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Abstract

We study oracle complexity of gradient based

methods for stochastic approximation problems.

Though in many settings optimal algorithms and

tight lower bounds are known for such problems,

these optimal algorithms do not achieve the best

performance when used in practice. We address

this theory-practice gap by focusing on instance-

dependent complexity instead of worst case com-

plexity. In particular, we first summarize known

instance-dependent complexity results and cate-

gorize them into three levels. We identify the

domination relation between different levels and

propose a fourth instance-dependent bound that

dominates existing ones. We then provide a suf-

ficient condition according to which an adaptive

algorithm with moment estimation can achieve

the proposed bound without knowledge of noise

levels. Our proposed algorithm and its analysis

provide a theoretical justification for the success

of moment estimation as it achieves improved

instance complexity.

1. Introduction

Stochastic approximation (SA) methods, introduced and

analyzed in the seminal works (Robbins & Monro, 1951;

Fabian et al., 1968; Polyak, 1987; Kushner & Yin, 2003;

Moulines & Bach, 2011), are central to modern machine

learning algorithms. Due to their wide applicability and

importance, they have been extensively studied. It is now

well established that an algorithm as simple as stochastic

gradient descent achieves minimax optimal rates in many

settings (Nesterov, 2013; Agarwal et al., 2009; Fang et al.,

2018a; Arjevani et al., 2019; Lin et al., 2015; Allen-Zhu,

2016; Ghadimi & Lan, 2012).
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These well-studied stochastic methods are, however, optimal

in the sense of a worst case measure of complexity:

inf
Aθ∈A

sup
x1∈R

d,f∈F
Tϵ(A¹[f, x1], f), (1)

where Tϵ(A¹[f, x1], f) denotes the number of iterations to

obtain an ϵ-solution initialising at x1. In the most common

setting of convex problems, the ϵ-solution is measured by

the function suboptimality gap:

Tϵ({xt}t∈N, f) := inf{t ∈ N|f(xt)− f(x∗) f ϵ}. (2)

The worst case complexity measure is naturally achieved in

certain extreme cases within a function class, which may be

quite rare in practice. Empirical observations (Defazio &

Bottou, 2018; Reddi et al., 2019) suggests that a gap does ex-

ist between worst case analysis and empirical performance.

To reduce the mistmatch between theory and practice, it is

necessary to go beyond worst case scenarios, and to include

more domain-specific nuances. One alternative is to con-

sider average case complexity analysis. Such an approach

is well established in theoretical computer science, and is

used to explain the superior empirical performance of Quick-

Sort (Hoare, 1962), quickhull (Preparata & Shamos, 2012),

simplex methods (Borgwardt, 2012). In contrast, the use of

average-case complexity analysis in optimization scenarios

is less mature and in its infancy (Pedregosa & Scieur, 2020;

Lacotte & Pilanci, 2020; Paquette et al., 2021).

Another approach to move away from the worst-case is to

conduct smoothed analysis (Spielman, 2005), in which the

complexity is instance-dependent (Fagin et al., 2003; Af-

shani et al., 2017). Here, instance could be referring to a

specific sample, or more broadly to an easily parametriz-

able subclass of samples. The goal is to build a middle

ground between worst-case and average-case analyses, such

that we can eventually interpolate between them (Spielman,

2005). This idea has been recently extended to the study of

complexity in Q-learning (Khamaru et al., 2021; Pananjady

& Wainwright, 2020), and further analyzed in Markovian

linear stochastic approximation setting (Mou et al., 2021).

Following this line of work, we propose an instance-

dependent analysis in the general convex setup, extending
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Figure 1. Different notions of complexity and optimality.

the linear setting and worst-case optimal rates in (Mou et al.,

2021). We define instances by the subclass of functions with

non-stationary noise, and make the following contributions:

• We categorize previous instance complexities into three

categories based on their dependence on the iteration-

wise noise levels as well as the information available

to the algorithm. We further identify the gap between

different types of instance complexities.

• We propose a new instance dependent rate, named dy-

namic error bound, that dominates (see Definition 2.5)

previous ones when additional information of the prob-

lem instance is available.

• We study an algorithm based on moment estimation

that achieves the dynamic error bound without know-

ing additional information when the total variation in

noise level is bounded. We hence provide the first theo-

retical justification for why moment estimation speeds

up gradient methods empirically.

We test the noise variation and empirical performance of

our moment estimation algorithm on policy optimization

and neural network training. We conclude by discussing

numerous open problems that this work raises.

2. Problem Setup and Instance Complexity

In this work, we focus on stochastic approximation problems

within the convex smooth function class FL,R:

Assumption 2.1. A continuously differentiable function f
is in FL,R if f is convex, L−smooth, and bounded below,

f(y) g f(x) + ï∇f(x), y − xð,
∥x1 − x∗∥ f R,

∥∇f(x)−∇f(y)∥ f L∥x− y∥,

where x∗ denotes a global optimal solution.

We follow the classical stochastic approximation setup (à

la Robbins-Monro), where the noise is additive. More

precisely, the stochastic gradient oracle g is given as the

sum of the actual gradient ∇f and random noise À:

g(x) = ∇f(x) + À. (3)

This setup holds whenever the error comes from an exoge-

nous source. In pursuit of our goal to go beyond worst

case analysis, we follow the recent line of work on instance-

complexity for stochastic approximation and reinforcement

learning (Khamaru et al., 2021; Pananjady & Wainwright,

2020; Mou et al., 2021), and define the {Ãk}k∈N-instance

as the following subclass of gradient oracles:

Definition 2.2 ({Ãk}k∈N-instance). At the kth iteration, the

gradient oracle gk returns a stochastic gradient

gk(x) = ∇f(x) + Àk,

where Àk is zero mean and has bounded second moment Ãk:

E[Àk] = 0, E[∥Àk∥2] = Ã2
k f M2.

For simplicity we assume that the noise is nontrivial:

Assumption 2.3 (Nontrivial noise).

Ã2
k > L2R2/T, for all k f T.

Indeed, when the noise level is too small, gk is essentially

the full gradient ∇f , leading to a deterministic style conver-

gence. Assumption 2.3 is not necessary but saves us from

discussing such trivial cases, which deviate from the main

purpose of studying instance-dependent bounds.

Unlike standard analysis where uniform variance bound is

imposed on all the stochastic gradients, we allow the noise

level to be non-stationary, i.e., can vary from iteration to

iteration. To recover the worst case analysis, it suffices

to set the noise at a maximum level, ∀k, Ãk = M . By

allowing the noise to be non-stationary, we create a fine-

grained middle ground where we can investigate how the

variation of noise Ãk influence the convergence rate of an

optimization algorithm.

As in most convex problems, we study the level of sub-

optimality achieved after querying the oracle T times to

upper bound E[f(xT )−minx f(x)]. In the following sub-

section, we derive theoretical convergence rates under a

{Ãk}k∈N-instance, named as the instance complexity.

2.1. Different levels of instance complexity

In this subsection, we categorize rates in stochastic approx-

imation into four levels based on their dependence on the

problem instance defined by {Ãi}i∈N. Our proposed cat-

egorization later enables us to identify a nontrivial gap

between vanilla stochastic gradient descent and its adap-

tive variant using moment estimation. Although we focus
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Worst Agnostic Adaptive Dynamic

Error bound 2RM√
T

(R2 + 1
T

∑
k Ã

2
k)/

√
T 2R

(
1
T

T∑
k=1

Ã2
k

)1/2

/
√
T 2R

(
1
T

T∑
k=1

1
Ãk

)−1

/
√
T

¸k R/
√
TM2 1/

√
T R/

√∑T
k=1 Ã

2
t or R/

√
2
∑

Äfk ∥gk∥2 R/(Ãk

√
T )

Can be
achieved via

Fixed step,

known R,M
Fixed step,

unknown R,M

Fixed step, known R, {Ãk}k or

Adapt. step, unknown {Ãk}k
Adaptive step,

known R, {Ãk}k

Table 1. Comparisons of four types of instance-dependent theoretical convergence rates under the noise level {σk}k. The parameter R2

denotes the initial distance ∥x1 − x∗∥2 and the parameter M is an upper bound of σk. The convergence rate improves from the left to the

right monotonically, with different choices of stepsizes ηk.

on analysis for convex functions, similar categorization may

also hold for analyses of nonconvex functions.

We begin by summarizing known results that are dependent

on iteration-wise noise levels {Ãk}k. Previous results on

instance-dependent bounds usually do not consider the exact

same problem setup, and hence not directly comparable. To

have a unified framework, we view these results under the

smooth-convex setting. Recall the following folklore result:

Theorem 2.4. When f ∈ FL,R (convex, L-smooth), the

stochastic gradient descent algorithm of the form

xk+1 = xk − ¸kg(xk),

with predetermined stepsizes ¸k f 1
L , satisfies the subopti-

mality bound

E[f(xT )− f∗] f R2 +
∑T

k=1 ¸
2
kÃ

2
k∑T

k=1 ¸k
, (4)

where xT = (
∑T

k=1 ¸kxk)/(
∑T

k=1 ¸k) is the weighted av-

erage of iterates.

The above theorem already shows that different step size

choices can induce a variety of instance complexities, and

some choices might give faster convergence. However, bet-

ter step size choice might require more information about

the problem instance. We will now discuss how different

step size choice requires different level of information and

classify previous work based on their step size strategy.

1. Worst case bounds. In classical stochastic optimization

literature (e.g. (Rakhlin et al., 2011; Ghadimi & Lan, 2012;

Ghadimi et al., 2013; Fang et al., 2018a)), only an upper

bound on the variances is given. In other words, we do not

have access to the entire sequence of Ãk but only an upper

bound M g Ãk, ∀k. Using the stepsize ¸k = R/
√
TM2,

this choice results in the worst case bound:

E[f(xT )− f∗] f 2RM/
√
T := ϵworst. (5)

2. Agnostic bounds. Another type of bound appears in

the analysis of adaptive methods, and involves an additive

bound on the initialization (∥x0 − x∗∥, f(x0)− f(x∗)) and

noise (see Theorem 2.1 of (Ward et al., 2018), or (Zhou et al.,

2018)) instead of a multiplicative one as in other bounds.

Though these bounds are usually achieved by adaptive meth-

ods, to distinguish them from other instance-dependent

bounds, we call these bounds “agnostic bounds” because

they can be obtained using a step size without knowing the

maximum noise level, the smoothness constant or the do-

main diameter of the problem. In smooth convex case, these

bounds can be achieved by setting ¸k = 1√
T

:

E[f(xT )− f∗] f (R2 + 1
T

T∑
k=1

Ã2
k)/

√
T := ϵagnostic. (6)

3. Adaptive bounds. One theoretically justified advan-

tage of adaptive gradient methods is that if the smoothness

and level of suboptimality are known, then adaptive meth-

ods can automatically adjust the learning rate for the noise

level in stochastic gradients. Results of this type can be

found for example in (Duchi et al., 2011; Levy et al., 2018;

Ward et al., 2018; Zhou et al., 2018). In particular, the setup

in (Levy et al., 2018) (Thm 2.1 and equation (11)) subsumes

our smooth-convex setup and is directly comparable. In par-

ticular, by setting ¸k = R(2
∑

Äfk ∥gk∥2)−1/2, one gets

the following rate:

E[f(xT )− f∗] f 2R√
T

(
1
T

T∑
k=1

Ã2
k

) 1

2

:= ϵadaptive. (7)
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Worst Agnostic Adaptive Dynamic

Error bound T− 1

2 T− 1

2 T−((1+³)/2) T−((1+2³)/2)

Table 2. Comparison of convergence rate under multiple shapes of the noise level σk, where constant terms are omitted. The parameter

α ∈ [0, 1

2
] is the exponent controlling the ratio between maxσk and minσk, indicating the significance in noise changes.

Notice that results in (Mou et al., 2021) also fall in this cate-

gory. Though the bounds in (Mou et al., 2021) may not be di-

rectly comparable as they are in the strongly convex regime,

these bounds, as well as the adaptive bound in (7) can be

achieved by using a fixed step size if the noise levels Ãk

are known in advance by setting ¸k = R
(∑T

Ä=1 Ã
2
Ä

)−1/2

.

This is the best attainable rate using a fixed step size by

optimizing the error bound in Theorem 2.4.

This observation naturally leads to the bounds in the next

part, which are achieved by an iteration dependent step size

when Ãk are known. From the following result, we will see

that the adaptive bounds above are worst-case optimal but

not instance-level optimal (see Figure 1).

4. Dynamic bounds. A natural question is whether we can

further improve adaptive bounds by appropriately selecting

the stepsizes. This is indeed possible by setting a stepsize

inversely proportional to Ãk. More concretely, when setting

¸k = R/(Ãk

√
T ), we get

E[f(xT )− f∗] f 2R

(
1
T

T∑
k=1

1
Ãk

)−1

/
√
T := ϵdynamic.

(8)

We name these bounds “dynamic bounds”, analogous to

“dynamic regret” in online learning (Jadbabaie et al., 2015;

Yang et al., 2016), indicating that the optimal policy can

have iteration dependent action (i.e. iteration-wise step

sizes) rather than a fixed action (i.e. a fixed step size).

Such bounds are less studied, as previous works mainly

focus on the dependence of T instead of the fine-grained

dependency on the instance {Ãk}k. In our setting, it is

important to notice that different dependency on {Ãk}k
could lead to non-trivial differences in the convergence rate.

For instance, the dynamic bound depends on the harmonic

sum of Ãk, whereas the adaptive bound depends on its 2-

norm. To make comparison between different error bounds,

we adopt the following notation.

Definition 2.5 (Dominating bounds). We say an error bound

dominates another, denoted as ϵ1 ¯ ϵ2, if there exists an

absolute constant c > 0 such that for any R, {Ãk}k, T ,

we have that the instantiated value ϵ1(R, T, {Ãk}k) f
cϵ2(R, T, {Ãk}k).

With the above definition, we could provide the following

order of instance complexities.

Lemma 2.6. The four different types of bounds satisfy the

following ordering:

ϵdynamic ¯ ϵadaptive ¯ min{ϵworst, ϵagnostic}.

The above result is expected. We see in Table 1 that the

dominance between different bounds is ordered the same

way the amount of information available to the algorithm.

Another straightforward consequence of the lemma is that

both ϵadaptive and ϵdynamic are worst case optimal. In other

words, they all fall into the same rate when Ãk = M is

constant. Similarly, when all the ratios Ãi/Ãj are bounded

by a constant, then the ratio of these rates are bounded, i.e.

differ only by a constant ratio.

A more interesting question to ask is when does the adap-

tive rate ϵadaptive or the dynamic rate ϵdynamic non trivially

improve the worst case rate. This can happen when the

variation in the noise level {Ãk}k is comparable to the total

iteration number T . In fact, we will later show that gradi-

ent methods with moment estimation can achieve such

bounds without knowing the noise level in advance, and

hence improve over vanilla SGD. To make the discussion

concrete, we first use a synthetic example to illustrate the

phenomenon.

2.2. Complexity comparison via synthetic example

In this section, we use an example with synthetic noise to

illustrate the instance complexity of different types.

0.0 0.2 0.4 0.6 0.8 1.0
Iteration # 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2
alpha = 1/9
alpha = 1/6
alpha = 1/4

Figure 2. Mountain shape noise for different values of α.

Example 2.7. We consider a noise sequence Ãk of a moun-

tain shape, illustrated in Figure 2. The noise level increases

smoothly in the first half of iterations, then decreases in the
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second half, parametrized by a positive constant ³ ∈ (0, 1):

Ãk = 1
√

1+T 2α( 2k
T

−1)
2
.

In particular, the maximum of Ãk is 1, attained in the middle

of the iterations; and the minimum of it is T−³. Substituting

the values of Ãk into the rates summarized in Table 1, we

obtain the rates shown in Table 2.

For this specific {Ãk}-instance, adapting the noise level is

beneficial. As we can see, the adaptive bound improves

the worst case bound by T³/2, and, the dynamic bound

improves further the adaptive bound by T³/2. Such a non-

trivial gap is unobservable under worst case analysis.

Though dynamic error bounds can achieve faster conver-

gence than standard worst case rates (in terms of T ), we

note that achieving better dependence on T is not the main

purpose of our work. Instead, we want to show via different

exponents on T that the gap between different types of in-

stance complexity is significant and cannot be considered

as off by an absolute constant.

We showed that using a step size that is inversely pro-

portional to the noise level can generate a better instance-

dependent bound. Such a construction relies on the knowl-

edge of Ãk. However, in practice, we usually do not have

access to the exact noise level. We show in the next section

that combining the idea of moment estimation with SGD

can achieve the dynamic error bound even when the {Ãk}k
are unknown.

3. Moment Estimation Achieves Dynamic

Error Bounds

The main difficulty to achieve the dynamic bounds lies in

the estimation of Ãk. A naive first idea is to draw multiple

samples of the gradient at each iteration and perform an

empirical estimate of the variance. Later use the estimate

Ã̂k to update the stepsizes. In order to ensure nonasymptotic

concentration of the estimator, one convenient way is to

impose a bounded higher moment assumption.

Assumption 3.1 (Higher moment boundedness.). We as-

sume that the fourth moment of gk is bounded, namely,

E[∥Àk∥4] = E[∥gk −∇f∥4] f M4 for all k.

This assumption allows us to guarantee the estimation of

Ã2
k is non-asymptotically concentrated with high proba-

bility. In particular, given N samples of the gradients

gk,1, gk,2, · · · gk,N at the k-th iteration, the standard vari-

ance estimator

Yk =
∑N

i=1
∥gk,i−gk∥2

N−1 , where gk = 1
N

∑N
i=1 gk,i, (9)

is an unbiased, i.e. E[Yk] = Ã2
k. Moreover, its variance is

bounded: Var[Y 2
k ] =

1
N

(
E[∥Àk∥4]− N−3

N−1Ã
4
k

)
f M4

N .

Algorithm 1 Moment Estimation SGD (x1, T, c,m)

1: Initialize Ã̂1 =
∥g1,1−g1,2∥2

2 , where g1,1, g1,2 are two

independent stochastic gradients at x1.

2: for t = 1, 2, ..., T/2 do

3: Query two stochastic gradients gt,1, gt,2 at xt.

4: Update

gt =
gt,1 + gt,2

2
and ¸t =

c
Ã̂t+m

xt+1 = xt − ¸tgt

Ã̂2
t+1 = ´Ã̂2

t + (1− ´)
∥gt,1 − gt,2∥2

2

5: end for

6: Return xI where I is the random variable such that

P(I = i) ∝ ¸i.

In other words, with high probability, the empirical es-

timator Yk concentrates around Ã2
k ± M2

√
N

. However, if

Ãk = O(T−³), we would need T 4³ samples to make sure

the approximation is in the same magnitude of Ãk. This

leads to an extremely inefficient sample complexity, barely

implementable in practice.

In the real-world setting, often the environment changes in a

smooth way. This provides another possibility if we are able

to exploit the continuity in the noise changes. In particular,

we can combine the previous gradients with the actual ones

to perform the variance estimation, i.e. conducting a moving

average estimator. In order to provide theoretical guarantee,

we impose the following condition on the total variation of

noise level Ã2
k.

Assumption 3.2 (Total variation boundedness.). We assume

that the total variation of Ã2
k is bounded, i.e.,

∑
k |Ã2

k −
Ã2
k+1| f D2, where D is a constant independent of T . To

facilitate discussion, we assume D2 = Ω(M2).

The bounded total variation assumption provides us the nec-

essary smoothness on Ãk. This assumption is commonly

used in the dynamic, online learning literature (Besbes et al.,

2014; Jadbabaie et al., 2015; Mokhtari et al., 2016). A key

consequence of this assumption is that it avoids infinite os-

cillations, such as the pathological setting where Ã2k = 1
Tα

and Ã2k+1 = 1, in which case the total variation scales

with the number of iterations T . The specific constant in

D2 = Ω(M2) depends on the shape of the noise. When

Ãk is increasing in the first half and decreasing in the sec-

ond half, as in Example 2.7, the total variation is bounded

by D2 f 2M2. More generally, if the noise can be de-

composed into K piece-wise monotone fragments, then the

bound D2 f KM2 holds.
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Worst Adaptive Dynamic Moment Est.

³ = 1/9 T− 1

2 T−5/9 T−11/18 T−11/18

³ = 1/8 T− 1

2 T−9/16 T−11/18 T−5/8

Table 3. Comparison of convergence rate under the mountain shape noise σk, where constant terms are omitted. The parameter α = 1/9
is the exponent controlling the ratio between maxσk and minσk, indicating the significance in noise changes.

3.1. Design and analysis of our proposed algorithm

With the bounded total variation in hand, we are now ready

to exploit the continuity of Ãk. Without loss of generality,

we use the empirical variance estimator (9) with two sam-

ples per iteration. We construct an online estimator using

an exponential moving average:

Ã̂2
t+1 = ´Ã̂2

t + (1− ´)
∥gt,1 − gt,2∥2

2
, (ExpMvAvg)

where gt,1 and gt,2 are two samples of the gradient at t-th
iteration. Note that t is the index for algorithm iteration,

whereas k is the index for number of oracle calls. The oracle

call at iteration t corresponding to the (2t)th and (2t+ 1)th
call to the stochastic oracle.

The moving average is very similar to the one used in the

modern adaptive methods such as RMSProp (Tieleman &

Hinton, 2012), Adam (Kingma & Ba, 2014), etc. One major

difference compared to the current adaptive methods is that

we are estimating the variance of gradients, whereas RM-

SProp/Adam directly accumulate the gradient square in a

coordinate-wise manner.

The above estimator combined with dynamic stepsizes lead

to our design of Algorithm 1. To avoid the explosion of

stepsize when Ã̂t is underestimated, we include a constant

correction term m in the denominator of ¸t. Such correction

term is also commonly used in the practical implementation

of adaptive methods (Duchi et al., 2011; Kingma & Ba,

2014). In reinforcement learning, this term is sometimes

referred to as the exploration bonus (Strehl & Littman, 2008;

Azar et al., 2017).

Algorithm 1 gives us the following convergence guarantee.

Theorem 3.3 (Main result). Under Assumptions 3.1,3.2,

with probability at least 1/2, the iterates generated by

Algorithm 1 using parameters ´ = 1 − 2T−2/3, m =
4
√
D2 +M2T− 1

9 ln(T )
1

2 , c = R√
T

satisfy

f(xT )− f∗ f 64R√
T

·
(

1
T

∑T
k=1

1
Ãk+m

)−1

:= ϵours.

Corollary 3.4. Our result directly implies a 1−¶ high prob-

ability convergence rate, by restarting it 2 log(1/¶) times.

An additional log(1/¶) dependency will be introduced in

the complexity, as in standard high probability results (Ne-

mirovski et al., 2009; Jin et al., 2017; Fang et al., 2018b).

The main challenge in proving the theorem is to effectively

bound the estimation error |Ã̂2
t − Ã2

2t/2− Ã2
2t+1/2|. As Ã̂2

t

is an exponential average, the past errors accumulates into

the current estimator, which requires a careful bound using

concentration and the total variation of Ãk. In particular,

the decay parameter ´ plays a critical role, determining the

contribution of past gradients in the current estimator. A

consequence of using past gradients in the estimate is that

the online estimator Ã̂k is no longer unbiased. The proposed

choice of ´ and m carefully balances the bias error and the

variance error, leading to a sublinear regret, see Appendix D.

Understanding the convergence rate Due to the correc-

tion constant m, the obtained convergence rate inversely

depends on
∑T

k=1
1

Ãk+m , instead of the
∑T

k=1
1
Ãk

depen-

dency in the dynamic bound. This additional term makes the

comparison less straightforward, especially when some of

the Ãk are small. We provide several scenarios to facilitate

the comparison.

Corollary 3.5. If the ratio M/(mink Ãk) f T
1

9 , then the

Moment Estimation SGD method converges in the same

order as the dynamic error bound ϵdynamic.

This result is remarkable since our proposed method does

not require any knowledge of Ãk values, and yet it achieves

the dynamic rate. In other words, the exponential moving av-

erage estimator successfully adapts to the variation in noise,

allowing faster convergence than adaptive/worst bounds. In

particular when taking ³ = 1/9 in Example 2.7, we get the

following error bounds in Table 3. The comparison between

different error bounds suggest that moment estimation can

non-trivially improve the convergence rates achieved by

conventional analysis for adaptive step sizes.

Corollary 3.6. Let Ã2
avg =

∑
Ã2
k/T be the average second

moment. If M/Ãavg f T
1

9 , then adaptive method is no

slower than the adaptive error bound (7).

The condition in Corollary 3.6 is strictly weaker than the

condition in Corollary 3.5, which means even though an

adaptive method may not match the dynamic bound, it can

still be non-trivially better than the adaptive bound. This

case happens for instance when ³ > 1
9 in Table 3, where

the proposed method is O(T
1

9 ) faster than the adaptive

bound. Indeed, O(T
1

9 ) is the maximum improvement one

can expect according to our current analysis.
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We now proceed to evaluate different algorithms and bounds

with both synthetic and deep learning experiments.

4. Experiments

In this section, we present three sets of experiments: syn-

thetic least squares, policy optimization for mujoco tasks

and neural network training on Cifar10 dataset. Our syn-

thetic experiments verify the theory prediction, whereas our

deep learning experiments show that the studied moment-

estimation algorithm is practical and performs as well as

common baselines.

4.1. Synthetic experiments

In the synthetic experiment, we generate a random linear

regression dataset using the sklearn library. We design

the stochastic oracle as full gradient with injected Gaussian

noise, whose coordinate-wise standard deviation Ã is shown

in the top row figures of Fig 3. We then run the three

algorithms discussed in this work: the fixed best step-size,

the dynamic step size and the moment estimation algorithm

in Alg 1. We fine-tune the step sizes for each algorithm

by grid-searching. We repeat the experiment for 10 runs

and show the average training trajectory in the second row

in Fig 3. From Figure 3, we see that moment estimation

algorithm can achieve comparable performance against the

dynamic version and outperforms the fixed step size SGD.

4.2. Policy optimization

In this set of experiments, we simulated the proximal policy

optimization algorithm in the nonstationary environment

described in (Dulac-Arnold et al., 2019). We consider two

Mujoco tasks: one in which a walker gets reward for walk-

ing; another in which a cart-pole gets reward for swinging

up the pole. The original implementation1 update the pa-

rameters with ADAM (Kingma & Ba, 2014) and gradient

clipping, which as we will show later, closely connects to

noise-dependent step size. To highlight the comparison

between fixed step size SA and adaptive step size SA, we re-

placed the update with the constant baseline and the moment

estimation algorithm.

During training, we estimate the variance level by sampling

a batch of 5 thousand state, action pairs. For each algorithm,

we fine-tune the step sizes by grid-searching among 10k,
where k is an integer. The estimated variance of noise and

average reward over 5 runs are plotted in Figure 4. The

result shows that the noise level is indeed nonstationary

during training, where the SA algorithm can benefit from

an adaptive step size. We note that the adaptive step size

method learns much faster than fixed stepsize in the cart-

1https://github.com/google-research/

realworldrl_suite

pole task over the first few iterations. The advantage might

result from the low noise level in initial epochs of the policy

gradient due to the simplicity of swinging up a pole.

4.3. Neural network training

We will now discuss the application of our proposed method

to neural network training. In order to apply our result in

such settings, the challenge is not merley about extending

the results to nonsmooth scenarios or non-convex cases.

Rather, the main challenge we face is that noise levels in

stochastic optimization for neural network training are step-

size dependent. The source of nonstationary noise in this

setting is entirely endogenous, i.e., it is determined by the

iterative output xt. In such settings, it is unclear how base-

lines could be defined, or improvement could be quantified.

To this end, we show in Figure 5 that the noise trajectories

are different for training ResNet18 on Cifar10 with different

algorithms and hyperparameters. Even though our theoreti-

cal guarantees do not directly apply to this setting, we can

apply our adaptive step-size algorithm and still exploit the

variations in noise.

Directly applying Algorithm 1 may be cumbersome on stan-

dard image classification pipelines due to requiring an un-

biased within-batch variance estimator. Instead, we notice

from Figure 5 that the noise level dominates the gradient

norm in neural network training, and hence we can simply

use the empirical second moment E[∥gk∥2] as a substitute

for the empirical variance E[∥gk −∇f(xk)∥2]. This gives

us the following update,

xk+1 = xk − ¸kgk with ¸t =
c

m̂k+m ,

and m̂2
k+1 = ´m̂2

k + (1− ´)
∥gk∥2
2

.

We should point out that interestingly, the above update is

exactly the same as in the RMSProp algorithm (Tieleman &

Hinton, 2012) if the step sizes were coordinate-wise. Since

the moment estimation algorithm is very similar to popular

optimizers for training Cifar10, we do not expect it to sig-

nificantly outperform the well tuned baselines. Instead, we

highlight that our analysis provides theoretical evidence for

the popularity of moment estimation techniques in practice.

Such observations point to the following interesting ques-

tion: “why is fixed stepsize SGD minimax optimal (Arjevani

et al., 2019), yet adaptive methods such as RMSProp and

ADAM outperforms fixed step size SGD in many real world

settings?” Alongside with many recent works (Reddi et al.,

2019; Wilson et al., 2017; Zhang et al., 2019; Ward et al.,

2018; Luo et al., 2019; Liu et al., 2020), we believe that

our more fine-grained analysis provides a new perspective

and motivates new avenues for proving the effectiveness of

adaptive algorithms such as ADAM and RMSProp.
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Figure 3. Results for synthetic least square problems. The three plots from left to right corresponds to the shape of noise, the average

MSE out of 10 random runs and the numerical values of suboptimality.
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Figure 4. The left two figures plot the noise level and the average reward during training a controller for the walker task. The right two

plots correspond to the cartpole swing-up task.

Figure 5. The left figure plots the noise level while training a ResNet model on Cifar10 for 200 epochs. It shows that noise levels are very

much algorithm dependent. The second left figure shows that the variance in stochastic gradient almost equals the variance. The right two

figures show that in Cifar10 training, the moment estimation algorithm performs as well as the fine-tuned SGD baseline.

5. Conclusions and Discussions

In this work, we provided a new perspective for instance-

dependent complexity of stochastic approximation meth-

ods. We first categorized existing instance-dependent error

bounds into different levels based on dominance relations.

We then proposed a new dynamic error bound that dom-

inates known ones. Simple algorithms that achieves this

bound requires knowing the exact noise levels and is not

implementable. To address this issue, we showed that when

noise levels have bounded total variation, moment estima-

tion can achieve the desired rate. Our results are validated

by both synthetic and real-world experiments. We believe

the instance complexity we developed shed new insights to

the following interesting question: “why is fixed stepsize

SGD minimax optimal (Arjevani et al., 2019), yet adaptive

methods such as RMSProp and ADAM outperforms fixed

step size SGD in many real world settings?”

Many important instance-complexity problems are still open.

First, in traditional complexity theory, instance dependent

lower bounds can sometimes be tight up to constants (Af-

shani et al., 2017). However, determining the lower bounds

for stochastic approximation instances requires a reformula-

tion of the complexity definition, such as what information

is available. For example, in the dynamic bounds setup, a

different step size choice,

¸k = R/(Ã2
k

√∑T
i=1

1
Ã2

i

),

may lead to a better error bound. Yet, this kind of step size

is at the same time dynamic and non-causal (depends on

information from future iterates). Therefore, information

dependence needs to be properly integrated in the lower

bound of instance complexity.
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Second, beyond settings such as smooth-convex problems,

we currently do not know of any faster instance-dependent

bounds. Even if better bounds can be achieved when noise

levels are known, it could still be unclear whether it can be

achieved by practical and implementable algorithms. An-

other question is whether in our setup where the function is

smooth and convex the T 1/9 factor can be improved. We

believe understanding these problems can provide more

insight into practical algorithm performances and lead to

invention of new gradient based algorithms.

Last but not least, an apparent limitation of the stochastic

approximation setting is the assumption of an exogenous

noise. It is usually not satisfied in the standard empirical

risk minimization framework, where the noise is iterate

dependent, i.e. x-dependent. Note that the iterates generated

by one algorithm is mostly very different from the iterates

generated by another one, how to appropriately quantify

the state-dependency such that we can derive non-vacuous

instance complexity result becomes challenging. Though

simplified, we believe our work provides a solid first step

towards this ultimate goal.
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A. Proof of Theorem 2.4

Proof. Using the fact that 1
L∥∇f(y)−∇f(x)∥2 f ï∇f(y)−∇f(x), y − xð, we have

E[∥xk+1 − x∗∥2|Fk] = ∥xk − x∗∥2 − 2¸kï∇f(xk), xk − x∗ð+ ¸2k∥∇f(xk)
2∥+ ¸2kÃ

2
k

f ∥xk − x∗∥2 − ¸k(2− L¸k)ï∇f(xk), xk − x∗ð+ ¸2kÃ
2
k

f ∥xk − x∗∥2 − ¸kï∇f(xk), xk − x∗ð+ ¸2kÃ
2
k

As f(xk)− f∗ f ï∇f(xk), xk − x∗ð. We have

¸k(f(xk)− f∗) f ∥xk − x∗∥2 − E[∥xk+1 − x∗∥2|Fk] + ¸2kÃ
2
k

Taking expectation and telescoping yields

E

[
T∑

k=1

¸k(f(xk)− f∗)

]
f ∥x1 − x∗∥2 − E[∥xT+1 − x∗∥2] +

T∑

k=1

¸2kÃ
2
k

B. Proof of Lemma 2.6

The only nontrivial one is ϵdynamic ¯ ϵadaptive. This follows from Jensen’s inequality E[X]−2 f E[X−2], and we have

( 1
T

∑
k

1
Ãk

)−2 f 1
T

∑
k Ã

2
k,

.

C. Summation series in Example 2.7

In Example 2.7, we have

Ãk =
1√

1 + T³
(
2k
T − 1

)2

• The second moment of Ãk is given by

1

T

T∑

k=1

Ã2
k =

1

T

T∑

k=1

1

1 + T³
(
2k
T − 1

)2 ∼ 1

T

∫ T

0

1

1 + T³
(
2x
T − 1

)2 dx

u:= 2x
T

−1
=

1

T

∫ 1

−1

1

1 + T³u2

du
2
T

=

∫ 1

0

1

1 + T³u2
du

=

[
1

T
α
2

arctan(x)

]T α
2

0

∼ 1

T
α
2

This implies that the adaptive bound 7 is of order O(T−( 1

2
+α

4 )).

• The harmonic sum of Ãk is given by

1

T

T∑

k=1

1

Ãk
=

1

T

T∑

k=1

√

1 + T³

(
2k

T
− 1

)2

= O

(
1

T

T∑

k=1

1 + T
α
2

∣∣∣∣
2k

T
− 1

∣∣∣∣

)

= O

(
1 +

1

T
T

α
2

2
∑T

2

k=0(T − 2k)

T

)

= O

(
1 +

1

T
T

α
2

T 2

T

)
= O

(
T

α
2

)
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This implies that the dynamic bound8 is of order O(T−( 1

2
+α

2 )).

D. Key Lemma: Total estimation error of the variance estimator

Lemma D.1. Under Assumptions 3.2, taking ´ = 1− 2T−2/3, the total estimation error of the Ã̂2
k based on (ExpMvAvg)

is bounded by:

E




T/2∑

t=1

|Ã̂2
t − Ã2

2t/2− Ã2
2t+1/2|


 f 2(D2 +M2)T 2/3 ln(T 2/3)

Proof. On a high level, we decouple the error in a bias term and a variance term. We use the total variation assumption to

bound the bias term, and use the exponential moving average to reduce variance. Then we pick ´ to balance the two terms.

For simplicity, we denote var2t = Ã2
2t/2 + Ã2

2t+1/2.

From triangle inequality, we have

T/2∑

t=0

E
[
|Ã̂2

t − var2t |
]
f

T/2∑

t=1

E
[
|Ã̂2

t − E[Ã̂2
t ]|
]

︸ ︷︷ ︸
Variance term

+

T/2∑

t=1

∣∣E[Ã̂2
t ]− var2t

∣∣
︸ ︷︷ ︸

Bias term

(10)

We first bound the bias term. By definition of Ã̂t, we have

E[Ã̂2
t ]− var2t = ´E[Ã̂2

t−1] + (1− ´)var2t−1 − var2t

= ´(E[Ã̂2
t−1]− var2t−1) + (var2t−1 − var2t )

Hence by recursion,

E[Ã̂2
t ]− var2t = ´t−1 (E[Ã̂2

1 ]− var21)︸ ︷︷ ︸
=0

+´t−2(Ã2
1 − var22) + · · ·+ (var2t−1 − var2t )

Therefore, the bias term could be bounded by

T/2∑

t=1

∣∣E[Ã̂2
t ]− var2t

∣∣ f
T/2∑

t=1

t−1∑

j=1

´t−1−j
∣∣var2j − var2j+1

∣∣

f
T∑

k=1

k−1∑

j=1

´k−1−j
∣∣Ã2

k − Ã2
k+1

∣∣

=
T−1∑

k=1

∣∣Ã2
k − Ã2

k+1

∣∣
T−1−k∑

j=0

´j

f 1

1− ´

T−1∑

k=1

∣∣Ã2
k − Ã2

k+1

∣∣

f D2

1− ´
(From Assumption (3.2))

The first inequality follows by traingle inequality. The third inequality uses the geometric sum over ´. To bound the variance

term, we remark that

Ã̂2
t = (1− ´)y2t−1 + (1− ´)´y2t−2 + · · ·+ (1− ´)´t−2y21 + ´t−1y20 .

where we denote

yt =
∥gt,1 − gt,2∥2

2
.
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Hence from independence of the gradients, we have

E
[
|Ã̂2

t − E[Ã̂2
t ]|
]
f
√

Var[Ã̂2
t ]

=
√

Var[(1− ´)y2t−1] + Var[(1− ´)´y2t−2] + · · ·+ Var[(1− ´)´t−2y21 ] + Var[´t−1y20 ]

f
√
(1− ´)2 + (1− ´)2´2 + · · ·+ (1− ´)2´2(t−2) + ´2(t−1)M2,

where M2 is an upperbound on the variance. The first inequality follows by Jensen’s inequality. The second equality uses

independence of yi given g1, ..., gi−1. The last inequality follows by assumption 3.2.

We distinguish two cases, when t is small, we simply bound the coefficient by 1, i.e.

√
(1− ´)2 + (1− ´)2´2 + · · ·+ (1− ´)2´2(t−2) + ´2(t−1) f 1

When t is large such that t g 1 + µ, with µ = 1
2(1−´) ln(

1
1−´ ), we have ´2(t−1) f 1− ´, thus

√
(1− ´)2 + (1− ´)2´2 + · · ·+ (1− ´)2´2(t−2) + ´2(t−1)

f
√

(1− ´)2

1− ´2
+ ´2(t−1)

f
√

(1− ´)2

1− ´2
+ (1− ´)

f
√

2(1− ´)

The second inequality follows by t g 1 + µ, with µ = 1
2(1−´) ln(

1
1−´ ). Therefore, when t g 1 + µ,

E
[
|Ã̂2

t − E[Ã̂2
t ]|
]
f
√

2(1− ´)M

Therefore, substitute in the above equation into the

T/2∑

t=1

E
[
|Ã̂2

t − E[Ã̂2
t ]|
]
=

µ∑

t=1

E
[
|Ã̂2

t − E[Ã̂2
t ]|
]
+

T/2∑

t=µ+1

E
[
|Ã̂2

t − E[Ã̂2
t ]|
]

f (µ + (T − µ)
√
2(1− ´))M2

Summing up the variance term and the bias term yields,

T/2∑

t=0

E
[
|Ã̂2

t − var2t |
]
f D2

1− ´
+ (µ + (T − µ)

√
2(1− ´))M2 (11)

Taking ´ = 1− T−2/3/2 yields,

T/2∑

t=0

E
[
|Ã̂2

t − var2t |
]
f 2(D2 +M2)T 2/3 ln(T 2/3) (12)
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E. Proof of Theorem 3.3

On a high level, the difference between the adaptive stepsize and the idealized harmonic stepsize mainly depends on the

estimation error |Ã̂2
k − Ã2

k|, which has a sublinear regret according to Lemma D. Then we carefully integrate this regret

bound to control the derivation from the idealized algorithm, reaching the conclusion.

Proof. By the update rule of xt+1, we have,

∥xt+1 − x∗∥2 = ∥xt − ¸tgt − x∗∥2 = ∥xt − x∗∥2 − 2¸tïgt, xt − x∗ð+ ¸2t ∥gt∥2.

Noting that the stepsize ¸t is independent of gt conditioned on gt−1. Recall that for simplicity, we denote var2t =
Ã2
2t/2 + Ã2

2t+1/2. Taking expectation with respect to gt conditional on the past iterates lead to

2¸t(f(xt)− f∗) f 2¸tï∇f(xt), xt − x∗ð
= E[2¸tïgt, xt − x∗ð|xt, · · · , x1]

= −E[∥xt+1 − x∗∥2|xt, · · · , x1] + ∥xt − x∗∥2 + ¸2t (∥∇f(xt)∥2 + var2t )

f −E[∥xt+1 − x∗∥2|xt, · · · , x1] + ∥xt − x∗∥2 + ¸2t Ã
2
t + L¸2t ï∇f(xt), xt − x∗ð.

Recall that R = ∥x1 − x∗∥, taking expectation and sum over iterations k, we get

E[(
∑T/2

t=1 ¸t)(f(xT )− f∗)] f R2 + E[
∑T/2

t=1 ¸
2
t var2t ].

Hence by Markov’s inequality, with probability at least 3/4,

(
∑T/2

t=1 ¸t)(f(xT )− f∗) f 4E[2(
∑T/2

t=1 ¸t)(f(xT )− f∗)] f 4(R2 + E[
∑T/2

t=1 ¸
2
t var2t ]). (13)

Now we can upper bound the right hand side, indeed

T/2∑

t=1

E[¸2t vart]
2 = c2

T/2∑

t=1

E

[
var2t

(Ã̂t +m)2

]

f c2




T/2∑

t=1

E

[
var2t − Ã̂2

t

(Ã̂t +m)2

]
+

T/2∑

t=1

E

[
Ã̂2
t

(Ã̂t +m)2

]


f c2

(
1

m2

T∑

t=1

E
[
|var2t − Ã̂2

t |
]
+ T

)

f c2
(
(M2 +D2)T 2/3 ln(T 2/3)

m2
+ T

)
f 3c2T (14)

The last inequality follows by the choice on m. Hence, from Eq. (13), we have with probability at least 3/4,

(
∑T

t=1 ¸t)(f(xT )− f∗) f 4(R2 + 3c2T ) (15)
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Next, by denoting (x)+ = max(x, 0), we lower bound the left hand side,

1

c

∑
¸t =

∑ 1

Ã̂t +m

=
∑ 1

vart +m
+
∑(

1

Ã̂t +m
− 1

vart +m

)

g
∑ 1

vart +m
−
∑ (Ã̂t − vart)+

(vart +m)(Ã̂t +m)

g
∑ 1

vart +m
−
∑ (Ã̂t − vart)+√

vart +m ·m3/2

g
∑ 1

vart +m
−
∑ 1

2

(
(Ã̂t − vart)

2
+

m3
+

1

vart +m

)

=
1

2

∑ 1

vart +m
− 1

2m3

∑
(Ã̂t − vart)

2
+ (16)

(17)

Note that

1

vart +m
=

1√
Ã2
2t + Ã2

2t+1/2 +m
g 1

Ã2t + Ã2t+1 +m

g 1

4
(

1

Ã2t +m
+

1

Ã2t+1 +m
)− 1

m2
(Ã2t − Ã2t+1)

g 1

4
(

1

Ã2t +m
+

1

Ã2t+1 +m
)− 1

m2

∣∣Ã2
2t − Ã2t+1

∣∣)

Therefore,

1

c

∑
¸t g

1

2

∑

k

1

Ãl +m
− 1

2m3

∑
(Ã̂t − vart)

2
+ −

√
T

m2
D (18)

Finally, by Markov’s inequality, with probability 3/4

∑
(Ã̂t − vart)

2
+ f 4E[

∑
(Ã̂k − vart)

2
+] f 4E[

∑
(Ã̂k − vart)

2] f 8(D2 +M2)T 2/3 ln(T 2/3).

Following the choice of m = 4
√
D2 +M2T− 1

9 ln(T )
1

2 , we have

1

2m3

T∑

k=1

(Ã̂k − vart)
2
+ f T

4(M +m)
f 1

4

T∑

k=1

1

Ãk +m

√
T

m2
D f T/8(M +m) f 1

8

T∑

k=1

1

Ãk +m

Consequently, together with (15) and (18), we know that with probability at least 1− 1
4 − 1

4 = 1/2,

f(xT )− f∗ f 4(R2 + 3c2T )∑
k

c
8(Ãk+m)

f 2R√
T

· 64∑
k

1
(Ãk+m)

, (19)

where the last inequality follows by setting c = R√
T
.


