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Abstract—The accuracy of radar tracks depends strongly on
the variances of the measurements, and those variances are
inversely proportional to the signal-to-noise (SNR) produced
the hardware and signal processor. The signal processor uses
matched filter processing, and the efficiency of that depends on
knowledge of the kinematics of the target. In particular, the
matched filter performance depends heavily on range rate and
range acceleration. Traditionally, the predicted state of the target
from the track filter is used for matched filter processing, but
the predicted kinematic state can have rather large errors, and
those errors result in match filter loss. This loss can be very
large for maneuvering (i.e., accelerating) targets. In this paper, an
expected-maximization (EM) approach is taken to jointly address
signal processing and tracking. The signal processor maximizes
the SNR using the predicted state and produces measurements.
The state estimator ( e.g., Kalman filter) uses those measurements
to produce expected values of the kinematic state (i.c. the nuisance
parameters). The signal processor then maximizes the SNR
using the new state estimates. This process continues until the
maximum likelihood values of the measurements are achieved.
In this paper, the Interacting Multiple Model (IMM) estimator
is introduced for the tracking function better address sudden
maneuvers. The EM-Based approach to join signal processing
and tracking are presented along with a discussion of the real-
time computing. Monte Carlo simulation results are given to
illustrate a 6 dB improvement in SNR and enhanced tracks for
a maneuvering target.

Index Terms—Signal Processing, Target Tracking, Expectation-
Maximization, Sensor Processing, Real-Time Computing

I. INTRODUCTION

Optimal radar signal processing requires knowledge of
the target’s range, range rate, and radial acceleration. On
practice, the truth values of these kinematic parameters are
not known, but are estimated in real time from the tracking
function. The tracking function estimates the kinematic state
(i.e., position, velocity, and acceleration) of the target through
range and angle measurements, whose precision is determined
by the signal-to-noise ratio (SNR) at the output of the signal
processor. Measurement variance is inversely proportional to
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the SNR and directly impacts tracking performance. The SNR
is maximized by minimizing the matched filter loss due to
uncertainties in the radial velocity and acceleration of the
target. When a target maneuvers and the estimates of the
target kinematic state are imperfect, the target echo will exhibit
range walk (RW) over the radar’s coherent processing interval
(CPI) [13]. If the range walk and nonlinear slow-time phase
changes due to radial acceleration are not addressed prior
to coherent processing over slow-time, a loss in SNR will
occur. Compensating for RW and radial acceleration requires
accurate estimates of the target’s range rate and any radial
acceleration that is present. Also, when a target maneuvers
by suddenly accelerating or decelerating, the estimates of
radial velocity and acceleration will lag the true values, and
significant losses in SNR are likely to occur. Thus, accurate
responsive estimates of the kinematic state are needed during
target maneuvers to reduce the SNR loss. In this research, the
Interacting Multiple Model (IMM) Estimator [1] is introduced
to the tracking function to provide better kinematic state
estimates. An expectation-maximization (EM) approach [6] is
taken to signal processing and tracking to reduce the SNR loss
when tracking maneuvering targets.

Traditional radar signal processing attempts to maximize the
SNR given estimates of the kinematic state of the target from
the track filter. The signal processor produces maximum likeli-
hood (ML) estimates of the measurements of the target state,
and the predicted kinematic state of the target are nuisance
parameters. Since the kinematic state estimates are predicted
from the previous measurement, the errors are amplified by
the prediction, and the SNR losses are excessive. This research
builds upon the existing EM algorithm [14] [8] [12] [9] that
involves an iterative solution of a nonlinear ML estimation
problem. The EM algorithm involves updating the nuisance
parameters with their expected values on each iteration. In
this new EM-Based radar signal processing, the traditional
signal processing based on the predicted state of the target is



performed as in the traditional approach. Then, the predicted
kinematic state of the target is updated with the measurements
with a Kalman filter to produce the conditional mean estimate
of the state. This E-step significantly reduces the errors in
the estimate in the kinematic state for signal processing.
The signal processing is repeated with the new estimates
of the kinematic state. If the observed SNR increases, the
predicted state is updated with the newest measurements, and
the signal processing step, M-step, is performed a third time.
If SNR increases meaningful value again, another cycle is
performed. If, at any point, the observed SNR fails to increase
or decreases, the EM process is exited, and the measurements
produced under the highest SNR are passed to the target
tracker. A challenge to the successful implementation of the
EM algorithm in real-time is convergence to an accurate ML
estimate in a timely manner. Typically, one or at most two EM
iterations have been found to provide near-optimal results.

In this paper, the Kalman filter of [10] is replaced by an
IMM Estimator, and the simulation studies were performed
in full Cartesian space tracking with radar measurements of
range and two angles. Drawing on the results of [5] on the
use of nearly constant velocity (NCV) versus nearly constant
acceleration (NCA) motion models, an IMM estimator with
two NCV models are utilized for tracking in three dimensional
Cartesian space, while an IMM Estimator with NCV and NCA
models are used for tracking in range to support the signal
processing. Also, The details of the EM processing of [10] in
refined in this paper and tracking performance is full Cartesian
space is studied. Simulation results and analysis demonstrate
that the EM-Based scheme efficiently compensates for the
signal processing loses associated with maneuvering targets.

This paper is organized as follows. Section II formulates the
problem and provides background on traditional signal pro-
cessing and tracking. Section IIT describes the implementation
of the EM-Based signal processing scheme in terms of the
iterative E-step and M-step. Section IV provides the results
of Monte Carlo simulations to demonstrate the reduction
of SNR loss and improvement in track filter performance
while tracking a maneuvering target with a pulse Doppler
radar. Concluding remarks and future directions are given in
SectionV.

II. BACKGROUND

Traditional signal processing, traditional full Cartesian
tracking, and range tracking are reviewed in this section.

A. Traditional Signal Processing

Given the potential for relative radial motion between a
target and a pulsed Doppler radar system, range walk (RW)
over a coherent processing interval (CPI) is of concern and
must be addressed in the waveform design (e.g., short CPIs)
and signal processing. If the range walk is not addressed
prior to coherent processing, the target response may exhibit
a movement through one or more range bins resulting in
an SNR loss and a smearing of the target response across
range-Doppler (RD) space. If the radial motion includes

an acceleration component over the CPI, then a slow-time
quadratic phase (SQP) results. If SQP is not removed, it will
result in a smearing of the Doppler response at the output
of the slow-time discrete Fourier transform (DFT). Higher-
order radial components (e.g., jerk) could be present, but
these are not addressed here. However, the proposed EM
algorithm would support compensation for higher-order terms
if those components were included in the kinematic estimate
of the state estimator and the measurement quality and rate
supported meaningful estimation of those components [5]. RW
and SQP lead to a loss in SNR and a broadening of the
target’s response in RD or Doppler space, respectively. Signal
processing functions that proceed with coherent processing
include detection and parameter estimation, both of which are
degraded by the loss of SNR and response broadening.
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Fig. 1. Traditional Radar Signal and Track Processing

Figure 1 gives a diagram of a common pulsed Doppler
signal processing chain. Having received the in-phase and
quadrature (IQ) samples collected over a CPI, the IQ data is
presented to the RW and SQP correction modules. Typically,
the correction is based on the predicted radial components
of velocity and acceleration at a time corresponding to the
current CPI. RW correction is applied to the return from
each pulse by applying a linear phase ramp in the frequency
domain. The slope of the phase ramp is proportional to the
desired time-delay correction. Often, the RW correction is
applied to align the target returns to a time delay consistent
with the true location of the target at the center of the CPI.
When employing pulse compression waveforms (e.g., intra-
pulse phase or frequency modulation), the application of the
matched filter is implemented via fast convolution in the
frequency domain. In this case, applying the linear phase ramp
in the frequency domain is trivial. If fast-convolution is not
applied, a transformation to and from the frequency domain
is required to apply the phase taper. The SQP correction
consists of a slow-time dependent phase correction across
the range (fast-time). Since the phase correction is constant
for a given pulse, the phase correction may be applied in
either the time or frequency domains. The Doppler shift across
fast-time may also degrade the range response at the output
of the matched filter. For Doppler-tolerant waveforms such



as a linear frequency modulated (LFM) pulse, the ambiguity
surface exhibits range-Doppler coupling and a gradual loss in
SNR as a function of Doppler shift. For Doppler-intolerant
waveforms such as bi-phase codes, the ambiguity surface
resembles a thumbtack. The range-Doppler coupling is no
longer present. However, the SNR loss may be significant,
thus degrading or preventing detection. For any waveform, an
estimate of the radial velocity of the target may be applied
via a linear phase ramp in fast-time to remove the Doppler-
induced phase rotation. In this case, a narrowband waveform
is assumed and wideband effects, which include an expansion
or compression of the pulse, are ignored. The effects of fast-
time Doppler are most acute for long pulses operating in the
presence of large Doppler shifts. In the subsequent examples
and the simulation results, the effects of fast-time Doppler are
negligible and are not addressed in the processing architecture,
while they could be easily incorporated.

Once RW/SQP correction, along with pulse compression (if
appropriate), has been applied to the CPI data, the IQ samples
are presented to the Doppler processing module, where a DFT
is applied across slow-time to form a range-Doppler map.
The RD map is presented to the detection module, which
consists of a rectifier (e.g., square law detector) and a detection
thresholding scheme (e.g., a constant false alarm rate detector).
With RW, the spreading of response in RD may yield a number
of detections provided a sufficient SNR is achieved to satisfy
the threshold. A clustering scheme (e.g., DBScan) is then
applied to group detections associated with a single target
[7] [2]. The detections associated with a given target are then
passed to the parameter estimation module in order to estimate
the range and angles for the target. In this paper, the radar
system employs monopulse processing for angle estimation.
Given that the target response may be spread in range, a
centroiding scheme is applied to estimate the target’s range.
Other range estimators may be employed depending on the
severity of the response distortion. A quadratic curve fit would
be appropriate, given minimal or no range response distortion.
The monopulse angle estimate is derived from the sum and
difference channels associated with the RD bin containing
the largest detection amplitude. A weighted average across
all detections within the cluster is another option. A target’s
range and angle estimates are provided to the Tracker, where
measurement-to-track association and track filter updates are
performed. In addition to the range and angle measurements,
an estimate of the resultant SNR is generated and used in
combination with the contributions of other error sources to
estimate the measurement precision. The precision of the range
and angle estimates are limited by the Cramer-Rao Lower
Bound (CRLB) for an unbiased estimator under additive
Gaussian noise. In general, the variance of the estimate is given
by

ox
&= hong (M
where x is a proportionality constant that is dependent on
the estimated domain (e.g., range, angle, or Doppler), and
dx is the radar resolution in a given domain (e.g., range
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resolution, beam width, Doppler resolution). As noted in (1),
the variance is inversely proportional to the SNR. Thus, mech-
anisms such as RW and SQP that reduce SNR also degrade
the estimate precision in both range and angle. RW also
affects the numerator of (1) by degrading the effective range
resolution as the point response is broadened. The proposed
EM algorithm is intended to provide an enhanced correction
for RW and QSP, thus supporting finer measurement precision
as a result of a higher observed SNR and a more compressed
range response. The observed SNR loss is a function of
the degree of uncompensated RW and SQP over a CPI and
the single pulse ambiguity function. Curves illustrating the
loss are shown for an X-band radar (10 GHz) with a 0.1
s CPI assuming an LFM pulse (10 us pulse width and 10
MHz bandwidth) and a 10 kHz PRF. The SNR loss due to
uncompensated radial velocity of 100 m/s is about 0.5 dB. A
plot of the SNR loss as a function of uncompensated radial
acceleration is provided in Figures 2. While the effects of RW
and SQP on SNR loss are not separable, the loses are plotted as
independent loss mechanisms. Figure 3 contains the resultant
RD map for a target located at zero relative range with an
uncompensated radial velocity of 20 m/s and uncompensated
radial acceleration of 6 m/s/s. The combined SNR loss is
approximately 4.47 dB. In this example, the dominant source
of SNR loss is uncompensated acceleration. The observed loss
closely matches the loss predicted in Figure 2.

SNR LOSS
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Fig. 2. SNR Loss Versus Uncompensated Radial Acceleration for a 0.1 s CPI

B. Traditional Tracking for Maneuvering Targets

Let X denote the kinematic state vector of the target at
time tx, and it typically contains the position, velocity, and
possibly acceleration of the target as well as other variables
used to model a time-varying acceleration. The kinematic
model commonly assumed for a maneuvering target in track
[1] is given by

X1 = Fi(Op 1) Xi + Gr(Or1)vr (O 11) )
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Fig. 3. RD Map for an Uncompensated Radial Velocity of 20 m/s and
Uncompensated Radial Acceleration of 6 m/s/s

where Fj(0r4+1) defines the linear constraint on the target
kinematics between times k and k + 1, and vg(fk41) ~
N(0, Qx(0k+1)) is the white process noise errors that account
for uncertainty in the linear dynamics. The 61 is a pointer to
one of N models that describes the motion of the target. The
Or+1 is treated as a finite state Markov chain with probability
pi; of switching between Model 7 and Model j. The model for
radar measurements is a nonlinear model of the target state in
Cartesian coordinates and given by

Yy = hi(Xg, 0k) + wi (3)

where Y, is the typical radar measurement of range and
angles for the target and wy ~ N(0, Ry) is the white noise
observation errors. Both wj, and vy (6k+1) are assumed to
be independent “white” Gaussian error processes. For this
paper, the radar measures range, bearing, and elevation, and
the covariance R, will includes variances of the measurements
in the range o2, bearing o7,, and elevation o2.

The IMM estimator is well accepted as the best approach for
estimating the state of a Markovian switching system defined
by (2) and (3), when the computational cost is considered
[1]. For surveillance-level radar tracking, two nearly constant
velocity (NCV) models are commonly used in the IMM Esti-
mator for tracking targets in three dimensional Cartesian space
due to the larger cross-range errors making a nearly constant
acceleration (NCA) model ineffective [5]. When tracking in
range only as discussed next, an NCA model provides value.
The two NCV models with Discrete White Noise Acceleration
(DWNA) errors [1] are used in an extended Kalman filter
(EKF) for processing the nonlinear radar measurements. The
process noise variance for Model 1 is set to afm,l = 1.0 m/s/s
for regimes of flight in which the target is not maneuvering.
The process noise variance for Model 2 for tracking through
target maneuvers is selected as specified in [4] for a target

with a maximum acceleration of A,,,,, according to
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V3 rmax{oy, 0.}
T is the measurement period, r is the target range and
I'p(r) = loglO(T'p(r)). For this research, the Markov switch-
ing probabilities for the IMM estimator are defined by
0.9+0.le" 2 7
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with p12 =1 —p11 and pa; =1 — poo.

C. Range Tracking for Maneuvering Targets

In support of the signal processing function, range is tracked
separately from the filter estimating the three dimensional
Cartesian state. A separate filter is used because the order of
the filter and the filter design parameters differ significantly
between the range only estimator and the three dimensional
estimator. The smaller measurement errors in range allow for
effective estimation of acceleration in range [5]. Thus, an NCA
filter is used in the IMM estimator for enhanced estimation.
Furthermore, accurate estimation of range acceleration of the
target is important for reducing the signal processing loss due
to a target maneuver. The NCV and NCA models [1] are used
in a Kalman filter for processing the range measurements in
the IMM estimator. In order for the NCV model to match the
target motion when it is flying with constant velocity motion in
Cartesian space, pseudo accelerations are required in the time
update of the state. The pseudo accelerations are applied to
range and range rate in the prediction step of both the NCV and
NCA filters. The pseudo accelerations at time k is computed
by

82 _ ,,',2
_ Oklk T Tk[k )
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where sy, is the speed estimate of the target at time k based
on the state estimate of the three dimensional filter, 7)), is
the range rate estimate, and 7y, is the range estimate at time
k. When the range state estimate is reported to the signal
processing function, the pseudo acceleration is added to the
range acceleration estimate produced by the IMM Estimator.

The process noise variance for the NCV model is set to
0%y = 1.0 m/s/s for regimes of flight in which the target
is not maneuvering. The process noise variance for the NCA
model for tracking through target maneuvers is selected as
specified in [3] for a target with maximum acceleration of
Az according to
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The mode switching probabilities as specified in (7) and (8)
are also used in the range estimation.

III. EM-BASED SIGNAL PROCESSING AND TRACKING

For EM-based signal processing and tracking, the initial
range and angle measurements derived from the current CPI
are provided to an IMM Estimator contained within the no-
tional boundaries of the signal processor instead of the tracker.
The IMM estimator uses the new measurements and the
previous model-conditioned estimates of the IMM estimator
to produce a new estimate of the mean of the target state.
Hence, E-step of the EM algorithm. In this paper, the pulse
Doppler radar uses traditional monopulse for angle estimation.
Thus, digital beam resteering is not available. Hence, only the
IMM estimator for range is included in the signal processing
function. If digital beam forming with an array antenna
was employed, the IMM estimator in Cartesian space would
also be included in the signal processor in support of beam
resteering. The new signal processing paradigm employing an
EM based approach [10] to RW/SQP correction is depicted
in Figure 4, where the initial measurements are provided to
the IMM estimator contained in the box labeled “Expectation
Update.” The updated estimate of the range state is provided
for a new iteration of the signal processing. By providing
an update of the range state estimate of target, the random
errors in the state estimates are reduced and changes in
the target kinematic states (i.e., velocity and acceleration)
due to maneuvers between CPIs are observed. The RW/SQP
correction and Doppler processing combine to provide the
maximization component of the algorithm leading to improved
SNR and reduction in response spreading. Hence, the M-
step of the EM algorithm. If the SNR increases in the new
signal processing iteration by more than 3 dB, the newest
measurements with a higher SNR (i.e., smaller variances)
are provided to the IMM Estimator for another expectation
update of the original range state estimates provided by the
tracker. The range state estimate from the first expectation
update are disregarded as they already include measurements
from this current CPI. These newest range state estimates are
provided to the signal processor for another iteration. If the
SNR in the next iteration increases less than 3 dB, the newest
measurements are provided to the tracker. If in any signal
processor iteration the SNR decreases, the measurements from
the previous iteration of the signal processor are provided to
the tracker. Hence, measurements with the highest SNR are
provided to the tracker. Note that the measurement-to-track
association problem has been omitted from Figure 4 and this
discussion.
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Fig. 4. EM Approach to Joint Signal Processing and Tracking

IV. SIMULATION AND EVALUATION RESULTS

To illustrate the benefits of the EM-Based RW/SQP cor-
rection processing, an X-band pulsed Doppler, monopulse
radar system was modeled and simulated. A 10 GHz center
frequency was selected. The pulses are linear frequency modu-
lated (LFM) with a bandwidth of 10 MHz and a pulse width of
10 ps. The CPI consists of 1024 pulses at a pulse repetition
frequency (PRF) of 10 kHz. The CPI duration is 0.1024 s.
The CPI duration may be long for some applications, but the
goal was to demonstrate the ability of the EM-Based RW/SQP
correction to address significant RW conditions. An LFM pulse
was employed versa a bi-phase code to mitigate the impacts of
fast-time Doppler, while as noted previously, the approach may
be used to correct for similar effects on the compressed range
response. A symmetric antenna with a 1.9 degree beamwidth
employing monopulse processing on receive was instantiated.
The standard deviations of the measurements at an SNR of 18
dB are approximately 0.5 m in range and 2.5 mrad in bearing
and elevation. Targets are tracked at 1 Hz.

Targets that maneuver with a maximum acceleration of 30
m/s/s are expected. In the scenario studied here, the target
starts at a range of 14 km, bearing of 0, and elevation of 0,
flying at a speed of 230 m/s. This scenario has two 30 m/s/s
maneuvers. At 18 s, the target performs a constant speed,
horizontal turn with an acceleration of 30 m/s/s for a 90
degree in 12 s. At 42 s, the target performs a constant speed,
horizontal right turn with an acceleration of 30 m/s/s for a 90
degree in 12 s. The target trajectory ends at 60 s with a range
of about 9 km and a bearing of -45 degrees.

To evaluate the iterative EM-Based algorithm benefit com-
pared to the traditional tracking loop pipeline execution, a
Monte Carlo simulation with five runs was conducted with the
computer model executing the EM-Based signal processing
developed for this research. Then, five runs executing the
scenario in the traditional mode was conducted. Figure 5
shows that the EM-Based signal processing improves the
measurement quality of the Tracker with an average increase
in SNR of 5.1 dB over the 60 s scenario and 7.9 dB during
the maneuvers. The primary benefit of this research is the
significant reduction in SNR loss at the start and end of the
maneuvers. The EM-Based signal processing directly results in
an improvement in the tracking. The Root-Mean-Square Error
(RMSE) in the estimates of Cartesian velocity, range rate,



and range acceleration were studied. The EM-Based signal
processing provides an improvement in RMSE of the velocity
estimates of the Cartesian tracker by an average of 4.4 m/s over
the entire scenario and 6.6 m/s during the maneuvers. The peak
improvement at 54 s is 15.1 m/s. The average improvement
in the range rate over the entire scenario is 1.3 m/s, while
the average improvement is 2.0 m/s during the maneuvers.
The two peak improvements are at 44 s of 7.1 m/s during the
beginning of the second maneuver and 9.1 m/s at the comple-
tion of that maneuver. The RMSEs in the range acceleration
estimates had an average improvement of 1.5 m/s/s over the
entire scenario and 2.4 m/s/s during the maneuvers. The most
significant improvement of 10.3 m/s/s was at 55 s near the
completion of the second maneuver. The model probabilities
of the IMM estimator used for range tracking are slightly
improved by the EM-Based signal processing.
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Fig. 5. SNR versus time for traditional and EM-Based signal processing

V. CONCLUDING REMARKS

EM-Based approach to radar signal processing and tracking
with an IMM estimator was introduced to reduce the signal
processing loss due to RW and SQP over a CPI and improve
the measurement quality for tracking maneuvering targets.
Errors in the estimates of the target kinematic state negatively
impact measurement quality, and those errors are most sig-
nificant when targets maneuver. In the EM-Based approach
to radar signal processing and tracking, the measurement
produced by the traditional signal processing is used to update
the kinematic state estimate, and the signal processing is
modified to reflect the new, enhanced kinematic state estimate
and produce measurements with an enhanced SNR. In the
pulse Doppler radar example and track scenario considered
in this paper, the SNR was increased by approximately 6 dB
by the EM processing. The SNR-enhanced signal processing
produce better measurements in range and angle, and those
improve the track quality. Furthermore, better measurements
reduce the time line required by the radar to achieve an

objective track quality. Numerous applications of this EM-
Based radar signal processing and tracking are envisioned.
First, when tracking targets in the presence of false alarms,
the EM-Based signal processing and tracking should increase
SNR for the target-originated measurements while decreasing
SNR for the false alarms. Second, when initiating tracks in
the presence of false alarms, the application of the EM-Based
signal processing to the second measurement should show
increased SNR for true target detections and decreased SNR
for false tracks. Third, the EM-Based signal processing and
track can be extended to include resteering of the beam for
digital arrays. Enhanced beam steering could easily increase
the SNR of the measurements by 3 dB. Fourth, the EM-
Based processing will be used to enhance the assignment of
measurements to tracks for multiple closely-spaced targets.
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