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Abstract Machine learning system design frequently necessitates balancing multiple objectives, such
as prediction error and energy consumption, for deep neural networks (DNNs). Typically,
no single design performs well across all objectives; thus, �nding Pareto-optimal designs
is of interest. Measuring di�erent objectives frequently incurs di�erent costs; for example,
measuring the prediction error of DNNs is signi�cantly more expensive than measuring
the energy consumption of a pre-trained DNN because it requires re-training the DNN.
Current state-of-the-art methods do not account for this di�erence in objective evaluation
cost, potentially wasting costly evaluations of objective functions for little information gain.
To address this issue, we propose a novel cost-aware decoupled approach that weights the
improvement of the hypervolume of the Pareto region by the measurement cost of each
objective. To evaluate our approach, we perform experiments on several machine learning
systems deployed on energy constraints environments.

1 Introduction

Many engineering and scienti�c applications require design decisions to be made to optimize mul-
tiple objectives 51(G), ..., 5= (G) over some bounded domain X ⊂ '3 , where d is the dimensionality
of the design space. For example, tuning DNN training and model design hyperparameters, as well
as hardware and architectural design options to optimize objectives such as accuracy and energy
in a DNN system. Solving these optimization problems is challenging mainly due to three reasons.
(I) It is di�cult to conduct e�cient explorations of the enormous design space X that is formed
by the combinatorial explosion of design options from di�erent components of the DNN system.
(II) The objective functions are unknown, and we must conduct costly experiments to evaluate each
candidate design. (III) The objectives are inherently con�icting, and they cannot all be optimized at
the same time. As a result, we must �nd the set of designs that is Pareto optimal.

In this work, we provide a novel solution for a classical problem—�nding Pareto-optimal
design (in exponentially large design space) given a �xed limited budget. The overall goal is to
minimize the number of function evaluations to approximate the optimal Pareto set. Multi-objective
Bayesian Optimization (MOBO) is an e�ective framework to solve black-box optimization problems
with expensive function evaluation. A common strategy is to estimate each function 5 using a
probabilistic model M, such as a Gaussian process (GP) [12, 17, 16]. These strategies use the
uncertainty captured by the probabilistic model to generate an acquisition function (a faster and
cheaper proxy of the unknown objective function 5 ), the maximum of which provides an e�ective
heuristic for identifying a promising location on which to evaluate the objectives at each iteration
C to identify Pareto optimal designs X ∗.

Existing Gap. Existing MOBO approaches are classi�ed into the following categories based on their
cost distribution assumptions (cost aware 1 vs decoupled 2): (I) Coupled Unaware (e.g., PAL [23]),

1Incorporates the costs of evaluating objectives for choosing objectives for evaluating a design. Note that cost-aware

approaches exist, in that they use the cost of evaluating designs (across all objectives) as constraints to decide whether

to select a design during the iterative optimization. vs unaware) and evaluation strategy (coupled
2Only a subset of objectives is evaluated for the selected design at each iteration.
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Domain Architecture Dataset Compiler Num. Layers Num. Params Train Size Test Size

Image
ResNet [8] CIFAR-10 [13] Keras 50 25M 45K 5K
SqueezeNet [10] CIFAR-10 [13] Keras 3 1.2M 45K 5K

NLP BERT [5] S�AD 2.0 [18] PyTorch 12 110M 56K 5K

Speech DeepSpeech [7] Common Voice [15] PyTorch 9 68M 300 (hrs) 2 (hrs)

Table 1: The DNN architectures and datasets used in the experimental evaluation.

by f̂ (x) = - (x) = (`1(x), . . . , `= (x)), and the associated uncertainty is estimated by 2 (x) =

(f1(x), . . . , f= (x)). At this point, we use the -C (x) and 2C (x) values to determine the uncertainty
region 'C (x) for each design x ∈ X< . We de�ne the uncertainty region associated with a prediction

of the surrogate model as 'C (x) = {~ : -C (x) −
√

VC2C (x) ≤ ~ ≤ -C (x) +
√

VC2C (x)}, where VC is
a scaling parameter that controls the exploration-exploitation trade-o�. Similar to PAL [23], we
use VC = 2/9 log(= |X< |c2C2/6X) for X ∈ (0, 1). The dimension of 'C (x) depends on the number
of objectives =. Later, we exploit the information about the uncertainty regions to determine the
non-dominated designs set U [21]. We then use the optimistic (maximum of 'C (x)) and pessimistic
(minimum of 'C (x)) values of the non-dominated designs in U to build the optimistic Pareto front
F>?C , pessimistic Pareto front F?4BB , and Pareto region %' as shown in Figure 3.

We now employ our cost-aware acquisition function, which makes use of an information gain
� based on objective space entropy. Being cost-aware, our proposed acquisition function UC,8 (x)
considers the evaluation cost \C,8 across each objective 58 :

UC,8 (x) =
� ({x, 5C,8 (x)}, F̂

∗ |X ∗
<)

\C,8
=

+ (%' |F̂
∗) −+

(

%' |F̂
∗
'C,8 (x)=-C,8 (x)

)

\C,8
=

Δ+C,8

\C,8
(1)

Here, UC,8 (x) computes the amount of information that can be gained per cost for a design x to
be evaluated for an objective 58 . In Equation 1, we compute the gain of information as the change of

volume of the Pareto region if the Pareto front F̂∗
= F>?C ∪ F?4BB is updated by setting the uncer-

tainty values 'C,8 (x) of x to its mean `C,8 (x) for the corresponding designs in X ∗
< . Our acquisition

function computes the change of volume Δ+C,8 of the Pareto region %' across each objective 58 to
judiciously determine the gain of information that would be achieved if design x is evaluated for 58 .
We select a design xC and an objective 5C,8 using xC , 5C,8 = argmax

x∈X ∗
< for each 58

UC,8 (x) to identify
the most promising design for an objective function that gains the most information given the cost
of evaluating it. Finally, we update the surrogate model M8 corresponding to the chosen objective
function 58 by incorporating the newly-evaluated design and objective value. We stop when the
maximum budget \<0G is exhausted and return the Pareto front obtained.

3 Experimental Setup and Results

In this section, we evaluate the e�ectiveness of our approach to optimize energy consumption and
prediction error of DNNs in comparison to four state-of-the-art baselines such as PAL, PESMO, CA-
MOBO, and PESMO-DEC. We use four DNN architectures from three di�erent problem domains;
Image, NLP, and Speech. For each architecture, we select the most common dataset and compiler
typically used in practice, as shown in Table 1. We run each optimization pipeline 5 times using
di�erent initial evaluations, where the initial evaluations in one run are the same for all methods.
We chose a number of architectures, hardware, and DNN design options based on similar hardware
con�guration guides/tutorials and other related work [6]. To reduce the e�ect of noise, we repeat
energy measurements for each design 10 times and take the median; however, because prediction
error measurements are stable, we do not repeat them [11]. We employ a distributed setup where
the training of a DNN is done remotely on virtual machine instances with 8 NVIDIA Tesla K80 GPU
deployed on the Google cloud and the measurements and optimization algorithms run locally on a
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