- Wings of fringed fruit-eating bats (Artibeus fimbriatus) are highly integrated biological
- 2 airfoils from perspectives of secondary-sexual dimorphism, allometry and modularity
- 3 RICHARD D. STEVENS 1* and EMMA E. GUEST 2
- 4 ¹Department of Natural Resources Management and Natural Science Research Laboratory of
- 5 the Museum of Texas Tech University
- 6 ²Bowman, 133 West San Antonio Street #500, San Marcos, TX 78666, USA
- 7 *To whom correspondence should be addressed: <u>richard.stevens@ttu.edu</u>

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Phenotypic variability is ubiquitous. This is especially true in bats where families such as Phyllostomidae encompass as much phenotypic variability as some entire orders of mammals. Typically, phenotypic variability is characterized based on cranial morphology with studies of other functionally important aspects of the phenotype such as legs, feet and wings less frequent. We examined patterns of secondary-sexual dimorphism and allometry of wing elements of the fringed fruit-eating bat (Artibeus fimbriatus) as well as examined for the first time modularity of bat wings. Patterns were based on 13 wing measurements taken from 21 female and 15 males from eastern Paraguay. From a multivariate perspective A. fimbriatus exhibited significant secondary-sexual dimorphism. Females were larger than males for all 13 wing characteristics with significant differences involving the last phalanx of the 4th and 5th digits. Female wings were also relatively larger than male wings from a multivariate perspective as well as the last phalanx of the 4th and 5th digit, after adjusting for wing size based on forearm length. Wing elements were highly variable regarding allometric relationships with some exhibiting no allometric patterns, and others exhibiting isometry or hyperallometry depending on the element. Wings exhibited significant modularity with metacarpals, proximal phalanges and distal phalanges each representing a discrete module. Wings of A. fimbriatus exhibit substantive patterns of dimorphism, allometry and modularity. While the Big Mother Hypothesis is a strong theoretical construct to explain wing dimorphism, there is yet no sound theoretical basis to patterns of allometry and modularity of the wing. Indeed, trying to understand the determinants of variation in wing morphology is ripe for future investigation.

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

30 INTRODUCTION

Phenotypic variation is ubiquitous across the historical and contemporary biota (Alroy, 1998; Foote, 1997; Endler, 1978). While such variation results from underlying genetic differences, differential expression and ultimately developmental heterochrony among organisms, it manifests in many forms such as interspecific discontinuities (Sokal and Sneath, 1963), sexual dimorphism (Ralls, 1976), and clinal variation along gradients (Endler, 1978), to name only a few. In mammals, the skull (i.e., cranium and mandible) is often the focus of morphometric analysis for many reasons. First, in many situations the skull or parts therein have evolved and diversified more rapidly than other phenotypic structures (Cheverud, 1982; Hallgrimsson et al., 2007; Linde-Medina et al., 2016). This stems from the fact that characteristics of the skull determine in many cases performance of the organism, in particular in obtaining and processing food (Freeman, 1988; Dumont et al., 2012; Santana et al., 2010), one of the most basic of biological processes. Rapid adaptive evolution can lead to conspicuous discontinuities among even closely related species and for this reason skull features are often the first go-to when distinguishing taxa, constructing dichotomous keys for identification, and ultimately classifying them into larger taxonomic groups.

Bats offer an ideal example of this phenomenon. Bats have evolutionarily radiated to assume perhaps the greatest amount of phenotypic variability of any order of Mammalia (Dumont et al., 2011). Contributing to this is the single family Phyllostomidae that exhibits the greatest variability, phenotypic as well as reproductive, ecological, and geographic, of any family level clade in the class (Baker et al., 2003). Skull-related phenotypic variability can be described as an impressive adaptive radiation that has conferred high species richness on phyllostomid bats and allowed them to enter new adaptive zones characterized by carnivory, frugivory, insectivory,

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

nectarivory, and sangunivory (Dumont et al., 2012). Indeed, the scientific literature is replete with examples of how the relationship between form and function in skulls of phyllostomid bats is related to performance (Freeman, 1988; Aguirre et al., 2003; Santana et al., 2010) that is true across many scales of biological organization from the entire clade (Dumont et al., 2005; Nogueira et al., 2009) to individual local communities (Aguirre et al., 2002). Despite this focus on the skull, other trophic apparatuses characterize the phyllostomid phenotype, some of which are equally as important as the skull but less appreciated and certainly less studied.

Wings form an important performance-related apparatus in bats (Norberg and Rayner, 1987). For example, wing loading (mass/area of the wing) and aspect ratio (wingspan²/area of the wing) define important differences in wing morphology related to efficiency of flight, speed, and maneuverability (Norberg, 1981). Accordingly, bats can be assigned to different feeding guilds based on wing morphology that reflect effects of performance on trophic ecology (Findley et al., 1972; Norberg and Rayner, 1987; Kalko et al., 1996; Castillo-Figueroa, 2020). Fewer efforts have been made for wings than skulls to try to understand determinants of phenotypic variability. Nonetheless, it has been demonstrated that wing morphology is highly integrated from a number of perspectives. For example, embryonic development of bat wings is concerted with different elements such as metacarpals, proximal phalanges and distal phalanges ossifying at different times and rates (Adams, 2000). Many species of bats exhibit sexual dimorphism in wing morphology putatively related to performance when carrying a large fetus or neonate (Ralls, 1976; Camargo and Oliveira, 2012). This idea is further supported by allometric relationships of litter mass that are influenced by flight performance of females in microbats (Hayssen and Kunz, 1996). In some species wing elements are even relatively larger in females than males after controlling for body size (Stevens et al., 2013), further suggesting a performance

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

component to dimorphism. Within species, wing morphology is geographically variable and related to environmental gradients (Stevens et al., 2016; Conenna et al. 2021).

Herein, we examine sexual dimorphism, allometry and modularity of wings of the fringed fruit-eating bat (Artibeus fimbriatus) from eastern Paraguay. While sexual dimorphism in wing morphology has been examined for a number of bats species, even within the genus Artibeus, nothing is known for A. fimbriatus. Much less is known of allometry and modularity of bat wings. Differences in wing morphology, especially those related to differences in basic aerodynamic characteristics such as aspect ratio, are the results of differences in the relative lengths of the metacarpals and phalanges (Castillo-Figueroa, 2020) that likely could not result from isometry. Thus, better understanding allometric relationships among wing bones will better illuminate how variation in aerodynamic characteristics result. Similarly, nothing is known about the modularity of bats wings. A module is a group of traits that are more integrated (i.e., exhibit more covariation) among themselves than they are to other traits outside the group (Eble, 2005; Esteve-Altava, 2017). Different elements are involved in different aspects of flight. For example, concerted actions of the metacarpals are important for lift whereas concerted action of the distal phalanges is important for maneuverability (Camargo and Oliveira, 2012). Also, these different kinds of wing elements ontogenetically develop in concert but with different timing (Jones, 1967; Adams 1992), further suggesting modularity. We make three predictions regarding variation in wing morphology of A. fimbriatus. First, females should exhibit greater absolute and relative sizes of wing elements that are consistent with the added burden of carrying a large fetus/neonate. Second, bat wings should be integrated via allometry, but isometry will not necessarily define associations. Third, bat wings will exhibit modularity with respect to three

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

groups of wing elements (metacarpals, proximal phalanges, distal phalanges) whereby within module correlations will be significantly greater than among module correlations.

While not the largest, A. fimbriatus is a large species for the genus with a distribution that is limited to Atlantic Forest of South America and a few scattered records in the bordering Chaco of Argentina. While common, there is little information in the literature on the biology of this species. It often exhibits intermediate abundance across its distribution based on mist netting records (Muylaert et al., 2017). The species can be classified as a highly cluttered space gleaning frugivore based on the scheme of Kalko et al. (1996) and likely is disproportionately an upper canopy forager (Gregorin et al., 2017). The frugivorous diet of A. fimbriatus is composed primarily of fruits of the genera Ficus and Cecropia (Bello et al., 2017; Stevens and Amarilla-Stevens, 2021). Based on few data (Esberard et al., 1998; Lima and Fabien, 2016) this species likely exhibits a seasonally polyestrous reproductive cycle. Based on direct observation (Trajano, 1996; Arnone, 2008; Esberard et al., 2014) and circumstantial evidence such as ectoparasite loads (Weber et al., 2011), A. fimbriatus tends to roost in caves and tree holes (Garbino and Tavares, 2018). Herein, we expand the body of information on A. fimbriatus by describing phenotypic variability associated with the wing and use this species as an example of how more generally wings of bats are highly integrated trophic structures.

MATERIALS AND METHODS

Bats were collected from the Reserva Natural Del Bosque Mbaracayú (24°07.69'S, 55°30.34'W) and Yaguarete Forests (23°48.50'S, 56°07.68'W) in the departments of Canindeyú and San Pedro, respectively, in eastern Paraguay from 1996 to 1998. Bats were handled and euthanized following guidelines of the American Society of Mammalogists (Sikes et al., 2016). Voucher

specimens were deposited in the Natural Science Research Laboratory of the Museum of Texas

Tech and in the Museo Nacional de Historia Natural del Paraguay.

We examined 21 female and 15 male *A. fimbriatus*. For each individual we measured length of forearm (FA); length of the first digit (P1); length of the metacarpal of the second digit (P2); length of the metacarpal (P3.1), first (P3.2), second (P3.3) and third (P3.4) phalanx of the third digit; length of the metacarpal (P4.1), first (P4.2) and second (P4.3) phalanx of the fourth digit; and length of the metacarpal (P5.1), first (P5.2) and second (P5.3) phalanx of the fifth digit. Measurements were made two non-consecutive times for each specimen and values across the two replicates were averaged for use in subsequent analyses. All variables were transformed to the log base 10.

We examined both absolute and relative secondary sexual dimorphism in wing morphology. We used multivariate analysis of variance (MANOVA) to determine significant differences between multivariate centroids between males and females. This was followed by individual analyses of variance (ANOVA) for each character (P1-P5.3) to infer those that likely contributed to the multivariate difference. We used multivariate analysis of covariance (MANCOVA) followed by individual analyses of covariance (ANCOVA) to examine relative differences between females and males after accounting for differences in overall size. Overall size was estimated based on forearm length. We tested for homogeneity of variances and covariance matrices based on Levene's tests (Levene, 1960) and the Box's M test (Box, 1949), respectively. Tests of secondary sexual dimorphism and underlying assumptions were conducted in SPSS version 24 (IBM Corp., 2016).

We used major axis regression (Pearson, 1901) to estimate allometric variation in wing characteristics. Major axis regression is more appropriate than ordinary least squares regression

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

in this case because both independent and dependent variables are measured with error. Major axis regression models residual variation on both the y- and x-axis, not just the y-axis as with ordinary least squares (Warton et al., 2012). In these regressions, forearm length was the independent variable and each of the remaining wing characteristics were dependent variables in individual analyses. We used the R package "smart" (Warton et al., 2012) to conduct the major axis regression as well as to test for differences from isometry (i.e., Ho: $b_1 = 1$).

We used the covariance ratio (CR, Adams, 2016) and permutation test to examine modularity of elements of bat wings. We assumed that wings were comprised of three different modules: 1) metacarpals (P2.1, P3.1, P4.1, P5.1), 2) first phalanges (P3.2, P4.2, P5.2), and a third module comprised of the distal phalanges of digits 3-5 and the second phalanx of digit 3 (P3.3, P3.4, P4.3, P5.3). The covariance ratio measures the relative contributions of within and among module integration whereby modularity is defined by significantly more within module covariance than among module covariance. The expected covariance ratio under the null hypothesis of no modularity is approximately one and deviations from unity characterize significant modularity. Significance of the covariance ratio was determined based on permutation. Accordingly, membership of wing elements to modules was permuted and the covariance ratio recalculated. This was repeated 10,000 times to generate a distribution of randomly permuted covariance ratios and the actual covariance ratio was compared to this distribution to generate a probability of the observed covariance ration given the null hypothesis. Covariance Ratios and their significance were determined in the R package "geomorph" (Adams et al. 2022).

164

165 RESULTS

Individual *A. fimbriatus* were variable in terms of wing morphology (Table 1). A significant multivariate absolute difference existed between sexes ($F_{13,22} = 2.53$, P = 0.026). Significant univariate differences between males and females in the length of the distal phalanx of digits 4 and 5 indicated that these wing characteristics most likely contributed to the multivariate difference between sexes. MANCOVA indicated that adjusting for differences in forearm length significantly accounted for at least a portion of the absolute difference between among individuals ($F_{12,22} = 3.36$, P = 0.0070. Significant relative differences between sexes remained after individual differences regarding forearm length were accounted for ($F_{12,22}$, P = 0.022). ANCOVA indicated that relative differences in distal phalanx of digits 4 and 5 likely contributed to the multivariate difference.

Significant allometric relationships with forearm length existed for seven of twelve wing characteristics (Table 2). Those elements not exhibiting allometric relationships were the first digit, the second phalanx of digit 3 and the most distal phalanges of the third, fourth, and fifth digits. Slopes of allometric relationships for the metacarpals of digits three, four, and five did not significantly differ from one, thus exhibiting isometry. Allometric relationships involving the metacarpal of the second digit and the first phalanx of digits three, four, and five were characterized by slopes that were significantly greater than one, thereby exhibiting hypeallometry. Similar patterns of allometry for three subsets of wing elements, namely the third metacarpal (P3.3) and phalanges (P3.4, P4.3, P5.3), metacarpals (P2, P3.1, P4.1, P5.1), and second metacarpals (P3.2, P4.2, P5.2) suggest that these groups of elements may represent modules.

The overall modularity test of the three different modules indicated significant modularity of the wing (CR= 0.52, p < 0.001). Three pairwise contrasts were also significant

(P3.3 and distal phalanges versus metacarpals, CR=0.35, P = 0.016; first phalanges versus P3.3 and distal phalanges, CR=0.52, P = 0.014; metacarpals versus first phalanges, CR=0.68, P = 0.014) suggesting that all three modules contributed to significance of the overall test.

193 DISCUSSION

Elements of the wing of *A. fimbriatus* exhibit considerable variation and despite the mosdes sample sizes obtained for this analysis we could demonstrate that such variation was significantly related to secondary-sexual dimorphism, allometry, and modularity. Such integrated and structured variation suggests that the wing of bats is a finely tuned airfoil whose morphology reflects variation in size but also flight performance.

PATTERNS OF SECONDARY-SEXUAL DIMORPHISM

Significant sexual dimorphism in the wing of bats whereby elements of females are larger than males is common (Myers, 1978; Williams and Findley, 1979; Willig, 1983; Castillo-Figueroa, 2018) and likely reflects evolutionary responses to the added burden of carrying a large fetus and subsequently a large neonate (Ralls, 1976). Only distal elements were significantly different between males and females in *A. fimbriatus* based on univariate tests. Nonetheless, these differences involving the distal portion of both the fourth and fifth digit were consistent. Larger wingtips allow for greater propulsion (Findley et al., 1972) and agility (Altringham, 1996) that may be needed by mothers during development of offspring.

With the exception of the thumb, the same wing elements for *A. lituratus* were examined by Stevens et al. (2013) as for *A fimbriatus* examined here. Overall, *A. lituratus* exhibited sexual dimorphism whereby females are larger than males, a pattern that is common for bats (Ralls, 1976). As with *A. fimbriatus*, *A. lituratus* exhibited both absolute and relative (after controlling

for body size) size dimorphism for the last elements of digits four and five. Despite these similarities these two species were also somewhat different in their expression of dimorphism. *Artibeus lituratus* also exhibited significant absolute and relative dimorphism for the metacarpals of digits 3, 4, and 5 as well as the most distal phalanx of digit 3. *Artibeus lituratus* also exhibited an absolute difference in metacarpals of digit 2 and 3. Thus, both species exhibit significant sexual dimorphism, but may do so in different ways and based on different wing elements. It is important to note that error degrees of freedom were more than an order of magnitude greater for the study on *A. lituratus* than for this study on *A. fimbriatus*, so examinations of only patterns of significance may be suspect.

PATTERNS OF ALLOMETRY

Bats in general exhibit strong patterns of allometry with respect to a number of different structures of ecological or evolutionary significance (Norberg, 1981; Silva, 1998; Hendrick and Dumont, 2018). For example, cranial morphology of nectarivorous bats of Phyllostomidae exhibit varying patterns of hypo-, iso-, and hyper-allometry that varies by subfamily and appears to have a strong phylogenetic component (Bolzan et al., 2015). Echolocation calls are often negatively allometrically related to body size in a number of families (Novick, 1977; Lopez-Cuamatzi et al., 2020), likely due to larger bats needing more space to maneuver and lower frequency echolocation calls allowing detection at farther distances (Heller and von Helverson, 1989; Barclay and Brigham, 1991; Thiagavel et al., 2017). There is an allometric component to variation in male genitalia, especially for species where copulation occurs while females are hibernating (Lupold et al., 2004). Litter mass in microchiropterans scales with aerodynamic characteristics of wing area and wing loading (Hayssen and Kunz, 1996), that themselves scale with size (Norberg and Rayner, 1987). Nonetheless, as pointed out by Castillo-Figueroa (2020),

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

such aerodynamic characteristics are the result of variation in the actual wing elements and more direct examination of patterns of allometry of these elements may provide richer insights.

Patterns of allometry of many but not all wing elements were substantive and significant. In particular, metacarpals (P3.1, P4.1, P5.1) exhibited isometry whereas first (P3.2, P4.2, P5.2) and metacarpal of digit 2 exhibited hyperallometry, whereby size of the element increased at a faster rate than overall size based on forearm length. Distal elements (P3.3, P3.4, P4.3, P5.3) did not exhibit allometric relationships (i.e., slopes and r² no greater in magnitude than expected by chance). That the same elements across digits (i.e., P3.1, P4.1, P5.1) exhibited the same pattern of allometry that is different than other elements (i.e., P2, P3.2, P4.2, P5.2) suggests similar influences of selection on performance related characteristics or similar patterns of development and ossification (Adams, 2000). Bat wings exhibit compensatory growth during development (Adams, 1992). Moreover, distal wing bones such as the phalanges undergo chondrogenesis and ossify later in development than more proximal wing bones (Adams, 1992, 2000). As a result, more distal elements bear most of the burden of compensation and are thus the most variable (Adams, 1992). Compensatory growth also manifests as differences in the form of allometric relationships between different groups of wing elements and likely explain the lack of relationships of distal elements with overall size.

PATTERNS OF MODULARITY

Phenotypic modularity is a common phenomenon across Mammalia (Goswami, 2006; Porto, 2009; Koyuba et al., 2014) and often identifies performance-related integrated structures that are under selection (Melo and Marroig, 2015). Indeed, much focus has been on cranial and mandibular morphology in mammals in general, but also in bats in particular (Lopez-Aguirre et al., 2015). The cranium is often composed of at least two modules, the neurocranium and the

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

splachnocranium that are related to patterns of muscle insertion and brain development on the neurocranium and radiation in dentition and morphology of the rostrum that is related to foraging ecology on the splachnocranium (Lopez-Aguirre et al., 2015). Similarly, the mandible is often comprised of two modules, the ascending ramus and the alveolar region that are related to differences in performance-related specialization for biting and food manipulation, respectively (Lopez-Aguirre et al., 2015). Modularity of the cranium and mandible illuminate how evolutionary and developmental trends translate into performance-related patterns describing the relationship between form and function.

Similarly, the wing exhibits strong patterns of modularity, at least for A. fimbriatus, that may be general across bats. Moreover, at least three modules make up the wing of A. fimbriatus based on these analyses. Different sets of wing elements (i.e., metacarpals, proximal, and distal phalanges) are related to different aspects of the performance of the wing while in flight. For example, wing tips represented by P5.3, P4.3, P3.4, and probably P3.3, are the primary propulsive portion of the chiropteran wing whereby longer wingtips are related to greater speed (Findley et al., 1972; Altringham, 1996). In contrast, metacarpals are important for generation of lift (Findley et al., 1972) and the relative length of metacarpals defines the degree to which curvature of the wing is located toward the trailing edge of the wing, which influences maneuverability (Stockwell, 2001). To this end, it is intuitive that different groups of wing elements are important for different aspects of flight and thus exhibit modularity. This is the first demonstration of modularity of bat wings of any species. Indeed, modularity may be the product of natural selection fine-tuning particular sets of structures so as to enhance performance during flight. Nonetheless, sets of elements develop and ossify at different rates (Adams, 1992). Future study should examine generality of modularity as well as try to tease apart ecological,

evolutionary, and developmental determinants to better understand the mechanistic bases to these patterns.

Bat wings are highly variable trophic and performance-related phenotypic structures.

From a morphometric perspective, much less variation in wing morphology has been characterized relative to other structures such as the cranium, mandible, or teeth and as a result determinants of wing morphology are much less understood from theoretical perspectives based on development and evolution. For example, while a number of studies have characterized sexual dimorphism of bat wings, many fewer have examined allometry, and this study is the first to examine modularity. There is somewhat of a theoretical basis to begin to explain patterns of sexual dimorphism, but only much more incomplete theoretical constructs can inform the mechanistic basis of patterns of wing allometry and modularity. Given the substantive variability of bat wings and the variety of different influences that range from ecological, evolutionary, and developmental, this aspect of the chiropteran phenotype is ripe for further morphometric investigation.

ACKNOWLEDGEMENTS

We would like to thank the editor and an anonymous reviewer for helpful reviews of a previous version of this manuscript. Heath Garner of the Natural Science Research Laboratory of the Museum of Texas Tech University provided valuable assistance with specimens.

DATA AVAILABILITY

The data are available from the corresponding author on reasonable request.

LITERATURE CITED

305	Adams D., M. Conyer, A. Kanontzopoulou and E Baken. 2022. Geomorph: Software for							
306	geometric morphometric analyses. R package version 4.0.4. https://cran.r-							
307	project.org/package=geomorph.							
308	Adams, R. A. 2000. Wing ontogeny, shifting niche dimensions and adaptive landscapes. In:							
309	Adams, R. A., Pedersen, S. C., editors. Ontogeny, functional ecology and evolution of							
310	bats. Cambridge University Press, Cambridge, UK; p. 275-316.							
311	Adams, R. A. 1992. Stages of development and sequence of bone formation in the little brown							
312	bat, Myotis lucufugus. Journal of Mammalogy 73: 160-167.							
313	Aguirre, L. F., A. Herrel, R. Van Damme and E. Matthysen. 2003. The implications of food							
314	hardness for diets in bats. Functional Ecology 17: 201-212.							
315	Aguirre, L. F., A. Herrel, R. Van Damme and E. Matthysen. 2002. Ecomorphological analysis							
316	of trophic niche partitioning in a tropical savannah bat community. Proceedings of the							
317	Royal Society of London B 259: 1271-1278.							
318	Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil							
319	mammals. Science 280: 731-731.							
320	Altringham, J. D. 1996. Bats: biology and behavior. Oxford University Press, Oxford, UK,							
321	324 pp.							
322	Arnone, I. S. 2008. Estudo da comunidade de morcegos na area carstica do Alto Ribeira – SP:							
323	uma comparacion com 1980. MS Thesis, Universidad de Sao Paulo, Sao Paulo Brazil.							
324	Baker, R. J., S. R. Hoofer, C. A. Porter and R. D. Van Den Bussche. 2003. Diversification							
325	among New World leaf-nosed bats: an evolutionary hypothesis and classification							
326	inferred from digenomic congruence of DNA sequence. Occasional Papers of the							
327	Museum of Texas Tech University 230: 1-32.							

328	Barclay, R. M. R and R. M. Brigham. 1991. Prey detection, dietary niche breadth and body size							
329	in bats: why are aerial insectivorous bats so small? American Naturalist 137: 693-703.							
330	Bello, C., M. Galetti, D. Montan, M. A. Pizo, T. C. Mariguela, L. Culot, F. Bufalo, F. Labecca,							
331	F. Pedrosa, R. Constantini, C. Ember, W. R. Silva, F. R. da Silva, O. Ovaskainen and P.							
332	Jordano. 2017. Atlantic frugivory: a plant-frugivore data set for the Atlantic Forest.							
333	Ecology 98: 1729.							
334	Bolzan, D. P., L. M. Pessoa, A. L. Peracci and R. E. Strauss. 2015. Allometric patterns and							
335	evolution in Neotropical nectar-feeding bats (Chiroptera, Phyllostomidae). Acta							
336	Chiropterologica 17: 59-73.							
337	Box, G. E. P., 1949. A general distribution theory for a class of likelihood criteria. Biometrika,							
338	36: 317–346.							
339	Camargo, N. F. and Oliveira, H. F. M. 2013. Sexual dimorphism in Sturnira lilium (Chiroptera:							
340	Phyllostomidae): Can pregnancy and pub carrying be responsible for differences in wing							
341	shape? PLoS One 7: e49734							
342	Castillo-Figueroa, D. 2018. Fluctuating asymmetry of three bat species in extensive livestock							
343	systems from Córdoba department, Colombia. Revista Colombiana de Ciencia Animal							
344	Recia, 10: 143-153.							
345	Castillo-Figueroa, D. 2020. Ecological morphology of Neotropical bat wing structures.							
346	Zoological Studies 59: 60.							
347	Conenna, I., L. Santini, R. Rocha, A. Monadjem, M. Cabeza and D. Russo. 2021. Global							
348	patterns of functional trait variation along aridity gradients in bats. Global Ecology and							
349	Biogeography 30: 1014-1029.							

350	Dumont, E. R., J. Piccirillo and I. R. Grosse. 2005. Finite-element analysis of biting behavior								
351	and bone stress in the facial skeleton of bats. Anatomical Record A 283: 319-330								
352	Dumont, E. R., L. M. Davalos, A. Goldberg, S. E. Santana, K. Rex and C. C. Voigt. 2012.								
353	Morphological innovation, diversification, and invasion of a new adaptive zone.								
354	Proceedings of the Royal Society B 279: 1797-1805.								
355	Eble, G.J. 2005. Morphological modularity and macroevolution. In Modularity: Understanding								
356	the Development and Evolution of Natural Complex Systems (eds W. Callebaut and D.								
357	Rasskin-Gutman), pp. 221 – 238. MIT Press, Cambridge.								
358	Endler, J. A. 1978. Geographic Variation, Speciation and Clines. Princeton Monographs in								
359	Population Biology 10: 1-262.								
360	Esberard, C. E. L., J. L. Luz, L. M. Costa, H, G, Bergallo. 2014. Bats (Mammalia, Chiroptera)								
361	of an urban park in the metropolitan area of Rio de Janeiro, Southeastern Brazil.								
362	Iheringia, Serie Zoologica 104: 59-69.								
363	Esberard C. E. L., A. S. Chagas, E. M. Luz, R. A. Carneiro, L. S. F. Martins and A. L. Peracchi.								
364	1998. Aspectos da biologia reproductive de Artibeus fimbriatus Gray, 1838, no Estado								
365	do Rio deJaneiro, Brasil (Chiroptera, Phyllostomidae) Boletin de la Sociedad de Biologia								
366	de Concepcion 69: 109-114.								
367	Esteve-Altiva, B. 2017. In search of morphological modules: a systematic review. Biological								
368	Reviews 92: 1332-1347.								
369	Findley, J. S., E. H. Studier and D. E. Wilson. 1972. Morphologic properties of bat wings.								
370	Journal of Mammalogy 53: 429-444.								
371	Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and								
372	Systematics 28: 129-152.								

373	Freeman, P. W. 1988. Frugivorous and animalivorous bats (Microchiroptera): dental and cranial								
374	adaptations. Biological Journal of the Linnean Society 33: 249-272.								
375	Garbino, G. S. T. and V. C. Tavares. 2018. Roosting ecology of Stenodermatinae bats								
376	(Phyllostomidae): evolution of foliage roosting and correlated phenotypes. Mammal								
377	Review 48: 75-89.								
378	Goswami, A. 2006. Cranial modularity shifts during mammalian evolution. American								
379	Naturalist 168: 270-280.								
380	Gregorin, R. E. Bernard, K. W. Lobao, L. F. Oliveira, F. Santana Machado, B. B. Gil and V. C.								
381	Tavares. 2017. Vertical stratification in bat assemblages of the Atlantic Forest of south								
382	eastern Brazil. Journal of Tropical Ecology 33: 299-308.								
383	Hallgrimsson, B., D. E. Lieberman, N. M. Young, T. Parsons and S. Wat. 2007. Evolution of								
384	covariance in the mammalian skull. Pages 164 – 186 in Tinkering: The Microevolution								
385	of Development (Novartis Foundation), John Wiley and Sons, Hoboken New Jersey.								
386	Hayssen, V and T. H. Kunz. 1996. Allometry of litter mass in bats: maternal size, wing								
387	morphology and phylogeny. Journal of Mammalogy 77: 476-490.								
388	Heller, KG. and O. von Helversen. 1989. Resource partitioning of sonar frequency bands in								
389	rhinolophoid bats. Oecologia 80: 178-186.								
390	Hendrick, B. P. ad B. R. Dumont. 2018. Putting the leaf-nosed bats in context: a geometric								
391	morphometric analysis of three of the largest families of bats. Journal of Mammalogy								
392	99: 1042-1054.								
393	Heverud, J. M. 1982. Phenotypic, genetic, and environmental morphological integration in the								
394	cranium. Evolution 36: 499-516.								
305	IBM Corp. 2016. IBM SPSS Statistics for Windows. Version 24.0. Armonk. NV: IBM Corp.								

396	Jones, C. 1967. Growth and development and wing loading in the evening bat, Nycticeius							
397	humeralis (Rafinesque). Journal of Mammalogy 48: 1-19.							
398	Kalko, E. K. V, C. O. Handley and D. Handley. 1996. Organization, diversity, and long-term							
399	dynamics of a Neotropical bat community. Pages 503-553 in M Cody and J Smallwood							
400	(eds). Long-term studies in vertebrate communities. Academic Press, Lost Angeles.							
401	Koyuba, D., I. Werneburg, N. Morimoto, C. P. E. Zollikofer, A. M. Forasiepi, H. Endo, J.							
402	Kimura, S. D. Ohdachi, N. T. Son, and M. R. Sanchez-Willagra. 2014. Mammalian							
403	skull heterochrony reveals modular evolution and a link between cranial development							
404	and brain size. Nature Communications 5: 3625.							
405	Levene, H. 1960. Robust tests of equality of variances. Pages 278-292. In Contributions to							
406	Probability and Statistics: Essays in Honor of Harold Hotelling, I. Olkin et al. eds.,							
407	Stanford University Press.							
408	Lima, C. S. and M. E. Fabien. 2016. Reproductive biology of Artibeus fimbriatus Gray 1838							
409	(Chiroptera) at the southern limit of its geographic distribution. Biota Neotropica 16:							
410	e20160231.							
411	Lopez-Aguirre, C., J. Perez-Torres and L. A. B. Wilson. 2015. Cranial and mandibular shape							
412	variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic							
413	patterns and morphological modularity. PeerJ 3: e1197; DOI 10.7717/peerj.1197.							
414	López-Cuamatzi, I.L., V. H. Vega-Gutiérrez, I. Cabrera-Campos, E. Ruiz-Sanchez, J. Ayala-							
415	Berdon and R. A. Saldaña-Vázquez. 2020. Does body mass restrict call peak frequency							
416	in echolocating bats?. Mammal Review 50: 304-313. https://doi.org/10.1111/mam.12196							
417	Lupold, S., A. G. Mcelligott and D. J. Hosken. 2004. Bat genetalia: allometry, variation and							
418	good genes. Biological Journal of the Linnean Society 83: 497-507.							

119	Melo, D. and G. Marroig. 2015. Directional selection and drive the evolution of modularity in
120	complex traits. Proceedings of the National Academy of Sciences 112: 470-475.
121	Muylaert R.L., Stevens R.D., Esberard C.E.L., Mello M.A.R., Garbino G.S.T., Varzinczak L.H.
122	Faria D., Weber M.M., Rogeri P.K., Regolin A.L., Oliveira H.F.M., Costa L.M., Barros
123	M.A.S., Sabino-Santos G. Jr, Morais M.A.C., Kavagutti V.S., Passos F.C., Marjakangas
124	E.L., Maia F.G.M., Ribeiro M.C., Galetti M. (2017) Atlantic bats: a data set of bat
125	communities from the Atlantic Forests of South America. Ecology 98:327.
126	Myers, P. 1978. Sexual dimorphism in size of vespertilionid bats. American Naturalist 112:
127	701-711.
128	Nogueira, M. R., A. L. Peracchi and L. R. Monteiro. 2009. Morphological correlates of bite
129	force and diet in the skull and mandible of phyllostomid bats. Functional Ecology 23:
130	715-723.
131	Norberg, U. M. 1981. Allometry of bat wings and legs and comparison with bird wings.
132	Philosophical transactions of the Royal Society B. 292: 359-398.
133	Norberg, U. M. and J. M. Rayner. 1987. Ecological morphology and flight in bats (Mammalia
134	Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation.
135	Philosophical Transactions of the Royal Society of London B 316: 335-427.
136	Novick, A. 1977. Acoustic orientation. Pages 73-287 in W. A. Wimsatt (ed.) Biology of bats,
137	volume 3. Academic Press, New York.
138	Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. The London
139	Edinburgh and Dublin Philosophical Magazine and Journal of Science 2: 559-572.

140	Porto, A., F. B. Oliveira, L. T. Shirai, V. Conto and G. Marroig. 2009. The evolution of							
141	modularity in the mammalian skull I: morphological integration patterns and magnitudes.							
142	Evolutionary Biology 36: 118-135.							
143	Ralls, K. 1976. Mammals in which females are larger than males. Quarterly Review of Biology							
144	51: 245-276.							
145	Santana, S. E., E. R. Dumont and J. L. Davis. 2010. Mechanics of bite force production and its							
146	relationship to diets in bats. Functional Ecology 24: 776-784.							
147	Sikes, R. S. and the Animal Care and Use Committee of the American Society of Mammalogists.							
148	2016. 2016 Guidelines of the American Society of Mammalogists for the use of wild							
149	mammals in research and education. Journal of Mammalogy 97: 663-688.							
150	Silva, M. 1998. Allometric scaling of body length: elastic or geometric similarity in mammalian							
451	design. Journal of Mammalogy 79: 20-32.							
152	Sokal, R. R. and P. N. A. Sneath. 1963. Principles of Numerical Taxonomy, W. H. Freeman							
153	and Company, San Francisco, California.							
154	Stevens, R. D. and H. N. Amarilla-Stevens. 2021. Dietary patterns of phyllostomid bats in							
155	interior Atlantic Forest of eastern Paraguay. Journal of Mammalogy 102: 685-694.							
156	Stevens, R. D., M. E. Johnson, and E. S. McCulloch. 2013. Geographic variation of wing							
157	morphology of great fruit-eating bats (Artibeus lituratus): environmental, genetic and							
158	spatial correlates of phenotypic differences. Biological Journal of the Linnean Society							
159	118: 734-744.							
160	Stevens, R. D., M. E. Johnson, and E. S. McCulloch. 2013. Absolute and relative sexual							
161	dimorphism in wing morphology: a multivariate test of the "Big Mother" hypothesis.							
162	Acta Chiropterologica 15: 163-170.							


463	Stockwell, E. F. 2001. Morphology and flight manoeuvrability in New World leaf-nosed bats								
464	(Chiroptera: Phyllostomidae). Journal of Zoology 254: 505-514.								
465	Thiagavel J., S. E. Santana and J. M. Ratcliffe. 2017. Body size predicts echolocation call peak								
466	frequency better than gape height in vespertilionid bats. Scientific Reports 7: 828. doi:								
467	10.1038/s41598-017-00959-2								
468	Trajano, E. 1996. Movements of cave bats in southeastern Brazil, with emphasis on the								
469	population ecology of the common vampire bat, Desmodus rotundus (Chiroptera).								
470	Biotropica 28: 121-129.								
471	Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. Smart 3-an R package for								
472	estimation and inference about allometric lines. Methods in Ecology and Evolution 3:								
473	257-259.								
474	Williams, D. F. and J. S. Findley. 1979. Sexual size dimorphism in vespertilionid bats.								
475	American Midland Naturalist 102: 112-126.								
476	Willig, M. R. 1983. Composition, microgeographic variation and sexual dimorphism in								
477	Caatingas and Cerrado bat communities from northeast Brazil. Bulletin of the Carnegie								
478	Museum of Natural History 23: 1-131.								
479									
480	Figure Legend								
481 482	Figure 1. Elements examined when characterizing sexual dimorphism, allometric relationships and modularity of wings of <i>Artibeus fimbriatus</i> .								
483									

Table 1.—Results from multivariate analysis of variance (MANOVA) and univariate analysis of variance examining differences in absolute (MANOVA) and relative (MANCOVA) sizes of wing elements based on sex.

	,	8						
				MANOVA		MANCOVA		OVA
Element	9	₫	F	df	P	F	df	P
All			2.53	13,22	0.026	2.66	12,22	0.022
FA	60.33	58.41	0.60	1,34	0.445	3.36	1,33	0.007**
P1	15.68	15.22	0.37	1,34	0.550	0.02	1,33	0.638
P2.1	47.37	45.76	0.26	1,34	0.613	1.09	1,33	0.305
P3.1	57.52	55.40	0.36	1,34	0.554	0.01	1,33	0.905
P3.2	19.19	18.61	0.57	1,34	0.458	0.21	1,33	0.648
P3.3	30.85	29.69	1.30	1,34	0.263	1.03	1,33	0.318
P3.4	20.38	19.58	0.63	1,34	0.432	0.70	1,33	0.410
P4.1	56.62	54.63	0.06	1,34	0.804	1.15	1,33	0.292
P4.2	16.40	15.57	0.31	1,34	0.583	0.03	1,33	0.856
P4.3	22.68	21.58	4.80	1,34	0.035	4.27	1,33	0.047
P5.1	58.49	56.52	0.02	1,34	0.884	0.94	1,33	0.339
P5.2	12.90	12.56	1.89	1,34	0.178	1.28	1,33	0.266
P5.3	18.40	17.44	15.32	1,34	<0.001	15.31	1,33	< 0.001

Table 2.—Quantitative characteristics of allometric 504 relationships of wing elements with forearm 505 length. r2 refers to the coefficient of determination 506 of the relationship between forearm length and a 507 particular wing element and P₁ refers to the 508 significance of this relationship. b_1 refers to the 509 regression coefficient for the relationship between 510 forearm length and length of a particular element 511 whereas P₂ refers to the probability that the 512 observed b_1 is equal to unity. 513

515	Element	r2	<u>P</u> 1	b ₁	P ₂
516	P1	0.029	0.319	NA	NA
517	P2.1	0.251	0.002	2.57	0.001
518	P3.1	0.432	<0.001	1.22	0.315
519	P3.2	0.183	0.009	2.55	0.005
520	P3.3	0.028	0.332	NA	NA
521	P3.4	0.003	0.754	NA	NA
522	P4.1	0.467	< 0.001	1.36	0.096
523	P4.2	0.264	0.001	2.25	0.003
524	P4.3	0.024	0.370	NA	NA
525	P5.1	0.493	<0.001	1.21	0.275
526	P5.2	0.186	0.009	3.76	<0.001
527	P5.3	< 0.001	0.977	NA	NA

