-inner product on forms given by

(3.3) (M, m2)p = /Z(nl,ng)g(z)du(z)-

Denote by H.(t, z,2") and H_a4v(t, z,2") the heat kernels of £ and —A + V with respect to the volume
density g and let

(3.4) Gg(z,z/):/ He(t,z,2')dt  and G,AJFV(Z,ZI):/ H avv(t,z, 2)dt
0 0
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be the corresponding Green’s functions. Similarly, let H_a (¢, 2,2’) be the heat kernel of —A, with respect
to the measure p with corresponding Green’s function

G_a,(z, 2') / H_ A, (t, 2,2 "dt.
By a result of [20], those heat kernels and Green functions are related as follows.
Lemma 3.1 (Theorem 3.12 in [20]). If R >V, then
|He(t,2,2")| < Hoaqv (L, 2,2") < h(z)h(2")H_a, (t, 2, 2")
and

|G(2,2")| < G_aqv(z,2") < h(2)h(2)G_A,.

Thus, to obtain control on H(t, z,2") and G, (z,2"), it suffices to obtain control on H_A,. This can be
achieved by the method of Grigor’yan and Saloff-Coste invoking the following notions.
Definition 3.2. The complete weighted Riemannian manifold (Z, g, ) satisfies
(VD), the weighted volume doubling property if there exists Cp > 0 such that
u(B(p,2r)) < Cou(B(p,r)) Vp€ Z, Vr>0;

(PI),s the uniform weighted Poincaré inequality with parameter 6 € (0,1] if there exists a constant
Cp > 0 such that

[u-Trawscm® [ ks vrewiA2). e z v
B(p,r) B(p,6~1r) ’

(PI), the uniform weighted Poincaré inequality if we can take 6 =1 in the previous statement.
In terms of these conditions, one of the main results of [24] is the following.

Theorem 3.3 (Theorem 2.7 in [24]). Let (Z,g,u) be a complete weighted Riemannian manifold satisfying
(VD) and (PI),. Then there are positive constants C' and ¢ such that

1 d(z,2)?
t

(B, VD), w(B! VD)) e O < B, (1,2, 7') < Cu(B(= V), w(B( VD)~ He
for all (t,z,2") € (0,00) X Z X Z.
By Lemma 3.1, this yields the following.
Corollary 3.4. If the complete weighted Riemannian manifold (Z, g, i) satisfies (V D), and (PI),,, then there
are positive constants ¢ and C such that
2,212 H_ t / 2,2")2
B VD). B, VD)€ < SR < OB, VB, B!, )b
for all (t,z,2") € (0,00) X Z X Z.

We want to apply this result when Z = (M \ OM) is the interior of a manifold with fibered corners M of
dimension m and g is a warped QAC-metric with weight n for some choice of v € [0, 1). The type of measure
1 we will consider will be one of the form

(3.5) dpa =2°dg with 2= [ a3
HeM(M)

for some
a: Ml(M) - R
H = ag.
It will be convenient to distinguish between maximal and non-maximal boundary hypersurfaces. To this
end, we will use the notation

Mupax (M) :={H € My(M) | H is maximal} and My, (M) := M1(M)\ Mpax(M).
We will denote by
v i= H TH

HeMy (M)
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a total boundary defining function for M. The distance function of g with respect to a fixed point 0 € M \OM
is comparable to

(3.6) p= [ « .

HeM; (M)
Near H, but away from G for G < H, the distance function with respect to a fixed point is also comparable
1
to pr = [losp ¢ 776G Tt will be convenient also to have the following weighted version of the function vy,
namely
(11— HG>H ra, VH = V]
(3.7) = p =0 T
HGEH‘TG ¢, vg =0,
as well as the function
_1
(38) g = HHGMLV(M) ‘/I’.H17U7 V> 07
1, v =0,

such that o” = p".
We will also denote by
myg =dim M —dim Sy — 1
the dimension of the fibers of ¢ : H — Sy and by by = dim Sy the dimension of the base.
To apply the previous result to this setting, we will need to check that (V D), and (PI), hold for suitable
choices of weight a : M (M) — R. To that end, recall the following notation used in [20].

Definition 3.5. Fiz once and for all a basepoint o € M\ OM. A ball of radius R at o is called anchored and
we denote its volume by

A(Ra a) = /La(B(Ov R))
Fiz c € (0,1). With respect to this choice, a ball B(p,r) is said to be remote if r < cd(o,p), in which case
we use the notation

R(p,r;a) := pa(B(p,7)).
If B(p,r) is any ball, possibly neither anchored nor remote, we use the notation

V(p,r;a) = pa(B(p, 7))

Following the strategy of [20], we will derive an estimate of the volume of anchored balls in terms of the
volume of remote balls. We start with the following estimate.

Proposition 3.6. Provided (1 — vy )(ag + mpy) # m for all H € My(M) and (1 — vy)(ag + mu) #
(1 —-vg)(ag + mg) for all G, H € M1(M) with G < H, we have that for R > 1,
(3.9) A(R;a) <1+ R™ Z R(VH_l)(aH'f‘mH),
HeM (M)

where the notation f1 < fo means that there exists positive constants ¢ and C such that cfo < f1 < Cfs. In
particular, in the QAC setting, that is, when v = 0, this gives
(3.10) A(R;a) <1+ R™ > RTomm

HeM(M)

Proof. When M is of depth 1, we are in the AC-setting with v =< p”~!, so we have
A(R;a) < 1+ Z RmH@—1)(am+mm)
HEM1(M)

by taking into account the contribution of each asymptotically conical end and taking into account that
my = 0 in this case. We can therefore proceed by induction on the depth of M to obtain the result. More
precisely, in an open set )V where the local model (2.11) is valid, we need to show that

MG(B(Oa R) N V) =1+ R™ Z R(VG—l)(ac-i-mc)'
G>H
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Now, using that p < pg in this region, we see that

R
pa(Blo, R)NV) <1 +/ plvi =R pbir primi A(pl=vit G dp,
1

where a : {G € M1(M) |G > H} — R given by

a —
ag—ﬁ, I/H—O.

(3.11) a(G) = o ::{ ac —am,  VH =V,

On the fibers of ¢y : H — Su, recall that the model metrics are actually QAC-metrics (even if g is a
warped QAC-metric with factor v > 0) when vy = v. Thus assuming by induction on the depth that (3.10)
holds for these metrics, we compute that when vy = v,

R
pa(B(o, R) NV) X1+/1 pl= e bt grmi A(pl=v: G@)dp

R
Xl—l—/ p(vfl)aHerHJrva <1+p(1v)mH Z p(lv)((aGaH)mG)> dp
1 G>H

x1_i_fi(llfl)quLbH+1+1/7nH <1+R(1u)mH Z R(lu)((agaH)mg)>
G>H

=14+ R™ Z R—D(ag+ma)
G>H

=14+ R™ Z RWwe—1(ag+ma)
G>H

If instead vy = 0, then

R
pa(Blo,R)yNYV) <1 —i—/ P A(p; @)dp
1

aH

"o +b m (ve—1(ag—1=55 +ma)
xl—i—/ pg 1+pHHZpH ¢ dpy
1 G>H

X1+R_aH+bH+l <1+RmH Z R(Uc—l)(ac+mc)+aH>
G>H

Xl-i—Rm Z Ruc—l(ac-i-mc)
G>H

In both computations, the conditions on the weights ay and ag have been used to ensure there are no
logarithmic terms when we integrate in p.
O

Remark 3.7. When we drop the condition that (1 — vg)(ag + my) # m for oll H € My(M) and (1 —
vi)(ag + my) # (1 —ve)(ag + mea) for all G,H € M1(M) with G < H, a similar result holds, but with
some powers of R multiplied by some positive integer power of (log R).

Corollary 3.8. Suppose that a is such that ag = amax for all H € Mpax(M), that amax < 7 and that
(1 —v)amax < (1 —vg)(ag +myg) for all H € Muyn(M). In this case,

A(R;a) < R v=Damax for R > 1.

For remote balls, we have the following preliminary estimate.
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Proposition 3.9. Suppose that ag = amax for all H € Mpax(M). Fizp € M\ OM and suppose that we have
chosen a remote parameter ¢ € (0,1) so that in fact c € (0, 1). If zc(p) = 1—3c for all G € Muym(M), then
for € (0,cp(p)),

(3.12) R(p,r;a) = p(p)v—Hamaxpm,

If instead x g (p) < 1 — 3¢ for some H € Mum(M) and zc(p) > 1 — 3¢ for G < H, then
r

3.13 R(p,r5a) < p(p) - Damtvamupbutly @y, —.q),

(3.13) (p,750) < p(p) (Pzu O )

where pz,, is the projection of p onto the factor Zy in the decomposition (2.11) and @ is given by (3.11).

Proof. First, notice that p(z) < p(p) for z € B(p,cp(p)). If xg(p) > 1 —3c for all G € My, (M), we are in a
region where the metric behaves like an AC-metric with 2y < p*~! for H € Mpax (M), so the result follows
by a simple rescaling argument as in [20, Proposition 4.3]. If instead z g (p) < 1 —3c for some H € My (M),
but z¢(p) > 1 — 3¢ for G < H, then B(p,r) C Vg with

Ve ={pe M\OM |zg(p) <1-c}.

Indeed, if we set ro := p"H pz,, = pxy, then using the triangle inequality in terms of the model metric (2.11),
we see that if ¢ € B(p, ), then

(3.14) p(q) > p(p) —d(p,q) > p(p) —r > p(p) — cp(p) = (1 —c)p(p)
and
(3.15) r2(q) < r2(p) + d(p,q) < ra(p) + cp(p),
so that
_ra(g) _ r2(p) +eplp) _ (1 =3c)p(p) +cp(p) _1—-2¢ . ¢ .
=y S M=) (-0 d-e T T-e<!TC

Similarly, for G < H, setting instead ro = p"%pz, = prqg, we have the inequalities

p(q) < p(p) +d(p,q) < (1+c)p(p)

and

r2(q) 2 r2(p) — d(p, q) 2 r2(p) — cp(p)
that we can use to show that xg(q) > 1—5¢ > 0 for ¢ € B(p,r). So we can use the model metric (2.11) with
ku a warped QAC-metric on the fiber Zy of ¢y : H — Sy to estimate p,(B(p,r)) with r € (0,cp(p)). If p
corresponds to the point (p1,p2) € (RT x Sy) x Zy, let Bi(p1,r) be the geodesic ball in Cy = RT x Sy and
Bs(p2,7) denote the geodesic ball on (Zp, gz, ). Since p < p(p) on B(p,r), notice that the weighted volume
of B(p,r) is comparable to that of the product of balls
r

Bi(p1,7r) X Ba(p2, ———).
Henr) > Balpa. o)
Now, we compute that
Ma(Bl(plﬂ“) % Bz(pg, LUH)) :/ </ xadliH> p(VHfl)aHJrVHdegCH

P(p) By (pr) \J Ba(pa. o)
- (vau—1)aug+vamp br+1 roo.=
= p\p T V D2, —F—=,-:a
®) P2 Sy @

as claimed, where gc,, = dp? + p*gs,, is the natural cone metric on the cone Cyy = R* x Sp.

On the other hand, for the volume of non-remote balls, we have the following estimate.

Proposition 3.10. Suppose that apg = amax for all H € Muyax (M), that amax < 72 and that (1 — v)amax <
(1 —vg)(ag +mpg) for all HE€ Muym(M). If c € (0,1) is a remote parameter, then for p € M \ OM,

(316) V(p, T, a) = ,r,m"‘(l/—l)llmax
forr > cp(p).
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Proof. We can proceed by induction on the depth of M using the previous proposition. If C' > 2 is a fixed
constant, then for r > Cp(p),

{g|p(q) <(1—C "} C Blp,r) C{q|plq) <(C™'+1)r},
so for such r,
V(p7 L) CL) = A(T; a) = ’["m+(u_l)amax

by Corollary 3.8. If instead cp(p) < r < Cp(p), then
R(p,cp(p);a) < V(p,r;a) < A((1+ C)p(p); a).

By Corollary 3.8, the right hand side behaves like r™+(#~1amax  For the left hand side, notice that since
r = p(p), it behaves like r™*(»~1amax by Proposition 3.9. Indeed, if z¢(p) > 1 — 3¢ for all G € My (M),
this follows from (3.12). If instead x g (p) < 1 — 3¢ for some H € My, (M) and zg(p) > 1—3cforall G < H,
then in the notation of the proof of Proposition 3.9,

—un _ Pzy (D)
> ep(p)! T =
p(p)vH ®) rH

so we can apply (3.16) to Zg. By (3.13), we know that

p(p) > pzy (p) > cpzy(Pzu)s

R(p, cp(p); a) < p(p) v~ Dantvamupbutly g, ;a),

.
p(p)ra’

so if vy = v, this gives

mH—(amax—aH)
) by (3.16) on Zy with v =0,

T
R(p, cp(p); a) < p(p)¥r—Dentvmu b+l (_
e = p(p)”

_ T‘m+(y71)amaxj since r < p(p),

while if vy = 0, we obtain that

R(p, cp(p); a) = p(p) @ rbu+t (pyms == ema= ) by (316) on Zy,

= pmF=Damax  gince r < p(p).

O

The last two propositions can be used to obtain a sharper estimate of the volume of remote balls, a
technical result needed later. We need however to take into account how close the point p is to a corner
of M. In [20], this is achieved with the notion of remote chains, but we will proceed differently, taking
advantage of the fact that we have a compactification by a manifold with fibered corners.

Definition 3.11. Fiz a remote parameter c € (0, %) and boundary hypersurfaces Hy, ..., Hy € Muym(M) with
Hy < -+ < Hy. For such a choice, we say that a point p € M\ OM is close to the non-maximal corner
Hin---NHy ifzy,(p) <1—=3c foralli € {1,...,k}, but zg(p) > 1—3c for H € Mum(M)\{H1,..., Hg}.
On the other hand, if xg(p) > 1 — 3¢ for H € Mum(M), we say that p is far from all non-maximal
corners. Close to a non-maximal corner Hy N --- Hy, we will consider the function

1 1
(3.17) o=zmix’ [ = "7

VH'L =V

corresponding to (3.8).
In terms of this notion, we have the following finer estimate on the volume of remote balls.

Proposition 3.12. Suppose that ag = amax for all H € Muyax(M) and that (1 —v)amax < (1—vg)(ag +mp)
Jor all H € Mpm(M). If ¢ € (0,%) is a remote parameter and p € M \ OM 'is close to the non-mazimal
corner Hy N --- H, and

< cg’” (p)

vi(p)

ot (p)

— <r
Vi41 (p)
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for some i € {1,...,k + 1}, where v; = vy, in terms of (3.7) and v; = vy, with the conventions that
Uk+1 = Tmax, Vk+1 = V and % :=0. Then

i1
(3.18) R(p,ria) < H x?j (p) | o2 (p)o.yi(amax_ai)(p),r.m_(amax_ai)+(V_V'L)amax

j=1

with the conventions that axy1 = amax and ag = 0. With these conventions, (3.18) also holds with k = 0 and

1
co@ _ T
T(p) . CPmax

i =1 when p is far from all non-mazximal corners and r <

Proof. We can proceed by induction on the depth of M. If M is of depth 1, we are in the AC setting, so
k =0 and i = 1. For a remote ball, r < ¢p(p) = cp1(p) = cpmax(p), so that (3.18) follows from (3.12). If M
is of higher depth and k > 1, we can then assume that (3.18) holds for QAC-manifolds of lower depth. We
need to distinguish two cases. If

ca”?(p) ca” (p)

v2(p) 01(p)

then we can apply Proposition 3.9 together with Proposition 3.10 to obtain the claimed estimate, namely,
with the notation that m; = mpy,, if 1 = v, then o < p and

R(p,r;a) < p(p) =Dty =y (g,

<r<

)

;a) by Proposition 3.9,

pp)”

r m1—(amax—a1)
) by Proposition 3.10 with v =0,

~ p(p)a1(u—l)+1/m1,r,m—m1 (?
~ p(p)l/amax—alrm—(amax—m) _ p(p)(l’_l)alp(p)l’(amax_al)/Iam_(amax_al)
- 5?1p(p)y(anlax70«1),rm7(an]ax7al) - *17?1p(p)ul(amaxfal)Tmf(amaxfal)+(VfV1)amax,

while if 1 = 0, then

R(p,r;a) < p(p)”“*r™ " " V(pz,,,r;a) by Proposition 3.9,
= p(p)~@rpm v =Dlama— 1) by Proposition 3.10,
— p(p)faleJr(vfl)amaeral
= ﬂ(p)al Tm_(amax_‘11)+(V_V1)amax,

yielding the claimed result.

If instead % <r< C%_UEZS])”) with ¢ > 2, we can combine Proposition 3.9 with (3.18) on Zg, to obtain

the estimate. First, for v; = v, 0 < p and

R(p,ra) = p(p)¥ " Datvmpm=my(p, P(;W;a) by Proposition 3.9,
s r M1 —(Amax—ai)
- v—1)ai+vmy,.m—my aj—a1 | ~a;—a; . B
= p(p)' r ' v < > by (3.18) with v =0,
Jl;[z ! ' p(p)”
i—1
= p(p)(u_l)al+U(ama"_ai)7“m_(“ma"_“i) H T4 | i
J [
j=2
i—1
— ;[)/?1p(p)l/(amax7(li)7am*((lmaxfai) H e e
J [
j=2
1 @ -
i— i
=TIz |oi] plp)rlomsaoym=(omn=a) 2P| e
Jj=1 i
i—1

X

H 2% | g p(p)”i (@max—a:) ;m—(Amax—0ai)+ (¥ —¥1) @max
J i )
J=1



20 RONAN J. CONLON AND FREDERIC ROCHON
If instead v4 = 0, then
R(p,r;a) < p(p)”“r"™ ™ V(p,r;a), by Proposition 3.9,

1—1
= p(p)—lll pmmL H x?]‘ E;dz O.Vi(amax_ai)/rml_(Emax_ai)"l'(l’_”i)amax, by (318),
j=2

and we need to distinguish two cases. If v; = v, then in fact

al

i—1
_ =1 | cai— —as _ s
Ripyria) = o) ( TLa™ | a 1 pvtomseed mtomas e
j=2

i—1 s — 1 i—1 ap
= H :L.j] 1-v; H :L,jlfl’j 5;17;0.(p)’/(amax_ai)/]am_(amax_ai)
Jj=2 Jj=1
i—1
- H :L.q‘j :Jal O-V'L (amax_ai)rm_(amax_ai)
- J i )
j=1
ieldin e claimed result. If instead v; = en
yield the cl d It. If instead 0, th
i—1
_ aj—ar | ~a;— _ a1 _ a1
R(p,r‘;a)xp(p) ay ija 1 U;zl a1, m—(amax— 72, —@ita)+v(amax—127)
Jj=2
i—1 i—1
- a1 aj—a1 | ~a;, ,m—(@max—0:i)+Vamax
- (T ) (TTo e ) oo ,
Jj=1 Jj=2

~ai,M—(Amax—a;)+Vamax
v, 5

X
8
Q.k\m.

again yielding the claimed result. O

For the moment however, just using Propositions 3.9 and 3.10, we can deduce the volume doubling
property.

Corollary 3.13. Suppose that ag = amax for all H € Muyax(M), that amax < 12 and that (1 — v)amax <
(1 —vg)(ag +mg) for all H € My (M). Then (VD), holds.

Proof. For non remote balls, this follows from Proposition 3.10. For remote balls, we can assume by induction
that the result holds for QAC-manifolds of lower depth. By Proposition 3.9, (V D), holds when we have
(3.12), while when (3.13) holds,

R(p,r;a) = p(p)tn—Dentvnmubutiyp,, p

and the result follows by (VD),, on (Zu, kH, la)- O

We can also estimate the volume of anchored balls in terms of the volume of remote balls as follows.

Corollary 3.14. Suppose that ag = amax for all H € Mupax(M), that amax < 72 and that (1 — V)amax <

1-v
(1 —vu)(ag + my) for all H € Mpym(M). For ¢ € (0,1) a choice of remote parameter, there exists a
constant Cy such that

A(p(p);a) < CVR(p,cp(p);a) YV pe M\OM.

Proof. This follows from Corollary 3.8 with R = p(p) and Proposition 3.10 with r = ¢p(p). O

These estimates will help obtain the weighted Poincaré inequality via the following result.
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Corollary 3.15. Suppose that ag = amax for all H € Mupax(M), that amax < 12 and that (1 — v)amax <
(1—vy)(ag+mp) for all H € My, (M). Suppose moreover that OM is connected. If the complete weighted
Riemannian manifold (M \ OM, g, pa) satisfies (V D), and (PI),s with parameter 6 € (0,1] for all remote

balls, then (V D), and (PI), s hold for all balls.

Proof. By the previous corollaries and [24, Theorem 5.2], it suffices to check that (M \ OM, g) satisfies the
property of relatively connected annuli (RCA) with respect to the base point o, that is, there exists Cy > 1
such that for all » > C% and for all p,q € M \ OM with d(o, p) = d(0,q) = r, there exists a continuous path
v :[0,1] = M\ OM starting at p and ending at ¢ with image contained in the shell B(o, Car)\ B(o,C'r).
But since OM is assumed to be connected, the RCA property clearly holds. g

Thus, assuming JM is connected, it remains to check that (PI), s holds on remote balls to conclude it
holds on every ball. To be able to run an argument by induction on the depth of M, we need to assume as
well that the boundary 0Zp of the fibers of ¢y : H — Sp is connected for all H € My (M).

Theorem 3.16. Suppose that OM is connected as well as 0Zy for each H € Muym(M). Suppose also that
A = Gmax for all H € Muyax(M), that amax < 7% and that (1 — v)amax < (1 —vy)(ag + my) for all
H € My (M). Then the properties (V D), and (PI), hold on (M \ OM, g, pa).

Proof. We will closely follow the proof of [18, Theorem 5.15]. By the argument of Jerison [26], if (V' D), and
(PI)u,s hold for all balls for some ¢ € (0,1}, then (PI), also holds for all balls. Hence, by the discussion
above, it suffices to check that (PI), s holds for all remote balls. Let ¢ € (0, é) be our remote parameter
and let B(p,r) be a remote ball. If z¢(p) > 1 —4c for all G € My, (M), we are in a region where the metric
behaves like an AC-metric, so we can apply the rescaling argument of [20, Proposition 4.13] to conclude that
(PI), holds on B(p,r). In particular, proceeding by induction on the depth of M, we can now assume that
the statement of the theorem holds for warped QAC-metrics on manifolds with corners of lower depth.

If instead zp(p) < 1 — 4c for some H € My (M), but zg(p) > 1 — 4c for G < H, then as discussed
in the proof of Proposition 3.9, we can assume that B(p,r) is included in a region where g is of the form
(2.11). Regarding B(p, ) as a subset of Cy x Zg with p corresponding to the point (p1,p2) € Cy X Zy and
Cy = RT x Sy, notice that it is contained in the product of balls

(3.19) Q(r) = By x By := By (p1,7) x Ba(pa, -

(A=)

where Ba(pa,r) is a geodesic ball in (Zy, kp). Let us first prove the uniform weighted Poincaré inequality
on Q(r) by writing du, = duidus with

dpy = plve—Dantvmu dgc, and dus = 2 drky.

Given a function f on Q(r), we define the partial averages by

1 — 1

d 19 ) ) ) = ST d as
B;) /Bi T €2 o 1a(Q(r)) /Q(r) e
1/2

|

i Hi

(
so that in particular fo = (f1), = (f3);. Since Zp is of lower depth, we see by induction that (PI),,
already holds on (Zy \ 0Zy, ku, p2), so there is a constant Cy > 0 such that

/ |f = FolPdpdus =2
Q)

( )(|f — Fol? + [F2 = Fol?)durdpus

(3.20) <2 | <Cz <W>2 /| 1 + / 1. —7Q|2du2> din

= 2/ (027‘2/ |d2f|%(lfc)p(p))"Hanu2+/ |T2_TQ|2dM2) dp,
Bl Bz BZ

where d; is the exterior differential taken on the factor B;. Since (1—¢)p(p) < p(q) < (1+c)p(p) for g € Q(r),
the first term on the right of (3.20) is bounded by

2vy
1
202 ( +c) 72/ |df|52]dua
l—c Qr)

S—
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For the second term, since (Cr,gc,,) is a cone, we can apply (PI),, on By, so that there is a constant
C41 > 0 such that

(3.21) |, FeToPamare < | (v [ 1Tl ) o
T 2 1
where g1 = gy - On the other hand, using the fact that
— 1
dif, = 7/ dy f)dus,
1f2 MZ(BZ) B2( 1f) H2
we deduce from the Cauchy-Schwarz inequality that
— 1
3.22 d < ——— | |dif?, dpo.
(5:22) ek < oy 101

Inserting (3.22) in (3.21), we thus obtain that

_ _ 1
— 2duad </ <C 7“2/ (7/ dif|?.d )d )d
/Q(T)|f2 fol*duidus < . 1 5. \72(B2) B2| 1flg dpz | dpa | dpz

(3.23)
< Oy / dy 2, djia < Cri? / df 2dpsa,
Q(r) ’ Q(r) ’

showing that (PI),, holds on Q(r). For B(p,r) now, notice that we have the sequence of inclusions

(3.24) B(p,r) CQ(r) C B (p,T + <1 i Z)UH r) c B(p,3r)

for ¢ € (0, £) sufficiently small, in which case

1 = TP =inf [ | —cldp, < / 1 = FolPdia < / 1 = Toldua
B(p,r) ¢ JB(p,r) B(p,r) Q(r)
(3.25) < Crz/ |df[5du, by (PI),, on Q(r),
Q(r)

. 1
< C’I“2/ ) |df|§dua, with § = 3
B(p,6—1r)

By the results of [24], this gives the following bound on the heat kernel.

Corollary 3.17. Let g be a warped QAC-metric on the interior of a manifold with fibered corners M. Suppose
that OM is connected as well as 0Zy for each H € Muym(M). Suppose also that ag = amax for all
H € Muax(M), that amax < 72 and that (1 — v)amax < (1 —vy)(ag +mpg) for all H € My (M). Then

the heat kernel Hy of L= —-A+ R with R >V := &;) satisfies the estimate

a a cd(z,2')?
22 (2)x2 (2 e t
|H£(t,z,z')| SH—A-{-V(f,Z,Z’) = ( ) ( ) :

(a(B(z, V1)) pa(B(2', V1)) *

for a positive constant c, where f = g if there exists a positive constant C' such that f < Cyg.

This implies in particular the Sobolev inequality for warped QAC-metrics.

Corollary 3.18 (Sobolev inequality). If g is a warped QAC-metric as in Corollary 3.17, then there is a
constant C's > 0 such that

(3.26) (/ |u|%dg> < CS/|df|‘;’dg, Yu € C(M \ OM).
M\OM ’

Proof. When a = 0 and V = 0, we can take R = 0 in Corollary 3.17, yielding a Gaussian bound for H_x,
which is well-known to be equivalent to the Sobolev inequality (3.26); see for instance [23]. O
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Through Lemma 3.1, (3.4) and [20, Theorem 3.22], Corollary 3.17 yields a corresponding estimate for the
Green’s function, namely

Ge(z,2]| £ Goayv(z,2) < Goagv(z,2)
3.27 a o [ d
(3.27) x:v(z)%c(z')_/ 545 )
zz’)\/VZSCL (', s;a)
This is the estimate, together with our estimates on the volume of balls, that will allow us to determine

spaces on which the operator £L = —A + R can be inverted. In fact, what we really need is to estimate the
integral

o sds
d(z2) V/V(2,8;0)V(2, s3a)
Since s > d(z, 2z’), we can use the volume doubling property as in [20, § 5.2] to conclude that this integral is
equivalent to the slightly simpler integral

o sds
I(z, ) = / _sas
d(z,z") V(Zu 53 a)

Using Propositions 3.10 and 3.12, this simpler integral can be estimated as follows.

Lemma 3.19. Let M, g and a be as in Corollary 3.17 and let ¢ € (0, 5) be a choice of remote parameter.
Suppose also that (1 — v)amax <m—2 and m > 2. Let z,2' € M \ OM be given. If d(z,z") > cp(z),then

]I(Z7 ZI) = d(z, 21)2_m_(u_1)amax .
If instead d(z,2") < cp(z) and z is far from all non-maximal corners, then

H(Za Z/) = p(Z)_(V_l)amaxd(Z, 21)2_m,

Finally, if d(z,2") < cp(z) and z is close to the non-mazimal corner Hy N...N Hy with C‘;V:(lz(;) <d(z,2') <
Uv ©) ) for somei € {1,...,k+ 1} (using the conventions of Proposition 3.12), then
H x(2) "% ,U,L_(Z)_aia(z)yi(ai_amax)d(z, Z’)z_m"l'amax_ai_(V_Vi)amax.

In terms of (3.27), this gives the following estimate.

Proposmon 3.20. Let M, g and a be as in Lemma 3.19 and let ¢ € (0, ) be a choice of remote parameter.
Let z,2" € M\ OM be given. If d(z,z") > cp(z),then

(3.28) G_nyv(z,2) = 2(2)2a(2)3d(z, 2/ )2 (W= Damax,
If instead d(z,2") < cp(z) and z is far from all non-mazimal corners, then
(3.29) G_nyv(z,2) = a(2)22(2)3 p(z)~ W Namaxg(z, 2)2~m,
Finally, if d(z,2") < cp(z) and z is close to the non-mazximal corner HyN...N Hy with &Zz()) <d(z72') <
C‘;—IS) for some i € {1,... k+ 1} (using the conventions of Proposition 3.12), then
(3.30)
G—A-}-V(Za Z/) = (E % % H LL'] —aj 7;(Z)iaiO'(Z)Vi(aiiamax)d(27 Z/)Qferamaxfai7(u7vi)amax'

As in [20], we can extract mapping properties from these estimates using the Schur test. This amounts
to obtain the following estimates.

Proposition 3.21. Let M, g and a be as in Lemma 3.19. Let b be a multiweight with by = bmax for all

H € Muyax(M). Suppose that
2 4 Gmax o M Gmax
1—v 2 R 2
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and that

1—v Umax ag ag 1—v Amax
bmax)___ b I (bmax_ )_2
<1—uH)( y T 2 mH<H<2+<1—uH) 2

for all H € Mpm(M). Then
(331) [ el gl < 2l )
M\OM

where w = HHeMnm(M) TH.

Proof. We follow the strategy of the proof of [20, Lemma 6.5]. Thus, fix a remote parameter ¢ € (0, %)
and decompose the region of integration into three subdomains: Dy := (M \ OM) \ B(o,2p(2)), Dy :=
B(0,2p(2)) \ B(z,cp(z)) and D3 := B(z,cp(z)), the latter being a maximal remote ball. On the first region,
d(z,2") < p(z'), so by (3.28),

(3.32)

wle

G,AJFV(Z,Z/)x(z/)bdg(z/)jx(z) / x(z/)%erd(z,z/)Qfmf(”fl)am"“‘dg(z/)
D1y

D,

<o)t [ el gy )
D1

j:E(Z>%/ dA <S§g+b+m_2_(1_u)amax>
2p(2)

o(z 1—n

oo

a _ —1) (L 4y m—2—(1—v)amax

< a(2)f / e D S
2p(2) HeM, (M)

where in the last line we have used Proposition 3.6. By our assumption on b, we see that

m—2 Gmax

-1 — 1D (bpax + —— — -1
m + (V )( a + 1 — v 2 ) <

and

ax m—2— (1 —v)amax m—2  Gmax

-1 -1 {—=—+0b -1 — 1) (bmax — -1,
m + (vu )<2+H+ 1—vy +myg ) <m + (v = 1)( +1—V 2 ) <
so the integral at the very end of (3.32) does not diverge and
Gonrv (2, 2)a(2) dg(2') 2 a(2)? p(z)™ (D e “H5 HE0
D1
(3.33) < 2(2)$ p(z)? O a2
a 1-—
= :E(Z)ip(z)%i_(u_l)bmaxa where aH =ag — ( Y ) Gmax-
1-— vy
But if  is the multiweight such that EH =by — (11_7/’;1) bmax, We see from our assumption on b that
N an

(3.34) by +2< <5 for H e Mum(M),
so that

| Gosiv(s el dg() 2 2(2)Pw?p(z) 0 Dimax = 2(2)% (p(2)w(2))?

as claimed. In the second region, d(z, z’) < p(z), so again, by (3.28),

G_arv(z, 2Nx(2)bdg() < :C(Z)%/ d(z, 2)2~m= = Damax g (1) 5Fbg(2")
Do

< x%(z)p(z)Q—m—(u—l)amax /B( () .’L'(ZI)%-H)dg(Z/)
0,2p(z

=< a(2)8p(2) VA (p(2), S 4 b)

D2
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Now, by our assumption on b, the multiweight 5 + b satisfies the assumption of Corollary 3.8, so

[ @t e ragt < x(z)%p<z>2*m*<”*1>“m"p<z>m+<"*><”“%‘“ o
Do

a
24 (1= 1) (bmax— 2185

)
)2+ bmax
)

2(z)
x(z)
() w(z 2p<z> (= bmax by (3.34),
2(z)

Finally, in the last region, suppose that z is close to the non-maximal corner Hy N ... N Hy. Then by (3.30),

setting B; := B(z, U((;) ), we see that

k+1

(3.35) /D G_ayv(z,2)dg(z ZI

with

and

51_ (Z)iaiO’(Z)Vi(aiiamax)d(z, Z/)27m+amaxfai7(u7vi)amaxx(z/>bdg(z/)

vl

x(2)

vl
8
<.
—~
I\
S~—
S]
S

I, = / x(2)
Bi\Bit1

for i < k. For Ij11, we can use our assumption on b and (3.18) with ¢ = k + 1 to obtain

co(z)¥

x ()
97 () [T 2R e
0

a
e
72 )

co(z)V

k
x(2) aj x
Z)faj Imax(z)*an]ax/mma B Tlfm | | Ij(z)%erj Imax(z) - Jl’bn]ax/rmdr
0 i

k
ij(
k
11

co(z)V

k
“ aj N ~E)
<a(2)f | [[as(x)7F+" wmax(z)f%%m“/mma " rdr
. 0

< x(2)% f[le(z)%erj Tmax (7)) TES Thmax ( ()" )2 = 2(2)’0(2)? (U(Z)”1>2

xmax(z) xmax(z)
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For i < k, again using our hypothesis on b, we see from Proposition 3.12 that

i—l co)i
I < {E% (Z) (H x; (Z)iaj ;Ei(z)faio.(z)w(aifamax) / i r27m+(lmax7(li7(U*I/i)amade(Z, r, b+ E)
co(z)itl 2
Jj=1 Vi1l
i—1 co(z)¥i
< ;E%(z) ij(z)*aj 5i(z)fai0(2)v1-(aifamax)/ ZV 1-m+amax—a;i —(V—Vi)amax ,
co(z) i+l
Jj=1 Vi1l
-1 o
2 (2) 7 0| Ty(2) T i (2) Vi (S Fomax— 5 b pm— (B b — 5 b+ (v (5 dbma) | g
j=1
/L_l a; . .
< at(2) | []ai(x) 77+ | Bile) =% Fhig () (5 =8 Hbuabo).
j=1
co(z)Vi
( ’:;H Lo 2% — b tbi (= v4) (Dmax — ) 7.0
co(z
ol -

PN

i—1
z? (2) ij(Z)_aT“rbj Ti(2)” 7 Thig(z)Vi (5 T Hbmax—bi)
j=1

(U(Z)Ui ) 24 fmax S po b+ (V=15 ) (Bmax — 252X (U(Z)uiJrl ) 24 2max %0 b +bi+ (1 —vi) (bmax — 252X

vi(2) Viy1(2)

ca’itl(z) ca”i(z)
vit1(z) = 0i(2)

Using the facts that
implies that

and that 2 4 @2 — & — by + by 4+ (V — 1) (bmax — *2%2=) < 0, this

a;

(3.36) I = x%(z) HCUj(Z)_%"‘bJ‘ Bi(2)” 7 g (2)Vi(F T Fhmax—bi)

(0-(2)w+1 ) 24 fmax S b b+ (V=15 ) (Bmax — 252X

Viy1(2)



If v; = v, this gives

< a(2)? | [Lai(e)7# %% | (e~ 0(2) g (2) >
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Ei(z)_%+bi0(z)2”ﬂi+1 (Z)_2_am%+%+bmax_bi
arﬂ%""bmax

0 (2)2 Tipr (z) 72T Homa

j o)1\ _ .
= H :Cj(z)z—bj) w(z)ba(z)2 (L) $max(2)2vi+1(z)_2_ N -

completing the proof in this case.

i1
Iz -455(2)% ij(z)_TJ"l‘bJ
j=1
i1 .
= ()% H zj(z)”
j=1
i .
=a(2)f | [[ai(z) =+
j=1
k41 B
= x(z)° H zj(z) % b
j=i+1

~ ~ __2
= 2(2) i1 (2)Vig1 (2) T

= 2(2)" (Wit1(2)777)? 2 2(2)" (Tmax(2) M Tig1(2)”

Imax

—2— X b

Tmax (Z)Qii-i-l (Z)

j)FTh R | ()2

If instead v; = 0 and v;41 = v, then

a;

) 2+ 24max — Sl bsc by 41 (binax—

an]ax)
2

wp L LN\ 20— bbb (bmax — 2 )
(fl;- 5 1("'11/)—7'”-‘,-1)1) (:l‘}" 11/)

1
~T T2\ 2+ (v—1) (bmax — 22X
(Vg1 ") (1) Omax = 55)

k+1 .
~ _ Amax _ 4 3 ~ __2
Vi1 (2)Pme TR T < a(z) H 2j(2)2 7% | Ui (2) 0
J=i+1
by (3.34),

27
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while if v; = v;11 = 0, then

ol _ 95 b —~ _a; b 1
[Tziz) 7 1 | wi(z)~ 2 ™ ( =
j=1

Vi+1 (2)

aq

) 24 2max — 5 b t-bi v (bmax—

amax)
2

[N

I, < z(z)

= a(2)? ij(Z)_%erj 2i(2) T F T (2) T F T (2) T2 A e bi—(bumax— 2522 )

= a(2)? ij(Z)_%J“” Ty (2) 2O (bman =255 () II =iz )7 b | 52
j=1 j=1+1
kt1
<o) [ IT =) | 52 by (3:39),
Jj=i1+1
2 2
k+1 k+1 k+1
= x(2)° H z;(z T = x(z)° H zj(z = < x(2) [ 2l ( H zj(z T
j=i+1 Jj=i+1 Jj=i+1

= x(2)%(p(

Finally, if z is away from all non-maximal corners, we can apply the estimate for Iy with £ = 0.

Relying on this estimate, we can now apply the Schur test to obtain the main result of this section.

Theorem 3.22. Let g be an n-warped QAC-metric of weight function n: My (M) — {0,v} forv € [0,1) on the
interior of a manifold with fibered corners M of dimension m > 2. Suppose that OM is connected, as well as
0Zy for each H € Muym(M). Suppose that a is a multiweight such that ag = amax for H € Mumax(M), that
Amax < TT*VQ and that (1 — V)amax < (1 —vg)(ag + mpy) for all H € My, (M). Let also § be a multiweight
such that 8 = dmax for all H € Mupax (M) with

Amax m—2 Amax

and
1—-v Gmax ag ag 1—-v Gmax

3.38 (S - Rt (- max ) -
(3.38) <1_VH) + 5 t2-mg < H<2+(1_7/H> 5+
If R € p?w™?Coy, (M \ OM) is such that R >V := —_ffa, then for all ¢ € Ng and o € (0,1), the
mappings
(3.39) “A+ R 2T HEA(M) — (pw) 2200 HL (M),
3.39

042,00 JNeY

—A+R P CIRN (M N\ OM) = (pw) 22’ Cr, (M \ M),

are isomorphism, where HY (M) was introduced in (2.17) and w(H) := =" s the multiweight such that

wo L2 (M) = LE(M).

Proof. For the mapping on Sobolev spaces, it suffices by local elliptic estimates to show that the Green’s
function G, defines a bounded map

(3.40) G : (pw) 22T e L2 (M) — 2T 2 L2 (M).
This in turn corresponds to the boundedness of

(3.41) K: L2 (M) — L2 (M)

with

vm vm

K(z,2') = o) Po(z) T Gelz, 2) (ol (=) 2a(2 )+ oo () 4
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By the Schur test, this will be the case provided we can find positive measurable functions f; and fo such
that
| [ K REe)| = ) and ’ | K e)] < Ale)
M\OM M\OM

for all 2,2/ € M\ OM. We will take f; = fo = 2™~ "% . Indeed, by Lemma 3.1, we have that

vm

<o) o) [ Gl () Pyl
M\OM

/ K(z, 2z~ ™ (2o (z") "2 dg(2')
M\OM

< 2(2) 0o (z) " / G_arva(2)dg(2)
M\OM

with

6 +% _
=)= [ @y )
HeMy (M)

so in particular with multiweight b such that byax = dmax + % and by = 0y + 1_2U

our assumption on J, we can apply Proposition 3.21 so that

- 2. In particular, by

/ Kz, 2)a™ (2 )p(z')~ % dg(=')
M\OM

Similarly,

/ K(z,z/)x_m(z)a(z)_%dg(z)
M\OM

/ G,AJFV(Z,z/)x(z)_5_2ma(z)_m”dg(z)
M\OM

= (p(Z’)w(Z’))’QI(Z’)‘”“’U(Z’)T/ Gontv(z2)a(z) dg(2)
M\OM

with this time multiweight b such that
myyg PR
1— vg H = 1-— vg

_mH_5H7

bgi=m-—mg+

that is, such that

5 _ —8m —mpy+m+
.’L'b:.’IJ § 2mU(Z) mV:HxH 1=vhH
H

By our assumptions on ¢ and since G_a v (z,2') = G_ayv (2, 2), we can apply Proposition 3.21 to conclude
that

muy

|/ K(z,2")a™" (2)0(2) " dg(2)| = (p(z")w(2") 2a(z') " 00 (2) F a(z) (p(z")w(2"))?
M\OM

< z(z")Po(2) 7.
By the Schur test, the mapping (3.40) is indeed bounded and the result follows. For the map on Hélder
spaces, we can use our estimates on Green’s functions essentially as above to show that the Green’s function
G induces a bounded mapping
Gr : a®(pw) 2Cpa, (M \ OM) — 2’ L(M \ OM).
Using Schauder estimates and the fact that a n Qb-metric has bounded geometry, we then see that in fact it
defines an inverse
G 2 a®(pw) 2Cey, (M \ OM) — 2°Cy v (M \ OM)
for the map

A+ R Crin (M \ OM) = (pw) 22°Crd, (M \ OM).
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O

As in [18], we will be mostly interested in the case where a = 0 and R = 0, in which case we have the
following.

Corollary 3.23. Let g be an n-warped QAC-metric of weight function n: M1 (M) — {0,v} for some v € [0,1)
on the interior of a manifold with fibered corners M. Suppose that OM is connected, as well as 0Zy for each
H e Muym(M). Let § be a multiweight such that §g = dmax for all H € Mpax(M). Then for all £ € Ny and
a € (0,1), the mappings

A - ,’E6+mp7Hﬁ,+2(M) - (pw)_2x5+mp 2 Hfi}(M),

3.42
(3.42) A2 COLP (M N\ OM) = (pw) 22’ Cop (M \ OM),

are tsomorphisms provided

—9 1- 1
0 < Grmax < and ") Gmax + 2 — g < 0y < ") S ¥ H € Mo (M).
1—v 1—vy 1—-vg

Remark 3.24. In the case x° = p*w7, this means that dmax = -1

> and (SH:T— - fOTHEMnm(M);
so the maps in Corollary 3.23 will be isomorphisms provided

1—vy
2-m<s<0 and 2—myg<7<0, VHEMpmM),
which is consistent with [20, Theorem 8.4] and [18, Corollary 5.19].

4. WEIGHTED BLOW-UPS

In our construction of examples of Calabi-Yau n-warped QAC-metrics on smoothing of cones, a key role
will be played by weighted blow-ups. For this reason, let us take some time to collect basic results. First,

recall that a n-tuple of positive integers w = (w1,...,wy,) € N™ induces a C*-action on C", namely the
action defined by

(4.1) t-z:=(t"21,...,t""2y)

fort € C* and z = (z1,...,2,) € C". By definition, the weighted projective space CP" ! associated to w is
the quotient of C™ \ {0} by this action,

(4.2) cPt = (C™\ {0})/C*.

Unless w = (1,...,1), in which case CP? ! is just the usual complex projective space, the weighted projective
space CP”~! is not smooth, but it is a complex orbifold if the greatest common divisor of wy, ..., w,, is 1. As

for the usual projective space, one can blow up the origin in C" by replacing {0} by CP?”~!. More precisely,
with respect to the weight w, the weighted blow-up of C™ at the origin is the quotient

(4.3) Blio}(C", w) := ((C x C") \ (C x {0})) /C”
with C* acting on C"™! with weight (—1,w), that is,
t (207 Z) = (tilZOa twlzla s 7twnzn)

for t € C* and (29,2) € C x C" = C"*'. When w = (1,...,1), one can readily check that (4.3) corresponds
to the usual blow-up of a point. If we pick wy € N and consider the more general C*-action on C"*! given
by

t-(20,2) = (t7 020, 8" 21, ..., t" 2p),
notice that the corresponding quotient CP{"_, = ((C x C")\ (C x {0})) /C*, called the non-compact
weighted projective space in [5], can also be thought of as the blow-up of the origin in C" /T, where T is the
cyclic group of wg-roots of unity with generator e acting on C" by

27 2miwy 2miwn

ewo - z:= (e W0 z,...,e ¥ z,).

Over the real numbers, the weighted blow-up admits two interesting versions. The first one, the immediate
algebraic analog, is to replace C by R and a weighted action of C* by the weighted action of R*. The second
one, which is the one on which we will focus, consist in replacing C by R again, but C* by RT = (0, 00). Only
considering the action of RT adds some flexibility, since we can then consider actions with weight w € (RT)?
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given by a n-tuple of positive real numbers that are not necessarily integers. Moreover, we can replace R™
by the manifold with corners

(4.4) R? := [0, 00)* x R"~*
for some k € {0,1,...,n}. On this space, a choice of weight w € (R*)" specifies a R*-action given by
(4.5) t-x = (tYr,...,t"xy,)

for t € RT and z = (z1,...,2,) € R}Y. Clearly, the corresponding quotient (R} \ {0})/R" can be identified
with the unit sphere

(4.6) Spti={o = (z1,...,2,) €RY | fozl},
i=1
Definition 4.1. With respect to a choice of weight w € (RT)", the weighted blow-up of {0} in R} is the

quotient
[RY; {0}Hw = (([0,00) x Ry) \ ([0, 00) x {0}))/RT

with respect to the RY -action given by

t-(xo,x) = (t o, t 2y, ...t xy)
fort € RY and (xo,z) € [0,00) x R}. The corresponding blow-down map Boy : [RY; {0} — RY is given by

ﬂ{o}([xo cx)) = (zg 1, ..., 20" Tn),
where [xg : z],, denotes the class in [R}; {0}, corresponding to (zo,x) € ([0,00) x R}) \ ([0,00) x {0}).

Clearly, the weighted blow-up [R%; {0}],, is naturally a manifold with corners diffeomorphic to S}~ x [0, 00)

via the map

F: St x[0,00) — [RP;{0}w

(w,t) = [t Wl

Closely related to the notion of blow-up is the notion of radial compactification.

Definition 4.2. For w = (w,...,wy,) € (RT)", the weighted radial compactification of R} is the quotient

(4.7) R}, = (([0,00) x RY) \ {0})/R*
with respect to the R -action on [0,00) x R} given by
t-(z0,7) = (two,t“ 21, ..., t""w,) for tE€RT, (zo,7) €[0,00) x R}.

Comparing Definitions 4.1 and 4.2, we see that the weighted radial compactification can alternatively be
obtained by gluing [R}; {0}] and R} via the map

e R {0\ Hyy — R\ {0}
[0 : 2] = (2w, xy ),

where Hygy = ngl is the boundary hypersurface in [R}; {0}],, created by the weighted blow-up of the origin.
The weighted radial compactification is also naturally diffeomorphic to the new boundary hypersurface
created by the weighted blow-up

([0, 00) x R5 {0} (1)
of {0} in [0, 00) x R} with respect to the weight (1, w).

More generally, if M is a manifold with corners and ¥ C M is a p-submanifold, we can do a weighted
blow-up of M along the p-submanifold Y provided some extra data is given. More precisely, suppose that
the inner pointing normal bundle NTY of Y admits a decomposition

¢
(4.8) NtY =PVt
i=1
with V;* a subbundle of NTY with fiber Rj:". For each VT, let w; € R be a choice of weight. Let & be an
open neighborhood of ¥ inside NTY and let

(4.9) c:U—=-VCM
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be a collar neighborhood of Y in M, that is, ¢ is a diffeomorphism between & and an open neighborhood V
of Y in M. On each fiber of NTY, we can consider the weighted blow-up of the origin with respect to the
decomposition (4.8) and the weight w = (wy, ..., wy) € (R*)%. These naturally combine to give the weighted
blow-up

[NTY; Y],
of the zero section of N*Y with blow-down map By+y : [NTY;Y] — N1Y. It comes with a natural fiber
bundle 7 : [NY*:;Y],, = Y with fiber [R}; {0}].,, where

¢ ¢
n = Z?’Li, k= Z kl
i=1 i=1
Using the collar neighborhood (4.9), one can then define the weighted blow-up of Y in M by
(4.10) [M; Yo :=M\Y U U,

where U = B;,lﬂ,(l/{), that is, [M;Y],,c is obtained by replacing U by U in M via the gluing map given by
(4.9). Unfortunately, compared to the usual blow-up, the definition (4.10) seems to be sensitive to the choice
of collar neighborhood (4.9) and we will need to be careful about the class of collar neighborhoods we will
allow.

Definition 4.3. Two collar neighborhoods ¢; : U; — V; of Y in M for i € {1,2} are equivalent with respect
to the decomposition (4.8) provided there are open neighborhoods Uy and Vo of Y in N1Y contained in U
and Uy such that

(4.11) cytocr Uy Vo CNTY

preserves (not nmecessarily linearly) the fibers of NTY and the decomposition (4.8). If moreover the map
(4.11) s linear in each fiber, we say that the collar neighborhoods ¢1 and co are linearly equivalent.

Lemma 4.4. If ¢; and co are equivalent collar neighborhoods with respect to the decomposition (4.8), then
there is a natural diffeomorphism
(MY w,er = [M;Yw,c,

Proof. In this case, one can check in local coordinates that c5 1o ¢ extends to a diffeomorphism

cz_loclzlxlo—>Vo

with Uy = B;,lﬂ,(l/{o) and Vy = ﬁ;,iy(vo) the lifts of Uy and Vy to [NTY;Y],, respectively. Using this
diffeomorphism, we see that the identity map Id : M\ Y — M \ Y extends uniquely to a diffeomorphism

[M;Y]wm = [M;Y]w,@'
O

Thus, we will be able to define the weighted blow-up of Y in M provided we can specify in some natural
way a class of equivalent collar neighborhoods for Y in M. This will be possible for specific choices of M
and Y. In fact, we will even be able to pick a natural linear equivalence class. Let us consider the simplest
possible situation where M = R} with weighted R™-action specified by a weight w = (wr, ..., w,). In terms
of the canonical coordinates on R}, suppose that Y is a p-linear subspace of R}, that is, a p-submanifold of
the form

Y ={(z1,...,zn) ER; |2, =0 forieZ}
for some subset Z C {1,...,n}. Using the linear structure on R}, we have a canonical decomposition
(4.12) R} = NTY =Y x R}

for some m and ¢. Moreover, the weight w induces a weight on NTY, since the coordinates on the fiber R}
of N*Y are given by x; for i € Z to which we can assign the weight w;. In this case, (4.12) naturally defines
a linear equivalence class of collar neighborhoods with respect to the decomposition R = [0, 00)¢ x R™~¢,
With respect to this choice of linear equivalence class of collar neighborhoods, we therefore have a well-defined
weighted blow-up

(4.13) Ry Y] = R {0}w x Y with blow-down map By : [RE;Y]w — R}
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More importantly, let Z C R} be another p-linear subspace of the form
Z={(x1,...,2n) ERE |z, =0fori e J}

for a subset J strictly contained in Z, so that Y is strictly included in Z. Then the lift of Z in [R};Y],, is
the p-submanifold

Z =5y (Z\Y).
We claim that the inner pointing normal bundle N +Z of Z has a natural decomposition induced by the

R*-action on R} and that there is a corresponding linear equivalence class of collar neighborhoods for Z in
[RZ:Y],. To see this, let us first relabel the coordinates (x1,...,z,) € RY so that J = {1,...,m s} and
1

Z=1{1,...,m} with m > my. Then fori € T\ J, z;"" (and also (—xl)% when z; can take negative values)
defines a local boundary defining function for the boundary hypersurface Hy := B;l(Y) created by the
weighted blow-up of Y. It does so in a region overlapping with Z N Hy, where we can use the coordinates

1 . .
(;171-)1%7 J=1

X5
(4.14) it =9 =z, "a;, jeI\{i}
zj, otherwise,
as well as
(2™,  j=i,
(4.15) Gij— =9 (—zi) ™ a;, jeT\{i,
z;, otherwise,

when z; can take negative values.
Under the identification (4.13), (G1,4,- - -, Cin,+) corresponds to the point

(4.16)  ([Gis,+ = Ginyt = ovv 2 Giam)yt 2 EL 2 Gyt * oo+ 8 Gimyt ] (Gigmr1), 45 -+ -5 Ginyx)) € [RY'3{0}w x Y,
where [zg : ... z,] € [R}*;{0}] is the class corresponding to (zo,Z1,...,2m) € [0,00) x R}*. In these
coordinates, Z is locally given by

Gitx =" =Cimy,+ =0.

For i,j € T\ J with ¢ # j and p,q € {+, —}, the change for the coordinates (; , to the coordinates (; 4 is
given by

p(qg]}p): v, k=1,
(4.17) Gka = (aCijp) ™ Giipr, k=1,
W

(qCijp) 7 Cikp, otherwise.

Lemma 4.5. The coordinates (x1,...,%yn) and (1,4, Cinx) for T\ J induce a decomposition of N+tZ
and a linear equivalence class of collar neighborhoods for Z in [R};Y].,.

Proof. In the coordinates (z1,...,2,), the inner pointing normal bundle is trivialized by the coordinates
Z1y...,Tm,, while in the coordinates ((i1,+,...,(n,+) for i € T\ 7, it is trivialized by (i1 4, ..., (im,,+. In
both cases, we have a corresponding local collar neighborhood for Z in [R}; Y] and a decomposition. If we
denote them by ¢o and ¢; + respectively, then (4.14), (4.15) and (4.17) show that on their overlaps, they are

linearly equivalent in the sense of Definition 4.3. Since these coordinates cover Z in [R}; Y]y, this means
that they induce a decomposition

N*Z = %vj
j=1

with V; spanned locally by x; and (;; 4 for i € T\ J, as well as a corresponding natural linear equivalence
class of collar neighborhoods for Z in [R};Y].,. O
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Of course, the weight w naturally induces a weight on Vj, namely w;. This means that we can consider
the weighted blow-up of Z in [R™;Y],,, namely
[RY: Y]w; Zw
with the linear equivalence class of collar neighborhood that of Lemma 4.5. As for the usual blow-up, it is
convenient to use the notation
[Ry;; Y, Z]w = [[Ry; Y]w; Z]w-
Clearly, if Z, C --- C Z; is a sequence of strictly embedded subsets of {1,...,n} and Y1 C --- C Y}, the

corresponding sequence of strictly embedded p-linear subspaces, then the above argument can be used to
define the sequence of weighted blow-ups of Y7,...,Y),

(4.18) R Vi, Yolo = [ (R Vi Yo Vlw - 5 Y P 20 VP,

with V'™ = 871 (V; \ Yi_1) the lift of ¥; to [R}; Y3, ..., Y; 1w with blow-down map
Bi—1: [RE; Y1, Y] = Ry,

More generally, let Yi,...,Y), be a sequence of distinct p-linear subspaces of R} with Z;,...,Z, the corre-
sponding subsets of {1,...,n}.

Lemma 4.6. Suppose that {Y1,...,Y,} is closed under taking intersections, or equivalently, {I1,...,I,} is
closed under taking unions. Then the weighted iterated blow-up

Ry Y1, oo, Yol
is well-defined provided
(4.19) Y,cY, = i<j.

Moreover, as long as (4.19) holds, the definition will not depend on the ordering of the p-submanifolds
Yi,..., Y.

Proof. Let Y; and Y} be two of the p -submanifolds that are blown up. If one is included in the other, then
the order in which they are blown up is completely determined by (4.19). On the other hand, if Y; NY; =Y,
for some ¢ with Y; C Y; and Y, C Y;, then by (4.19), ¢ < i and ¢ < j, so the blow-up of Y} is performed
before those of ¥; and Y. But after the blow-up of Y, the lifts of Y; and Y; will be disjoint, so their weighted
blow-ups commute, that is, the two orders in which we can blow-up Y; and Y} lead to the same space. The
fact that they are disjoint also indicates more generally that we can essentially reduce to the case of sequences
of strictly included p-submanifolds of (4.18).

O

The manifolds on which we want to perform weighted iterated blow-ups is not quite R}, but almost. We
want instead to apply this construction to the weighted radial compactification of R} =~ with respect to some

weight w € (RT)". Let He be the boundary hypersurface of Ry such that Ry =Ry \ Hoo.

Lemma 4.7. Let {Y1,...,Y,} be a finite set of p-linear subspaces of R} and I.,...,I, the corresponding
subsets of {1,...,n}. LetY; be the closure of Y; in R} , and consider the p-submanifolds YiNH,,... ,?p N

H. Suppose that {Y1 N Hy, ... 7710 N Hy} is closed under taking non-empty intersections and that

ViQHOO C?jﬂHoo = i < .

Then the weighted iterated blow-up

(4.20) Ry :YiNHe,...,Y, N Hylw

kaw?

of YiNH,... 7710 N Hy in R}, is well-defined, namely, at each step, the lifts of the p-submanifolds that
must be blown-up come with a natural decomposition of their inner-pointing normal bundle and a natural
linear equivalence class of collar neighborhood in the sense of Definition 4.3.
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Proof. Regarding R} as the new boundary hypersurface in [[0,00) x R}; {0}](1,4,) created by the blow-up
of the origin, we see that this iterated blow-up essentially corresponds to the consideration the iterated
blow-ups of the lifts of {0} x Y71,...,{0} x Y}, in [[0,00) x R}; {0}](1,,). More precisely, if we consider
(4'21) [[0,00) X RZ?{O}v{O} X Ylv"'v{o} X YZD](l,w)v

which is well-defined by Lemma 4.6, then the boundary hypersurface created by the first weighted blow-up
corresponds to the weighted iterated blow-up (4.21) that we want to define. O

5. COMPACTIFICATION OF SMOOTHINGS OF CALABI-YAU CONES

In this section, we will construct a suitable compactification of the smoothing (1.15) by a manifold with
fibered corners. To do this, we will suppose that Assumptions 1.1,1.2 hold. When ¢ > 0 and N > 1, the zero
locus Viq,.. N} of [Qg.i]e(20) described in Assumption 1.1 will play an important role. On the other hand, if
¢ = 0, there is no zero locus, while if NV = 1, there is no need to consider this zero locus, so let us set

_y (=00rN=1,
(5.1) Vegero = { Vii,...ny, £>1land N > 1.

Let Ci'™™ be the radial compactification of C™*" with respect to the R*-action specified by the weight
w = (U/O,la LY 7w0,m0+n07wl,17 L) 7w1,m1+n17 LY 7wN,17 wN,mN+nN)7
w W1, m n w w m n
t- (20,2’1, Ce ,ZN) = (tZQ,t 1’12171, R A LZ1,mi4ngs - .- T N’IZN)l,t Nomy+ NZN,mN—i-nN) fort > 0.

The boundary of Ci™" is the sphere
N mg+ng

§2m+2n—1 . _ {Z e gmtn | Z Z |Zq,j|2 _ 1}'

¢=0 j=1
In terms of this sphere, Ci't™ is obtained by gluing S +2n—1 x [0,00) and C™*™ via the map
v S§2min=ly(0,00) — Cmtn
(5.2) (w7§) }_> ( wo w1,1 UJN,mN+nN )'

5707 Ewl,l 3t wa,mNJrnN

In fact, this map extends to give a tubular neighborhood
v §TmHIn=l 10, 00) — Cit

of §?m+2n=1 jn C™+". In terms of the coordinates induced by this tubular neighborhood, we see that the
defining equations of C, are

(5.3) E7UP, i (wy) = €Qui(€  -wo) forge{l,....,N},ie{l,...,n,},
that is, as £ \, 0,
(5.4) Py i(wg) = fdil[Qq,i]E(WO) + 0(§d4) fori e {1,...,mq +ng}.

The closure C, of C, in C})*™ is obtained by taking also ¢ = 0 in (5.3). In particular, in light of (5.4), on
ICIT" we see that 0C, = C. N ICIHT™ is given by the equations

Pi(wy) =0, weS*™2=t=9Cyt" qe{l,...,N},ie{l,...,n}.

This does not depend on € and coincides with Cy = Cy N IC ™, which corresponds to the fact that the
polynomial @4 ; has degree strictly smaller than the one of P, ; for each . In particular, if Cy has a singular
cross-section, that is, if dCy is singular, then 9C. is also singular, even if C, itself is smooth. To resolve
these singularities, consider in C™*" the subsets

(5.5) crtn = U v,

w,sing "7
{0}Cac{1,...N}

and Vp zero defined in (5.1). Let C™t" and Vg)zero be their closure in C*". If we set JC™ T = C™T" N

w,sing w,sing w,sing

ACTT™ and 6Vg)zero = Vg,zeroﬂa(CZ]}"’", then OC” " is naturally a stratified space in OCji ™. Our strategy

w,sing

to resolve the singularities of C, will essentially be to blow up the strata of 8@3;% in an order compatible
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with the partial ordering of the strata. However, when 67@7%,“) is not empty, the part of BVMHO inside
OC™" needs to be blown up differently.

w,sing

For this reason, the stratification we will consider on 8@5;& is as follows. If 8\/4 sero = 0, the closed

strata will be given by 9V := V| NACET" for {0} € q c{0,..., N}, where V is the closure of V; in cpre,
If instead OV ¢ sero # 0, we will also consider for {0} € q C {0,..., N} the closed strata

8Vq N 874 zero = 8Vq\{0}.

In other words, when OV 410 # 0, the closed strata of AC™ ™ are given by

w,sing
OV, for non-empty subsets q C {0,...,N} with q# {0}.
In both cases, the partial order on strata is given by inclusion,
(5.6) Va <9V, <« 0V,CV, <+ qCp

If OV 4 sero # 0, that is, if £ > 0 and N > 1, then by Lemma 4.7, we can unambiguously consider the weighted
iterated blow-up

(5.7) X =[Co™{oValac{Ll,....N}, a # 0}

provided we blow-up the subspaces (?Vq in an order compatible with the partial order (5.6). If instead
Vi zero = 0, that is, if instead ¢ = 0, we simply set

(5.8) X =Cptn,

In either case, let Hpyax be the boundary hypersurface of X corresponding to (the lift of) ACyt". By
Lemmas 4.5 and 4.7, Hp,.x comes with a natural linear equivalence class of collar neighborhoods in the sense
of Definition 4.3. Let xyax be a choice of boundary defining function for Hy,,x compatible with this linear
equivalence class of collar neighborhoods. Let X be the manifold with corners, which, as a topological space,

is identified with X, but with smooth functions on X corresponding to smooth functions on X \ Hyax having
d—t
a smooth expansion at Hpyax in integer powers of zmix (instead of integer powers of Zmax). Since we require

Tmax tO be compatible with the natural linear equivalence class of collar neighborhoods of H i, ax, notice that

X is well-defined in that it does not depend on the choice of z,,x. Let us denote by Hyax the boundary
~ d—t

hypersurface Hy,.x seen as a boundary hypersurface of X. Let Zyax := Tmax be the corresponding boundary

defining function. Let C%"  be the closure of C"+" in X. For {0} C q C {0,..., N}, let ‘7q be the closure

w,sing w,sing
of Vg in X. Then the lift of the strata oV 4 of 8(C$J;zg t0 Hupax for {0} C q € {0,..., N} are given by
Vo N Hona.

Relying again on Lemma 4.7, we can then consider the weighted iterated blow-up
X = [X;{Vqg N Hmax [ {0} S q C{0,....N}}z
provided the blow-ups are performed in an order compatible with the partial ordering of the strata, where

the lift of the coordinate wq ; has weight w, ; = w,, j» while (the lift of) the boundary deﬁnlng function Tmax
has weight 1. When v := 3 is positive, the set M1 (X ) of boundary hypersurfaces of X decomposes as

(59) Ml( )ZML()(X)UMLU(X),

where MLO()A( ) is the set of boundary hypersurfaces corresponding to the lift of boundary hypersurfaces
of X coming from blow-ups of the strata OV q N OV g sing for subsets {0} C q C {0,..., N}, while My, (X A)
corresponds to the remaining boundary hypersurfaces. Notice that My o(X ) will be empty when 8‘/[ sero 1S.
When v = E =0, (?ngzcm is empty, but it will be convenient in this case to use the notation

5 s S 4
Mlyy(X):Mlyo(X) = M1(X) ifl/:E:O.
For each blow-up performed to construct X , notice that the corresponding blow-down map induces a fiber

bundle on the corresponding boundary hypersurface. On the other hand, on the lift Honax Of the boundary
(Oant

hypersurface 0 to X , the natural fiber bundle we consider is that given by the identity map. All these
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fiber bundles combine to confer X with an iterated fibration structure. In other words, X is naturally a
QAC-manifold with fibered corners. Given the order in which we blowed up strata, one important feature
of the induced partial order on M (X) when v > 0 is that if H € M; o(X) and G € M, ,(X) are such that
HNG# 0D, then H < G.

Let C. be the closure of C, C Crm+n in X. For each H € ./\/ll()A(), there is a corresponding boundary
hypersurface fAIE = HnN 66 of d. For e = 0, Cy is a singular affine variety and fAIO will be singular as well.
Since the base Sz of the fiber bundle ¢z : H- S 7 corresponds to a resolution of a singular stratum of

0C), notice that ¢g restricts to 60 and to C*E for € # 0 to induce a fiber bundle
(5.10) ¢f.  H.— Sg.

We need to distinguish two situations. First, if H e ./\/11,0()? ) corresponds to the subspace Vg for q C

{1,...,N} with q # 0, then on the interior of fl, the interior of the fibers of ¢5 : - Sy are naturally
identified with the complementary subspace

Vb = Vg
with natural coordinates given by z, for g € q°. Intuitively, this corresponds to the fact that the weighted
blow-up of the stratum sz corresponding to H ‘undoes’ the radial compactification along Vg in the directions
transverse to V. For wq € 0V corresponding to an interior point of Sz, the interior of the fiber ¢z (wq)

corresponds to Vg, with coordinate z4-. Such a fiber will have a non-empty intersection with CA'6 provided

(5.11) Pyi(wg) = £%Qq.i(20) for qeq
at & = 0, that is, provided
(5.12) P,i(wg) =0 for qe€q,

where wy is the component of wq in V; C V4. The interior of the fiber of (;5;71 (wgq) is then the affine variety
Wye e C Vge of (1.17) with Vge seen as the interior of gb;AIl (wq). In particular, by Assumption 1.2, the interior
of (;5]31 (wq) is smooth for e € C\ {0} close to zero.

If instead H € Mlyl,()?) (with v = £ > 0) corresponds to the subspace V; with subset {0} C g C

{0,..., N}, then, in the interior of ﬁ, the interiors of the fibers of ¢ : H— Sp are again identified with
Vge, this time however using the rescaled coordinates

Wq,j Cd 2q. . )
(5.13) Coj = 22— = ¢ I — §§wqﬂzq1j forgeq® je{l,...,mqg+ng}.

£7T Warg g%wq,j

Again, such a fiber gb;?l (wq) will have a non-empty intersection with C. provided

(5.14) P,i(wg) =0 for qeq\{0}.
Correspondingly, in terms of the coordinates (5.13), the interior of ¢z -1(wq) is the affine variety
(5.15) qu,wq,e = Wae wq,e = {Coe € Vae | Pyi((q) = €[Qqil(wo), g€ i€ {l,...,ng}}

corresponding to (1.18). Again, by Assumption 1.2, the interior of ¢;§1 (wq) will be smooth when e # 0 is
sufficiently close to zero. In fact, in both cases, the interior of (b]_ql (wq) is a smoothing of the cone Wye
identified with the interior of ¢;§i (wgq) -

Now, in both cases, gb;AIl (wq) provides a compactification for V; in the same way that X provides a

compactification for C*™. In the case where He MLU(X ), this corresponds to such a compactification
for C™*" when v = 0. Moreover, the closure of the interior of gb;i (wq) in (;5;71 (wq) is precisely (;5;71 (wq)-

For € € C\ {0}, this discussion can be extended to show that C. is a manifold with corners inheriting from
X a natural iterated fibration structure. However, as a manifold with corners, it will typically not be of
class C, but of class Cl% or lower. For instance, if d is not an integer and the polynomials Qq,i are all
homogeneous, then it will be of class Cl%. Nevertheless, by restriction from X , there is on C, = 66 \ 86’6
a natural ring of ‘smooth’ functions C*° (66), a ring Aphg(d) of bounded polyhomogeneous functions and a

~

ring of n Qb-smooth functions C24, (Ce).
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Now, the set of boundary hypersurfaces of 66 is in bijection with that of X. In particular, there is a
decomposition

(5.16) My(Co) = Mio(Ce) UMy, (Co).

Again, when v = £ > 0, this is a partition, while when v = 0, M, o(C) = My, (Ce) = Mi(Ce). This
suggests to consider the functlon
(5.17) n: 4/11(06) - {0,v}
H€ — Vﬁé
given by
- '_{ v, H.e My, (Co),

He 0, otherwise.
By definition of (5.16),

ﬁe < ée = Vg, < Va
so n is a weight function in the sense of Definition 2.3. This 1nduces a corresponding weight function
n: My(X) — {0,v}. Let 8: X — C*™ denote the blow-down map and let u € C*°(Ci™") be a choice of
boundary defining function compatible with the R*-action near the boundary in the sense that u(t-2) = u(tz)
for t € RT and z € C™" sufficiently large. In other words, choose u to be compatible with the natural

linear equivalence class of collar neighborhood of C™m ™ Then
(5.18) p =B

is an n-weighted total boundary defining function. Using Lemma 2.6, we readily see that the n QAC-
equivalence class of the n-weighted total boundary defining function does not depend on the choice of u,

so there is a well-defined notion of n-warped QAC-metrics on Cj't™. By restriction, this induces a class of
metrics on CA'e. We will declare those to be the class of n-warped QAC-metrics on ée. It will be smooth,
polyhomogeneous or n Qb-smooth if the associated metric on X is. Proceeding in this way, we avoid having
to deal with the fact that CA’€ is possibly not of class C*°. Still, since the differential of the polynomial
P, — Qq,i, seen as a b-differential on X , is always at least of class CV, we can also define “T@E (respectively
wTC, and "®TC,) by considering the elements of "TX| &, (respectively wX]| . and nQbTX| a.) that are

in the kernels of the differentials of the polynomials (P, ; — Qq,;) for all ¢ and i. We say that X and é are
n QAC-compactifications for respectively C™*" and C.. Slmllarly, we have natural n QAC compacmﬁcamons
for V,, Wy and W = Wye wy.e in (1.17) and (1.18) that we denote by Vq, Wq « and W = chywqyé
respectively.

We are interested in examples of warped QAC-metrics that are Kéhler. To study those and see in particular
that they exist, it will be helpful to have complex coordinates adapted to the geometry. Near H € M o(X)
corresponding to V4, we see from the discussion above that we can take the coordinates

zg, q€9°
in the fibers of ¢5 : H— Sg, while on the base, instead of using the real coordinates w,, we can use the
holomorphic coordinates
(5.19) we; =&Y 205, q€q, jE{l,...,mg+ng},

with (£, wq) corresponding to zq with z,; = £ 99w, ;, where £ is now taking values in a sector of the
complex plane, so that its logarithm and its complex powers can be well-defined. To obtain a holomorphic
coordinate chart near H, we can then take z, for ¢ € q°, the coordinate { and all the coordinates w, ; for

geqandj€{l,...,mg,ng} (except one such w, ; that we declare to be equal to one). In this case, away
from the boundary of H, the 1-forms

d¢ dwg _ . .
(520) ?7?(177dzp7j7 qeqvle{lv"'amq_'—nq}a peq?.]e{la"'amp+np}a

except one of the dw, ; omitted, form, together with their complex conjugates, a local basis of sections of
"T*X @ C, giving a complex analog of (2.8) with & = 1. Since n(H) = 0, we are also in the setting of (2.11)
with vy = 0, so it is also a local basis of sections of “T*X ® C.
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If instead H € M17U()/f) corresponds to Vg with {0} € q € {0,1,..., N} and v > 0, then again regarding
¢ as taking values in a sector of the complex plane where its logarithm can be well-defined, we can regard
the coordinate (5.13) as holomorphic. Using again the coordinates (5.19) on the base with one wy ; omitted,

as well as (5.13), we get holomorphic coordinates near H, and in this case the 1-forms

LA, dwy, _ o
(521) g ?ag é.q adC;D,jv qeq,ze{l,...,mq—l—nq}, quaJE{la-'-amp+nZD}a
dﬁo’i

with one &

omitted, combined with their complex complex conjugates, form a local basis of sections of

N X ®r C and are a complex analog of (2.8) with k£ = 1. Correspondingly,

d¢ dwgi ., ) . .
(522) 5_27 5‘17 ag dCP,jv qeqv ze{l,...,mq—l-nq}, peq I je{lv'-'amp+np}a
with one 2= omitted, combined with their complex conjugates, form a local basis of sections of wrX ®rC.

More generally, we can introduce holomorphic coordinates near an intersection of boundary hypersurfaces
as follows. Let q1 C -+ C qr C {0,..., N} be a sequence of embedded subsets and let H; € M;(X) be the
boundary hypersurface corresponding to Vg, so that

H <H = i<j.
In particular, the intersection ﬂlel?[i is not empty. Pick as before & = £ to be the coordinate of the

R*-action of V;, seen as taking values in some sector of the complex plane so that its logarithm can be
well-defined. For ¢ € g1, consider again the homogeneous coordinates

(523) Waq,j :gwq’qu,jv qc q1, .] € {17---7mq+nq}-

In the fibers of H 1, we can initially consider the coordinates zq¢ if 0 & q1 or else the rescaled coordinates (qe
of (5.13) if 0 € q1. In terms of those, we can take & to be the coordinates of the RT-action of V,\4, (seen as
taking values in some sector of the complex plane) and define corresponding homogenous coordinates @y, ;.
Iterating this construction, we obtain holomorphic coordinates

(524) 517wq17'-'7§k7qu7<k

with (i denoting possibly rescaled coordinates in the fibers of ﬁk, where for each w,,, one wy; with
q € q; \ gi—1 is omitted, where we use the convention that qo = (). More precisely, if 0 € qi, let &’ be the
smallest integer such that 0 € ¢, and otherwise set ¥’ = k + 1. Then &; is the holomorphic coordinate
corresponding to the R -action in V,\4,_,, while

_ [ & 2y q € (di \ 9i-1) C dw,
(525) Wq,j = { g?q,j(qlljwq,j Zq,j)7 q€q \ Qi1 k< i,
and ¢ = {2, | g € qf, j € {1,...,mg+ng}} if ¥ = k+ 1 and otherwise corresponds to the rescaled
coordinates
&' 2g; forqeqy, je{l,....mg+ng}.
When £’ < k, we will further assume that in (5.24), the coordinate in @, , that is omitted is @ = i 29. This
will ensure that & can be seen as a holomorphic coordinate coming from the RT-action of Vo C V,

G \dgs —1°
In terms of (5.24), when k¥’ < k, a local basis of sections of "T™* X ®g C is given by

s déy

(5.26) 51'9—275,‘;/61%1 L. dwg,, dégyr dwg,,, ¢y, deog,
1 %

51 gk’ ) §£/+1 ) 51@’.‘,_1 ge ey ]% ’ gk
and their complex conjugates, where to lighten notation, dw,, stands for
{dwg; g€ ai\qi-1, j€{L,....,mg+ng}}

with one dwg,; omitted for each dw,,. From (5.26), we see that the 1-forms

7"'55]1;’ é.llc,/ ade

dé. dw dgk’ dw ’ —v dé.k’ —v dw ’ —v dgk —v dw —v
(527) _215 1 sty T L T 75]« +1a€]g/ i +la"'a€]§/ _2’€k/ qugk/ dckv
1 51 K’ gk’ gk’-‘rl gk

together with their complex conjugates, form a local basis of vTX @ C.

2
S
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If instead k&' = k + 1, then instead of (5.26) we see that
&y dmy  dy do,
2 ) 51 AR I% ) §k

together with their complex conjugates, form a local basis of sections of "T*X ®pr C and wTX ®r C. Notice
that the coordinates (5.24) are only valid in the interior of X and are not coordinates on X as a manifold
with corners. However, as in (2.8), the sections (5.26) and (5.28) naturally extend to the boundary of X as
sections of "T*X ® C.

(5.28) ; Qs

Lemma 5.1. The complex structure J of C™™ naturally extends to a section

J € C®(X;End(“TX)) with J>=—1d.

Proof. This is clear from the local descriptions (5.27) and (5.28). O

Remark 5.2. Since n Qb-metrics and n QAC-metrics are conformal to n-warped QAC-metrics, notice that in
fact
J €C®(X;End("TX)) = C*®(X;End("TX)) = C*(X; End(""TX)).

By restriction to 66, Lemma 5.1 shows that the complex structure J. of C, extends to a section
(5.29) J. € C®(C.,End(*TC,))
which is ‘smooth’ up to the boundary in the sense that it comes from the restriction of J to ée.

To show that a Kéhler metric on C. is a warped QAC-metric, Lemma 5.1 indicates that it suffices to check
that its Kéhler form is an element of Cg%,, (Ce; AV (YT*Ce ®g C)). In the remainder of this section, we will
construct examples of Kihler warped QAC-metrics with d9-exact Kéhler forms, that is, with Kéhler form

w= QBEU for some potential U. To do so, as in [18, Corollary 4.4], we will use a convexity argument of
van Coevering [40, Lemma 4.3] to extend a model at infinity to a Kdhler form on the entire space.

Lemma 5.3. Let 2 denote 66, the n QAC-compactification Wq e of (L.17) or the nQAC compactiﬁcatwn
Wq of (1.18) for € # 0. Suppose that u. is a smooth positive proper function on Z. := Z \BZ such that

We = T_l HOu,

is the Kdhler form of a Kdhler n-warped QAC-metric g. € C"O(Z\6 \ K SQ(WT*Z)) on the complement of a

compact set K. C Z.. Then there exists a potential u. defined on Z. and agreeing with u. outside a compact

set such that
- v—1_=_
We = Taauﬁ

w N

is the Kihler form of a global Kdihler n-warped QAC-metric g. € C*(Ze; S2(*T*Z.)) on Z..

Proof. By assumption @aéue > 0 outside the compact set K. Since u, is proper, this can be formulated
as saying that there exists a constant C' > 0 such that Q@gue > 0 for all p € Z, such that u.(p) > C. Let
1 € C*(R) be a non-decreasing convex function such that

t, ift >C+2,
n(t) = {

(5:30) C+3, ift<C+1.

For such a choice, 1 o u. agrees with u. outside a compact set. Since n',n” > 0, we see also that

e s s N
2

(531) Taan OUe = Tn//(ue)aue A aue + Tn/(ue)ague > n/(ue)ague > 0.

Now, Z. is an affine variety in C* for some k € N. Let w, be the restriction to Z. of the Euclidean potential
Zle |zi|? on CF and let ¢. € C3°(Z.) be a nonnegative function such that

1, ifud(p) C+2,
¢€(p)_{ 0, ifu.>C+3.
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We claim that it suffices to take
Ue 1= 1 0 Ue + Pw,

with & > 0 sufficiently small. Indeed, by construction, %, is equal to u,. outside a compact set. By (5.31), at
a point p where u.(p) < C + 2,

—V;laéae > 5—V2_185w6 >0,

while at a point p where u. > C + 3,
v-1
2
On the other hand, in the compact region where

C+2<up) <C+3,

00, = —V2_185u6 > 0.

notice that

T_laé(n O Ue) = T_lagué >0,

so taking 0 > 0 sufficiently small, we can ensure that @83175 > 0 in this region as well. O

- § : 2
rq = Ta
q€q

=1 _
ww, = Taarg
is the Kahler form of the natural Calabi-Yau cone metric on Wy. For each ¢, consider a smooth extension
r; of 74 to V, \ {0} as a homogeneous positive function of degree 1 with respect to the R*-action. Cut it off
near {0} using a partition of unity and denote by 7, the resulting function. This function is smooth, but no

longer homogeneous. However, it agrees with T; outside a compact set. More generally, let

o 72
rq= Erq

q9€q

If we set

then

be the corresponding function on V. For q = {0,..., N}, we will also use the notation

Lemma 5.4. The function % 18 an n-weighted total boundary defining function n QAC-equivalent to that of
(5.18).

Proof. Let 1 C -+ C qx C {0,...,N} be a sequence of embedded subsets and let H; € M;(X) be the

boundary hypersurface corresponding to V;,. Then near a compact region of the interior of Hy N ... N Hy,

the function 7, is homogeneous of degree 1, so L s clearly n QAC-equivalent to (5.18). On the other hand,
k

Tq

1 1 1 1

T s =2 T, 72
qu+rq2 q 1+F;
a

=0

~2

and clearly T:—f =0on ﬁl, ceey Hy_1 and Hy,. By Lemma 2.6, % is n QAC-equivalent to % and (5.18) near
q Ik

a compact region of the interior of fll N...N ﬁk. Since fll N...N flk was an arbitrary corner of )A(, the
result follows.
O
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On 60, notice that 72 agrees with 72 near the maximal boundary hypersurface ﬁmax of X , SO

V-1

V2007 = we,

on 60 near ﬁmax. In fact, in the coordinates (5.24) near Hyayx, so with Hy = Hyax and with no coordinate
Cx, the potential 72 takes the form

K k
(5.32) 7= lal fi@a) + e |7 Y filwa)
i=1 i=k/+1
for some smooth functions f;. Clearly, in terms of (5.27), using the fact that 1 — v > 0, we see that
V=1 _ ~ ~
Taa?ﬂ €C™®(X; AV (" T*X @k C)).

d

max at ﬁmax, we see also that —V;l(?g?z remains positive definite on

Since C, and Cj are tangent to order
CA’€ near ﬁmax, hence defines there a Kéihler n-warped QAC-metric. However, there is no reason a priori for
@8572 to be positive definite everywhere on CA'e. Nevertheless, using Lemma 5.3, we will modify 72 to
obtain the potential of a Kihler n-warped QAC-metric on 66.

Theorem 5.5. There exists a smooth positive function ¢. on 6’6 agreeing with 72 near ﬁmax such that g@gd)é

is the Kdhler form of an n-warped QAC-metric on 65. Moreover, zfﬁ corresponds to the subset q, then in
terms of the decomposition C™*™ = Vi x Ve, near H,

(5.33) be = 7"?, + e (zqc,ch)

if H € Ml,o()?), where @a&ch (2qe, Zqe) is the Kdhler form of an n-warped QAC-metric on Wye . If
instead H € My, (X) with v > 0, then

(534) (be = ?ﬁ + |Z0|2V¢qc (chanC)v

where (qe are the rescaled coordinates of (5.13) in Vye and @aéqsqc(gchqc) is the Kdahler form of a
QAC-metric on Wye w, e-

Proof. Let He /\/ll()A( ) be a boundary hypersurface such that H< f[max and

H<G = G = Hnax.
The fibers of ¢ : H— S are then manifolds with boundary and He ML,,()A(). If corresponds to the
subset q C {0,..., N}, then in terms of the decomposition

C™ " = Vg X Ve,
we have that

(5.35) 7 =T o T

Now, the function 74, agrees with rqc outside a compact set and so is homogenous there. In terms of the

coordinates (5.24) with k = 1, H, = H and such that ¢1 is the function of the R*-action on Vg3, this means
that in this region,

Tao (2q0) = [&1] 7 Fqe (Coe)-
By Lemma 5.3, we can find ¢4 (ch,zqc) with ¢ge = ??Ic outside a compact set such that @a&ﬁqc(gqc,zqc)
is the Kéhler form of a QAC-metric, in fact of an AC-metric, on Wee ,,,  for each wy and € # 0. Now,
replacing Fﬁ in (5.35) by |17 ¢qe (ch,zqc), we obtain a potential
Ve 1= ?ﬁ + |§1|72U¢q‘: (CqCanC)

on 65 which agrees with 72 near ﬁmax and such that @aﬁwé is the Kéhler form of an n-warped QAC-
metric not only near ﬁmax, but also near H. Indeed, in any coordinates (5.24) near H , &k corresponds to
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the coordinate of the RT-action on Vy and we compute that

«/_1 _ _ \/ — d / d
Taa|§k’|_2u¢q°(<qca<q0) || 72— <33¢q°+ —v0bqe N —5- gk — vy gk A Odge
k/ k,
2 dfk z dfk/
5 /\ o
(5.36) T el g 3¢ )
= l&w|” 2V—Vaa¢qc+|§ ' i Apng (X AV (“T* X @5 C))

= |60 |7 Yom00¢ge + @ 5 Aphg(X; AV (YT X @5 C)).

In particular, since g@gqﬁqc is a Kéhler form on Wye o, ¢, this shows that @aﬁwé is an n-warped QAC-
Kihler form when x5 is small enough, that is, for points sufficiently closed to H. We can iterate this

V-1
2

construction near each boundary hypersurface of CA'6 proceeding in a non-increasing order with respect to the
partial order of My (X A) More precisely, fix He My (X A) and assume that we have a potentlal 1/15 agreeing
with 72 near Hyay and such that \/_881/16 is a warped QAC-Kéihler form near G for each G > H. Suppose
that H corresponds to the subset g C {0,..., N}. In terms of the decomposition C"*t™ = V; x Ve, we can

assume by induction that near Hn (UG> G)

(5.37) Ye =Ta + Yeqe

with @83?}2' a warped QAC-K#hler form on Wq near Sy seen as a boundary hypersurface of ‘A/q. If0 e q,

then using the coordinates (5.24) with H, =H , &k a coordinate corresponding to the RT-action in Vioy
and (r = (qe corresponding to a rescaled coordinate on Vje, we can suppose more precisely that outside a
compact set of Ve,

we,q‘: (7 §k/ ) Ek’ ) Cq%&.c) = |€k’ |_2U¢E,qC (CqC,ch)
with @351&@0 (Cqe, ch) a Kéhler form of a QAC-metric outside a compact set of Wye o, .. Using Lemma 5.3,

we can change ¢ qc to a function ¢, qc within a compact set so that g85¢€1qc(<qc , ch) is positive definite
everywhere on Wye o,  for each wq and € # 0 small. We can then take the new potential

we = F)c2| + |§/€’ |_2U¢6,qc (ch ’ ch)'
By construction, {/)VE =t near Ug. 5 G and as in (5.36), one can check that

VT e _ VAT /1
2

(5.38) 500 = ~— 007 + 6w 00qe + 15 Apng(X; AV (" T*X @5 C)),

so is an n-warped QAC-Ké&hler form on 66 near H. If instead 0 ¢ ¢, then we still have a decomposition
(5.37), but with the difference that on Vje, we can directly use the coordinates z4e instead of the rescaled
coordinates (- and assume that

Ye,qe = Ve qe(2qe, Zqe )
Moreover, this time, gagmﬂc(zchqc) is an n-warped QAC-metric outside a compact set of Wye .. We
can therefore use again Lemma 5.3 to change 9. q- on a compact set and obtain a new potential ¢. q- with
@83@7“ positive definite everywhere on Wge . It suffices then to take

d’e :7/)eq+¢eqC-
Indeed, by construction, we e near UG> i G and we can easily check that Faawe is also the K&hler
form of an n-warped QAC-metric on C near H.
This completes the inductive step and shows that we can find a potential 9. agreeing with 72 near f[max
and such that @851/)6 is the Kéhler form of an n-warped QAC-metric on 65 outside a compact set. Using
Lemma 5.3 one last time, we can thus find a potential ¢. agreeing with 1. outside a compact set such that

g@&bé is the Kéhler form of an n-warped QAC-metric on C..
O



44 RONAN J. CONLON AND FREDERIC ROCHON

Let us formalize the type of metrics that we have obtained in the following analog of [13, Definition 3.6].

Definition 5.6. A Kdhler n-warped QAC-metric g € CﬁoQb(CE; WT*@ ® wT*ée) is asymptotic with rate ¢
to the Calabi- Yau cone metric we, if:

(1) Near Hyax, w — @8572 ez’ be(Cﬁ;Alvl(WT*d));

max

(2) Near H € My(X) corresponding to the subset q,
v—1

w— Ta@%ﬁ —|2o|*Awg € 2pC%,(Ce AV (VT Cy))

with wg a closed (1,1)-form on H which restricts on each fiber W, ¢ wq.e Of bz, - ﬁe — Sg to
the Kdhler form of a Kdhler nz_ -warped QAC-metric asymptotic with rate 6 to gw,., the natural

Calabi-Yau cone metric on Wqe obtained by restricting gc,. Moreover, as a family of (1,1)-forms
parametrized by Sg , wg is smooth up to OSg .

Notice that the definition is not circular, since by induction on the depth of CA'E, we can assume that the
notion of a Kihler nz_ -warped QAC-metric asymptotic to gw,. with rate § has already been defined.

This yields the following characterization of the Kéhler metrics of Theorem 5.5.

Corollary 5.7. If d > 1, then the Kdhler n-warped QAC-metrics of Theorem 5.5 are asymptotic with rate d
to the Calabi- Yau cone metric gc, .

Proof. By construction, ¢. agrees with 72 near ﬁmax, which implies (1) in Definition 5.6. Using computations
as in (5.38), (5.33) and (5.34) imply (2) of Definition 5.6 so the result follows. O

To construct Calabi-Yau examples, the key property of the Kéhler metrics of Definition 5.6 that we will
use can be formulated in terms of the following analog of [13, Definition 5.1].

Definition 5.8. For H < f[max, let CﬁoQb(fIE/Sge) be the space of smooth functions on

H\ | |J GenH.
Ge>He
which restricts on each fiber qﬁl_ql(s) to a function in C:Owa;AIZ (8)). A function f € EﬁlaxC]fOQb(Ce) is said to
restrict to dC, to order r > 0 if for each H < Hpay, there is fa. € 20 ?Qb(ﬁe/sﬁé) such that
f—1Tg € /x\fnax‘r%cr?OQb(Cﬁ)'
We denote by 77, Can.(Ce) the subspace of functions in ffnaxCI?oQb(Ce) that restrict to OC. to order r.

max

Indeed, as the next lemma shows, the Ricci potential of the Kéhler metrics of Definition 5.6 is an example
of such a function.

Lemma 5.9. If d > 1 and w. is the Kdhler form of a Kdhler n-warped QAC-metric asymptotic to gc, with
rate d, then its Ricci potential

w™m
5.39 Te = lo 76_,,,{
5% : (Cmga A Qcé>

is an element of i\fnaxcl‘f’QbJ(C’E).

Proof. Let us first check that t. restricts to 865 and consider the forms
(5.40) dz :=dzo AN (dzaa N ANd2imytng ) AN A(d2Na Ao Ad2ZN my+ny )
and
(541) P.:= (d(Pi1—€Q11) A ...d(Prp, —€Qin)) A ... AN(d(PN1—€QN1)A ... Nd(PNny — €QNnn))-
For ¢ € {1,..., N}, consider also the form
Peq:=d(Py1 — €Qq1) N ... d(Pyn, — €Qqn,)-
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Then from (1.16) and the definition of t., we see that there exists a constant ¢, , € C* depending only on
m and n such that

(5.42) te = log (

Ce*

w APe A P.
Cmndz Ndz

To study the behavior of t. near H € ./\/ll()?), let g C {0,..., N} be the subset corresponding to H.If0 ¢q,
that is, if H € My ¢(X), then in the coordinates (5.19), we see that for ¢ € q¢\ {0}, the 1-form

d(Py,j(2q) — €Qq,j(20))
naturally restricts to H while for qEq,
Peq="Po,q+ O(gd)v

where O(£?) corresponds to a sum of n,-forms, each homogeneous in ¢ of degree at least —(n, —1)d (instead
of —ngd for Py o ). Keeping in mind (1.3), the latter is to be compared with

dzqj = d(§e wq,j)-
If instead 0 € q, then in terms of the coordinates used in (5.22), we see that for ¢ € q¢,
d(quj (2‘1) - EQ‘M (20)) =d (giydpq,j (Cq) - 6@(17]’(5717”0)) =d (giepq,j (Cq) - EQq,j(§71w0))
(5.43) =d (gie(Pq,j (Cg) — €lQqs1(§ 'm0))) + OET=4),  for some a > 0,

(a+1)d

d (f_é(Pqﬁj (Cq) - G[Qq,j](g_IWO))) + O(xgd% g_g%

(a+1)d
where O(¢9H1—4) = Oz 5" ¢7%) is with respect to the local sections of 1-forms % and @ in (5.22). For

q € q, we have instead that

(5.44) d(quj (Zq) —€Qq,; (20)) = d(f_dpqyj (@) — €dQq,j (g_lwo)v
so that
(5.45) Peq = Pog+ O(E") = Pog + O(z})

with O(¢7~%) = (’)(x%) corresponding to a sum of n,-forms, each homogeneous in £ of degree at most
—ngd+d — ¢, instead of —nyd for Py 4. Thanks to property (2) of Definition 5.6 and keeping in mind (1.3),
we see from (5.42) that v, restricts to OC. to order 1 in both coordinate charts. Similar computations can
be done in the coordinates (5.24), from which the result follows.

At Hppax, notice that q=1{0,...,N},soq® =0, that is, (5.43) does not arise and we only need to consider
(5.45). On the other hand, since w¢, is Calabi-Yau, we know that

(546) Ty = log wigo_ml =0.
CngwLO A QCO

Combined with property (1) of Definition 5.6, this gives the desired decay at Homax. O

6. SOLVING THE COMPLEX MONGE-AMPERE EQUATION

Suppose that d > 1 and let g be a Kéhler n-warped QAC-metric asymptotic to the Calabi-Yau cone
metric go, with rate d. By Theorem 5.5 and Corollary 5.7, such a metric exists provided d > 1. If we is the
Kéhler form of g, then @, := we + v/—190u will be the Kéhler form of a Calabi-Yau metric provided u is a
solution of the complex Monge-Ampeére equation

log ((we + \/—_135U)m> I

m
wﬁ

(6.1)

where t is the Ricci potential of g. as defined in (5.39). By Lemma 5.9, this is a particular case of the more
general complex Monge-Ampere equation

log ((w€ +/—=100u)™

m
wé

(6.2) ) = for f €5 Coa (C).
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As in [13, § 5], we will solve this equation by first solving the corresponding equation on each non-maximal

boundary hypersurface of 66. This will allow us to proceed by induction on the depth of d. In the induction
step, we can in fact assume that f € ¢ wCg, (Ce), where

max
w = H xﬁ.

HeMum(X)

Lemma 6.1. Let 8 be a real number such that ﬁ < B < (1217:,) and B < 2mﬁe for each ﬁé S Mnm(aé),

where 2mg is the real dimension of the fibers of ¢z - H. — Sg.- Let 0 be a multiweight such that

5max:ﬂ—%, —fffﬁ <dg<1- 12:2 and
1_]/ 2 1—V 2
- 2-2mgz <z < -
<1—Vﬁ>ﬁ 1-— ﬁ-‘r mHﬁ H (1—1/}7)[3 1—Vﬁ

for He Mun(X). If f € fﬁawa?Qb(Ce) for some ' > B, then there exists v € IJCSOQb(Ce) such that
Qe = we ++/—100v is the Kihler form of an n-warped QAC-metric g. asymptotic to gc, with rate min{d, B}
and with

(63) Fm £ 1o (25) e cx(co),

€

Proof. We follow the approach of [36, Proposition 25] and apply a fixed point argument outside a sufficiently
large compact set of C.. For A > 0, consider the closed subset

P~ ([A,00)) C Ce.

Denote by :v‘s(,’f’gb (p~1([A,0))) the subspace of functions on p~1([A, o0)) obtained by restriction of x‘;(,’fgb (Ce)

to p~1([A,)). The norm of a function in :cécfg‘b(pfl([/l, 00))) can be defined as the infimum over the cor-

responding norms of the possible extensions in x‘;Cf ’Sb(CE). For § as in the statement of the lemma, consider
the subset

B:={ue wécfgiﬁa(p—l(m’oo))) | ||u||mécfg2ga <e€}

for some €y > 0 chosen sufficiently small so that w, + /—190u is positive definite in p~*([4,0)). To solve
the complex Monge-Ampere-equation near infinity, consider the nonlinear operator

F: B — (pw)’Qw‘;Cbe(Pfl([AaOO)))

RN log ((waﬂ/ﬁa&)M) s

This can be rewritten as
1
F(u) = F(0) + §Ageu + Q(u),

where A, = gV,;V; is the Laplacian associated to g. and Q(u) is the nonlinear part of F(u). Let u € C*®(R)
be a function such that u(t) =0 for t < 1 and p(t) = 1 for t > 2. To solve (6.2), it suffices then to solve the
equation

(6.4) u = 205" [u(p — A)(=F(0) = Q(u))],

where A_ ! is the inverse provided by Corollary 3.23. Indeed, if u € x‘;(,’fg%’a(p_l([A, 00))) is a solution of

(6.4), then it is a solution of (6.2) on p~1([A +2,)). Now, to solve (6.4), we can look for a fixed point of
the operator

(6.5) N(u) := 22, [u(p — A)(~F(0) - Q(u))].
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This can be achieved by showing that N is a contraction. First, as in the proof of [36, Proposition 25], we
see from the explicit formula for @ that for u,v € B,
1Q() = Qo) gy -2ascre < C (10Bulletg (o1 4 seyara =gy + 1000l et (o1 aeparaur-iy )

lu = vllsersza

< C (lul puysctzze + ull pupscrize ) lu = vl ace gz

for some positive constants C' and C depending on g., but independent of the choice of €y in the definition

of B if we assume without loss of generality that ¢y < 1. Since dpax > % and 05 > —ff—yﬁA, there is a
H
continuous inclusion
Spk+2,0, — k42,0, —
2°C o (071 ([A, 00)) C (pw)*Cy ey (p 1 ([A, 00)),
so changing C if necessary,
(6.6) 1Q(u) — Q(V)|| (pw)-2zscra < C (||U||m<sc§gga + ||U||wac§5§a) lu=vllgocrtze Vu,veB.

Since the Cf’gb—norms of u(p — A) can be controlled independently of the choice of A, we see from (6.5),
6.6) and Corollary 3.23 that by taking ¢y > 0 sufficiently small in the definition of B but independent of the
( y y g

choice of A, we will have that

1
IV (u) — N(’U)”wgcfgzb,a < §||u - U”m(;csgzga Yu,v € B.

To apply the Banach fixed point theorem, we also need to check that N maps B to itself. First note that

F(0) = —f € BauCign(Co)-
Since 3’ > B and 65 <1 — lz_ll—li, this means that there are constants C' > 0 and 7 > 0 such that

H

”F(O)H(pw)*%écfgb < OA7 .

Hence, by Corollary 3.23, for u € B, there is a constant K > 0 independent of A such that

1N (@)l gscrrza < INO)|pserize + 1N (@) = N(O)]] 5crs2.a

1
< K||F(0)||(pw)—2mac‘lf,sb + §||U||15C‘1:52b,a

< KCA™ + %0.

Thus, for A > 0 sufficiently large, N(B) C B and N has a fixed point u as required. Initially, u is only defined
on p~1([A, o)), but using Lemma 5.3, we can find a new function v agreeing with u outside a compact set
such that

Te = we + V=100
is positive definite everywhere. Using Corollary 3.23 and (6.2), we can bootstrap to see that in fact v €
20C (Co).
O

The decay in (6.3) is exactly what we need to solve the complex Monge-Ampére equation via the approach
of [39] or its parabolic version [10].

Theorem 6.2. For the Kdhler form w. and the function f of Lemma 6.1, the complex Monge-Ampére equation

(6.7) log ((ae + gagu)m) .

f

has a unique solution u in :CEC;’OQb(Ce), where § is any multiweight satisfying the conditions of Corollary 3.23
such that dmax > 0 and gﬁ >0 for He ./\/lnm()?).
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Proof. The proof is quite similar to those of [13, Theorem 5.4] and [18, Theorem 6.2]. For the convenience
of the reader, we will go over the argument putting emphasis on the new features. The overall strategy is to
apply the continuity method to the equation

log ((@6 + \/Nfaéu)m> ~

(6.8) =tf

€

for ¢ € [0, 1]. This will be achieved by showing that the set

S :={s €0,1] | there is a solution u. € x‘SCnQb( ) of (6.8) for ¢t = s}

is all of [0, 1], that is, by showing that S is nonempty, open and closed. Clearly, ug = 0 is a solution of (6.8)
with ¢ = 0, so S is not empty. On the other hand, the openness of S follows from Corollary 3.23.

To see that S is also closed, suppose that [0,7) C S for some 0 < 7 < 1. We need to show that (3.23) has
a solution u, € x‘;Cf:OQb(CE) for t = 7. By Corollary 3.18, the Sobolev inequality holds for n-warped QAC-
metrics on C, so we can apply Moser iteration to derive an a priori C%-bound on solutions of (6.8). The
argument of Yau then provides uniform bounds on v/—100u;, which by the result of Evans-Krylov, yields a
priori C27(C.)-bounds on solutions. Taking an increasing sequence t; /7, we can apply the Arzela-Ascoli
theorem to extract a subsequence of {u,} converging in C2(C.) to some solution u, of (6.8) for t = 7.
Bootstrapping shows that u, € C°(C.).

To show that u, € xécgoQb (C¢), we can first apply a Moser iteration with weight as in [27 § 8.6.2 and

§ 9.6.2] to obtain an a priori bound in p=*1C2(C,) (X).
As in [13, (5.11)], equation (6.8) for ¢ = 7 can be rewritten as

(6.9) Ayu=r1f,

where

1 1
Ayv = —/ (Ayv)dt
2 Jo

with A, ; the Laplacian associated to the Kéhler form &, + t/—109u. By Proposition 2.17, we can apply
the Schauder estimate to (6.9) in terms of n-warped QAC-metrics to bootstrap and obtain that in fact
ur € p~HC(C,). Now by Lemma 2.16, we know that

pHC(Ce) C CRgi(Co).
In particular, this implies that [|09u, |5, € CY ob(Ce). Rewriting (6.9) in terms of an elliptic n Qb-operator
(6.10) (pw)?Ayu = (pw)*7f
and using Lemma 2.15, we can apply the Schauder estimate and bootstrap to see that u, € p’“lcr‘f"Qb(C’E).
Finally, using the inclusion :10‘5(,’n Qb(C ) C p nQb(C’ ) for g1 > 0 small enough, we see from Corollary 3.23
applied with & above and with a positive multiweight 6’ small enough such that p M (Ce) C 2 % an(Ce)

that u € a:‘?cn Qb(C ). This shows that S is closed and completes the proof of existence. For uniqueness, we

can proceed as in [6, Proposition 7.13] but using the isomorphism (3.42) instead of the maximum principle.
O

This allows us to solve the complex Monge-Ampere (6.2) when f € EfnanCSOQb(Ce).

Corollary 6.3. Suppose that B is a real number such that

<p<

2m

2 PR —
1-v) (1=v)

and B < 2mp_ for each H. e Mim( 6) Let § be the multiweight as in Lemma 6.1. If f € :vmawan ab(Ce)
for some ' > 3, then the complex Monge-Ampére equation (6.2) has a unique solution u € x CnQb(C ).

Proof. The existence is given by Lemma 6.1 and Theorem 6.2. Uniqueness follows again from [6, Proposi-
tion 7.13] using the isomorphism (3.42) instead of the maximum principle. O

Using these results, we can finally solve the complex Monge-Ampeére equation (6.2) in full generality.
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Theorem 6.4. Suppose that B := min{d,2m1,...,2my} is such that
2
> —.
b 1—v
Then for f € 2 CﬁoQb)l(CE), the complex Monge-Ampére equation (6.2) has a unique solution

max
u e EﬁiQUQUCOOQb)l (Ce),

max n

where o := HﬁeMl,u(f{) x}lﬁ if v >0 and o := 1 otherwise, so that o¥ = p".
Proof. To construct u, we will first construct what should be the restriction of o =2"u to fAIE for ﬁe S Mnm(ée)
such that

H<G = G = Hpax
By property (2) of Definition 5.6, using the rescaled complex coordinates (5.13) in the fibers of bz, H. —
S 7. » this restriction that we will denote by ug , should satisfy fiberwise the complex Monge-Ampere equation

(Wi +V/—100uz) " e
(6.11) log 4 i, H = flg.-
ﬁe

This is a family of complex Monge-Ampere equations in the asymptotically conical setting. Applying the
asymptotically conical analog of Corollary 6.3, see for instance [15, Theorem 2.1], we can solve it in each

fiber to find a unique solution ug € Eﬁ;ﬁ(}r‘f"Qb(ﬁé/Sﬁ ). Extend ug smoothly off H, to a function Ug
and consider the new closed (1, 1)-form

(6.12) W, g = we +V=109(c* g ).

By property (2) of Definition 5.21 and (6.11), it is positive definite outside a compact set. By Lemma 5.3,
changing %z on a compact set of Cc, we can assume that w_g is positive definite everywhere. By (6.11)
and computing as in (5.36), using the fact that
B-2+12; ~T
O.Ql/xmax ! = O(Iﬁlax'(azyxflnax))v

we see that

m

w™.
(6.13) Ji:=f—log <w€—j> € Thac 5CGn1 (Ce).-

€

Thus, replacing we by w, 5 and f by fi, the complex Monge-Ampere equation (6.2) corresponds to solving

610 s ((w@ o \;—Taau)m

w ) = fl € Eﬁlaxxf[cgoQb,l(Cé)'

e H
Let K be the subset of Mym(X) consisting of boundary hypersurfaces H such that
H<G = G = Hnax.

Performing this argument at each He K, we can reduce to the case where

(6.15) fezlo | Il =a | Cgua(Co).
Hek
Knowing that (6.15) holds, this argument can be iterated. Namely, if H € Mun(X) \ K is such that
H<G = GeKU{Hnau}

then we can find the restriction of o=2"u by solving (6.11) again, this time however with Corollary 6.3
(with v = 0if H € M, U(;()) instead of [15, Theorem 2.1]. Proceeding in an order which is non-increasing

~

with respect to the partial order on My, (X), this argument can be iterated to reduce to the case where
fe Eﬁawa?Qb(Ce). One can then apply Corollary 6.3 once more to get the desired solution on C-.
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To show the solution is unique, we again apply [6, Proposition 7.13] with the maximum principle replaced
by the isomorphism (3.42) with multiweight ¢ such that d7 = — 27”5}{ for H € Mpm(X) and

1

5max:ﬂ_i_A

1—v

with A > 0 possibly positive but small.
O

Applying this result to the complex Monge-Ampere equation (6.1) yields the main result of this paper.

Corollary 6.5. Suppose that d > 1 and that 8 := min{d,2m1,...,2my} is such that

2
[3>—1_y.

Then for € # 0, C. admits a Calabi- Yau n-warped QAC-metric asymptotic to gc, with rate .

Proof. Since d > 1, we know by Corollary 5.7 that there exists on C. a Kéhler n-warped QAC-metric
asymptotic to gc, with rate d. By Lemma 5.9, its Ricci potential v, is in E‘rinaXCﬁOQbJ (Ce), so by Theorem 6.4,

the complex Monge-Ampere equation (6.1) has a unique solution u € 27 _202”C§°Qb71(06) and

De = we + V—100u

is the desired Calabi-Yau metric.

When N =1, it is possible to improve slightly the result as follows.

Corollary 6.6. Suppose that N = 1, that d > 1 and that 8 := min{d,2m1} is such that either 8 > %, or
else

2

Then for € # 0, C. admits a Calabi- Yau n-warped QAC-metric asymptotic to gc, with rate .

Proof. If 8 > %, this is a particular case of Corollary 6.5. If instead (6.16) holds, we can follow the

strategy of [18, § 7]. More precisely, as in the first part of the proof of Theorem 6.4, we can first solve the
Monge-Ampére equation on the fibers of H, € Mum(Ce) to reduce to the case where t, € 5glawa§°Qb(C’E).
By [17, Corollary 5.4], we know in fact that t. € Efnawaphg(@). Proceeding as in [18, Lemma 7.1], we can
then eliminate the part of the polyhomogeneous expansion of t. at f[max of order 13—}/ or less. Indeed, if
(TH w)e is a term of order pu < % in this expansion at flmax, then since

TH

— pHopl—n — ,—p(l-v), 1—p
maxw =vw =p w

)

we need to solve I(B,\)f\ = w!™*e as in [18, (7.6)] with A = u(1 — v) — 2, which can be achieved through
[18, Corollary A.5] with

a—2=1—p.

But in our case, f = 2my — 1 in the statement of [18, Corollary A.5], so for this corollary to apply, we need
—f+1<a<0, which in terms of u and m; translates into

(6.17) 3 < p<2my +65.

By assumption, 8 < p < 72, so (6.17) holds thanks to (6.16). We can therefore proceed as in [18,
Lemma 7.1] to reduce to the case

te € T W ApLg (Ce)

with p > % We can then rely on Corollary 6.3 to conclude the proof. 0
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