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Phenotypic variability is ubiquitous.  This is especially true in bats where families such as 9 

Phyllostomidae encompass as much phenotypic variability as some entire orders of mammals.  10 

Typically, phenotypic variability is characterized based on cranial morphology with studies of 11 

other functionally important aspects of the phenotype such as legs, feet and wings less frequent.  12 

We examined patterns of secondary-sexual dimorphism and allometry of wing elements of the 13 

fringed fruit-eating bat (Artibeus fimbriatus) as well as examined for the first time modularity of 14 

bat wings.  Patterns were based on 13 wing measurements taken from 21 female and 15 males 15 

from eastern Paraguay.  From a multivariate perspective A. fimbriatus exhibited significant 16 

secondary-sexual dimorphism.  Females were larger than males for all 13 wing characteristics 17 

with significant differences involving the last phalanx of the 4th and 5th digits.  Female wings 18 

were also relatively larger than male wings from a multivariate perspective as well as the last 19 

phalanx of the 4th and 5th digit, after adjusting for wing size based on forearm length.  Wing 20 

elements were highly variable regarding allometric relationships with some exhibiting no 21 

allometric patterns, and others exhibiting isometry or hyperallometry depending on the element.  22 

Wings exhibited significant modularity with metacarpals, proximal phalanges and distal 23 

phalanges each representing a discrete module.  Wings of A. fimbriatus exhibit substantive 24 

patterns of dimorphism, allometry and modularity.  While the Big Mother Hypothesis is a strong 25 

theoretical construct to explain wing dimorphism, there is yet no sound theoretical basis to 26 

patterns of allometry and modularity of the wing.  Indeed, trying to understand the determinants 27 

of variation in wing morphology is ripe for future investigation. 28 

  29 
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INTRODUCTION 30 

Phenotypic variation is ubiquitous across the historical and contemporary biota (Alroy, 1998; 31 

Foote, 1997; Endler, 1978).  While such variation results from underlying genetic differences, 32 

differential expression and ultimately developmental heterochrony among organisms, it 33 

manifests in many forms such as interspecific discontinuities (Sokal and Sneath, 1963), sexual 34 

dimorphism (Ralls, 1976), and clinal variation along gradients (Endler, 1978), to name only a 35 

few.  In mammals, the skull (i.e., cranium and mandible) is often the focus of morphometric 36 

analysis for many reasons.  First, in many situations the skull or parts therein have evolved and 37 

diversified more rapidly than other phenotypic structures (Cheverud, 1982; Hallgrimsson et al., 38 

2007; Linde-Medina et al., 2016). This stems from the fact that characteristics of the skull 39 

determine in many cases performance of the organism, in particular in obtaining and processing 40 

food (Freeman, 1988; Dumont et al., 2012; Santana et al., 2010), one of the most basic of 41 

biological processes.  Rapid adaptive evolution can lead to conspicuous discontinuities among 42 

even closely related species and for this reason skull features are often the first go-to when 43 

distinguishing taxa, constructing dichotomous keys for identification, and ultimately classifying 44 

them into larger taxonomic groups. 45 

 Bats offer an ideal example of this phenomenon.  Bats have evolutionarily radiated to 46 

assume perhaps the greatest amount of phenotypic variability of any order of Mammalia 47 

(Dumont et al., 2011).  Contributing to this is the single family Phyllostomidae that exhibits the 48 

greatest variability, phenotypic as well as reproductive, ecological, and geographic, of any family 49 

level clade in the class (Baker et al., 2003).  Skull-related phenotypic variability can be described 50 

as an impressive adaptive radiation that has conferred high species richness on phyllostomid bats 51 

and allowed them to enter new adaptive zones characterized by carnivory, frugivory, insectivory, 52 
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nectarivory, and sangunivory (Dumont et al., 2012).  Indeed, the scientific literature is replete 53 

with examples of how the relationship between form and function in skulls of phyllostomid bats 54 

is related to performance (Freeman, 1988; Aguirre et al., 2003; Santana et al., 2010) that is true 55 

across many scales of biological organization from the entire clade (Dumont et al., 2005; 56 

Nogueira et al., 2009) to individual local communities (Aguirre et al., 2002).  Despite this focus 57 

on the skull, other trophic apparatuses characterize the phyllostomid phenotype, some of which 58 

are equally as important as the skull but less appreciated and certainly less studied. 59 

 Wings form an important performance-related apparatus in bats (Norberg and Rayner, 60 

1987).  For example, wing loading (mass/area of the wing) and aspect ratio (wingspan2/area of 61 

the wing) define important differences in wing morphology related to efficiency of flight, speed, 62 

and maneuverability (Norberg, 1981).  Accordingly, bats can be assigned to different feeding 63 

guilds based on wing morphology that reflect effects of performance on trophic ecology (Findley 64 

et al., 1972; Norberg and Rayner, 1987; Kalko et al., 1996; Castillo-Figueroa, 2020).  Fewer 65 

efforts have been made for wings than skulls to try to understand determinants of phenotypic 66 

variability.  Nonetheless, it has been demonstrated that wing morphology is highly integrated 67 

from a number of perspectives.  For example, embryonic development of bat wings is concerted 68 

with different elements such as metacarpals, proximal phalanges and distal phalanges ossifying 69 

at different times and rates (Adams, 2000).  Many species of bats exhibit sexual dimorphism in 70 

wing morphology putatively related to performance when carrying a large fetus or neonate 71 

(Ralls, 1976; Camargo and Oliveira, 2012).  This idea is further supported by allometric 72 

relationships of litter mass that are influenced by flight performance of females in microbats 73 

(Hayssen and Kunz, 1996).  In some species wing elements are even relatively larger in females 74 

than males after controlling for body size (Stevens et al., 2013), further suggesting a performance 75 
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component to dimorphism.  Within species, wing morphology is geographically variable and 76 

related to environmental gradients (Stevens et al., 2016; Conenna et al. 2021). 77 

 Herein, we examine sexual dimorphism, allometry and modularity of wings of the fringed 78 

fruit-eating bat (Artibeus fimbriatus) from eastern Paraguay.  While sexual dimorphism in wing 79 

morphology has been examined for a number of bats species, even within the genus Artibeus, 80 

nothing is known for A. fimbriatus.  Much less is known of allometry and modularity of bat 81 

wings.  Differences in wing morphology, especially those related to differences in basic 82 

aerodynamic characteristics such as aspect ratio, are the results of differences in the relative 83 

lengths of the metacarpals and phalanges (Castillo-Figueroa, 2020) that likely could not result 84 

from isometry.  Thus, better understanding allometric relationships among wing bones will better 85 

illuminate how variation in aerodynamic characteristics result.  Similarly, nothing is known 86 

about the modularity of bats wings.  A module is a group of traits that are more integrated (i.e., 87 

exhibit more covariation) among themselves than they are to other traits outside the group (Eble, 88 

2005; Esteve-Altava, 2017).  Different elements are involved in different aspects of flight.  For 89 

example, concerted actions of the metacarpals are important for lift whereas concerted action of 90 

the distal phalanges is important for maneuverability (Camargo and Oliveira, 2012).  Also, these 91 

different kinds of wing elements ontogenetically develop in concert but with different timing 92 

(Jones, 1967; Adams 1992), further suggesting modularity.  We make three predictions regarding 93 

variation in wing morphology of A. fimbriatus.  First, females should exhibit greater absolute and 94 

relative sizes of wing elements that are consistent with the added burden of carrying a large 95 

fetus/neonate. Second, bat wings should be integrated via allometry, but isometry will not 96 

necessarily define associations.  Third, bat wings will exhibit modularity with respect to three 97 
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groups of wing elements (metacarpals, proximal phalanges, distal phalanges) whereby within 98 

module correlations will be significantly greater than among module correlations. 99 

 While not the largest, A. fimbriatus is a large species for the genus with a distribution that 100 

is limited to Atlantic Forest of South America and a few scattered records in the bordering Chaco 101 

of Argentina.  While common, there is little information in the literature on the biology of this 102 

species.  It often exhibits intermediate abundance across its distribution based on mist netting 103 

records (Muylaert et al., 2017). The species can be classified as a highly cluttered space gleaning 104 

frugivore based on the scheme of Kalko et al. (1996) and likely is disproportionately an upper 105 

canopy forager (Gregorin et al., 2017).  The frugivorous diet of A. fimbriatus is composed 106 

primarily of fruits of the genera Ficus and Cecropia (Bello et al., 2017; Stevens and Amarilla-107 

Stevens, 2021).  Based on few data (Esberard et al., 1998; Lima and Fabien, 2016) this species 108 

likely exhibits a seasonally polyestrous reproductive cycle.  Based on direct observation 109 

(Trajano, 1996; Arnone, 2008; Esberard et al., 2014) and circumstantial evidence such as 110 

ectoparasite loads (Weber et al., 2011), A. fimbriatus tends to roost in caves and tree holes 111 

(Garbino and Tavares, 2018).  Herein, we expand the body of information on A. fimbriatus by 112 

describing phenotypic variability associated with the wing and use this species as an example of 113 

how more generally wings of bats are highly integrated trophic structures. 114 

MATERIALS AND METHODS 115 

Bats were collected from the Reserva Natural Del Bosque Mbaracayú (24O07.69’S, 55O30.34’W) 116 

and Yaguarete Forests (23O48.50’S, 56O07.68’W) in the departments of Canindeyú and San 117 

Pedro, respectively, in eastern Paraguay from 1996 to 1998.  Bats were handled and euthanized 118 

following guidelines of the American Society of Mammalogists (Sikes et al., 2016). Voucher 119 
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specimens were deposited in the Natural Science Research Laboratory of the Museum of Texas 120 

Tech and in the Museo Nacional de Historia Natural del Paraguay. 121 

 We examined 21 female and 15 male A. fimbriatus.  For each individual we measured 122 

length of forearm (FA); length of the first digit (P1); length of the metacarpal of the second digit 123 

(P2); length of the metacarpal (P3.1), first (P3.2), second (P3.3) and third (P3.4) phalanx of the 124 

third digit; length of the metacarpal (P4.1), first (P4.2) and second (P4.3) phalanx of the fourth 125 

digit; and length of the metacarpal (P5.1), first (P5.2) and second (P5.3) phalanx of the fifth 126 

digit.  Measurements were made two non-consecutive times for each specimen and values across 127 

the two replicates were averaged for use in subsequent analyses.  All variables were transformed 128 

to the log base 10. 129 

We examined both absolute and relative secondary sexual dimorphism in wing 130 

morphology.  We used multivariate analysis of variance (MANOVA) to determine significant 131 

differences between multivariate centroids between males and females.  This was followed by 132 

individual analyses of variance (ANOVA) for each character (P1-P5.3) to infer those that likely 133 

contributed to the multivariate difference.  We used multivariate analysis of covariance 134 

(MANCOVA) followed by individual analyses of covariance (ANCOVA) to examine relative 135 

differences between females and males after accounting for differences in overall size.  Overall 136 

size was estimated based on forearm length.  We tested for homogeneity of variances and 137 

covariance matrices based on Levene’s tests (Levene, 1960) and the Box’s M test (Box, 1949), 138 

respectively.  Tests of secondary sexual dimorphism and underlying assumptions were conducted 139 

in SPSS version 24 (IBM Corp., 2016). 140 

 We used major axis regression (Pearson, 1901) to estimate allometric variation in wing 141 

characteristics.  Major axis regression is more appropriate than ordinary least squares regression 142 
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in this case because both independent and dependent variables are measured with error.  Major 143 

axis regression models residual variation on both the y- and x-axis, not just the y-axis as with 144 

ordinary least squares (Warton et al., 2012).  In these regressions, forearm length was the 145 

independent variable and each of the remaining wing characteristics were dependent variables in 146 

individual analyses.  We used the R package “smart” (Warton et al., 2012) to conduct the major 147 

axis regression as well as to test for differences from isometry (i.e., Ho: b1 = 1). 148 

 We used the covariance ratio (CR, Adams, 2016) and permutation test to examine 149 

modularity of elements of bat wings.  We assumed that wings were comprised of three different 150 

modules: 1) metacarpals (P2.1, P3.1, P4.1, P5.1), 2) first phalanges (P3.2. P4.2. P5.2), and a third 151 

module comprised of the distal phalanges of digits 3-5 and the second phalanx of digit 3 (P3.3, 152 

P3.4, P4.3, P5.3).  The covariance ratio measures the relative contributions of within and among 153 

module integration whereby modularity is defined by significantly more within module 154 

covariance than among module covariance.  The expected covariance ratio under the null 155 

hypothesis of no modularity is approximately one and deviations from unity characterize 156 

significant modularity.  Significance of the covariance ratio was determined based on 157 

permutation.  Accordingly, membership of wing elements to modules was permuted and the 158 

covariance ratio recalculated.  This was repeated 10,000 times to generate a distribution of 159 

randomly permuted covariance ratios and the actual covariance ratio was compared to this 160 

distribution to generate a probability of the observed covariance ration given the null hypothesis.  161 

Covariance Ratios and their significance were determined in the R package “geomorph” (Adams 162 

et al. 2022). 163 

 164 

RESULTS 165 
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Individual A. fimbriatus were variable in terms of wing morphology (Table 1).  A significant 166 

multivariate absolute difference existed between sexes (F13,22 = 2.53, P = 0.026).  Significant 167 

univariate differences between males and females in the length of the distal phalanx of digits 4 168 

and 5 indicated that these wing characteristics most likely contributed to the multivariate 169 

difference between sexes.  MANCOVA indicated that adjusting for differences in forearm length 170 

significantly accounted for at least a portion of the absolute difference between among 171 

individuals (F12,22 = 3.36, P = 0.0070.  Significant relative differences between sexes remained 172 

after individual differences regarding forearm length were accounted for (F12,22, P = 0.022).  173 

ANCOVA indicated that relative differences in distal phalanx of digits 4 and 5 likely contributed 174 

to the multivariate difference. 175 

 Significant allometric relationships with forearm length existed for seven of twelve wing 176 

characteristics (Table 2).  Those elements not exhibiting allometric relationships were the first 177 

digit, the second phalanx of digit 3 and the most distal phalanges of the third, fourth, and fifth 178 

digits.  Slopes of allometric relationships for the metacarpals of digits three, four, and five did 179 

not significantly differ from one, thus exhibiting isometry.  Allometric relationships involving 180 

the metacarpal of the second digit and the first phalanx of digits three, four, and five were 181 

characterized by slopes that were significantly greater than one, thereby exhibiting 182 

hypeallometry. Similar patterns of allometry for three subsets of wing elements, namely the third 183 

metacarpal (P3.3) and phalanges (P3.4, P4.3, P5.3), metacarpals (P2, P3.1, P4.1, P5.1), and 184 

second metacarpals (P3.2, P4.2, P5.2) suggest that these groups of elements may represent 185 

modules. 186 

 The overall modularity test of the three different modules indicated significant 187 

modularity of the wing (CR= 0.52, p < 0.001).  Three pairwise contrasts were also significant 188 
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(P3.3 and distal phalanges versus metacarpals, CR=0.35, P = 0.016; first phalanges versus P3.3 189 

and distal phalanges, CR=0.52, P = 0.014; metacarpals versus first phalanges, CR=0.68, P = 190 

0.014) suggesting that all three modules contributed to significance of the overall test. 191 

 192 

DISCUSSION 193 

Elements of the wing of A. fimbriatus exhibit considerable variation and despite the mosdes 194 

sample sizes obtained for this analysis we could demonstrate that such variation was 195 

significantly related to secondary-sexual dimorphism, allometry, and modularity.  Such 196 

integrated and structured variation suggests that the wing of bats is a finely tuned airfoil whose 197 

morphology reflects variation in size but also flight performance.   198 

PATTERNS OF SECONDARY-SEXUAL DIMORPHISM 199 

Significant sexual dimorphism in the wing of bats whereby elements of females are larger than 200 

males is common (Myers, 1978; Williams and Findley, 1979; Willig, 1983; Castillo-Figueroa, 201 

2018) and likely reflects evolutionary responses to the added burden of carrying a large fetus and 202 

subsequently a large neonate (Ralls, 1976).  Only distal elements were significantly different 203 

between males and females in A. fimbriatus based on univariate tests.  Nonetheless, these 204 

differences involving the distal portion of both the fourth and fifth digit were consistent.  Larger 205 

wingtips allow for greater propulsion (Findley et al., 1972) and agility (Altringham, 1996) that 206 

may be needed by mothers during development of offspring.   207 

With the exception of the thumb, the same wing elements for A. lituratus were examined 208 

by Stevens et al. (2013) as for A fimbriatus examined here.  Overall, A. lituratus exhibited sexual 209 

dimorphism whereby females are larger than males, a pattern that is common for bats (Ralls, 210 

1976).  As with A. fimbriatus, A. lituratus exhibited both absolute and relative (after controlling 211 
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for body size) size dimorphism for the last elements of digits four and five.  Despite these 212 

similarities these two species were also somewhat different in their expression of dimorphism.  213 

Artibeus lituratus also exhibited significant absolute and relative dimorphism for the metacarpals 214 

of digits 3, 4, and 5 as well as the most distal phalanx of digit 3.  Artibeus lituratus also exhibited 215 

an absolute difference in metacarpals of digit 2 and 3.  Thus, both species exhibit significant 216 

sexual dimorphism, but may do so in different ways and based on different wing elements.  It is 217 

important to note that error degrees of freedom were more than an order of magnitude greater for 218 

the study on A. lituratus than for this study on A. fimbriatus, so examinations of only patterns of 219 

significance may be suspect.   220 

PATTERNS OF ALLOMETRY 221 

Bats in general exhibit strong patterns of allometry with respect to a number of different 222 

structures of ecological or evolutionary significance (Norberg, 1981; Silva, 1998; Hendrick and 223 

Dumont, 2018).  For example, cranial morphology of nectarivorous bats of Phyllostomidae 224 

exhibit varying patterns of hypo-, iso-, and hyper-allometry that varies by subfamily and appears 225 

to have a strong phylogenetic component (Bolzan et al., 2015).  Echolocation calls are often 226 

negatively allometrically related to body size in a number of families (Novick, 1977; Lopez-227 

Cuamatzi et al., 2020), likely due to larger bats needing more space to maneuver and lower 228 

frequency echolocation calls allowing detection at farther distances (Heller and von Helverson, 229 

1989; Barclay and Brigham, 1991; Thiagavel et al., 2017).  There is an allometric component to 230 

variation in male genitalia, especially for species where copulation occurs while females are 231 

hibernating (Lupold et al., 2004).  Litter mass in microchiropterans scales with aerodynamic 232 

characteristics of wing area and wing loading (Hayssen and Kunz, 1996), that themselves scale 233 

with size (Norberg and Rayner, 1987).  Nonetheless, as pointed out by Castillo-Figueroa (2020), 234 
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such aerodynamic characteristics are the result of variation in the actual wing elements and more 235 

direct examination of patterns of allometry of these elements may provide richer insights. 236 

Patterns of allometry of many but not all wing elements were substantive and significant.  237 

In particular, metacarpals (P3.1, P4.1, P5.1) exhibited isometry whereas first (P3.2, P4.2, P5.2) 238 

and metacarpal of digit 2 exhibited hyperallometry, whereby size of the element increased at a 239 

faster rate than overall size based on forearm length.  Distal elements (P3.3, P3.4, P4.3, P5.3) did 240 

not exhibit allometric relationships (i.e., slopes and r2 no greater in magnitude than expected by 241 

chance).  That the same elements across digits (i.e., P3.1, P4.1, P5.1) exhibited the same pattern 242 

of allometry that is different than other elements (i.e., P2, P3.2, P4.2, P5.2) suggests similar 243 

influences of selection on performance related characteristics or similar patterns of development 244 

and ossification (Adams, 2000). Bat wings exhibit compensatory growth during development 245 

(Adams, 1992).  Moreover, distal wing bones such as the phalanges undergo chondrogenesis and 246 

ossify later in development than more proximal wing bones (Adams, 1992, 2000).  As a result, 247 

more distal elements bear most of the burden of compensation and are thus the most variable 248 

(Adams, 1992).  Compensatory growth also manifests as differences in the form of allometric 249 

relationships between different groups of wing elements and likely explain the lack of 250 

relationships of distal elements with overall size. 251 

PATTERNS OF MODULARITY 252 

Phenotypic modularity is a common phenomenon across Mammalia (Goswami, 2006; Porto, 253 

2009; Koyuba et al., 2014) and often identifies performance-related integrated structures that are 254 

under selection (Melo and Marroig, 2015).  Indeed, much focus has been on cranial and 255 

mandibular morphology in mammals in general, but also in bats in particular (Lopez-Aguirre et 256 

al., 2015).  The cranium is often composed of at least two modules, the neurocranium and the 257 
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splachnocranium that are related to patterns of muscle insertion and brain development on the 258 

neurocranium and radiation in dentition and morphology of the rostrum that is related to foraging 259 

ecology on the splachnocranium (Lopez-Aguirre et al., 2015).  Similarly, the mandible is often 260 

comprised of two modules, the ascending ramus and the alveolar region that are related to 261 

differences in performance-related specialization for biting and food manipulation, respectively 262 

(Lopez-Aguirre et al., 2015).  Modularity of the cranium and mandible illuminate how 263 

evolutionary and developmental trends translate into performance-related patterns describing the 264 

relationship between form and function. 265 

 Similarly, the wing exhibits strong patterns of modularity, at least for A. fimbriatus, that 266 

may be general across bats.  Moreover, at least three modules make up the wing of A. fimbriatus 267 

based on these analyses.  Different sets of wing elements (i.e., metacarpals, proximal, and distal 268 

phalanges) are related to different aspects of the performance of the wing while in flight. For 269 

example, wing tips represented by P5.3, P4.3, P3.4, and probably P3.3, are the primary 270 

propulsive portion of the chiropteran wing whereby longer wingtips are related to greater speed 271 

(Findley et al., 1972; Altringham, 1996).  In contrast, metacarpals are important for generation of 272 

lift (Findley et al., 1972) and the relative length of metacarpals defines the degree to which 273 

curvature of the wing is located toward the trailing edge of the wing, which influences 274 

maneuverability (Stockwell, 2001).  To this end, it is intuitive that different groups of wing 275 

elements are important for different aspects of flight and thus exhibit modularity.  This is the first 276 

demonstration of modularity of bat wings of any species.  Indeed, modularity may be the product 277 

of natural selection fine-tuning particular sets of structures so as to enhance performance during 278 

flight.   Nonetheless, sets of elements develop and ossify at different rates (Adams, 1992).  279 

Future study should examine generality of modularity as well as try to tease apart ecological, 280 
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evolutionary, and developmental determinants to better understand the mechanistic bases to these 281 

patterns.   282 

 Bat wings are highly variable trophic and performance-related phenotypic structures.  283 

From a morphometric perspective, much less variation in wing morphology has been 284 

characterized relative to other structures such as the cranium, mandible, or teeth and as a result 285 

determinants of wing morphology are much less understood from theoretical perspectives based 286 

on development and evolution.  For example, while a number of studies have characterized 287 

sexual dimorphism of bat wings, many fewer have examined allometry, and this study is the first 288 

to examine modularity.  There is somewhat of a theoretical basis to begin to explain patterns of 289 

sexual dimorphism, but only much more incomplete theoretical constructs can inform the 290 

mechanistic basis of patterns of wing allometry and modularity.  Given the substantive 291 

variability of bat wings and the variety of different influences that range from ecological, 292 

evolutionary, and developmental, this aspect of the chiropteran phenotype is ripe for further 293 

morphometric investigation. 294 
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 479 

Figure Legend 480 

Figure 1.  Elements examined when characterizing sexual dimorphism, allometric relationships 481 

and modularity of wings of Artibeus fimbriatus. 482 

  483 



23 
 

Table 1.—Results from multivariate analysis of variance (MANOVA) and univariate 484 

analysis of variance examining differences in absolute (MANOVA) and relative 485 

(MANCOVA) sizes of wing elements based on sex. 486 

       487 

  MANOVA   MANCOVA  488 

Element ♀ ♂ F df P F df P  489 

All   2.53 13,22 0.026 2.66 12,22 0.022 490 

FA 60.33 58.41 0.60 1,34 0.445 3.36 1,33 0.007*** 491 

P1 15.68 15.22 0.37 1,34 0.550 0.02 1,33 0.638 492 

P2.1 47.37 45.76 0.26 1,34 0.613 1.09 1,33 0.305 493 

P3.1 57.52 55.40 0.36 1,34 0.554 0.01 1,33 0.905 494 

P3.2 19.19 18.61 0.57 1,34 0.458 0.21 1,33 0.648 495 

P3.3 30.85 29.69 1.30 1,34 0.263 1.03 1,33 0.318 496 

P3.4 20.38 19.58 0.63 1,34 0.432 0.70 1,33 0.410 497 

P4.1 56.62 54.63 0.06 1,34 0.804 1.15 1,33 0.292 498 

P4.2 16.40 15.57 0.31 1,34 0.583 0.03 1,33 0.856 499 

P4.3 22.68 21.58 4.80 1,34 0.035 4.27 1,33 0.047 500 

P5.1 58.49 56.52 0.02 1,34 0.884 0.94 1,33 0.339 501 

P5.2 12.90 12.56 1.89 1,34 0.178 1.28 1,33 0.266 502 

P5.3 18.40 17.44 15.32 1,34 <0.001 15.31 1,33 <0.001  503 
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Table 2.—Quantitative characteristics of allometric 504 

relationships of wing elements with forearm 505 

length.  r2 refers to the coefficient of determination 506 

of the relationship between forearm length and a 507 

particular wing element and P1 refers to the 508 

significance of this relationship.  b1 refers to the 509 

regression coefficient for the relationship between 510 

forearm length and length of a particular element 511 

whereas P2 refers to the probability that the 512 

observed b1 is equal to unity.   513 

      514 

Element r2 P1 b1 P2  515 

P1 0.029 0.319 NA NA 516 

P2.1 0.251 0.002 2.57 0.001 517 

P3.1 0.432 <0.001 1.22 0.315 518 

P3.2 0.183 0.009 2.55 0.005 519 

P3.3 0.028 0.332 NA NA 520 

P3.4 0.003 0.754 NA NA 521 

P4.1 0.467 <0.001 1.36 0.096 522 

P4.2 0.264 0.001 2.25 0.003 523 

P4.3 0.024 0.370 NA NA 524 

P5.1 0.493 <0.001 1.21 0.275 525 

P5.2 0.186 0.009 3.76 <0.001 526 

P5.3 <0.001 0.977 NA NA 527 
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