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Abstract

Most existing analyses of (stochastic) gradient
descent rely on the condition that for L-smooth
costs, the step size is less than 2/L. However,
many works have observed that in machine learn-
ing applications step sizes often do not fulfill this
condition, yet (stochastic) gradient descent still
converges, albeit in an unstable manner. We in-
vestigate this unstable convergence phenomenon
from first principles, and discuss key causes be-
hind it. We also identify its main characteristics,
and how they interrelate based on both theory and
experiments, offering a principled view toward
understanding the phenomenon.

1. Introduction

Gradient descent (GD) runs the iteration

0 = 0"~V f(8"),

seeking to optimize a cost function f. It also provides
a conceptual foundation for stochastic gradient descent
(SGD), one of the key algorithms in modern machine learn-
ing. A vast body of literature that analyzes (S)GD as-
sumes that the cost f is L-smooth (we say f is L-smooth
if [Vf(8) — V(@) < L|0 — 6| for all 8,6"), and
subsequently exploits the associated “descent lemma”:

2
F0) < f(0) —n(1— L) [ V@) . D
To ensure descent via inequality (1.1), the condition
2
L < —, (1.2)
Ui

is imposed. This condition ensure that GD decreases the
cost f at each iteration. Whenever condition (1.2) holds, we
call it the “stable” regime in this paper.
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Figure 1: Example of unstable convergence for training
CIFAR-10 with GD. We follow the experimental setup of
(Cohen et al., 2021); see Experiment 1 for details. We use a
ReLU network. Here, condition (1.2) fails, but the training
loss still (non-monotonically) decreases in the long run.

When the cost is quadratic, condition (1.2) is in fact neces-
sary for stablility: if n > % then GD diverges (see Fact 1).
This observation carries over to most convex optimization
settings and also neural networks when using the neural
tangent kernel approximations (Jacot et al., 2018; Li and
Liang, 2018; Lee et al., 2019). Thus, it is reasonable to
assume condition (1.2) for those analyses. However, for
general nonconvex costs, it is not clear whether the stable
regime condition (1.2) is required or even reasonable.

Recently, it has been observed that GD on neural networks
often violates condition (1.2). More specifically, Cohen
et al. (2021) observe that when we run GD to train a neural
network, the condition (1.2) fails, but contrary to the com-
mon wisdom from convex optimization, the training loss
still (non-monotonically) decreases in the long run. See
Figure 1 for an example of this phenomenon. We call this
phenomenon ““‘unstable’ convergence.

Unfortunately, very little is known about unstable conver-
gence. The causes and implications of this phenomenon
have not been explored in the literature. More importantly,
the main features as well as the scope of this phenomenon
have not been discussed. Characterizing the main features is
important because it not only furnishes better understanding
of this bizarre phenomenon, but also lays a foundation for
future theoretical studies; especially, the main characteris-
tics of this phenomenon will help build a more practical
theory of the neural network optimization.

Contributions. In light of the above motivation, the main
contributions of this paper are as follows:
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-~

What are its causes (Section 3):

~

Unstable Convergence

m Lack of (flat) stationary points near GD trajectory
m Forward-invariance (F'(S) C S) of the GD dynamics

What are its main features (Section 4):

Object Quantity Behavior
Loss (§4.1) RP(6") oscillates near 0
Iterates (§4.2) L(0*;nV£(6")) oscillates near2/n
Sharpness (§4.4)  Anax(V2f(0%))  oscillates e 2/,
- Relative Progress: RP(0) := %W
- Directional smoothness: L(8; v) := {2V eﬁ:“zﬂe*"))

m Loss behavior <> Iterates behavior (Subsection 4.3)
m Loss behaviour = Sharpness behavior (Subsection 4.4)

)

thenson to SGD (Section 5)

Figure 2: Overview/summary of results.

1. We discuss the main causes driving the unstable con-
vergence phenomenon (Section 3).

2. We identify the main features that characterize unsta-
ble convergence in terms of how loss, iterates, and
sharpness' evolve with GD updates. Moreover, we
investigate and clarify the relations between them. Our
characterizations demonstrate that the features of un-
stable convergence are in stark contrast with those of
traditional stable convergence, suggesting that their
optimization mechanisms are significantly different.

3. In particular, the main features considered in this work
provide alternative ways to identify unstable conver-
gence in practice.

Figure 2 provides a more technical overview of our main
findings, along with their interpretations.

1.1. Related Work

Under various contexts, several recents works have observed
the unstable convergence phenomenon in training neural
networks with (S)GD (Wu et al., 2018; Xing et al., 2018;
Lewkowycz et al., 2020; Jastrzkebski et al., 2017; 2018).
We refer readers to the related work section of Cohen et al.
(2021) for greater context.

The unstable convergence phenomenon is first formally iden-
tified by Cohen et al. (2021), and in their paper it is named
edge of stability. More specifically, they observe a more
refined version of the unstable convergence: when training a

'In this paper, following (Cohen et al., 2021), sharpness
means the maximum eigenvalue of the loss Hessian, i.e.,

Amax(V2£(8")).

neural network with GD, the sharpness at the iterate goes be-
yond the threshold 7/2, and often saturates right at (or above)
the threshold. In Section 5, we will explore the relations
between our main features and their observed phenomenon.

Concurrent works. Recently, Ma et al. (2022) also inves-
tigate the causes of unstable convergence based on their
empirical observations. Their main observation is that un-
stable convergence might be due to the landscape of loss
function where the loss grows slower than a quadratic near
the local minima. As we will see in Subsection 3.2, their
main finding is consistent with our explanation. They also
demonstrate through examples that such “sub-quadratic”
growth near the minima is caused by the heterogeneity of
data; see their Section 6 for details.

Another work by Arora et al. (2022) identifies a setting
in which one can prove the unstable convergence phe-
nomenon theoretically. More specifically, they show that
the normalized gradient descent dynamics of form 8*+! =
0! —nV f(0')/ ||V f(6")]| can provably exhibit the unsta-
ble convergence phenomenon near the minima under some
suitable assumptions; see their Section 4 for details.

2. Unstable GD Can’t Reach Stationary Points

In this section, we build intuitions about what the unstable
regime 1) > 2/1 suggests. First, note that the fixed points 8°°
of the GD dynamics 81 = 8! —nV f(6?) are the stationary
points, i.e., points such that V f(8°°) = 0. Hence, the GD
dynamics will eventually approach one of the stationary
points, and in order to understand the unstable regime, we
first need to understand the behavior of the dynamics near
the stationary points whose sharpness is greater than 2/y.

As a warm up, we first consider the simplest setting of
quadratic costs where the sharpness is constant globally. We
begin with the following well-known fact.

Fact 1. On a quadratic cost f(0) = %GTPB +q'0+r,
GD will diverge if any eigenvalue of P exceeds the threshold

2/n. For convex quadratics, this condition is “iff.” O

Below we quickly illustrate this fact through an example.
Example 1. Consider optimizing a quadratic cost
f(61,02) = 2002 + 03. Note that in this case L = 40.
Let us run GD on this cost withn = 2/39, 2/40, 2/41.

1 = 2/39) - = 2/41]

point,

[-n =2/40
*

As shown in the above plots, GD converges to the optimum
ifn < 2/L and it diverges if n > 2/ L. O

Due to the above fact, one can build the following intuition:
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when a stationary point has sharpness greater than 2/y, the
GD dynamics cannot converge to the stationary point.

We first formalize this intuition. In particular, we show that
GD cannot converge to a stationary point that has sharpness
greater than 2/7). We make the following assumptions about
the spectrum of Hessian at stationary points and the non-
degeneracy of the GD dynamics.

Assumption 1. Let F(0) = 0 — nV f(0) and assume that
for any subset S of measure zero, F~1(S) is of measure zero.
Moreover, each stationary point p satisfies % Z M(V2f(p)),
where \(V? f(p)) denotes the set of eigenvalues of the Hes-
sian of f at p.

Theorem 1. For a given subset X of the domain of parame-
ter 0, assume that f is C? in X. Suppose that for each sta-
tionary point p € X, it holds that either \pmin (V2 f(p)) < 0
or Amax(V2f(p)) > 2 Then under Assumption 1, there
is a measure-zero subset N s.t. for all initializations
0° € X\ N, the GD dynamics 0" = ' — nVf(6?)
do not converge to any of the stationary points in X.

Proof of Theorem 1. The proof is inspired by those of
(Lee et al., 2016; Panageas and Piliouras, 2017). First, we
recall Stable Manifold Theorem (Shub, 2013, Thm IIL.7).

Lemma 1. Let p be a fixed point for the C" local diffeo-
morphism h : U — R™ where U is an open neighborhood
ofpinR" andr > 1. Let E®* & E° & E" be the invariant
spliiting of R™ into the generalized eigenspaces of Dh(p)
corresponding to eigenvalues of absolute value less than one,
equal to one, and greater than one. To the Dh(p)-invariant
subspace E° & E° there is an associated local h-invariant
C" embedded disc WEE° of dimension dim(E* & E°) and
ball B around p such that h(WE)NB C WEEC. Moreover,
if h"(x) € B foralln > 0, then x € W3¢,

loc

To apply Lemma 1, we first show that the GD dynamics F' is
a local diffeomorphism at each stationary point p satisfying
% ¢ M(V2f(p)). This follows from the inverse function
theorem: (i) Note that F'is a C'! vector field since f is C?,
(ii) the Jacobian of Fis equal to DF(p) = I — nV2f(p),
and since = §é A(V2f(p)), the Jacobian is invertible. Hence,
by inverse functlon theorem, we conclude that I is a local
diffeomorphism around p.

Hence for each stationary point p satisfying 1/n ¢
A(V2f(p)), we can apply Lemma 1 at p. Let B, be the
open ball due to Lemma 1. Let S be the set of stationary
points. Consider the following open cover

C .= U By.

p: stationary point

LEA(V2f(p))

2.1

Then from Assumption 1, it follows that S C C and hence
C is an open cover of S. Thus, Lindelof’s lemma guaran-
tees that there exists a countable subcover of C, i.e., there
exist p1,p2,... s.t. C = U2, Bp,. If GD converges to
a stationary point p, there must exist tg and ¢ such that
F'(py) € By, forall t > t;. From Lemma 1, we con-
clude that F*(8,) € W:2¢(p;). In other words, we have
0, € F~H(W:2<(p;)) for all t > t,. Hence the set of initial
points in X for which GD converges to a stationary point is

a subset of

N = U P nE ).
i=1t=0
Now from the assumption that either A, (V2 f(p)) < 0 or
Amax(V2f(p)) > %, it follows that I — V2 f(p) has an
eigenvalue whose absolute value is greater than 1. Hence,
for each stationary point p, dim(E") > 1. This implies that
each VV@?C( ) has measure zero, and from the assumption
that F~1(X) is of measure zero if X is of measure zero, it
holds that each F'~ (V[/lffc( ;)) is of measure zero. Thus,
being a countable union of measure zero sets, A is measure
zero. It follows that for initialization 6, € X' \ NV, the GD

dynamics never converge to a stationary point in X', O

Remark 1. Note that Theorem 1 applies to the case when
stationary points are not isolated. Moreover, the condition
that every stationary point p satisfies % Z M(V2f(p)) can
be relaxed to the condition that the open cover C in (2.1)
covers the entire set of stationary points S.

The main takeaway of Theorem 1 is that for almost all initial-
izations, GD cannot converge to the stationary point whose
sharpness is larger than 2/7 even when there is only a single
eigenvector whose eigenvalue exceeds the threshold 2/7.
Having this intuition, we next discuss how “convergence”
could happen under the unstable regime.

3. How Can Unstable GD “Converge’?

In the previous section, we saw that when stationary points
have large sharpness relative to the step size, GD cannot
converge to those stationary points. However, as we saw in
Figure 1, GD can still “converge” under the unstable regime;
GD still manages to (non-monotonically) decrease the train-
ing loss in the long run. In this section, we understand
this bizzare co-occurrence. We first discuss some possible
causes for the unstable regime.

3.1. What Causes the Unstable Regime

One possible cause for the unstable regime is that the land-
scape has only “trivial” stationary points; we will formalize
the meaning of “trivial” shortly. This situation turns out to
be quite common for neural networks as illustrated by the
following result.
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Proposition 1. Assume the loss of neural network
parametrized @ contains a weight decay term as follows,

(40) = 3" f(w:,0) + 1013
i=1

If we partition the network parameter 0 = [€; €] such that a
subset of the network parameters  is positive homogeneous,
i.e. for any input data x; and positive number c > 0

f(wi’ [E»C]) = f(fﬁi, [E?CC])7

Then the loss £(0) has no stationary point if ¢ # 0.

Proof of Proposition 1. This statement follows by a sim-
ple observation that from positive homogeneity,

(Vef (@i, [€,€]),€) = 0.

Therefore, if V¢7[/0||3 # 0, we have

va<wia [gvd) + VC’)/”OH% # 0,

which concludes the proof. O

Notice that the positive homogeneity parameters exist in
many networks such as ResNet or Transformer when nor-
malization layers exist (ar+1 = ar/||ar]|, where ar, de-
note the input to layer L, and || - || denotes a norm of choice).

Note that in practical settings, Proposition 1 also suggests
that there could be lack of flat minima near the GD tra-
jectory. In the above example of ResNet or Transformer,
the networks often add a small € term to the normalization
ar+1 =ayr/(e+ |la|l) to avoid the loss being undefined
at ar, = 0. However, the stationary points only exist when
llar|l = €, in which case the sharpness of the stationary
point is very large (on the order of ~ 1/¢).

In fact, it has been extensively observed in the literature that
the sharpness around GD with practical stepsize choices
often goes beyond the threshold 2/7. This claim is veri-
fied through a comprehensive set of experiments and called
progressive sharpening in (Cohen et al., 2021); we refer
readers to their Section 3.1 for details. For instance, the
sharpness curve in Figure 1 shows this phenomenon. More-
over, a similar phenomenon was observed in (Wu et al.,
2018), and they speculated that the density of sharp minima
is much larger than the density of flat minima in the neural
network landscape. See their Section 4.1 for details.

We summarize our discussion regarding the causes of unsta-
ble regime as follows.

Takeaway 1. For practical stepisze choices, lack of (flat)
non-trivial stationary points near the GD trajectory can
cause GD to enter the unstable regime.

3.2. Causes for Convergence

As we discussed in Fact 1, for quadratic costs (or more
generally for most convex costs), GD being in the unstable
regime implies that GD will diverge entirely. However, as
demonstrated by (Cohen et al., 2021) through a compre-
hensive set of experiments, in neural network training, this
situation no longer holds. In this section, we discuss how in
the unstable regime “convergence” could happen through
examples. As a warm-up, let us revisit the quadratic cost
considered in Fact 1, but this time with some modifications.

Example 2 (“Flattened” quadratic cost). For the same
quadratic cost as in Fact 1, we chose the same diverging
step size n = 2/39 > 2/L, but this time we change the cost
a bit by applying tanh(-) on top of the quadratic cost. More
formally, we consider the cost tanh(20 - 62 + 03). Due to
the fact tanh =~ x near zero, this transformation wouldn’t
change the geometry near the global minimum. We run GD
on the modified cost, and the result looks as follows (we
include the result for the original quadratic cost on the left
for comparison):

2007 + 03 —tanh(2067 + 63)|

Starting point Starting point

As one can see from the above plot, for the transformed cost,
GD does not diverge in the unstable regime. O

The above toy example illustrates that indeed for nonconvex
costs, being in the unstable regime does not necessarily
imply complete divergence. For the above example, this
was possible because of tanh(-), which ‘flattens” out the
landscape of the quadratic cost away from the minimum.

More formally, let us denote the GD dynamics by F'(6) :=
0 —nV f(0). Then the role of tanh(-) in the above example
is that it creates a compact subset near the minimum that
is forward-invariant: we say S is forward-invariant with
respect to the dynamics F' if F(S) C S. Because the
gradient of tan(quadratic) vanishes as the point gets farther
away from the minimum, there exists a forward-invariant
compact subset X’ near the minimum.

Remark 2. In a very recent concurrent work by (Ma et al.,
2022), this phenomenon is discussed in a more principled
manner using the subquadratic growth property. More
specifically, they observed that for practical neural network
settings, the loss landscape near the minima exhibits growth
that is slower that quadratic, in which case the GD dynamics
do not diverge entirely even in the unstable regime. See their
Section 4 for details.

We demonstrate this point for neural network examples. We
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first consider the simplest neural network example, namely
a single hidden neuron network.

Example 3 (Single neuron networks). We consider a trivial
task of fitting the data (1,0) with a single hidden neuron
neural network. Formally, we consider two types of net-
works:

s linear network: f(61,02) = (01 - (1-602) — 0)%
e tanh network: f(61,602) = (61 - tanh(1 - 6) — 0)2.

We initialize both networks at 8° = (13,0.01) choose step

size n = 2/150 to train them.

9192 (01 tanh(6s))?

startijf® point t‘
starting poin

As one can see from the above plots, for a linear network,
the iterate quickly diverges, while for the tanh network, the
iterate does not diverge and converges to a minimum (whose
sharpness is indeed approximately equal to 2/1). O

Example 3 illustrates that the use of activation function like
tanh can create a compact forward-invariant subset near
the minima, which helps GD not diverge in the unstable
regime. In fact, the above example suggests that GD indeed
exhibits some convergence behaviour where while being in
the unstable regime, GD travels along the valley of minima
until it finds a flat enough minimum where it can stabilize.

We now consider more practical neural network examples
inspired by the settings considered in (Cohen et al., 2021).

Experiment 1 (CIFAR-10 experiment). For this example,
we follow the setting of the main experiment (Cohen et al.,
2021) in their Section 3. Specifically, we use (full-batch) GD
to train a neural network on 5,000 examples from CIFAR-
10 with the CrossEntropy loss, and the network is a fully-
connected architecture with two hidden layers of width 200.
Under this common setting, we consider three types of net-
works: (i) linear network without activations, (ii) tanh
activations; (ii) ReLU activations. We choose the step size
1 = 2/30 and the results are as follows:

©
S

~
o

Ll

—tanh
relu
«=slinear

Sharpness
W a
o

S

b 1
250 500 750 250 500 750
Iteration Tteration

o

As one can see from the above plot, GD converges for the
networks with activation functions, while GD diverges with-
out activation functions. O

We summarize our discussion regarding the causes for con-
vergence as follows.

Takeaway 2. Ingredients of neural networks such as activa-
tion functions create a compact forward-invariant set near
the minima, which helps GD (non-monotonically) converge
in the unstable regime.

In this section, we have discussed the causes of unstable
convergence and explain how the intuitions differ from those
of conventional convex optimization. We next move on to
study the main characteristics of unstable convergence. For
instance, we observe that under the unstable convergence
phenomenon, the loss is very non-monotonic. Can we un-
derstand the behavior of loss in a more principled way?

4. Characteristics of the Unstable Convergence

In this section, we aim to quantify unstable convergence
through several quantities that can be computed during the
training. In particular, we will characterize the unstable
convergence in terms of the loss behavior and the iterate
behavior. We will later demonstrate that the two different
behaviors are interconnected with each other.

4.1. Characteristics in Loss Behavior

We first investigate what happens to the loss under unstable
convergence. As a warm-up, we first consider the loss
behavior under stable convergence.

4.1.1. WARM-UP: THE STABLE REGIME

Recall from the descent lemma (1.1) that when GD is
in the stable regime, then we have f(0'*!) — f(0!) <
—en ||V f(6Y) ||2 for some constant ¢ > 0. Putting it differ-
ently, we have

f(61) — £(6°)
n|V£e))°

Let us give the ratio on the LHS a name for convenience:

< —const.

Definition 1 (Relative progress ratio). We define

10~V £(0)) ~ £(6)

RP(9) =
) (V)

Let us revisit Experiment 1 and verify that for smaller step
sizes the relative progress ratio is indeed a negative number.

Experiment 2 (CIFAR-10; stable regime). We use the same
setting as Experiment 1, which follows the setting of the
main experiment in (Cohen et al., 2021). For activations,
we choose tanh following (Cohen et al., 2021). We choose
much smaller step sizes so that GD is in the stable regime.
We plot the loss and the relative progress ratio until the
training accuracy hits 95%.
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From the above plots, one can see that the relative progress
ratio stays negative for all iterations. Moreover; there is no
non-monotonic behavior in the loss curve. O

Remark 3. Given the result above, one might wonder why
the relative progress saturates around —1. Although we do
not have a clear explanation, we suspect that this happens
because the trajectory of GD quickly converges to a single
direction. We will quickly revisit this later this section. See
Remark 6.

4.1.2. RELATIVE PROGRESS RATIO UNDER UNSTABLE
CONVERGENCE

Given that relative progress is strictly negative number in
the stable regime, we now investigate how relative progress
ratio behaves in the case of unstable convergence.

Experiment 3 (CIFAR-10; unstable regime). We use the
same setting as Experiment 2. This time we choose step
sizes larger so that GD operates in the unstable convergence
regime. We plot the loss and the relative progress ratio until
the training accuracy hits 95%.
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The above experiment shows that in the the unstable regime,
the relative progress ratio saturates around 0 unlike the
stable regime. O

Remark 4. One curious aspect of the above results is that
the optimization seems to get faster as we choose larger step
sizes. This is in fact one of the main observations in (Cohen
et al., 2021), suggesting that the unstable convergence is
preferred in practice for its faster optimization. However,
that does not mean one can increase the step size too large.
For example, in the above experiment, we observe that the
training loss diverges for step size n = 2/10.

Based on Experiment 3, we raise the following question:

Q. why does RP(6?) oscillate around 0 under unstable
convergence?

We begin with explaining why RP(0%) cannot stay above 0.
Since the loss is converging in a long term, it cannot be that

RP(Qt) > 0 for many iterations; otherwise, the loss will
keep increasing, contradicting the convergence.

More curious part is the fact that RP(6%) cannot stay below
zero, which directly contrasts with the stable regime. To
understand this phenomenon, we begin with some intuition.

We have seen that when GD encounters sharp minima,
it oscillates near the minima because it cannot stabilize
to the minima (due to Theorem 1). In other words, the
loss change f(6'*1) — f(0') would be much smaller com-
pared to ||*V £(6?) H2 the square of the distance that GD
travels. Hence, intuitively, one might expect that relative
progress cannot be too negative under the unstable conver-
gence regime. We would like to formalize this intuition
next.

4.2. Characteristics in Iterates Movement

To that end, let us formally define what it means for GD to
oscillate. More generally, consider the situation where 0 is
updated by moving along the vector —v. Then this update
is oscillatory if the directional derivative at the updated
parameter @ — v is nearly negative of that at 0, i.e.,

<V, Vf(@ - V)> ~ = <V7 Vf(0)> .

Inspired by this, we consider the following definition.

Definition 2 (Directional smoothness). For an update vec-
tor v, we define

L(O;v) := v1||2<v, VO)-Vf(O-v)).

Now coming back to the gradient descent where the update
vector is v = nV f (@), we have

(V1(0), VI(O) = V(0 —nVI©9))
0|V £(6)I° '

When GD is exhibiting oscillatory behaviour, we would
have

(Vf(0), VI(6 —v))=—(V[f(B), V() ,

in which case, it holds that

L(0;nV f(0)) =

2
L(0;nVf(0)) ~ — (when GD iterates oscillate). (4.1)
Ui
For intuition, let us quickly verify (4.1) for quadratic costs.

Example 4 (Quadratics). Consider a quadratic loss func-
tion f(8) = 0T PO with P = 0. Then, the GD update
reads @' = (I — nP)@'. For an eigenvector/eigenvalue
pair (q, \) of P, the quantity (Qmax, 0') evolves as

<qmax7 0t> = qT(I - 77P)9t71 = (1 - 7])‘) <qmaxa 0t71>
=(1- n)\)t <qmax, 60> .
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This implies that if A\ < 2/n, then q' ' — 0. Hence,
if n = 2/A.x(P), then after sufficiently large iterations
t, we have 0' ~ (—1)" (Qmax, 0°) Amax. in which case
L(O;nVf(0))~ % O

Given the above view on “oscillating” iterates, we now
measure directional smoothness under unstable convergence.

Experiment 4 (Directional smoothness in stable and unsta-
ble regimes). Under the same setting as Experiments 2 and
3, we measure the value L(0;nV f(0")) at each iteration.

n=2/3000 =g
= 06 —n=2/400 =

> o4 —n=2/500] 60
S = n=2/30
S ‘_\-_‘_’_‘ﬁ__ D 30 _l_ _ni2/60
02l —n =2/90
500 1000 1500 500 1000 1500

Iteration Iteration

Indeed, one can see that for the unstable regime
L(6%;nV f(0")) saturates around 2/, indicating that GD
is exhibiting an oscillating behavior. O

Experiment 4 verifies that GD is indeed showing an oscillat-
ing behavior under unstable convergence. We remark that a
similar conclusion is made in (Xing et al., 2018) as well as
the recent concurrent works (Ma et al., 2022; Arora et al.,
2022). Now coming back to our original question: can we
show a formal relation between the directional smoothness
and the relative progress ratio?

4.3. Relation between Relative Progress Ratio and
Directionl Smoothness

Theorem 2 formalizes our intuition that under the oscillating
behavior of GD, RP(8?) cannot stay below zero.

Theorem 2. The following identity holds:

1
RP(Q):—1+g-2/ 7 L(O;n7TVf(0)) dr. (4.2)
0

Proof. See Appendix A. O

Theorem 2 implies that if the weighted average of
L(0;nTV f(0)) is close to 2/7), namely

1
2/ 7-L(0;nTVf(0))dr %%,
0

then RP(6) is indeed approximately equal to zero. This for-
mally justifies that when GD shows an oscillating behavior,
RP(8?) cannot stay below zero.

In our last experiment of this subsection, we verify that the
above weighted average is approximately equal to the single

value L(6;7mV f(0)), building a stronger relation between
the directional smoothness and the relative progress ratio.
Experiment 5. [In the same setting as Experiment 3, we
choose step size 1 = 2/60 and in every 5 iterations, we
compute the following values:

L(0';nTVf(6") forT €{0.01,0.02,...,1}.

In the plot below, we report the mean of L(60";nTV f(6"))
among 7 € {0.01,0.02,...,1} together with the shades
which indicate the standard deviations.

L(0% 0TV f(6"))

250 500 750 1000 1250
Iteration

This experiment verifies that L(0%;nTV f(6")) does vary
too much across T € [0,1]. Hence, the single value
L(0;nV f(0)) well represents the weighted average in The-
orem 2. O

Hence, Experiment 5 justifies the relation

4.3)

RP(6) ~ ~1+ 7 - L(O:nV f(8)).,

which precisely explains how the oscillatory behavior of
GD results in a small relative progress ratio.

Remark 5. Interestingly, the validity of equation (4.3) and
Experiment 5 suggests that even though the gradient Lip-
schitzness is not a good assumption for neural networks,
some form of Hessian Lipschitzness is valid along the GD
trajectory.

We summarize the finding in this section as follows.

Takeaway 3. Under the unstable convergence regime,
RP(6?) oscillates near 0 for the following two reasons:

* RP(6%) can’t stay above 0 because otherwise the loss
would not decrease in the long run.

* RP(6") can’t stay below 0 due to the oscillating behav-
ior of GD iterates. This is formalized via (4.3).

Remark 6. Given (4.3), one can have a better explanation
for Remark 3 regarding why RP(8?) saturates around —1.
In the second result of Experiment 4, the directional smooth-
ness remains very small in the stable regime. Based on (4.3),
this implies that RP(Ht) is close to —1, which was indeed
the case in Experiment 2.

4.3.1. ADDITIONAL EXPERIMENTS

In this subsection, we verify the relation (4.3) for other
experimental settings.
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Experiment 6 (CIFAR-10; ReLU networks). Under the
same setting as Experiment 2 (the setting of the main exper-
iments in (Cohen et al., 2021)), this time we choose ReLU
as activation functions.

Relative Progress
1
1
1
1
0V £(6")
H
1
1
'

500 1000 1500 ) 500 1000 1500 500 1000 1500
Iteration Iteration Iteration

In the next set of experiments, we put 2 more hidden layers
of width 200 (total 4 hidden layers of width 200).

i, =
0 >
T Seof- - -
[T =
05 il %so -
2 30 |H-dmiliishatiii -
1

500 1000 1500 2000 2500 3000
Tteration

o
o

Relative Progress

500 1000 1500 2000 2500 3000
Tteration

500 1000 1500 2000 2500 3000
Iteration

The results are largely similar to those for tanh activations,
and the relation (4.3) holds for all cases. O]

4.4. Implications for Sharpness

In the previous subsection, we saw that one characteristics
of unstable convergence is that RP(8?) saturates around
zero. In this section, we investigate implications of this
characteristics for sharpness. In particular, we discuss some
relations to a curious phenomenon called edge of stability
(EoS) recently observed in (Cohen et al., 2021). The gist
of their observation is that for GD on neural networks often
satisfies the following properties:

A Aok (V2 £(60Y)) > 2/n for most iterates.
B. In fact, in many cases A, (V2 f(6")) saturates right
at (or slightly above) 2/7.

To that end, we begin with the following consequence of
Theorem 2.

Corollary 1. Let L; be the maximum sharpness along
the line segment between the iterates 0° and 0'1!, i.e.,
Ly = supeem{)\max(vzf(e))}. Then, the following
inequality holds:

2(RP(O)+1) < L.

Proof. Tt follows from the fact that for each 7 € [0,1]
L(O;nTV£(0)) < sup{A,.(V2f(0)) : 8 lies on the
line segment between 0" and 8' — nTV f(6)}. Clearly, the
right hand side is upper bounded by L;. O

Corollary 1 implies that when RP(6") oscillates around zero,
then L, has to be frequently above the threshold 2/7. One
can actually refine this statement to understand the part A
of EoS, given our results so far. In light of Experiment 5,

if L(0%;n7V f(0")) does vary much across 7 € [0, 1], then
one can actually write

%RPWQ+J)QEE#XWnanwﬁ)

*
< Anax(V2£(0Y))
which is the part A of EoS.

Moreover, let us for a moment additionally assume that
V f(6?) is approximately parallel to the largest eigenvector
of the Hessian V2 f(6"). This might look stringent at first
glance, but given the calculations in Example 4, this as-
sumption is true for unstable GD on a quadratic cost. Also,
recently, this behavior is theoretically proven for the normal-
ized gradient descent dynamics (Arora et al., 2022). Under
this assumption, one can further deduce that the inequality
(&) holds with approximate equality, and the part B of EoS
would hold in that case.

5. Relative Progress for SGD

In this section, we extend our discussion to the stochastic
gradient descent (SGD):

6"+ = 6" —ng(6"), where E[g(6")] = Vf(6").

For the case of SGD, there is one obvious challenge. With
SGD, the training loss does not decrease monotonically
since SGD is a random algorithm. Hence, it is not clear
how to precisely define what it means for SGD to be in the
unstable regime. On the other hand, inspired by our discus-
sion in Subsection 4.1, a more transparent way to define the
unstable regime for SGD is via the relative progress ratio.
In particular, we consider the following extension.

Definition 3 (Expected relative progress ratio).

F[RP(8)] = /(0 —19(0)) — f(6)
' nIViONIF

Experiment 7 (CIFAR-10; SGD on ReL.U networks). Un-
der the same setting as Experiment 6, this time we train the
network with SGD with minibatch size of 32 and step size
1 = 2/100. We compute the full-batch loss and the expected
relative progress ratio at the end of each epoch.

(zoom in)

25

2
15
1

Loss
E[RP(6")]

0.5

8
6
4
2
0
2

-
100 200 300 100 200 300 100 200 300
Epoch Epoch Epoch

Note that E[RP(6")] does not stay below zero. Based on our
discussion in Subsection 4.1, this suggests that SGD is in
the unstable regime. O
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Remark 7 (Expected loss change is not negative?!). One
very surprising aspect of the above results is that EF[RP(6?)]
is not negative for a majority of iterations. This is rather
counter-intuitive given that in the loss plot SGD decreases
the loss in the long run. On the other hand, we note that this
counter-intuitive phenomenon is also observed by (Cohen
et al., 2021) in a comprehensive set of experiments. In par-
ticular, they mention “what may be more surprising is that
SGD is not even decreasing the training loss in expectation.”
See (Cohen et al., 2021, Appendix H) and (Cohen et al.,
2021, Figures 25 and 26) for details.

We now establish a relation analogous to (4.3) for SGD.
Similarly to Theorem 2, one can prove the following:

1
E[RP(0)] = 7Hg 2/ -E, [ngw)u?-L(em;g(e)) ar .
0

Vi@l

See Appendix A for derivation. Hence, the analogous rela-
tion to (4.3) is:

Ui
ERP(0)] ~ —1+ 5 -E H“vgf(()')‘HQL(a;ng(O)) . (5.

Experiment 8 (CIFAR-10; verifying (5.1) for ReLU).
Under the same setting as Experiment 7, we compute
E[RP(0)] and the RHS of (5.1) at the end of each epoch

and compare those values. We choose step sizes n =
2/50, 2/100, 2/150.

n=2/100 n =2/150

100 200 300
Epoch

Note that the LHS and RHS of (5.1) are very similar in all
results, verifying the relation (5.1). O

Experiment 9 (CIFAR-10; verifying (5.1) for tanh). We
repeat Experiment 8 with tanh activations.

0 =2/50 n=2/100

10 10

0 =2/150

5 5

0 = - 0 - -

100 200 300 100 200 300 100 200 300

Epoch Epoch Epoch
n= 2/30 (zoom-in) n = 2/100 (zoom-in) 1 = 2/150 (zoom-in)
1 1
|'|l ‘ RALN |

05 05

ol Y _ _ _ |-

05

! 200 100 200 300 100 200 300
Lpo(‘h Epoch Epoch

The results are similar to those for ReLU networks. O

6. Discussion and Future Directions

This work demonstrated characteristics of unstable conver-
gence that are in stark contrast with those of stable conver-
gence. Consequently, this work leads to several interesting
future directions.

m Better optimizer? The characteristics based on the di-
rectional smoothness suggests that the adjacent iterates
have nearly opposite gradients in the unstable regime.
This obviates the efficacy of many efficient methods (e.g.
variance reduced methods) which are designed based
on the intuition that the adjacent iterates have similar
gradients. Hence, it would be interesting to design an
efficient optimizer that respects the new characteristics.

m Faster training under unstable convergence? As dis-
cussed in Remark 4, another striking feature of unstable
convergence is that the training loss seems to converge
faster. One interesting question is whether one can elu-
cidate this faster optimization by further exploring our
characterization of relative progress.

m What assumptions are valid for neural network opti-
mization? It is clear that unstable convergence cannot
be reasoned with the widespread condition of 7 < %
Then what assumptions would be valid for neural net-
works? As discussed in Remark 5, our Experiment 5
suggests that although the gradient Lipschitzness is not
a good assumption for neural networks, some form of
Hessian Lipschitzness might be a valid one.

m Unstable regime for adaptive methods? Our character-
izations are limited to constant step size (S)GD, and it
is not clear how these characterizations carry over to
adaptive methods such as Adam and RMSProp. Inves-
tigating adaptive methods will help us understand how
they differ from (S)GD for neural network optmization.
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A. Proof of Theorem 2
Using the fact

L0 eV S(0)) = (1Y [(0), VI(0 V()

we obtain
1
(0 -1 F(9)) — £(8) = —n /0 (VF(8), V(6 — eV f(6)))dr

- / (VF(0), V(8 —nrVf(8)) — VF(8))dr.

Hence, after rearranging, we get

(VRS

f(6 —nV[(6)) - f(6)

1
-2/0 T-L@O;nTVf(0))dr —1= IV /@)

=RP(0),
which is precisely the relation in Theorem 2.

Derivation for the SGD case. For the SGD case, the derivation is similar.

f(0—ng(0)) — £(6)

@ —n/o (9(0), V(6 —nTg(0)))dr

— —0(g(6), VS(8)) — 1 / (9(8), V1 (6 — 7g(8)) — V£(8)) dr

where (a) is due to the fact

110 —rg(0)] = (~n9(0), VF (0~ 79(0)))

After taking expectation over the randomness in the stochastic gradient, we obtain
1
Ef (6 —ng(8)) — 1(8) = —n|[VF(0)* - 77/0 E(g(0), V(0 —nrg(8)) — Vf(8))dr

Hence, after rearranging we obtain the desired equation:

dr.

Ef(0 -n9®) —1O) _ | . m, /[E [||9(9)||2.L(9;7779(9))
n|VF)]* 2 Jo IV £(0)]

This completes the derivation.



