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Abstract

Most existing analyses of (stochastic) gradient

descent rely on the condition that for L-smooth

costs, the step size is less than 2/L. However,

many works have observed that in machine learn-

ing applications step sizes often do not fulfill this

condition, yet (stochastic) gradient descent still

converges, albeit in an unstable manner. We in-

vestigate this unstable convergence phenomenon

from first principles, and discuss key causes be-

hind it. We also identify its main characteristics,

and how they interrelate based on both theory and

experiments, offering a principled view toward

understanding the phenomenon.

1. Introduction

Gradient descent (GD) runs the iteration

θt+1 = θt − ¸∇f(θt) ,

seeking to optimize a cost function f . It also provides

a conceptual foundation for stochastic gradient descent

(SGD), one of the key algorithms in modern machine learn-

ing. A vast body of literature that analyzes (S)GD as-

sumes that the cost f is L-smooth (we say f is L-smooth

if ∥∇f(θ) − ∇f(θ
′

)∥ f L∥θ − θ
′

∥ for all θ,θ
′

), and

subsequently exploits the associated “descent lemma”:

f(θt+1) f f(θt)− ¸
(

1− L
¸

2

)
∥

∥∇f(θt)
∥

∥

2
. (1.1)

To ensure descent via inequality (1.1), the condition

L <
2

¸
, (1.2)

is imposed. This condition ensure that GD decreases the

cost f at each iteration. Whenever condition (1.2) holds, we

call it the “stable” regime in this paper.
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Figure 1: Example of unstable convergence for training

CIFAR-10 with GD. We follow the experimental setup of

(Cohen et al., 2021); see Experiment 1 for details. We use a

ReLU network. Here, condition (1.2) fails, but the training

loss still (non-monotonically) decreases in the long run.

When the cost is quadratic, condition (1.2) is in fact neces-

sary for stablility: if ¸ > 2
L , then GD diverges (see Fact 1).

This observation carries over to most convex optimization

settings and also neural networks when using the neural

tangent kernel approximations (Jacot et al., 2018; Li and

Liang, 2018; Lee et al., 2019). Thus, it is reasonable to

assume condition (1.2) for those analyses. However, for

general nonconvex costs, it is not clear whether the stable

regime condition (1.2) is required or even reasonable.

Recently, it has been observed that GD on neural networks

often violates condition (1.2). More specifically, Cohen

et al. (2021) observe that when we run GD to train a neural

network, the condition (1.2) fails, but contrary to the com-

mon wisdom from convex optimization, the training loss

still (non-monotonically) decreases in the long run. See

Figure 1 for an example of this phenomenon. We call this

phenomenon “unstable” convergence.

Unfortunately, very little is known about unstable conver-

gence. The causes and implications of this phenomenon

have not been explored in the literature. More importantly,

the main features as well as the scope of this phenomenon

have not been discussed. Characterizing the main features is

important because it not only furnishes better understanding

of this bizarre phenomenon, but also lays a foundation for

future theoretical studies; especially, the main characteris-

tics of this phenomenon will help build a more practical

theory of the neural network optimization.

Contributions. In light of the above motivation, the main

contributions of this paper are as follows:
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Unstable Convergence

What are its causes (Section 3):

■ Lack of (flat) stationary points near GD trajectory

■ Forward-invariance (F (S) ¦ S) of the GD dynamics

What are its main features (Section 4):

Object Quantity Behavior

Loss (§4.1) RP(θt) oscillates near 0
Iterates (§4.2) L(θt; η∇f(θt)) oscillates near 2/η
Sharpness (§4.4) λmax(∇

2f(θt)) oscillates near
above

2/η

- Relative Progress: RP(θ) :=
f(θ−η∇f(θ))−f(θ)

η∥∇f(θ)∥2

- Directional smoothness: L(θ ;v) :=
ïv,∇f(θ)−∇f(θ−v)ð

∥v∥2

■ Loss behavior ô Iterates behavior (Subsection 4.3)

■ Loss behaviour ⇒ Sharpness behavior (Subsection 4.4)

Extenson to SGD (Section 5)

Figure 2: Overview/summary of results.

1. We discuss the main causes driving the unstable con-

vergence phenomenon (Section 3).

2. We identify the main features that characterize unsta-

ble convergence in terms of how loss, iterates, and

sharpness1 evolve with GD updates. Moreover, we

investigate and clarify the relations between them. Our

characterizations demonstrate that the features of un-

stable convergence are in stark contrast with those of

traditional stable convergence, suggesting that their

optimization mechanisms are significantly different.

3. In particular, the main features considered in this work

provide alternative ways to identify unstable conver-

gence in practice.

Figure 2 provides a more technical overview of our main

findings, along with their interpretations.

1.1. Related Work

Under various contexts, several recents works have observed

the unstable convergence phenomenon in training neural

networks with (S)GD (Wu et al., 2018; Xing et al., 2018;

Lewkowycz et al., 2020; Jastrzkebski et al., 2017; 2018).

We refer readers to the related work section of Cohen et al.

(2021) for greater context.

The unstable convergence phenomenon is first formally iden-

tified by Cohen et al. (2021), and in their paper it is named

edge of stability. More specifically, they observe a more

refined version of the unstable convergence: when training a

1In this paper, following (Cohen et al., 2021), sharpness
means the maximum eigenvalue of the loss Hessian, i.e.,
λmax(∇

2f(θt)).

neural network with GD, the sharpness at the iterate goes be-

yond the threshold η/2, and often saturates right at (or above)

the threshold. In Section 5, we will explore the relations

between our main features and their observed phenomenon.

Concurrent works. Recently, Ma et al. (2022) also inves-

tigate the causes of unstable convergence based on their

empirical observations. Their main observation is that un-

stable convergence might be due to the landscape of loss

function where the loss grows slower than a quadratic near

the local minima. As we will see in Subsection 3.2, their

main finding is consistent with our explanation. They also

demonstrate through examples that such “sub-quadratic”

growth near the minima is caused by the heterogeneity of

data; see their Section 6 for details.

Another work by Arora et al. (2022) identifies a setting

in which one can prove the unstable convergence phe-

nomenon theoretically. More specifically, they show that

the normalized gradient descent dynamics of form θt+1 =
θt − ¸∇f(θt)/ ∥∇f(θt)∥ can provably exhibit the unsta-

ble convergence phenomenon near the minima under some

suitable assumptions; see their Section 4 for details.

2. Unstable GD Can’t Reach Stationary Points

In this section, we build intuitions about what the unstable

regime ¸ > 2/L suggests. First, note that the fixed points θ∞

of the GD dynamics θt+1 = θt−¸∇f(θt) are the stationary

points, i.e., points such that ∇f(θ∞) = 0. Hence, the GD

dynamics will eventually approach one of the stationary

points, and in order to understand the unstable regime, we

first need to understand the behavior of the dynamics near

the stationary points whose sharpness is greater than 2/η.

As a warm up, we first consider the simplest setting of

quadratic costs where the sharpness is constant globally. We

begin with the following well-known fact.

Fact 1. On a quadratic cost f(θ) = 1
2θ

¦Pθ + q
¦θ + r,

GD will diverge if any eigenvalue of P exceeds the threshold

2/¸. For convex quadratics, this condition is “iff.”

Below we quickly illustrate this fact through an example.

Example 1. Consider optimizing a quadratic cost

f(¹1, ¹2) = 20¹21 + ¹22 . Note that in this case L = 40.

Let us run GD on this cost with ¸ = 2/39, 2/40, 2/41.

As shown in the above plots, GD converges to the optimum

if ¸ < 2/L and it diverges if ¸ > 2/L.

Due to the above fact, one can build the following intuition:
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when a stationary point has sharpness greater than 2/η, the

GD dynamics cannot converge to the stationary point.

We first formalize this intuition. In particular, we show that

GD cannot converge to a stationary point that has sharpness

greater than 2/¸. We make the following assumptions about

the spectrum of Hessian at stationary points and the non-

degeneracy of the GD dynamics.

Assumption 1. Let F (θ) = θ − ¸∇f(θ) and assume that

for any subset S of measure zero, F−1(S) is of measure zero.

Moreover, each stationary point p satisfies 1
η ̸∈ ¼(∇2f(p)),

where ¼(∇2f(p)) denotes the set of eigenvalues of the Hes-

sian of f at p.

Theorem 1. For a given subset X of the domain of parame-

ter θ , assume that f is C2 in X . Suppose that for each sta-

tionary point p ∈ X , it holds that either ¼min(∇
2f(p)) < 0

or ¼max(∇
2f(p)) > 2

η . Then under Assumption 1, there

is a measure-zero subset N s.t. for all initializations

θ0 ∈ X \ N , the GD dynamics θt+1 = θt − ¸∇f(θt)
do not converge to any of the stationary points in X .

Proof of Theorem 1. The proof is inspired by those of

(Lee et al., 2016; Panageas and Piliouras, 2017). First, we

recall Stable Manifold Theorem (Shub, 2013, Thm III.7).

Lemma 1. Let p be a fixed point for the Cr local diffeo-

morphism h : U → R
n where U is an open neighborhood

of p in R
n and r g 1. Let Es · Ec · Eu be the invariant

spliiting of R
n into the generalized eigenspaces of Dh(p)

corresponding to eigenvalues of absolute value less than one,

equal to one, and greater than one. To the Dh(p)-invariant

subspace Es ·Ec there is an associated local h-invariant

Cr embedded disc W s·c

loc
of dimension dim(Es · Ec) and

ball B around p such that h(W s·c

loc
)∩B ¢ W s·c

loc
. Moreover,

if hn(x) ∈ B for all n g 0, then x ∈ W s·c

loc
.

To apply Lemma 1, we first show that the GD dynamics F is

a local diffeomorphism at each stationary point p satisfying
1
η /∈ ¼(∇2f(p)). This follows from the inverse function

theorem: (i) Note that F is a C1 vector field since f is C2,

(ii) the Jacobian of F is equal to DF (p) = I − ¸∇2f(p),
and since 1

η /∈ ¼(∇2f(p)), the Jacobian is invertible. Hence,

by inverse function theorem, we conclude that F is a local

diffeomorphism around p.

Hence for each stationary point p satisfying 1/¸ /∈
¼(∇2f(p)), we can apply Lemma 1 at p. Let Bp be the

open ball due to Lemma 1. Let S be the set of stationary

points. Consider the following open cover

C :=
⋃

p: stationary point
1
η
/∈λ(∇2f(p))

Bp . (2.1)

Then from Assumption 1, it follows that S ¢ C and hence

C is an open cover of S. Thus, Lindelöf’s lemma guaran-

tees that there exists a countable subcover of C, i.e., there

exist p1,p2, . . . s.t. C = ∪∞
i=1Bpi

. If GD converges to

a stationary point p, there must exist t0 and i such that

F t(p0) ∈ Bpi
for all t g t0. From Lemma 1, we con-

clude that F t(θ0) ∈ W s·c

loc
(pi). In other words, we have

θ0 ∈ F−t(W s·c

loc
(pi)) for all t g t0. Hence the set of initial

points in X for which GD converges to a stationary point is

a subset of

N :=

∞
⋃

i=1

∞
⋃

t=0

F−t(W s·c

loc
(pi)) .

Now from the assumption that either ¼min(∇
2f(p)) < 0 or

¼max(∇
2f(p)) > 2

η , it follows that I − ¸∇2f(p) has an

eigenvalue whose absolute value is greater than 1. Hence,

for each stationary point p, dim(Eu) g 1. This implies that

each W s·c

loc
(p) has measure zero, and from the assumption

that F−1(X ) is of measure zero if X is of measure zero, it

holds that each F−t(W s·c

loc
(pi)) is of measure zero. Thus,

being a countable union of measure zero sets, N is measure

zero. It follows that for initialization θ0 ∈ X \ N , the GD

dynamics never converge to a stationary point in X .

Remark 1. Note that Theorem 1 applies to the case when

stationary points are not isolated. Moreover, the condition

that every stationary point p satisfies 1
η ̸∈ ¼(∇2f(p)) can

be relaxed to the condition that the open cover C in (2.1)

covers the entire set of stationary points S .

The main takeaway of Theorem 1 is that for almost all initial-

izations, GD cannot converge to the stationary point whose

sharpness is larger than 2/¸ even when there is only a single

eigenvector whose eigenvalue exceeds the threshold 2/¸.

Having this intuition, we next discuss how “convergence”

could happen under the unstable regime.

3. How Can Unstable GD “Converge”?

In the previous section, we saw that when stationary points

have large sharpness relative to the step size, GD cannot

converge to those stationary points. However, as we saw in

Figure 1, GD can still “converge” under the unstable regime;

GD still manages to (non-monotonically) decrease the train-

ing loss in the long run. In this section, we understand

this bizzare co-occurrence. We first discuss some possible

causes for the unstable regime.

3.1. What Causes the Unstable Regime

One possible cause for the unstable regime is that the land-

scape has only “trivial” stationary points; we will formalize

the meaning of “trivial” shortly. This situation turns out to

be quite common for neural networks as illustrated by the

following result.



Unstable Convergence of GD

Proposition 1. Assume the loss of neural network

parametrized θ contains a weight decay term as follows,

ℓ(θ) =
1

n

n
∑

i=1

f(xi,θ) + µ∥θ∥22.

If we partition the network parameter θ = [ξ; ζ] such that a

subset of the network parameters ζ is positive homogeneous,

i.e. for any input data xi and positive number c > 0

f(xi, [ξ, ζ]) = f(xi, [ξ, cζ]),

Then the loss ℓ(θ) has no stationary point if ζ ̸= 0.

Proof of Proposition 1. This statement follows by a sim-

ple observation that from positive homogeneity,

ï∇ζf(xi, [ξ, ζ]), ζð = 0.

Therefore, if ∇ζµ∥θ∥
2
2 ̸= 0, we have

∇ζf(xi, [ξ, ζ]) +∇ζµ∥θ∥
2
2 ̸= 0,

which concludes the proof.

Notice that the positive homogeneity parameters exist in

many networks such as ResNet or Transformer when nor-

malization layers exist (aL+1 = aL/∥aL∥, where aL de-

note the input to layer L, and ∥ ·∥ denotes a norm of choice).

Note that in practical settings, Proposition 1 also suggests

that there could be lack of flat minima near the GD tra-

jectory. In the above example of ResNet or Transformer,

the networks often add a small ϵ term to the normalization

aL+1 = aL/(ϵ+ ∥aL∥) to avoid the loss being undefined

at aL = 0. However, the stationary points only exist when

∥aL∥ ≈ ϵ, in which case the sharpness of the stationary

point is very large (on the order of ∼ 1/ϵ).

In fact, it has been extensively observed in the literature that

the sharpness around GD with practical stepsize choices

often goes beyond the threshold 2/¸. This claim is veri-

fied through a comprehensive set of experiments and called

progressive sharpening in (Cohen et al., 2021); we refer

readers to their Section 3.1 for details. For instance, the

sharpness curve in Figure 1 shows this phenomenon. More-

over, a similar phenomenon was observed in (Wu et al.,

2018), and they speculated that the density of sharp minima

is much larger than the density of flat minima in the neural

network landscape. See their Section 4.1 for details.

We summarize our discussion regarding the causes of unsta-

ble regime as follows.

Takeaway 1. For practical stepisze choices, lack of (flat)

non-trivial stationary points near the GD trajectory can

cause GD to enter the unstable regime.

3.2. Causes for Convergence

As we discussed in Fact 1, for quadratic costs (or more

generally for most convex costs), GD being in the unstable

regime implies that GD will diverge entirely. However, as

demonstrated by (Cohen et al., 2021) through a compre-

hensive set of experiments, in neural network training, this

situation no longer holds. In this section, we discuss how in

the unstable regime “convergence” could happen through

examples. As a warm-up, let us revisit the quadratic cost

considered in Fact 1, but this time with some modifications.

Example 2 (“Flattened” quadratic cost). For the same

quadratic cost as in Fact 1, we chose the same diverging

step size ¸ = 2/39 > 2/L, but this time we change the cost

a bit by applying tanh(·) on top of the quadratic cost. More

formally, we consider the cost tanh(20 · ¹21 + ¹22). Due to

the fact tanh ≈ x near zero, this transformation wouldn’t

change the geometry near the global minimum. We run GD

on the modified cost, and the result looks as follows (we

include the result for the original quadratic cost on the left

for comparison):

As one can see from the above plot, for the transformed cost,

GD does not diverge in the unstable regime.

The above toy example illustrates that indeed for nonconvex

costs, being in the unstable regime does not necessarily

imply complete divergence. For the above example, this

was possible because of tanh(·), which ‘flattens” out the

landscape of the quadratic cost away from the minimum.

More formally, let us denote the GD dynamics by F (θ) :=
θ−¸∇f(θ). Then the role of tanh(·) in the above example

is that it creates a compact subset near the minimum that

is forward-invariant: we say S is forward-invariant with

respect to the dynamics F if F (S) ¦ S. Because the

gradient of tan(quadratic) vanishes as the point gets farther

away from the minimum, there exists a forward-invariant

compact subset X near the minimum.

Remark 2. In a very recent concurrent work by (Ma et al.,

2022), this phenomenon is discussed in a more principled

manner using the subquadratic growth property. More

specifically, they observed that for practical neural network

settings, the loss landscape near the minima exhibits growth

that is slower that quadratic, in which case the GD dynamics

do not diverge entirely even in the unstable regime. See their

Section 4 for details.

We demonstrate this point for neural network examples. We
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first consider the simplest neural network example, namely

a single hidden neuron network.

Example 3 (Single neuron networks). We consider a trivial

task of fitting the data (1, 0) with a single hidden neuron

neural network. Formally, we consider two types of net-

works:

• linear network: f(¹1, ¹2) = (¹1 · (1 · ¹2)− 0)2.

• tanh network: f(¹1, ¹2) = (¹1 · tanh(1 · ¹2)− 0)2.

We initialize both networks at θ0 = (13, 0.01) choose step

size ¸ = 2/150 to train them.

As one can see from the above plots, for a linear network,

the iterate quickly diverges, while for the tanh network, the

iterate does not diverge and converges to a minimum (whose

sharpness is indeed approximately equal to 2/¸).

Example 3 illustrates that the use of activation function like

tanh can create a compact forward-invariant subset near

the minima, which helps GD not diverge in the unstable

regime. In fact, the above example suggests that GD indeed

exhibits some convergence behaviour where while being in

the unstable regime, GD travels along the valley of minima

until it finds a flat enough minimum where it can stabilize.

We now consider more practical neural network examples

inspired by the settings considered in (Cohen et al., 2021).

Experiment 1 (CIFAR-10 experiment). For this example,

we follow the setting of the main experiment (Cohen et al.,

2021) in their Section 3. Specifically, we use (full-batch) GD

to train a neural network on 5, 000 examples from CIFAR-

10 with the CrossEntropy loss, and the network is a fully-

connected architecture with two hidden layers of width 200.

Under this common setting, we consider three types of net-

works: (i) linear network without activations; (ii) tanh
activations; (ii) ReLU activations. We choose the step size

¸ = 2/30 and the results are as follows:
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As one can see from the above plot, GD converges for the

networks with activation functions, while GD diverges with-

out activation functions.

We summarize our discussion regarding the causes for con-

vergence as follows.

Takeaway 2. Ingredients of neural networks such as activa-

tion functions create a compact forward-invariant set near

the minima, which helps GD (non-monotonically) converge

in the unstable regime.

In this section, we have discussed the causes of unstable

convergence and explain how the intuitions differ from those

of conventional convex optimization. We next move on to

study the main characteristics of unstable convergence. For

instance, we observe that under the unstable convergence

phenomenon, the loss is very non-monotonic. Can we un-

derstand the behavior of loss in a more principled way?

4. Characteristics of the Unstable Convergence

In this section, we aim to quantify unstable convergence

through several quantities that can be computed during the

training. In particular, we will characterize the unstable

convergence in terms of the loss behavior and the iterate

behavior. We will later demonstrate that the two different

behaviors are interconnected with each other.

4.1. Characteristics in Loss Behavior

We first investigate what happens to the loss under unstable

convergence. As a warm-up, we first consider the loss

behavior under stable convergence.

4.1.1. WARM-UP: THE STABLE REGIME

Recall from the descent lemma (1.1) that when GD is

in the stable regime, then we have f(θt+1) − f(θt) f

−c¸ ∥∇f(θt)∥
2

for some constant c > 0. Putting it differ-

ently, we have

f(θt+1)− f(θt)

¸ ∥∇f(θt)∥2
f −const.

Let us give the ratio on the LHS a name for convenience:

Definition 1 (Relative progress ratio). We define

RP(θ) :=
f(θ − ¸∇f(θ))− f(θ)

¸ ∥∇f(θ)∥2
.

Let us revisit Experiment 1 and verify that for smaller step

sizes the relative progress ratio is indeed a negative number.

Experiment 2 (CIFAR-10; stable regime). We use the same

setting as Experiment 1, which follows the setting of the

main experiment in (Cohen et al., 2021). For activations,

we choose tanh following (Cohen et al., 2021). We choose

much smaller step sizes so that GD is in the stable regime.

We plot the loss and the relative progress ratio until the

training accuracy hits 95%.
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From the above plots, one can see that the relative progress

ratio stays negative for all iterations. Moreover, there is no

non-monotonic behavior in the loss curve.

Remark 3. Given the result above, one might wonder why

the relative progress saturates around −1. Although we do

not have a clear explanation, we suspect that this happens

because the trajectory of GD quickly converges to a single

direction. We will quickly revisit this later this section. See

Remark 6.

4.1.2. RELATIVE PROGRESS RATIO UNDER UNSTABLE

CONVERGENCE

Given that relative progress is strictly negative number in

the stable regime, we now investigate how relative progress

ratio behaves in the case of unstable convergence.

Experiment 3 (CIFAR-10; unstable regime). We use the

same setting as Experiment 2. This time we choose step

sizes larger so that GD operates in the unstable convergence

regime. We plot the loss and the relative progress ratio until

the training accuracy hits 95%.
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The above experiment shows that in the the unstable regime,

the relative progress ratio saturates around 0 unlike the

stable regime.

Remark 4. One curious aspect of the above results is that

the optimization seems to get faster as we choose larger step

sizes. This is in fact one of the main observations in (Cohen

et al., 2021), suggesting that the unstable convergence is

preferred in practice for its faster optimization. However,

that does not mean one can increase the step size too large.

For example, in the above experiment, we observe that the

training loss diverges for step size ¸ = 2/10.

Based on Experiment 3, we raise the following question:

Q. why does RP(θt) oscillate around 0 under unstable

convergence?

We begin with explaining why RP(θt) cannot stay above 0.

Since the loss is converging in a long term, it cannot be that

RP(θt) > 0 for many iterations; otherwise, the loss will

keep increasing, contradicting the convergence.

More curious part is the fact that RP(θt) cannot stay below

zero, which directly contrasts with the stable regime. To

understand this phenomenon, we begin with some intuition.

We have seen that when GD encounters sharp minima,

it oscillates near the minima because it cannot stabilize

to the minima (due to Theorem 1). In other words, the

loss change f(θt+1)− f(θt) would be much smaller com-

pared to
∥

∥¸2∇f(θt)
∥

∥

2
the square of the distance that GD

travels. Hence, intuitively, one might expect that relative

progress cannot be too negative under the unstable conver-

gence regime. We would like to formalize this intuition

next.

4.2. Characteristics in Iterates Movement

To that end, let us formally define what it means for GD to

oscillate. More generally, consider the situation where θ is

updated by moving along the vector −v. Then this update

is oscillatory if the directional derivative at the updated

parameter θ − v is nearly negative of that at θ , i.e.,

ïv, ∇f(θ − v)ð ≈ − ïv, ∇f(θ)ð .

Inspired by this, we consider the following definition.

Definition 2 (Directional smoothness). For an update vec-

tor v, we define

L(θ;v) :=
1

∥v∥2
〈

v, ∇f(θ)−∇f
(

θ − v

)〉

.

Now coming back to the gradient descent where the update

vector is v = ¸∇f(θ), we have

L(θ; ¸∇f(θ)) =

〈

∇f(θ), ∇f(θ)−∇f
(

θ − ¸∇f(θ)
)〉

¸ ∥∇f(θ)∥2
.

When GD is exhibiting oscillatory behaviour, we would

have

ï∇f(θ), ∇f(θ − v)ð ≈ − ï∇f(θ), ∇f(θ)ð ,

in which case, it holds that

L(θ; ¸∇f(θ)) ≈
2

¸
(when GD iterates oscillate). (4.1)

For intuition, let us quickly verify (4.1) for quadratic costs.

Example 4 (Quadratics). Consider a quadratic loss func-

tion f(θ) = θ¦Pθ with P ° 0. Then, the GD update

reads θt+1 = (I − ¸P )θt. For an eigenvector/eigenvalue

pair (q, ¼) of P , the quantity ïqmax, θ
tð evolves as

〈

qmax, θ
t
〉

= q
¦(I − ¸P )θt−1 = (1− ¸¼)

〈

qmax, θ
t−1

〉

= (1− ¸¼)t
〈

qmax, θ
0
〉

.
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This implies that if ¼ < 2/¸, then q
¦θt → 0. Hence,

if ¸ = 2/¼max(P ), then after sufficiently large iterations

t, we have θt ≈ (−1)t
〈

qmax, θ
0
〉

qmax, in which case

L(θ; ¸∇f(θ)) ≈ 2
η .

Given the above view on “oscillating” iterates, we now

measure directional smoothness under unstable convergence.

Experiment 4 (Directional smoothness in stable and unsta-

ble regimes). Under the same setting as Experiments 2 and

3, we measure the value L(θt; ¸∇f(θt)) at each iteration.
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Indeed, one can see that for the unstable regime

L(θt; ¸∇f(θt)) saturates around 2/¸, indicating that GD

is exhibiting an oscillating behavior.

Experiment 4 verifies that GD is indeed showing an oscillat-

ing behavior under unstable convergence. We remark that a

similar conclusion is made in (Xing et al., 2018) as well as

the recent concurrent works (Ma et al., 2022; Arora et al.,

2022). Now coming back to our original question: can we

show a formal relation between the directional smoothness

and the relative progress ratio?

4.3. Relation between Relative Progress Ratio and

Directionl Smoothness

Theorem 2 formalizes our intuition that under the oscillating

behavior of GD, RP(θt) cannot stay below zero.

Theorem 2. The following identity holds:

RP(θ) = −1 +
¸

2
· 2

∫ 1

0

Ä · L(θ; ¸Ä∇f(θ)) dÄ . (4.2)

Proof. See Appendix A.

Theorem 2 implies that if the weighted average of

L(θ; ¸Ä∇f(θ)) is close to 2/¸, namely

2

∫ 1

0

Ä · L(θ; ¸Ä∇f(θ)) dÄ ≈
2

¸
,

then RP(θ) is indeed approximately equal to zero. This for-

mally justifies that when GD shows an oscillating behavior,

RP(θt) cannot stay below zero.

In our last experiment of this subsection, we verify that the

above weighted average is approximately equal to the single

value L(θ; ¸∇f(θ)), building a stronger relation between

the directional smoothness and the relative progress ratio.

Experiment 5. In the same setting as Experiment 3, we

choose step size ¸ = 2/60 and in every 5 iterations, we

compute the following values:

L(θt; ¸Ä∇f(θt)) for Ä ∈ {0.01, 0.02, . . . , 1}.

In the plot below, we report the mean of L(θt; ¸Ä∇f(θt))
among Ä ∈ {0.01, 0.02, . . . , 1} together with the shades

which indicate the standard deviations.
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This experiment verifies that L(θt; ¸Ä∇f(θt)) does vary

too much across Ä ∈ [0, 1]. Hence, the single value

L(θ; ¸∇f(θ)) well represents the weighted average in The-

orem 2.

Hence, Experiment 5 justifies the relation

RP(θ) ≈ −1 +
¸

2
· L(θ; ¸∇f(θ)) , (4.3)

which precisely explains how the oscillatory behavior of

GD results in a small relative progress ratio.

Remark 5. Interestingly, the validity of equation (4.3) and

Experiment 5 suggests that even though the gradient Lip-

schitzness is not a good assumption for neural networks,

some form of Hessian Lipschitzness is valid along the GD

trajectory.

We summarize the finding in this section as follows.

Takeaway 3. Under the unstable convergence regime,

RP(θt) oscillates near 0 for the following two reasons:

• RP(θt) can’t stay above 0 because otherwise the loss

would not decrease in the long run.

• RP(θt) can’t stay below 0 due to the oscillating behav-

ior of GD iterates. This is formalized via (4.3).

Remark 6. Given (4.3), one can have a better explanation

for Remark 3 regarding why RP(θt) saturates around −1.

In the second result of Experiment 4, the directional smooth-

ness remains very small in the stable regime. Based on (4.3),

this implies that RP(θt) is close to −1, which was indeed

the case in Experiment 2.

4.3.1. ADDITIONAL EXPERIMENTS

In this subsection, we verify the relation (4.3) for other

experimental settings.
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Experiment 6 (CIFAR-10; ReLU networks). Under the

same setting as Experiment 2 (the setting of the main exper-

iments in (Cohen et al., 2021)), this time we choose ReLU

as activation functions.
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In the next set of experiments, we put 2 more hidden layers

of width 200 (total 4 hidden layers of width 200).
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The results are largely similar to those for tanh activations,

and the relation (4.3) holds for all cases.

4.4. Implications for Sharpness

In the previous subsection, we saw that one characteristics

of unstable convergence is that RP(θt) saturates around

zero. In this section, we investigate implications of this

characteristics for sharpness. In particular, we discuss some

relations to a curious phenomenon called edge of stability

(EoS) recently observed in (Cohen et al., 2021). The gist

of their observation is that for GD on neural networks often

satisfies the following properties:

A. ¼max(∇
2f(θt)) > 2/¸ for most iterates.

B. In fact, in many cases ¼max(∇
2f(θt)) saturates right

at (or slightly above) 2/¸.

To that end, we begin with the following consequence of

Theorem 2.

Corollary 1. Let Lt be the maximum sharpness along

the line segment between the iterates θt and θt+1, i.e.,

Lt := sup
θ∈θtθt+1{¼max(∇

2f(θ))}. Then, the following

inequality holds:

2

¸
· (RP(θ) + 1) f Lt .

Proof. It follows from the fact that for each Ä ∈ [0, 1]
L(θ; ¸Ä∇f(θ)) f sup{¼max(∇

2f(θ)) : θ lies on the

line segment between θt and θt − ¸Ä∇f(θ)}. Clearly, the

right hand side is upper bounded by Lt.

Corollary 1 implies that when RP(θt) oscillates around zero,

then Lt has to be frequently above the threshold 2/¸. One

can actually refine this statement to understand the part A

of EoS, given our results so far. In light of Experiment 5,

if L(θt; ¸Ä∇f(θt)) does vary much across Ä ∈ [0, 1], then

one can actually write

2

¸
(RP(θt) + 1) ≈ lim

τ→0
L(θt; ¸Ä∇f(θt))

♣
f ¼max(∇

2f(θt)) ,

which is the part A of EoS.

Moreover, let us for a moment additionally assume that

∇f(θt) is approximately parallel to the largest eigenvector

of the Hessian ∇2f(θt). This might look stringent at first

glance, but given the calculations in Example 4, this as-

sumption is true for unstable GD on a quadratic cost. Also,

recently, this behavior is theoretically proven for the normal-

ized gradient descent dynamics (Arora et al., 2022). Under

this assumption, one can further deduce that the inequality

(♣) holds with approximate equality, and the part B of EoS

would hold in that case.

5. Relative Progress for SGD

In this section, we extend our discussion to the stochastic

gradient descent (SGD):

θt+1 = θt − ¸g(θt), where E[g(θt)] = ∇f(θt) .

For the case of SGD, there is one obvious challenge. With

SGD, the training loss does not decrease monotonically

since SGD is a random algorithm. Hence, it is not clear

how to precisely define what it means for SGD to be in the

unstable regime. On the other hand, inspired by our discus-

sion in Subsection 4.1, a more transparent way to define the

unstable regime for SGD is via the relative progress ratio.

In particular, we consider the following extension.

Definition 3 (Expected relative progress ratio).

E[RP(θ)] :=
Ef(θ − ¸g(θ))− f(θ)

¸ ∥∇f(θ)∥2
.

Experiment 7 (CIFAR-10; SGD on ReLU networks). Un-

der the same setting as Experiment 6, this time we train the

network with SGD with minibatch size of 32 and step size

¸ = 2/100. We compute the full-batch loss and the expected

relative progress ratio at the end of each epoch.
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Note that E[RP(θt)] does not stay below zero. Based on our

discussion in Subsection 4.1, this suggests that SGD is in

the unstable regime.
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Remark 7 (Expected loss change is not negative?!). One

very surprising aspect of the above results is that E[RP(θt)]
is not negative for a majority of iterations. This is rather

counter-intuitive given that in the loss plot SGD decreases

the loss in the long run. On the other hand, we note that this

counter-intuitive phenomenon is also observed by (Cohen

et al., 2021) in a comprehensive set of experiments. In par-

ticular, they mention “what may be more surprising is that

SGD is not even decreasing the training loss in expectation.”

See (Cohen et al., 2021, Appendix H) and (Cohen et al.,

2021, Figures 25 and 26) for details.

We now establish a relation analogous to (4.3) for SGD.

Similarly to Theorem 2, one can prove the following:

E[RP(θ)] = −1 +
¸

2
· 2

∫ 1

0

ÄEg

[

∥g(θ)∥2·L(θ ;ητg(θ))

∥∇f(θ)∥2

]

dÄ .

See Appendix A for derivation. Hence, the analogous rela-

tion to (4.3) is:

E[RP(θ)] ≈ −1 +
¸

2
· E

[

∥g(θ)∥2

∥∇f(θ)∥2L(θ; ¸g(θ))
]

. (5.1)

Experiment 8 (CIFAR-10; verifying (5.1) for ReLU).

Under the same setting as Experiment 7, we compute

E[RP(θ)] and the RHS of (5.1) at the end of each epoch

and compare those values. We choose step sizes ¸ =
2/50, 2/100, 2/150.
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Note that the LHS and RHS of (5.1) are very similar in all

results, verifying the relation (5.1).

Experiment 9 (CIFAR-10; verifying (5.1) for tanh). We

repeat Experiment 8 with tanh activations.
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The results are similar to those for ReLU networks.

6. Discussion and Future Directions

This work demonstrated characteristics of unstable conver-

gence that are in stark contrast with those of stable conver-

gence. Consequently, this work leads to several interesting

future directions.

■ Better optimizer? The characteristics based on the di-

rectional smoothness suggests that the adjacent iterates

have nearly opposite gradients in the unstable regime.

This obviates the efficacy of many efficient methods (e.g.

variance reduced methods) which are designed based

on the intuition that the adjacent iterates have similar

gradients. Hence, it would be interesting to design an

efficient optimizer that respects the new characteristics.

■ Faster training under unstable convergence? As dis-

cussed in Remark 4, another striking feature of unstable

convergence is that the training loss seems to converge

faster. One interesting question is whether one can elu-

cidate this faster optimization by further exploring our

characterization of relative progress.

■ What assumptions are valid for neural network opti-

mization? It is clear that unstable convergence cannot

be reasoned with the widespread condition of ¸ < 2
L .

Then what assumptions would be valid for neural net-

works? As discussed in Remark 5, our Experiment 5

suggests that although the gradient Lipschitzness is not

a good assumption for neural networks, some form of

Hessian Lipschitzness might be a valid one.

■ Unstable regime for adaptive methods? Our character-

izations are limited to constant step size (S)GD, and it

is not clear how these characterizations carry over to

adaptive methods such as Adam and RMSProp. Inves-

tigating adaptive methods will help us understand how

they differ from (S)GD for neural network optmization.
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A. Proof of Theorem 2

Using the fact

d

dÄ
[f(θ − ¸Ä∇f(θ)] =

〈

−¸∇f(θ), ∇f
(

θ − ¸Ä∇f(θ)
)〉

,

we obtain

f
(

θ − ¸∇f(θ)
)

− f(θ) = −¸

∫ 1

0

〈

∇f(θ), ∇f
(

θ − ¸Ä∇f(θ)
)〉

dÄ

= −¸ ∥∇f(θ)∥2 − ¸

∫ 1

0

〈

∇f(θ), ∇f
(

θ − ¸Ä∇f(θ)
)

−∇f(θ)
〉

dÄ .

Hence, after rearranging, we get

¸

2
· 2

∫ 1

0

Ä · L(θ; ¸Ä∇f(θ)) dÄ − 1 =
f
(

θ − ¸∇f(θ)
)

− f(θ)

¸ · ∥∇f(θ)∥2
= RP(θ) ,

which is precisely the relation in Theorem 2.

Derivation for the SGD case. For the SGD case, the derivation is similar.

f
(

θ − ¸g(θ)
)

− f(θ)

(a)
= −¸

∫ 1

0

〈

g(θ), ∇f
(

θ − ¸Äg(θ)
)〉

dÄ

= −¸ ïg(θ), ∇f(θ)ð − ¸

∫ 1

0

〈

g(θ), ∇f
(

θ − ¸Äg(θ)
)

−∇f(θ)
〉

dÄ

where (a) is due to the fact

d

dÄ
[f(θ − ¸Äg(θ)] =

〈

−¸g(θ), ∇f
(

θ − ¸Äg(θ)
)〉

.

After taking expectation over the randomness in the stochastic gradient, we obtain

Ef
(

θ − ¸g(θ)
)

− f(θ) = −¸ ∥∇f(θ)∥2 − ¸

∫ 1

0

E
〈

g(θ), ∇f
(

θ − ¸Äg(θ)
)

−∇f(θ)
〉

dÄ

Hence, after rearranging we obtain the desired equation:

Ef
(

θ − ¸g(θ)
)

− f(θ)

¸ ∥∇f(θ)∥2
= −1 +

¸

2
· 2

∫ 1

0

Ä · Eg

[

∥g(θ)∥2 · L(θ; ¸Äg(θ))

∥∇f(θ)∥2

]

dÄ .

This completes the derivation.


