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Abstract

We study oracle complexity of gradient based
methods for stochastic approximation problems.
Though in many settings optimal algorithms and
tight lower bounds are known for such problems,
these optimal algorithms do not achieve the best
performance when used in practice. We address
this theory-practice gap by focusing on instance-
dependent complexity instead of worst case com-
plexity. In particular, we first summarize known
instance-dependent complexity results and cate-
gorize them into three levels. We identify the
domination relation between different levels and
propose a fourth instance-dependent bound that
dominates existing ones. We then provide a suf-
ficient condition according to which an adaptive
algorithm with moment estimation can achieve
the proposed bound without knowledge of noise
levels. Our proposed algorithm and its analysis
provide a theoretical justification for the success
of moment estimation as it achieves improved
instance complexity.

1. Introduction

Stochastic approximation (SA) methods, introduced and
analyzed in the seminal works (Robbins & Monro, 1951;
Fabian et al., 1968; Polyak, 1987; Kushner & Yin, 2003;
Moulines & Bach, 2011), are central to modern machine
learning algorithms. Due to their wide applicability and
importance, they have been extensively studied. It is now
well established that an algorithm as simple as stochastic
gradient descent achieves minimax optimal rates in many
settings (Nesterov, 2013; Agarwal et al., 2009; Fang et al.,
2018a; Arjevani et al., 2019; Lin et al., 2015; Allen-Zhu,
2016; Ghadimi & Lan, 2012).
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These well-studied stochastic methods are, however, optimal
in the sense of a worst case measure of complexity:
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where T, (Ag[f, z1], f) denotes the number of iterations to
obtain an e-solution initialising at x;. In the most common
setting of convex problems, the e-solution is measured by
the function suboptimality gap:

T.({xt}en, f) = inf{t € N|f(zs) — f(z™) <€} (2)

The worst case complexity measure is naturally achieved in
certain extreme cases within a function class, which may be
quite rare in practice. Empirical observations (Defazio &
Bottou, 2018; Reddi et al., 2019) suggests that a gap does ex-
ist between worst case analysis and empirical performance.

To reduce the mistmatch between theory and practice, it is
necessary to go beyond worst case scenarios, and to include
more domain-specific nuances. One alternative is to con-
sider average case complexity analysis. Such an approach
is well established in theoretical computer science, and is
used to explain the superior empirical performance of Quick-
Sort (Hoare, 1962), quickhull (Preparata & Shamos, 2012),
simplex methods (Borgwardt, 2012). In contrast, the use of
average-case complexity analysis in optimization scenarios
is less mature and in its infancy (Pedregosa & Scieur, 2020;
Lacotte & Pilanci, 2020; Paquette et al., 2021).

Another approach to move away from the worst-case is to
conduct smoothed analysis (Spielman, 2005), in which the
complexity is instance-dependent (Fagin et al., 2003; Af-
shani et al., 2017). Here, instance could be referring to a
specific sample, or more broadly to an easily parametriz-
able subclass of samples. The goal is to build a middle
ground between worst-case and average-case analyses, such
that we can eventually interpolate between them (Spielman,
2005). This idea has been recently extended to the study of
complexity in Q-learning (Khamaru et al., 2021; Pananjady
& Wainwright, 2020), and further analyzed in Markovian
linear stochastic approximation setting (Mou et al., 2021).

Following this line of work, we propose an instance-
dependent analysis in the general convex setup, extending
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Figure 1. Different notions of complexity and optimality.

the linear setting and worst-case optimal rates in (Mou et al.,
2021). We define instances by the subclass of functions with
non-stationary noise, and make the following contributions:

* We categorize previous instance complexities into three
categories based on their dependence on the iteration-
wise noise levels as well as the information available
to the algorithm. We further identify the gap between
different types of instance complexities.

* We propose a new instance dependent rate, named dy-
namic error bound, that dominates (see Definition 2.5)
previous ones when additional information of the prob-
lem instance is available.

* We study an algorithm based on moment estimation
that achieves the dynamic error bound without know-
ing additional information when the total variation in
noise level is bounded. We hence provide the first theo-
retical justification for why moment estimation speeds
up gradient methods empirically.

We test the noise variation and empirical performance of
our moment estimation algorithm on policy optimization
and neural network training. We conclude by discussing
numerous open problems that this work raises.

2. Problem Setup and Instance Complexity

In this work, we focus on stochastic approximation problems
within the convex smooth function class Fy, gr:

Assumption 2.1. A continuously differentiable function f
isin Fr, g if f is convex, L—smooth, and bounded below,

fy) = f(@) +(Vf(x),y — ),

o1 —2*| < R,
IVf(x) = Vil < Lllz -yl

where z* denotes a global optimal solution.

We follow the classical stochastic approximation setup (a
la Robbins-Monro), where the noise is additive. More

precisely, the stochastic gradient oracle g is given as the
sum of the actual gradient V f and random noise ¢:

g(x) = Vf(z)+& 3)

This setup holds whenever the error comes from an exoge-
nous source. In pursuit of our goal to go beyond worst
case analysis, we follow the recent line of work on instance-
complexity for stochastic approximation and reinforcement
learning (Khamaru et al., 2021; Pananjady & Wainwright,
2020; Mou et al., 2021), and define the {0} } ren-instance
as the following subclass of gradient oracles:

Definition 2.2 ({0}, } xen-instance). At the k" iteration, the
gradient oracle gy, returns a stochastic gradient

gr(z) = Vf(z) + &,
where &, is zero mean and has bounded second moment oy:

Elg] =0, E[&l] = of < M.

For simplicity we assume that the noise is nontrivial:

Assumption 2.3 (Nontrivial noise).

of > L?R*/T, forallk < T.

Indeed, when the noise level is too small, g, is essentially
the full gradient V f, leading to a deterministic style conver-
gence. Assumption 2.3 is not necessary but saves us from
discussing such trivial cases, which deviate from the main
purpose of studying instance-dependent bounds.

Unlike standard analysis where uniform variance bound is
imposed on all the stochastic gradients, we allow the noise
level to be non-stationary, i.e., can vary from iteration to
iteration. To recover the worst case analysis, it suffices
to set the noise at a maximum level, Vk,0, = M. By
allowing the noise to be non-stationary, we create a fine-
grained middle ground where we can investigate how the
variation of noise o, influence the convergence rate of an
optimization algorithm.

As in most convex problems, we study the level of sub-
optimality achieved after querying the oracle 7' times to
upper bound E[f (x1) — min,, f(z)]. In the following sub-
section, we derive theoretical convergence rates under a
{0k }ren-instance, named as the instance complexity.

2.1. Different levels of instance complexity

In this subsection, we categorize rates in stochastic approx-
imation into four levels based on their dependence on the
problem instance defined by {o; };cn. Our proposed cat-
egorization later enables us to identify a nontrivial gap
between vanilla stochastic gradient descent and its adap-
tive variant using moment estimation. Although we focus
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Worst Agnostic Adaptive Dynamic
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Can be Fixed step, Fixed step, Fixed step, known R, {o}, }} or Adaptive step,
achieved via known R, M unknown R, M Adapt. step, unknown {o }r known R, {0} }

Table 1. Comparisons of four types of instance-dependent theoretical convergence rates under the noise level {o } . The parameter R>
denotes the initial distance ||z; — x*||? and the parameter M is an upper bound of o. The convergence rate improves from the left to the

right monotonically, with different choices of stepsizes 7.

on analysis for convex functions, similar categorization may
also hold for analyses of nonconvex functions.

We begin by summarizing known results that are dependent
on iteration-wise noise levels {oy };. Previous results on
instance-dependent bounds usually do not consider the exact
same problem setup, and hence not directly comparable. To
have a unified framework, we view these results under the
smooth-convex setting. Recall the following folklore result:

Theorem 2.4. When f € Fp g (convex, L-smooth), the
stochastic gradient descent algorithm of the form

Thy1 = T — Meg(Tr),

with predetermined stepsizes ny < %, satisfies the subopti-
mality bound

R* + 25:1 771%01%
T
Ek:1 Mk

where Tp = (Zle nk.a:k)/(z;f:l Mk ) is the weighted av-
erage of iterates.

Elf(zr) — f7] < ; “4)

The above theorem already shows that different step size
choices can induce a variety of instance complexities, and
some choices might give faster convergence. However, bet-
ter step size choice might require more information about
the problem instance. We will now discuss how different
step size choice requires different level of information and
classify previous work based on their step size strategy.

1. Worst case bounds. In classical stochastic optimization
literature (e.g. (Rakhlin et al., 2011; Ghadimi & Lan, 2012;
Ghadimi et al., 2013; Fang et al., 2018a)), only an upper
bound on the variances is given. In other words, we do not
have access to the entire sequence of oy, but only an upper
bound M > oy, Vk. Using the stepsize n, = R/VTM?2,

this choice results in the worst case bound:

Elf(@r) — f*] <2RM/VT := eyors- (5)

2. Agnostic bounds. Another type of bound appears in
the analysis of adaptive methods, and involves an additive
bound on the initialization (||xg — *||, f(xo) — f(2z*)) and
noise (see Theorem 2.1 of (Ward et al., 2018), or (Zhou et al.,
2018)) instead of a multiplicative one as in other bounds.

Though these bounds are usually achieved by adaptive meth-
ods, to distinguish them from other instance-dependent
bounds, we call these bounds “agnostic bounds” because
they can be obtained using a step size without knowing the
maximum noise level, the smoothness constant or the do-
main diameter of the problem. In smooth convex case, these

bounds can be achieved by setting 1, = ﬁ:

T
]E[f(fT) - f*] < (R2 + % kzl U}%)/\/T ‘= €agnostic- (6)

3. Adaptive bounds. One theoretically justified advan-
tage of adaptive gradient methods is that if the smoothness
and level of suboptimality are known, then adaptive meth-
ods can automatically adjust the learning rate for the noise
level in stochastic gradients. Results of this type can be
found for example in (Duchi et al., 2011; Levy et al., 2018;
Ward et al., 2018; Zhou et al., 2018). In particular, the setup
in (Levy et al., 2018) (Thm 2.1 and equation (11)) subsumes
our smooth-convex setup and is directly comparable. In par-
ticular, by setting n;, = R(2", ., [lgx]|?) /2, one gets

the following rate:
T
(+5)
k=1

=

Elf(@r) - 7] <

‘= €adaptive- (N

el

S5
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Worst Agnostic

Adaptive Dynamic

Error bound T3 T3

T—((1+a)/2) T—((14+20)/2)

Table 2. Comparison of convergence rate under multiple shapes of the noise level o, where constant terms are omitted. The parameter
a €10, %] is the exponent controlling the ratio between max oy, and min oy, indicating the significance in noise changes.

Notice that results in (Mou et al., 2021) also fall in this cate-
gory. Though the bounds in (Mou et al., 2021) may not be di-
rectly comparable as they are in the strongly convex regime,
these bounds, as well as the adaptive bound in (7) can be
achieved by using a fixed step size if the noise levels oy
2\ ~1/2

are known in advance by setting n, = R (ZZ:1 0T>

This is the best attainable rate using a fixed step size by
optimizing the error bound in Theorem 2.4.

This observation naturally leads to the bounds in the next
part, which are achieved by an iteration dependent step size
when oy are known. From the following result, we will see
that the adaptive bounds above are worst-case optimal but
not instance-level optimal (see Figure 1).

4. Dynamic bounds. A natural question is whether we can
further improve adaptive bounds by appropriately selecting
the stepsizes. This is indeed possible by setting a stepsize
inversely proportional to oj,. More concretely, when setting
e = R/(oxVT), we get

-1
E[f(@r) - [T] <2R (% i olk) VT = eagnamic.
(®)

We name these bounds “dynamic bounds”, analogous to
“dynamic regret” in online learning (Jadbabaie et al., 2015;
Yang et al., 2016), indicating that the optimal policy can
have iteration dependent action (i.e. iteration-wise step
sizes) rather than a fixed action (i.e. a fixed step size).

Such bounds are less studied, as previous works mainly
focus on the dependence of T instead of the fine-grained
dependency on the instance {oj};. In our setting, it is
important to notice that different dependency on {oy }
could lead to non-trivial differences in the convergence rate.
For instance, the dynamic bound depends on the harmonic
sum of o, whereas the adaptive bound depends on its 2-
norm. To make comparison between different error bounds,
we adopt the following notation.

Definition 2.5 (Dominating bounds). We say an error bound
dominates another, denoted as €; =< ¢», if there exists an
absolute constant ¢ > 0 such that for any R, {o%}, T,
we have that the instantiated value €1 (R, T, {ok}r) <
062(R7 T, {Uk}k)

With the above definition, we could provide the following
order of instance complexities.

Lemma 2.6. The four different types of bounds satisfy the
following ordering:

€dynamic = €adaptive = Hlln{éw(,m, 6agnostic}-

The above result is expected. We see in Table 1 that the
dominance between different bounds is ordered the same
way the amount of information available to the algorithm.

Another straightforward consequence of the lemma is that
both €agaptive aNd €dynamic are worst case optimal. In other
words, they all fall into the same rate when o, = M is
constant. Similarly, when all the ratios o;/ o; are bounded
by a constant, then the ratio of these rates are bounded, i.e.
differ only by a constant ratio.

A more interesting question to ask is when does the adap-
tive rate €udaptive OF the dynamic rate €gynamic non trivially
improve the worst case rate. This can happen when the
variation in the noise level {oy } is comparable to the total
iteration number 7. In fact, we will later show that gradi-
ent methods with moment estimation can achieve such
bounds without knowing the noise level in advance, and
hence improve over vanilla SGD. To make the discussion
concrete, we first use a synthetic example to illustrate the
phenomenon.

2.2. Complexity comparison via synthetic example

In this section, we use an example with synthetic noise to
illustrate the instance complexity of different types.

1.2

—— alpha =1/9
1.0 alpha = 1/6
0.8 —— alpha =1/4
0.6 \
0.4
0.2
0.0

00 02 04 06 08 10
Iteration # le6

Figure 2. Mountain shape noise for different values of a.

Example 2.7. We consider a noise sequence oy of a moun-
tain shape, illustrated in Figure 2. The noise level increases
smoothly in the first half of iterations, then decreases in the
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second half, parametrized by a positive constant « € (0, 1):

1

o = ——m-o-—.
1472 (26 1)

In particular, the maximum of o, is 1, attained in the middle

of the iterations; and the minimum of it is 7'~ ¢. Substituting

the values of o, into the rates summarized in Table 1, we

obtain the rates shown in Table 2.

For this specific {o} }-instance, adapting the noise level is
beneficial. As we can see, the adaptive bound improves
the worst case bound by T%/2 and, the dynamic bound
improves further the adaptive bound by 7%/2. Such a non-
trivial gap is unobservable under worst case analysis.

Though dynamic error bounds can achieve faster conver-
gence than standard worst case rates (in terms of T'), we
note that achieving better dependence on 7' is not the main
purpose of our work. Instead, we want to show via different
exponents on T that the gap between different types of in-
stance complexity is significant and cannot be considered
as off by an absolute constant.

We showed that using a step size that is inversely pro-
portional to the noise level can generate a better instance-
dependent bound. Such a construction relies on the knowl-
edge of o;,. However, in practice, we usually do not have
access to the exact noise level. We show in the next section
that combining the idea of moment estimation with SGD
can achieve the dynamic error bound even when the {oy }
are unknown.

3. Moment Estimation Achieves Dynamic
Error Bounds

The main difficulty to achieve the dynamic bounds lies in
the estimation of 0. A naive first idea is to draw multiple
samples of the gradient at each iteration and perform an
empirical estimate of the variance. Later use the estimate
0, to update the stepsizes. In order to ensure nonasymptotic
concentration of the estimator, one convenient way is to
impose a bounded higher moment assumption.

Assumption 3.1 (Higher moment boundedness.). We as-
sume that the fourth moment of g; is bounded, namely,
E[[|€x1*] = Elllgx — VfII*] < M* for all k.

This assumption allows us to guarantee the estimation of
o? is non-asymptotically concentrated with high proba-
bility. In particular, given N samples of the gradients
9k,1,9k,2, - - gk, N at the k-th iteration, the standard vari-
ance estimator

2N lgki—gill® - _ 1 N
Yy = &=, where Gy, = 5 )22 Gkin (9)

is an unbiased, i.e. E[Y}] = a,%. Moreover, its variance is

- 4
bounded: Var[V2] = & (E[||§k||4] - %aﬁ) <

Algorithm 1 Moment Estimation SGD (xz1, T, ¢, m)

llg1.1—g1.2112
2

1: Initialize 61 = , where g¢1.1, 91,2 are two
independent stochastic gradients at x;.

cfort=1,2,...,7/2do

Query two stochastic gradients g; 1, g 2 at ;.

Update

»w

—_ 91 + G2
¢ 2
Ti41 = Tt — MGt

57?4—1 = 557:62 + (1 - 5)

C

o+

and n; =

Hgt,l — 9t,2 \2
2

end for
6: Return x; where I is the random variable such that
P(I =)  n;.

bd

In other words, with high probability, the empirical es-
. 2 .
timator Yj, concentrates around a,% + % However, if
o, = O(T~%), we would need T%* samples to make sure
the approximation is in the same magnitude of 0. This
leads to an extremely inefficient sample complexity, barely

implementable in practice.

In the real-world setting, often the environment changes in a
smooth way. This provides another possibility if we are able
to exploit the continuity in the noise changes. In particular,
we can combine the previous gradients with the actual ones
to perform the variance estimation, i.e. conducting a moving
average estimator. In order to provide theoretical guarantee,
we impose the following condition on the total variation of
noise level o3.

Assumption 3.2 (Total variation boundedness.). We assume
that the total variation of o7 is bounded, ie., >, |07 —
0']% +1| < D2, where D is a constant independent of 7". To
facilitate discussion, we assume D? = Q(M?).

The bounded total variation assumption provides us the nec-
essary smoothness on 0. This assumption is commonly
used in the dynamic, online learning literature (Besbes et al.,
2014; Jadbabaie et al., 2015; Mokhtari et al., 2016). A key
consequence of this assumption is that it avoids infinite os-
cillations, such as the pathological setting where oo, = %
and o9;+1 = 1, in which case the total variation scales
with the number of iterations 7'. The specific constant in
D? = Q(M?) depends on the shape of the noise. When
o} is increasing in the first half and decreasing in the sec-
ond half, as in Example 2.7, the total variation is bounded
by D? < 2M?. More generally, if the noise can be de-
composed into K piece-wise monotone fragments, then the
bound D? < K M? holds.
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Worst Adaptive Dynamic Moment Est.
a=1/9 T3 T-5/9 T-11/18 T-11/18
a=1/8 -3 T—9/16 T—11/18 T7-5/8

Table 3. Comparison of convergence rate under the mountain shape noise 0%, where constant terms are omitted. The parameter o = 1/9
is the exponent controlling the ratio between max o, and min o, indicating the significance in noise changes.

3.1. Design and analysis of our proposed algorithm

With the bounded total variation in hand, we are now ready
to exploit the continuity of 0. Without loss of generality,
we use the empirical variance estimator (9) with two sam-
ples per iteration. We construct an online estimator using
an exponential moving average:

lgen — geol?

2 )
where g, 1 and g, » are two samples of the gradient at ¢-th
iteration. Note that t is the index for algorithm iteration,
whereas k is the index for number of oracle calls. The oracle
call at iteration ¢ corresponding to the (2t);y, and (2t + 1),
call to the stochastic oracle.

&t2+1 = 5@2 +(1-75) (ExpMvAvg)

The moving average is very similar to the one used in the
modern adaptive methods such as RMSProp (Tieleman &
Hinton, 2012), Adam (Kingma & Ba, 2014), etc. One major
difference compared to the current adaptive methods is that
we are estimating the variance of gradients, whereas RM-
SProp/Adam directly accumulate the gradient square in a
coordinate-wise manner.

The above estimator combined with dynamic stepsizes lead
to our design of Algorithm 1. To avoid the explosion of
stepsize when 6, is underestimated, we include a constant
correction term m in the denominator of 7,. Such correction
term is also commonly used in the practical implementation
of adaptive methods (Duchi et al., 2011; Kingma & Ba,
2014). In reinforcement learning, this term is sometimes
referred to as the exploration bonus (Strehl & Littman, 2008;
Azar et al., 2017).

Algorithm 1 gives us the following convergence guarantee.
Theorem 3.3 (Main result). Under Assumptions 3.1,3.2,
with probability at least 1/2, the iterates generated by
Algorithm 1 using parameters 3 = 1 — 2T72/3, m =
4D+ MPT=5 In(T)?, ¢ = JL sarisfy

-1
— 64R 1 T 1 —
f(xT) - f* S VT . (T Zk:l Uker) ‘= €ours-

Corollary 3.4. Our result directly implies a 1 — § high prob-
ability convergence rate, by restarting it 2log(1/9) times.
An additional log(1/9) dependency will be introduced in
the complexity, as in standard high probability results (Ne-
mirovski et al., 2009; Jin et al., 2017; Fang et al., 2018b).

The main challenge in proving the theorem is to effectively
bound the estimation error |67 — 03,/2 — 03,,1/2|. As 67
is an exponential average, the past errors accumulates into
the current estimator, which requires a careful bound using
concentration and the total variation of oj. In particular,
the decay parameter /3 plays a critical role, determining the
contribution of past gradients in the current estimator. A
consequence of using past gradients in the estimate is that
the online estimator &, is no longer unbiased. The proposed
choice of 8 and m carefully balances the bias error and the
variance error, leading to a sublinear regret, see Appendix D.

Understanding the convergence rate Due to the correc-
tion constant m, the obtained convergence rate inversely
depends on 3" _; -1 instead of the 3_;_; - depen-
dency in the dynamic bound. This additional term makes the
comparison less straightforward, especially when some of
the oy, are small. We provide several scenarios to facilitate
the comparison.

Corollary 3.5. If the ratio M /(miny, o) < T3, then the
Moment Estimation SGD method converges in the same
order as the dynamic error bound €gynamic-

This result is remarkable since our proposed method does
not require any knowledge of o, values, and yet it achieves
the dynamic rate. In other words, the exponential moving av-
erage estimator successfully adapts to the variation in noise,
allowing faster convergence than adaptive/worst bounds. In
particular when taking & = 1/9 in Example 2.7, we get the
following error bounds in Table 3. The comparison between
different error bounds suggest that moment estimation can
non-trivially improve the convergence rates achieved by
conventional analysis for adaptive step sizes.

2
avg

moment. IfM/J(wg < T%, then adaptive method is no
slower than the adaptive error bound (7).

Corollary 3.6. Let o2, = > 0% /T be the average second

The condition in Corollary 3.6 is strictly weaker than the
condition in Corollary 3.5, which means even though an
adaptive method may not match the dynamic bound, it can
still be non-trivially better than the adaptive bound. This
case happens for instance when o > é in Table 3, where
the proposed method is O(T'5) faster than the adaptive
bound. Indeed, O(T'5) is the maximum improvement one
can expect according to our current analysis.
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We now proceed to evaluate different algorithms and bounds
with both synthetic and deep learning experiments.

4. Experiments

In this section, we present three sets of experiments: syn-
thetic least squares, policy optimization for mujoco tasks
and neural network training on Cifar10 dataset. Our syn-
thetic experiments verify the theory prediction, whereas our
deep learning experiments show that the studied moment-
estimation algorithm is practical and performs as well as
common baselines.

4.1. Synthetic experiments

In the synthetic experiment, we generate a random linear
regression dataset using the sklearn library. We design
the stochastic oracle as full gradient with injected Gaussian
noise, whose coordinate-wise standard deviation o is shown
in the top row figures of Fig 3. We then run the three
algorithms discussed in this work: the fixed best step-size,
the dynamic step size and the moment estimation algorithm
in Alg 1. We fine-tune the step sizes for each algorithm
by grid-searching. We repeat the experiment for 10 runs
and show the average training trajectory in the second row
in Fig 3. From Figure 3, we see that moment estimation
algorithm can achieve comparable performance against the
dynamic version and outperforms the fixed step size SGD.

4.2. Policy optimization

In this set of experiments, we simulated the proximal policy
optimization algorithm in the nonstationary environment
described in (Dulac-Arnold et al., 2019). We consider two
Mujoco tasks: one in which a walker gets reward for walk-
ing; another in which a cart-pole gets reward for swinging
up the pole. The original implementation! update the pa-
rameters with ADAM (Kingma & Ba, 2014) and gradient
clipping, which as we will show later, closely connects to
noise-dependent step size. To highlight the comparison
between fixed step size SA and adaptive step size SA, we re-
placed the update with the constant baseline and the moment
estimation algorithm.

During training, we estimate the variance level by sampling
a batch of 5 thousand state, action pairs. For each algorithm,
we fine-tune the step sizes by grid-searching among 10,
where k is an integer. The estimated variance of noise and
average reward over 5 runs are plotted in Figure 4. The
result shows that the noise level is indeed nonstationary
during training, where the SA algorithm can benefit from
an adaptive step size. We note that the adaptive step size
method learns much faster than fixed stepsize in the cart-

"https://github.com/google-research/
realworldrl_suite

pole task over the first few iterations. The advantage might
result from the low noise level in initial epochs of the policy
gradient due to the simplicity of swinging up a pole.

4.3. Neural network training

We will now discuss the application of our proposed method
to neural network training. In order to apply our result in
such settings, the challenge is not merley about extending
the results to nonsmooth scenarios or non-convex cases.
Rather, the main challenge we face is that noise levels in
stochastic optimization for neural network training are step-
size dependent. The source of nonstationary noise in this
setting is entirely endogenous, i.e., it is determined by the
iterative output x;. In such settings, it is unclear how base-
lines could be defined, or improvement could be quantified.

To this end, we show in Figure 5 that the noise trajectories
are different for training ResNet18 on Cifar10 with different
algorithms and hyperparameters. Even though our theoreti-
cal guarantees do not directly apply to this setting, we can
apply our adaptive step-size algorithm and still exploit the
variations in noise.

Directly applying Algorithm 1 may be cumbersome on stan-
dard image classification pipelines due to requiring an un-
biased within-batch variance estimator. Instead, we notice
from Figure 5 that the noise level dominates the gradient
norm in neural network training, and hence we can simply
use the empirical second moment E[||g||?] as a substitute
for the empirical variance E[||gx — V f(zx)]|?]. This gives
us the following update,

Tl = Tk — Megr With 1y = =,
dm2 .. — B2 1 ||91c||2
an mk+1—ﬁmk+( —6)72 .

We should point out that interestingly, the above update is
exactly the same as in the RMSProp algorithm (Tieleman &
Hinton, 2012) if the step sizes were coordinate-wise. Since
the moment estimation algorithm is very similar to popular
optimizers for training Cifar10, we do not expect it to sig-
nificantly outperform the well tuned baselines. Instead, we
highlight that our analysis provides theoretical evidence for
the popularity of moment estimation techniques in practice.

Such observations point to the following interesting ques-
tion: “why is fixed stepsize SGD minimax optimal (Arjevani
et al., 2019), yet adaptive methods such as RMSProp and
ADAM outperforms fixed step size SGD in many real world
settings?” Alongside with many recent works (Reddi et al.,
2019; Wilson et al., 2017; Zhang et al., 2019; Ward et al.,
2018; Luo et al., 2019; Liu et al., 2020), we believe that
our more fine-grained analysis provides a new perspective
and motivates new avenues for proving the effectiveness of
adaptive algorithms such as ADAM and RMSProp.
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Figure 3. Results for synthetic least square problems. The three plots from left to right corresponds to the shape of noise, the average
MSE out of 10 random runs and the numerical values of suboptimality.
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Figure 5. The left figure plots the noise level while training a ResNet model on Cifar10 for 200 epochs. It shows that noise levels are very
much algorithm dependent. The second left figure shows that the variance in stochastic gradient almost equals the variance. The right two
figures show that in Cifar10 training, the moment estimation algorithm performs as well as the fine-tuned SGD baseline.

5. Conclusions and Discussions

In this work, we provided a new perspective for instance-
dependent complexity of stochastic approximation meth-
ods. We first categorized existing instance-dependent error
bounds into different levels based on dominance relations.
We then proposed a new dynamic error bound that dom-
inates known ones. Simple algorithms that achieves this
bound requires knowing the exact noise levels and is not
implementable. To address this issue, we showed that when
noise levels have bounded total variation, moment estima-
tion can achieve the desired rate. Our results are validated
by both synthetic and real-world experiments. We believe
the instance complexity we developed shed new insights to
the following interesting question: “why is fixed stepsize
SGD minimax optimal (Arjevani et al., 2019), yet adaptive
methods such as RMSProp and ADAM outperforms fixed

step size SGD in many real world settings?”

Many important instance-complexity problems are still open.
First, in traditional complexity theory, instance dependent
lower bounds can sometimes be tight up to constants (Af-
shani et al., 2017). However, determining the lower bounds
for stochastic approximation instances requires a reformula-
tion of the complexity definition, such as what information
is available. For example, in the dynamic bounds setup, a
different step size choice,

e = R/(Ji \/ Z?:l %?)7

may lead to a better error bound. Yet, this kind of step size
is at the same time dynamic and non-causal (depends on
information from future iterates). Therefore, information
dependence needs to be properly integrated in the lower
bound of instance complexity.
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Second, beyond settings such as smooth-convex problems,
we currently do not know of any faster instance-dependent
bounds. Even if better bounds can be achieved when noise
levels are known, it could still be unclear whether it can be
achieved by practical and implementable algorithms. An-
other question is whether in our setup where the function is
smooth and convex the 7/9 factor can be improved. We
believe understanding these problems can provide more
insight into practical algorithm performances and lead to
invention of new gradient based algorithms.

Last but not least, an apparent limitation of the stochastic
approximation setting is the assumption of an exogenous
noise. It is usually not satisfied in the standard empirical
risk minimization framework, where the noise is iterate
dependent, i.e. z-dependent. Note that the iterates generated
by one algorithm is mostly very different from the iterates
generated by another one, how to appropriately quantify
the state-dependency such that we can derive non-vacuous
instance complexity result becomes challenging. Though
simplified, we believe our work provides a solid first step
towards this ultimate goal.
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A. Proof of Theorem 2.4
Yy
< lwe — 2*|1> = me(2 — Lng)(V f (1), 21 — =*) + mjor

Proof. Using the fact that ||V f(y) — Vf(2)||? < (Vf(y) — Vf(2),y — z), we have
Elllznr — 2 P1Fk] = Il = 2*(* = 20(V f (@), 21 — 27) + gV (@0)?[| + nioi
< o = 2™1* = me{V f(zx), 2 — %) + nioy;

k=1

As f(zr) — f* <V f(xg),xp — x*). We have
ne(f(@r) = ) < llok — 2% = Elllogar — 27| F] + nio
Taking expectation and telescoping yields
T T
E > m(f(an) - f*)] < a1 = a*|* = Efllzrsr — 27 |1*] + ) nioi
k=1
O

(7 2% é)_z < 5>k Ths

B. Proof of Lemma 2.6
The only nontrivial one is €qynamic = €adaptive- This follows from Jensen’s inequality E[X]~? < E[X ~2], and we have

C. Summation series in Example 2.7
1

O = 5

\/ 1+ T (2 —1)

In Example 2.7, we have
¢ The second moment of oy, is given by
i S o']% = l ET: 1 ~ l /T 1 dx
= 2 - 2
T~ T 14T (% 1) TJo 1470 (% -1)
u=i%—1 1 /1 1 du
T ) 1+Tu? 2
1
1
= d
/0 1+ o™
TS 1

+5

N

This implies that the adaptive bound 7 is of order O(Tf(
2k 1\ _
7 =

* The harmonic sum of oy, is given by
T T
1 1 1
— _ = ]_ Ta
T m T2\t
k=1 k=1
—o (14178
B T

1, .aT?
=0(1+=T7%—
< JrT T
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This implies that the dynamic bound8 is of order O(T_(%J“%) ).

D. Key Lemma: Total estimation error of the variance estimator

Lemma D.1. Under Assumptions 3.2, taking 8 = 1 — 2T2/3, the total estimation error of the 6% based on (ExpMvAvg)

is bounded by:

T/2

Y 167 —03./2 = 03,14 /21| < 2D + M*)T?* In(T°/)

Proof. On a high level, we decouple the error in a bias term and a variance term. We use the total variation assumption to
bound the bias term, and use the exponential moving average to reduce variance. Then we pick 5 to balance the two terms.

For simplicity, we denote var? = 03,/2 + 03, /2.

From triangle inequality, we have

T/2 T/2 T/2
Y Ej67 —varf|] <> El67 —E[s +Z|E 7] — var? |
=0 t=1 Variance term Bias term

We first bound the bias term. By definition of 6, we have
E[67] — var; = SE[67_1] + (1 — B)var;_; — var}
= B(E[67_] — var;_;) + (var}_; — var})
Hence by recursion,

E[67] — var} = '~ (E[67] — var]) +8"(07] — vary) + -+ + (var}_,
—_——

=0
Therefore, the bias term could be bounded by

T/2

T/2
Z|Eat fvart|<z
t=1

t—1
1-
Bt J var] fvarj+1|
Jj=1
T k-1
k—1—j| 2 _ 2
< B ! ’Uk: _0k+1’
=1j=1

N
L

T—-1-k

|UI% - Uk+1| Z 5]

T—1
15 > |0k — o]

k=1

™~
Il
-

IN
—_

< 1 (From Assumption (3.2))

2

— var;

)

(10)

The first inequality follows by traingle inequality. The third inequality uses the geometric sum over 3. To bound the variance

term, we remark that

=(1- 6)93_1 +(1- ﬂ)ﬁy§_2 4o (1= 6)ﬁt—2y% + Bt_lyg

where we denote )
_ ||9t.,1 - 9t,2||
——
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Hence from independence of the gradients, we have
[6711] < 4/ Var(57]
= \Varl(L — B)u ] + Var[(1 — B)8y2 o] + -+ Varl(1 — B)5t243] + Var[5t143]

< (1= B)2 + (1= 9262 4+ + (1= §)2620-2) 4 -2,

=
>
N
|
=

where M? is an upperbound on the variance. The first inequality follows by Jensen’s inequality. The second equality uses
independence of y; given gy, ..., g;—1. The last inequality follows by assumption 3.2.

We distinguish two cases, when ¢ is small, we simply bound the coefficient by 1, i.e.

\/(1 _ 5)2 + (1 _ 6)252 4+ (1 _ 6)252@72) + 52(t71) S 1

When ¢ is large such that ¢t > 1 + v, with y = ﬁ ln(ﬁ), we have 32(t=1) < 1 — 3, thus

VOB 4 (= pRe 4+ (1 e 4 g2
By \/ (=0, gy

T
(1-8)2
S\/1—62+(16)

<v2(1-p)

The second inequality follows by ¢ > 1 + v, with v = ﬁ ln(ﬁ). Therefore, whent > 1 4+,

E (|67 —E[67]]] < v2(1 - B)M

T/2 ~ T/2
S E[j6? B}l =D E[l67 —E[67]] + > E[l67 —E5]
t=1 t=1 t=vy+1

Summing up the variance term and the bias term yields,

T/2 D2
D E[167 —vartl] < 7 + (v + (T = 7)v/2(L = B)M? an
t=0
Taking 8 = 1 — T—2/3 /2 yields,
T/2
> E[l67 - varf|] < 2(D* + M?)T?/3 In(T%%) (12)
t=0
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E. Proof of Theorem 3.3

On a high level, the difference between the adaptive stepsize and the idealized harmonic stepsize mainly depends on the
estimation error |67 — 07|, which has a sublinear regret according to Lemma D. Then we carefully integrate this regret
bound to control the derivation from the idealized algorithm, reaching the conclusion.

Proof. By the update rule of x,;, we have,
2.

lwers = 2|2 = lloe = nege — 2%||* = lloe — 2™|* — 2 (F7, 20 — @) + 07 |72

Noting that the stepsize 7, is independent of g; conditioned on g;—7. Recall that for simplicity, we denote var; =
03,/2 + 03, 1/2. Taking expectation with respect to g; conditional on the past iterates lead to

20e(f(xe) = f7) < 20V f (@), @ — 27)
= E[2m(gz, xe — %) |ze, -+, 1]
= ~Ellzipr — a*[Plae, - aa] + o — 2P+ 0 (1VF ()P + var?)
< —Elllwer — a*|Plae, - an] + oy — P+ pfof + Lyp (V f (@), @0 — 27).

Recall that R = ||z; — =*||, taking expectation and sum over iterations k, we get

B2 00)(f(@r) — f7)] < R? + E[X 17 n2var?).

Hence by Markov’s inequality, with probability at least 3/4,

(S n)(F@r) — 1) ABR(E LS n) (f(@r) — £4)] < 4(R? + B[S npvar?]). (13)

Now we can upper bound the right hand side, indeed

T/2 T/2

var
>~ Elybvan] = ZE[O_ o ]
t
9 o7 var? — 62 o7 o
< E|———= El————
=" ; [(&wm)?%; Lffﬁm)?}

< <m2 Z]E var? — &7] +T>

<(M2 + D?)T?/3 In(T?/3)

< 2 : + T) < 3¢°T (14)

m

The last inequality follows by the choice on m. Hence, from Eq. (13), we have with probability at least 3/4,

(CE ) (f@r) — £7) < 4(R? +3¢3T) (15)
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Next, by denoting (x)4+ = max(z, 0), we lower bound the left hand side,
¢ Z = Z ot +m

1 1

:Zm+z (&ter B vart+m>
1 5, —
2 Z var, +m Z (Variaj— m;/?cz):— m)
= Zvart+m _Z th;‘ﬂ
_ 2 1

> Z - Z < o4 Vart)+ + v +m)

_ . 2
_izm—ﬁZ(Ut—vart)Jr (16)
a7
Note that
1 1 1
= >
var +m o5 + U§t+1/2 +m Ot Oouritm
1 1 1 1
> - — — (o9t — 0
T dout+m o +m) mz( 2 = O241)
S 1 1 1 1 | 9 )
- ——5 oy —o0
T o m o tm) T me 02T 7
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P02 Y e w3 w

Finally, by Markov’s inequality, with probability 3/4
> (61— vary) <AE]Y (6% — var)}] < 4E[Y (63 — vary)?] < 8(D? + M) T3 In(T%/3).

Following the choice of m = 4v/D? + M2T~5 In(T)2, we have

1 <& 1 &
Tkzz: Uk_Vart+—4(M+m 1;0k+m

VT 1 1
Yo D<T/8(M <z
mz oS /8(M +m) 8;0k+m

Consequently, together with (15) and (18), we know that with probability at least 1 — i — i =1/2,

2 2
4(R% + 3¢ T)<ﬁ 64 19

f@r)—f < 7@ ’

where the last inequality follows by setting ¢ = Nk



