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Abstract

We revisit a model for time-varying linear regression that assumes the unknown parameters evolve
according to a linear dynamical system. Counterintuitively, we show that when the underlying
dynamics are stable the parameters of this model can be estimated from data by combining just two
ordinary least squares estimates. We offer a finite sample guarantee on the estimation error of our
method and discuss certain advantages it has over Expectation-Maximization (EM), which is the
main approach proposed by prior work.
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1. Introduction

The distribution of labels given the covariates changes over time in a variety of applications of
regression. Some example domains where such problems arise include economics, marketing, fash-
ion, and supply chain optimization, where market properties evolve over time. Motivated by such
problems, we revisit a model for time-varying linear regression that assumes the unknown parame-
ters evolve according to a linear dynamical system.

One way to account for distribution change in linear regression is to assume that the unknown
model parameters change slowly with time Bamieh and Giarre (2002); Kalaba and Tesfatsion
(1989); Zhang et al. (2012). While this assumption simplifies the problem and makes it tractable,
it misses on exploiting additional structure available and it also fails to model periodicity (e.g.,
due to seasonality) present in some problems. As an alternative, we are interested in a dynamic
model previously studied by Chow (1981), Carraro (1984), and Shumway et al. (1988). Given data
{(4, 1) }1=5" we assume the label y; is a linear function of the features z; with unknown parameters
B, that evolve according to linear dynamics:

Bi+1 = Afr + wy, (D
T
Yt = Ty Bt + e,
where w; is process noise and €; is observation noise. The hidden states 3; are not observed and

the parameter matrix A, is unknown. In this work the features x; are d-dimensional vectors and the
observations y; are scalar, but our results can be extended to vector valued observations. In some
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applications, such as modeling economic trends, one may be interested in recovering the unknown
parameters A,, which would offer insights into long term trends. When A, and the distributions of
wy and ¢; are known prediction is also possible via the Kalman filter. Therefore, our main goal is to
estimate A, from data {(z, y;)}

Estimating A, in (1) is a system identification problem of an unactuated linear system that has
a time-varying observation map. Up until now there has been no simple estimator for this problem
that has a finite sample guarantee. Counterintuitively, we show that when A, is stable it can be
estimated from data by combining just two ordinary least squares estimates, one that regresses y?
on xtx;r and one that regresses y;y;+1 ON Ty11 xtT . When the hidden dynamics are stable these two
regressions estimate the covariances ., := Eﬁtﬁg and A, Yoo = EfBi11 BtT , from which we can
obtain an estimate of A,. For this reason we call this approach the covariance method (CM).

In addition to its simplicity, CM also admits a finite sample guarantee on the estimation error. In
contrast, the statistical performance of Expectation-Maximization (EM), which is a classical estima-
tion method used by prior work Shumway and Stoffer (1982), is not well understood theoretically.
We prove the following guarantee for CM.

Main result (informal) Let 3., be the covariance of wy, o be the standard deviation of €;, and d
be dimension of xy. Suppose A, has spectral radius p = p(A,) smaller than one. Then, given a
trajectory of length T, CM produces with probability at least 1 — § an estimate A such that

3 L+ A [ d? oo ”
A A e < 208 JE (g .
H *HF ~ >\m1n(zoo) TS O¢ + 1— p2

This results shows that our method estimates A, ata O(T -1/ %) rate without the need of a good
initialization as in the case of EM. Some dependence on Apin (X ) i to be expected because when
Yoo 18 rank deficient the states 5; do not span all of R<, in which case no method would be able to
identify A, fully. Unsurprisingly, the upper bound on the estimation error blows up as p approaches
one. The main idea of CM is to estimate Y., which itself blows up as p approaches one.

We discuss CM in detail and the formal statement of our main result in Section 2. In Section 3
we present a meta result that highlights the main idea of our analysis. Then, in order to ground
the comparison between our method and EM in Section 5 we discuss background on stable linear
systems and their identification in the fully observed case, followed in Section 6 by a discussion of
EM. We conclude with a discussion of some open questions.

1.1. Notation.

Before moving forward we introduce some useful notation. We use y,.; to denote the sequence of
observations {¥s, Ys+1, - - - , Y¢—1}, with a similar notation for x and 3. The bold symbols x, y, and
(3 are used to denote the entire trajectories .7, yo.7, and So.7. The norm || - || denotes the /2 norm
for vectors and the operator norm for matrices. We use || - || ¢ to denote the Frobenius norm. We use
c to denote universal constants that may change from line to line.

1.2. What makes problem (1) challenging?

Classical methods for linear system identification, such as the eigensystem realization algorithm
Juang and Pappa (1985) and methods based on ordinary least squares Sarkar et al. (2021); Sim-
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chowitz et al. (2019); Tsiamis and Pappas (2019), were designed for the identification of time in-
variant systems of the form:

Biy1 = AxBr + Byug + wy )
yr = OBt + €. (3)

Two factors make the estimation of such systems easier: the time invariance and the actuation of the
system through u;. We discuss why either of these two factors make the estimation easier.

Time-invariant and actuated systems. When the dynamics are actuated and time invariant one
can regress y; on a history of inputs (ug—1,u¢—2,...) in order to estimate the Markov parameters
C ALB, with j € {0,1,...,7} for some 7. Then, one can apply the Ho-Kalman algorithm to
extract estimates of Ay, By, and C, from the estimated Markov parameters. Sarkar et al. (2021)
and Simchowitz et al. (2019) use this high-level approach to offer guarantees on the estimation of
systems of the form (3). The success of such an estimation strategy is guaranteed by Oymak and
Ozay (2021), who bounded the error of the estimates produced by the Ho-Kalman algorithm as a
function of the estimation error of the Markov parameters.

Time-varying and actuated systems. In our setting the “C,” matrix (observer matrix) is time-
varying which implies time-varying Markov parameters. Since the time-varying observer matrices
are assumed known in our setting, if we were able to actuate the dynamical system, we could
estimate the Markov parameters A} B, and then use the Ho-Kalman algorithm to recover the A,
and B, matrices. However, (1) is unactuated.

Moreover, Majji et al. (2010) showed that if one can collect multiple trajectories from the time-
varying dynamics by restarting the system, then one can recover all Ay, By, C;. If only one trajectory
were available and Ay, By, and Cy were time-varying and unknown, then identification would im-
possible because we would have only one data point for each time step.

Time-invariant and unactuated systems. This setting corresponds to having B, = 0 in (3) and
can be handled by regressing ¥;+1 on a history of past observations vy, y¢—1, . - . ¥¢—p for some h.
This approach is successful because one can show that there exists a matrix M such that

Yt

Yt—1
Yerr =M ||+ Gy

Yt—h

for some small (; Tsiamis and Pappas (2019). However, in the time-varying setting there is no time-
invariant matrix M that satisfies this identity. Even if feasible, such an approach would not use the

fact that the observer matrices z; are known.

Time-varying and unactuated systems. Our problem is both time-varying and unactuated and
the methods previously discussed cannot be extended easily to address it. As discussed previously,
in the time-invariant and unactuated case a simple estimator can solve the problem when both A,
and C, are unknown. While our problem is time-varying, the observer matrices are given. Hence,
only A, must be estimated. Our problem has fewer unknown parameters than in the time-invariant
case and yet the methods discussed thus far are not applicable.
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2. The covariance method (CM)

In this section we propose and analyze a method for estimating A, that first estimates the covariance
of the hidden states [3; sampled from the stationary distribution. To estimate the covariance matrix
our method applies ordinary least squares to regress y? on z;x, . Interestingly, the need to estimate
the covariance of random vectors that can only be observed through linear measurements arises in
the cryo-EM heterogeneity problem Katsevich et al. (2015). We employ the same solution to this
covariance estimation problem and offer a finite sample guarantee for this approach.

Assumptions. In order to estimate the covariance of the stationary distribution we need the sta-
tionary distribution to exist and have a finite covariance. The dynamics B;11 = A, B +w; have a sta-
tionary distribution with finite covariance if and only if the matrix A, is stable (i.e., p(A,) < 1). We
also assume the covariates z; are sampled i.i.d. according to some distribution. For simplicity we
assume z; ~ N (0, 1), but our analysis can be generalized to features with a sub-Gaussian distribu-
tion and a more general covariance structure. We also assume w; ~ N'(0, £,,) and ¢, <" N (0, 02),
but our analysis can be extended to any independent noise processes with bounded fourth moments.

When A, is stable, the linear system mixes exponentially fast to a distribution with covariance
Yo (the distribution is Gaussian when w; are Gaussian), where Y, is the unique positive semidef-
inite solution P of the Lyapunov equation P = APA" + X,,. Given that the convergence to
stationarity is fast we also assume that the initial state 3 is sampled from the stationary distribution
N(0,X). Hence, the marginal distribution of all 3; is N (0, Xoo).

The method. Given our assumptions, we observe that there exist random variables (; and £ whose
means are zero conditional on x; and x;11 and that satisfy the identities:

v =2 ooy + 02+ G and  yy1 = v/ AS ooy + &, )
where the noise terms (; and &; are defined by
G =) (BB — Boo)wt + 2612 By + (2 — 2),
&t = $tT+1A (/BtﬂtT - 2c>o> Ty + €t+1$;5t + xjﬂtthxt—‘rl + GtxtTHAﬂt + €441 + Gt’lUtTﬂ?tH-

Since Y, and AX. enter (4) linearly, we estimate them with ordinary least squares. Concretely,
our method performs the following steps’:

T-1
S € argmin Z:(yt2 — ) Ma, — 0?)?, o)
L —,
T-1
M € argmin Z(ytyt+1 — :U:MZEtH)Q,
L —,
A=MSZh

To offer a guarantee on the estimation error A — A, we first analyze the error in the estimation
of ¥o, and AX . It is known that ordinary least squares is a consistent estimator for the recovery
of covariance matrices from squared linear measurements such as (4) when the measurements are

1. For the analysis we assume o2 is given, but in practice one would run OLS with an intercept also to account for 2.
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ii.d. Katsevich et al. (2015). However, in our case the measurements y; are not independent.
Moreover, we wish to quantify the estimation rate. Analyzing the performance of OLS applied
to (4) is challenging because (; and &; are heavy tailed, they are dependent on the covariates x;,
and they are dependent across time due to the dynamics. By using Chebyshev’s inequality we
circumvent these issues, yielding a medium probability guarantee.

Before we state our main result we review a consequence of Gelfand’s formula for stable matri-
ces. For any stable matrix A, and any v € (p(A,), 1) there exists a finite 7 such that || A¥|| < 7+*
forall k > 0. We denote 7(A,, ) := sup{||A¥||[y~* : k > 0} (see Tu et al., 2017, for more details).

Theorem 1 Suppose z; ~ N(0, 1), wy ~ N(0,%,), and ¢; ~ N(0,02). Moreover, assume
p(Ay) < landlety € (p(Ay),1). Then, with probability 1 — 0 the covariance method produces
estimates Yo, and M that satisfy

- @ | Ai7)? 27\ ?\ |
S~ Sl < | o aglﬂ(l_jﬁuzc,oH?(d?“Og (5)) S
— cd? [ T(Ay,y)? 27\ % |

_ < - 4 4 VTR T 2 2 p—

2
whenever T > cd* log(c%). The term c a universal constant that changes from line to line (the
only difference between the two upper bounds is the exponent of T).

The proof of this result is based on the meta-analysis for linear regression with heavy tailed and
dependent measurements presented in Section 3. Theorem 1 shows that as the number 7" of data
points collected grows the estimation error decays at a rate O(T*I/ 2). Theorem 1 also suggests
that the closer to instability the matrix A, is the more data our method requires to recover >, and
A, Y. This relationship is unsurprising since ¥ and the variances of (; and &; in (4) approach
infinity as p(A,) approaches one. Nonetheless, in the case of time-invariant linear dynamical sys-
tems with partial observations it is possible to estimate A, even when it is marginally unstable (i.e.
p(A,) = 1) Simchowitz et al. (2019); Tsiamis and Pappas (2019).

Despite its merits, Theorem 1 is likely not capturing the right dependence of problem (1) on the
state dimension d, the probability of failure , and the variances o2 and ¥,. For example, we are
trying to estimate d? unknown parameters so we expect to need a number of scalar measurements
that scales as d?, not as d*. We obtain a 1/§ dependence on § instead of log(1/§) because the proof
relies on Chebyshev’s inequality. It is not clear whether the sub-optimal dependencies on problem
parameters represent an artifact of our analysis or a limitation of our method.

Our sample complexity guarantee on the estimation of A is a simple corollary of Theorem 1.

Corollary 2 Under the same assumptions as in Theorem 1, as long as T satisfies

2
4 T(A*77)3 2( 2 2T
—— |3 41 —

the covariance method outputs with probability at least 1 — § an estimate A that satisfies:

Ay, )3 27\ ?
a§+77(1 _*’,;72) \|Eoo\|2<d2+4log <5> >] (7)

cd?
T> ——————
- )\min(zoo)zé

- L4 A | ed?
A Alp < e84 47
I slr < Nonin (Boo) \| TO
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Therefore, we have shown that it is possible to estimate A, at a rate O (7~ '/2) without the need
of a good initialization as in the case of EM. This corollary inherits all the limitations of Theorem 1.
The dependence on the inverse of \pin (2o ) may seem sub-optimal, but it does capture an important
aspect of the problem. When Y, is smaller in a PSD sense it means that the states (3; have smaller
norms, which implies that the signal-to-noise ration in the observations y; = :UtT Bt + € is lower. In
particular, if Apin(Xoo) = 0, the hidden states (; lie in a subspace of R? of dimension smaller than
d, in which case A, cannot be fully recovered.

3. A meta-analysis of linear regression with heavy-tailed and dependent noise

In this section we offer a meta-analysis for linear regression that encompasses both the estimation
of Yoo and A,Yo.. Suppose we wish to estimate 6 from data { (¢, z;)} 1, with z; = o) 0 + G
where ¢; are given features and (; is noise. However, we do not assume (; and ¢, are independent
nor do we assume the noise terms (; are independent across time. Moreover, we allow (; to be
heavy tailed. In this case, standard analyses of linear regression do not apply. To surmount these
challenges and prove the following lemma we rely on Chebyshev’s inequality.

Lemma 3 Suppose ¢;,0 € RF and that Z;le be¢) is invertible. Also, suppose E[(;|é1.7] = 0,

E[¢Z|pr.r] < fi(¢prr) and B[GiGrynldr]] < A" fa(drr) for some v € (0,1) and functions fi, fo.
Then, with probability 1 — & the OLS estimate 0 satisfies

16— 6| < % <f1(¢>1:T) 2(dv) ) (Z Dry )

Proof The OLS estimate 0 is given by (Z gbtd)t ) (Zt 0 qﬁtzt) Since z; = ¢, 0 + (;, the
estimation error can be written as

T—1 L oyr_a
- (z @as?) (z qstgt) |
t=0 t=0

It is convenient to use Chebyshev’s inequality to upper bound ||e|| because it only requires an upper
bound on the conditional variance of the noise, conditioned on the covariates ¢;. Let ¥, =
E [eeT |¢>1;T] . Then, Chebyshev’s inequality applied to e yields

P(,/Tz|e>z)g§ (8)

Therefore, we wish to upper bound %, with high probability. Note that

T-1 -1 /g T-1 -1
Sels = (Z drdy ) > EG¢|brr] dio; <Z drdy ) )

t=0 i,j=0 t=0

To upper bound E [(;(j|¢1.7] d%'(bjT note that for any vectors u and v we have uv " +vu' < uu' +
v, Then, using our assumptions on E [GiCjlor.r] yields
-1

Yejp 2 <f1(¢1 T)+ ¢1T ) (Z ¢t¢>t> : (10)



TIME VARYING REGRESSION WITH HIDDEN LINEAR DYNAMICS

The conclusion follows by putting together (8) and (10). |

4. Proof sketch for Theorem 1

The proofs for both (6a) and (6b) rely on Lemma 3, where ¢, represents the vectorization of a:txtT

and $t+1m: respectively. The noise terms are (; and &; defined in Section 2.
The assumptions of Theorem 1 imply that all the conditions required by Lemma 3 are satisfied.

We are left to prove that A (Zthl o ) > cT" and to upper bound the conditional expectations

of (¢(y+r and &€ 4. Since the vectors ¢y are sub-exponential one can use standard techniques to
prove a lower bound on the minimum eigenvalue Tropp (2015); Wainwright (2019).

To upper bound the conditional correlations of the noise terms we note that the state 5,15 can
be decomposed as

k
Brok = ALBr+ > A \wyn . an
j=1

u

Then, we recall that for some v € (p(A,),1) there exists a finite 7(A,,~) such that ||A¥|| <
7(Ay,v)Y"* for all k. Then, the term A*3; decays exponentially with k. The term « is independent
of 3, by assumption. It follows that 3, and /3, are approximately independent and one can exploit
this fact to upper bound the terms f1(¢o.7) and fa(¢o.7) and complete the proof of Theorem 1. The
complete proof can be found at ht tps://hmania.github.io/dynamic_LR.pdf.

5. Linear system identification with known states

We ground our discussion of CM and EM by looking at the case when the states 3; are given. In the
fully observed case A, can be estimated by the ordinary least squares (OLS) estimate

R T—1 T—1 -1
A= (Z Bra B ) (Z Besy’ ) :
t=0 =0

In the partially observed case we cannot compute 3;+13;, and 3;3, directly. Nonetheless, EM
and CM get a handle on these quantities in different ways. For example, EM uses the available
data and an initial guess of the unknown parameters A, to compute conditional expectations of
Bi1B, and B:B,. Then, EM uses these conditional expectations to update it’s estimate of A,,
repeating these steps until convergence. When the dynamics are stable the averages % ZtT:_Ol Bt BtT
and % Z?:_ol Bii1B, converge to Yo, and A, Y., respectively. Despite not having access to the
hidden states, CM estimates A, and Y.

Recent results have elucidated the sample complexity of estimating A, when the states are
given. Generally, theoretical results show that the sample complexity of estimating a Markov chain
increases with the mixing time of the chain. These analyses exploit the fact that data points that
occur with sufficient time delay are approximately independent. Then, they claim that the effective
number of data points is equal to the total number divided by the mixing time. However, in the case
of linear dynamical systems this line of reasoning does not capture the true relationship between
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sample complexity and mixing time. Simchowitz et al. (2018) showed that given a trajectory pro-
duced by the dynamics ;11 = A.f; + w; with p(A,) < 1 one can use the ordinary least squares
estimator A = argmin 4 Zfz_ol | AB¢ — Br+1]|? to obtain an estimate A that, with probability at least
1 — 4, has the following guarantee on the estimation error (informally):

||;4\— Al <e dlog(T/4)
TN T (XL A(A])Y)

where c is a universal constant. This result is counterintuitive because it applies to all marginally
unstable systems (i.e., those with p(A,) < 1) and, furthermore, it implies that when all of A,’s

eigenvalues have magnitude one, the estimation rate is o (@) instead of the usual O ( %)

; (12)

In other words, in some situations, as the mixing time of the system increases, the estimation rate
improves. For scalar linear systems, this property has been know since the work of White (1958).
Sarkar and Rakhlin (2019) proved such a guarantee for a class of unstable linear systems and Sim-
chowitz et al. (2019) derived a similar guarantee for partially observable systems.

Therefore, when the state is directly observable a less stable system is easier to estimate. It
remains an open question to determine whether the same phenomenon occurs for (1). Douc et al.
(2011) showed that the maximum likelihood estimate (MLE) is consistent for the estimation of a
class of Markov chains that contains stable partially observed linear systems. However, to the best
of the authors’ knowledge, proving that the MLE is consistent for the estimation of systems that are
linear, marginally unstable, and partially observed is an open question.

6. Expectation-Maximization (EM)

The classical expectation-maximization method (EM) that has already been applied to (1) Shumway
and Stoffer (1982). While EM performs well for certain instances of problem (1), it has several
drawbacks that motivated us to search for a different estimator.

EM is difficult to analyze theoretically and it can converge to a local maximizer of the likelihood
when it is not initialized close enough to a global maximizer, leading to a large estimation error
Balakrishnan et al. (2017). Furthermore, in our experience a straightforward implementation of EM
is numerically unstable when applied to (1) with N (0,1,4), a problem that does not occur
with a constant ;. Finally, EM needs to know something about the distributions of the process and
observation noise processes. Classically, the noise processes are assumed Gaussian.

EM approximately maximizes the likelihood of a probability model that depends on unobserved
latent variables. In fact, EM was one of the first estimation methods used to tackle problem (1)
Shumway and Stoffer (1982). The maximum likelihood estimate AMF, as the name suggests, is
the maximizer of the likelihood P4 (x,y). The likelihood is a nonconvex function of A and it is
not known how to provably find AM“F. EM is a local alternating maximization algorithm that is
guaranteed to converge to a local maximizer of the likelihood.

EM starts with an initial guess of A, and alternates between two steps. In the E-step it constructs
a lower bound on the likelihood of the data {(z;, y;)}._;' by computing the conditional covariances
S; = E[B, |x,y, A] and Sti—1 = E[B:+16, |x,y, A’]. To compute S; and St1—1 EM uses the
Kalman filter to compute the conditional expectations with respect to past data: E[S¢|zo.¢, yo:t, A'],
E[B:B," |z0:t, yo:t, A'], and E[Brr 18, |0:¢, yo:¢, A'], followed by a backwards pass over the data to



TIME VARYING REGRESSION WITH HIDDEN LINEAR DYNAMICS

smooth these conditional expectations. In the M-step, EM simply updates the current guess of A, to

(Zz:ll St7t_1> (ZtT;f St_l) 1. The detailed steps are shown by Shumway and Stoffer (2000).

Analyses of EM are difficult even when presented with i.i.d. data. While one could follow
the analysis of Balakrishnan et al. (2017) to guarantee that EM converges to AMMF if initialized
close enough, we believe this approach would lead to a result that suggests EM performs poorly
when A, is close to being unstable. However, given what we know from the performance of the
maximum likelihood estimate (the OLS estimate) in the fully observed case, it is likely that EM
would perform better when A, has eigenvalues close to the unit circle. In fact, EM operates by
computing the best guess of the hidden states 3; given the observed data. Therefore, it is likely that
less stable systems offer an additional benefit to EM. When A, has larger eigenvalues the dynamics
have longer memory, which allows for a better estimation of the hidden states. For example, if A,
was the zero matrix, then the dynamics would have no memory and the observations y; 11 and y;_1
would not hold any useful information for inferring /;.

In contrast, the performance of CM degrades as p( A, ) approaches one. Nonetheless, our method
does not depend on a good initialization, does not require knowledge concerning the noise processes,
and admits a simple theoretical guarantee.

7. Related work

Linear dynamical systems have been studied in depth as models for time-series data and we cannot
do justice to its rich history or to the broader work on linear system identification. Brockwell and
Davis (2009) and Ljung (1987) discuss these topics in detail. We focus on the closest and most
recent related works.

Chow (1981) first proposed (1) as a model for time-varying regression, with Carraro (1984)
later generalizing their analysis. The method studied by Carraro (1984) resembles in some ways are
own. As an intermediate step it estimates the covariances between different innovations of a Kalman
filter, but compared to CM it is complicated and no finite-sample guarantees have been provided.

Shumway and Stoffer (1982) developed model (1) from a different perspective and proposed
EM as a viable estimator. They were interested in modelling time-series with missing data and in
their model x; is a matrix of zeros and ones that encodes which entries are available and which are
missing in a set of time-series. Then, Khan and Dutt (2007) applied EM to fit a slightly generalized
model (1) on EEG time series; they assumed the hidden states 5; follow an auto-regressive model.

Lubik and Matthes (2015) noted that macroeconomic time-series often display nonlinear behav-
iors that can be captured with time-varying linear models. In particular, they studied a time-varying
auto-regressive model in which the unknown parameters evolve randomly and proposed a Bayesian
inference method. In a similar vein, Isaksson (1987) studied actuated linear dynamics with ran-
domly evolving parameters and proposed an adaptive Kalman filtering approach for identification.
Most prior work on the identification of time-varying linear systems considered the case in which
multiple experiments can be conducted on the system whose parameters undergo the same variation
Liu (1997); Majji et al. (2010).

The recent development of non-asymptotic guarantees in statistics has led to similar results in
system identification. In addition to the works previously mentioned in Sections 1.2 and 5, we
mention a few other such works. Hardt et al. (2016) showed that a stochastic gradient descent can
recover the parameters of certain linear systems in polynomial time. Sarkar et al. (2021) proved a
non-asymptotic guarantee for the identification of partially observed linear dynamics of unknown
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order. Hazan et al. (2017) and Hazan et al. (2018) proposed spectral filtering methods that predict
with sublinear regret the next output of unknown partially observed linear systems. When actuation
is available Wagenmaker and Jamieson (2020) showed that active learning can be used for a faster
identification of linear dynamics. Finally, Tsiamis et al. (2020) analyzed the sample complexity of
designing a good Kalman filter based on observed data from an unknown linear systems.

8. Conclusion and open questions

Counterintuitively, we have shown that it is possible to fit a model for time-varying linear regression
by combining just two ordinary least squares estimates. In contrast to EM, our method does not
require a good initialization nor knowledge regarding the noise processes. Moreover, CM admits a
simple theoretical guarantee that shows the estimation error decays at a O(1/+/T) rate.

CM has its own drawbacks. Firstly, it is applicable only to stable systems and its performance
degrades as p(A,) approaches one. Based on the statistical rate achievable when the states 3, are
directly observable it should be possible to have a method that performs better when A, is less stable.
Secondly, we believe our guarantee for CM depends suboptimally on the failure probability J, the
dimension d, and the variances o2 and ¥,,. We leave this issue and several other open questions for
future work:

* Recent work in robust statistics have led to new algorithms and guarantees for linear regres-
sion with heavy-tailed noise Cherapanamjeri et al. (2020); Depersin (2020). Can one extend
those results to our setting? These methods may address the suboptimal dependence of CM
on some of the quantities previously mentioned.

» Similarly to the fully observed setting Simchowitz et al. (2018), can one guarantee that the
performance of the maximum-likelihood estimator improves as A, becomes less stable?

* Can one characterize the statistical rate of EM? Determining how closely to the MLE one
needs to initialize EM would be of particular interest.

* What can one say when the hidden states 3; evolve according to more general linear dynamics
or even nonlinear dynamics?
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