)]
Check for
Updates

Virtual Node Tuning for Few-shot Node Classification

Zhen Tan

Arizona State University
ztan36@asu.edu

Kaize Ding
Arizona State University
kaize.ding@asu.edu

ABSTRACT

Few-shot Node Classification (FSNC) is a challenge in graph rep-
resentation learning where only a few labeled nodes per class are
available for training. To tackle this issue, meta-learning has been
proposed to transfer structural knowledge from base classes with
abundant labels to target novel classes. However, existing solutions
become ineffective or inapplicable when base classes have no or
limited labeled nodes. To address this challenge, we propose an in-
novative method dubbed Virtual Node Tuning (VNT). Our approach
utilizes a pretrained graph transformer as the encoder and injects
virtual nodes as soft prompts in the embedding space, which can be
optimized with few-shot labels in novel classes to modulate node
embeddings for each specific FSNC task. A unique feature of VNT
is that, by incorporating a Graph-based Pseudo Prompt Evolution
(GPPE) module, VNT-GPPE can handle scenarios with sparse labels
in base classes. Experimental results on four datasets demonstrate
the superiority of the proposed approach in addressing FSNC with
unlabeled or sparsely labeled base classes, outperforming existing
state-of-the-art methods and even fully supervised baselines.

CCS CONCEPTS

+ Computing methodologies — Cost-sensitive learning.

KEYWORDS

graph neural networks, few-shot learning, prompt

ACM Reference Format:

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. 2023. Virtual Node
Tuning for Few-shot Node Classification. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °23),
August 6-10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3580305.3599541

1 INTRODUCTION

With the advent of deep learning, Graph Neural Networks (GNNs)
have been proposed for effective graph representation learning
with sufficient labeled instances [11, 19, 38, 45]. However, there is
a growing interest in learning GNNs with limited labels, which is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °23, August 6-10, 2023, Long Beach, CA, USA

© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0103-0/23/08....$15.00
https://doi.org/10.1145/3580305.3599541

2177

Ruocheng Guo
ByteDance Research
ruocheng.guo@bytedance.com

Huan Liu
Arizona State University
huanliu@asu.edu

prevalent issue in large graphs where manual data collection and
labeling is costly [5]. This has led to a proliferation of studies in the
field of Few-shot Node Classification (FSNC) [4, 15, 21, 41, 42, 50],
which aims to learn fast-adaptable GNNs for unseen tasks with
extremely scarce ground-truth labels. Conventionally, FSNC tasks
are denoted as N-way K-shot R-query node classification tasks,
where N is the number of classes, K is the number of labeled nodes
per class, and R is the number of unlabeled nodes per class. The
labeled nodes are referred to as the "support set" and the unlabeled
nodes are referred to as the "query set" for evaluation.

The current modus operandi, i.e., meta-learning, has become a
predominate and successful paradigm to tackle the label scarcity
issue on graphs [4, 15, 33, 42, 50]. Besides the target node classes
(termed as novel classes) with few labeled nodes, meta-learning-
based methods assume the existence of a set of base classes, which is
disjoint with the novel classes set and has substantial labeled nodes
in each class to sample a number of meta-tasks, or episodes, to train
the GNN model while emulating the N-way K-shot R-query task
structure. This emulation-based training has been proved helpful
for fast adaptation to target FSNC tasks [21, 41]. Despite astonishing
breakthroughs having been made, Tan et al. [34] firstly points out
that those meta-learning-based methods suffer from the piecemeal
graph knowledge issue, which implies that only a small portion of
nodes are involved in each episode, thus hindering the generaliz-
ability of the learned GNN models regarding unseen novel classes.
Additionally, the assumption of the existence of substantially la-
beled base classes may not be feasible for real-world graphs [35].
In summary, while meta-learning is a successful method for FSNC
tasks, it has limitations in terms of effectiveness and applicability.

Considering these limitations in the existing efforts, in this work,
we first generalize the traditional definition of FSNC tasks to cover
more real-world scenarios where there could be limited or even no
labels even in base classes. We first start with the most challeng-
ing setting where no available labeled nodes exist in base classes.
To facilitate sufficient training, we choose Graph Transformers
(GTs) [2, 49] as the encoder to learn representative node embed-
dings. Recently, large transformer-based [37] models have thrived
in various domains, such as languages [3], images [6], as well as
graphs [14]. The number of parameters of GTs can be much larger
than traditional GNNs by orders of magnitude, which has shown
unique advantages in modeling graph data and acquiring structural
knowledge [2, 49]. Furthermore, pretrained in an unsupervised
manner, GTs can learn from a large number of unlabeled nodes
by enforcing the model to learn from pre-defined pretext tasks
(e.g. masked link restoration, masked node recovery, etc.) [14, 49].
In other words, no node label information from base classes is

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

needed for obtaining pretrained GTs enriched with topological and
semantic knowledge. However, our experiments show that directly
transferring node embedding from GTs and fine-tuning the GT
encoder on the support set will lead to unsatisfactory performance.
This is because directly transferring node embeddings neglects the
inherent gap between the training objective of the pretexts and that
of the downstream FSNC tasks. Also, naively fine-tuning with the
few labeled nodes will lead to severe overfitting. Both these two
factors can render the transferred node embeddings sub-optimal
for target FSNC tasks. Accordingly, to elicit the learned substantial
prior graph knowledge from GTs with only a few labels from each
target task, we propose a method, Virtual Node Tuning (VNT), that
can efficiently modulate the GTs to customize the pretrained node
embeddings for different FSNC tasks.

Recent advancements in natural language processing (NLP) have
led to the emergence of a new technique called "prompting" for
adapting large-scale transformer-based language models to new
few-shot or zero-shot tasks [23]. It refers to prepending language
instructions to the input text to guide those language models to bet-
ter understand the new task and give more tailored replies. However,
such a technique cannot be straightforwardly applied to GTs due to
the significant disparity between graphs and texts. Given the sym-
bolic nature of graph data, it is infeasible and counter-intuitive to
manually design semantic prompts like human languages for each
target FSNC task. Inspired by more recent works [16, 22], instead of
manually creating prompts in the raw graph data space (e.g., nodes
and edges), we propose to inject a set of continuous vectors as
task-specific virtual nodes in the node embedding space to function
as soft prompts to elicit the substantial knowledge contained in the
learned GTs. During the fine-tuning phase, these prompts can be
optimized via the few labeled nodes from the support set in each
FSNC task. This simple tuning with virtual node prompts can mod-
ulate the learned node embeddings according to the context of the
FSNC task. Moreover, for scenarios where sparsely labeled nodes
exist in base classes, we propose to reformulate the problem by
assuming the presence of a few source FSNC tasks within the base
class label space. Meanwhile, we find that initializing the prompt of
an FSNC task as the prompt of a previously learned FSNC task can
potentially yield positive transfer. Based on this observation, we
design a novel Graph-based Pseudo Prompt Evolution (GPPE) mod-
ule, which performs a prompt-level meta-learning to selectively
transfer knowledge learned from source FSNC tasks to target FSNC
tasks. This module has demonstrated promising improvement for
VNT and scales well to conditions where node labels are highly
scarce, i.e., very few source tasks exist.

Notably, the proposed framework is fully automatic and requires
no human involvement. By only retraining a small prompt tensor
and a simple classifier, and recycling a single GT for all downstream
FSNC tasks, our method significantly reduces storage and compu-
tation costs per task. Through extensive experimentation, we have
demonstrated the effectiveness of the VNT-GPPE method in terms
of both accuracy and efficiency. We hope this work can provide a
new promising path forward for few-shot Node Classification (FSNC)
tasks. In summary, our main contributions include:

o Problem Generalization: We relax the assumption in conven-
tional FSNC tasks to cover scenarios where there could be none
or sparsely labeled nodes in base classes.

2178

Zhen Tan, Ruocheng Guo, Kaize Ding, & Huan Liu

o Framework Proposed: We propose a simple yet effective frame-
work, Virtual Node Tuning (VNT), that does not rely on any label
from base classes. We inject virtual nodes in the embedding space
which function as soft prompts to customize the pretrained node
embeddings for each FSNC task. To extend the framework for
scenarios where sparely labeled nodes in base classes are avail-
able, we further design a Graph-based Pseudo Prompt Evolution
(GPPE) module that transfers prompts learned from base classes
to target downstream FSNC tasks.

Comprehensive Experiment: We conduct extensive experi-
ments on four widely-used real-world datasets to show the ef-
fectiveness and applicability of the proposed framework. We
find that VNT achieves competitive performance even no labeled
nodes from base classes are utilized. Given sparsely labeled base
classes, VN'T-GPPE outperforms all the baselines even if they are
given fully labeled base classes. Further analysis also indicates
that VNT considerably benefits from prompt ensemble.

2 PROBLEM FORMULATION

In this work, we focus on few-shot node classification (FSNC)
tasks on a single graph. Formally, given an attributed network
G = (V,&,X) = (A X), where A = {0,1}V*V is the adjacency
matrix representing the network structure, X = [x1;x2;...;xy]
represents all the node features, V denotes the set of vertices
{01,902, ..,0v}, and & denotes the set of edges {ey, ez, ..., eg}. Specif-
ically, A;x = 1 indicates that there is an edge between node v;
and node vy; otherwise, A j ;. = 0. The few-shot node classification
problem assumes the existence of a series of node classification
tasks, 7 = {7{}{:1, where 7; denotes the given dataset of a task, I
denotes the number of such tasks. Traditional FSNC tasks assume
that those tasks are formed from target novel classes (i.e. Cpoper)s
where only a few labeled nodes are available per class, and there
exists a disjoint set of base classes (i.e. Cpuse, Cpase N Crovel = D)
on the graph where substantial labeled nodes are accessible during
training. Next, we first present the definition of an N-way K-shot
R-query node classification task as follows:

DEFINITION 1. N-way K-shot R-query Node Classification:
Given an attributed graph G = (A, X) with a specified node label
space C, |C| = N. If for each class ¢ € C, there are K labeled nodes
(i.e. support set S) as references and another R nodes (i.e. query set Q)
for prediction, then we term this task as an N-way K-shot R-query
Node Classification task.

Then, the traditional few-shot node classification problem can
be defined as follows:

DEFINITION 2. Traditional Few-shot Node Classification:
Given an attributed graph G = (A, X) with a disjoint node label
space C = {Cpuse, Croper }- Substantial labeled nodes from Cp g, are
available for sampling an arbitrary number of N-way K -shot R-query
Node Classification tasks for training. The goal is to perform N-way
K-shot R-query Node Classification for tasks sampled from C,,5c;.

However, the assumption of the existence of substantial labeled
nodes in the base classes could be untenable for real-world graphs.
For example, all the classes on a given graph may only have a
few labeled nodes. Considering this limitation, in this paper, we

Virtual Node Tuning for Few-shot Node Classification

generalize the definition of FSNC and reformulate it according to
the label sparsity within base classes. It is formulated as follows:

DEFINITION 3. General Few-shot Node Classification: Given
an attributed graph G = (A, X) with a disjoint node label space
C = {Cpases Crovel }- For Cpyge, there are M N-way K -shot R-query
Node Classification tasks for training. The goal is to perform N-way
K-shot R-query Node Classification for tasks sampled from C,5¢;.

Note that the key difference of the general FSNC compared to the
traditional counterparts lies in the introduced parameter M. Since
M, N,K,R < |V, the labels in base classes can be very sparse and
the value of M determines the label sparsity in the base classes. For
example, if M = 0, then the training phase actually provides no
label from base classes, so the training procedure should be fully
unsupervised. If M # 0, that means we have a collection of tasks
with labeled nodes in base classes. In practice, we achieve this by
random sampling M N-way K-shot R-query node classification
tasks from base classes. We term those M tasks as source tasks and
the tasks during final evaluation as target tasks. Particularly, if M
is a very large number, then the general FSNC will scale to the
traditional FSNC, which most of the existing works are trying to
address. Conversely, if M is a relatively small number (e.g. 48), this
signifies the labels provided in the base classes are very sparse,
which is the usual scenario for real-world applications.

Our paper is the first to propose this more general problem
formulation for FSNC tasks. To tackle this problem, in this work,
we propose a novel framework named Virtual Node Tuning that
achieves promising performance when no source task exists (i.e.,
M = 0). To cover more real-world scenarios (i.e., M # 0), we further
design a Prompt Transferring mechanism via Graph-based Pseudo
Prompt Evolution that performs a prompt-level meta-learning to
effectively transfer generalizable knowledge from source tasks to
target downstream FSNC tasks.

3 METHODOLOGY

3.1 Preliminary: Graph Transformers

Graph Transformers (GTs) [2, 30, 49] are Graph Neural Networks
(GNN) based on transformer [37] without relying on convolution
or aggregation operations. Following BERT [3] for large-scale nat-
ural language modeling, a D-layer GT is used to project the node
attribute x; of eachnode v; (Vj € N, 1 < j < V)into the correspond-
ing embedding e;. GTs usually have much more parameters than
traditional GNNs and are often trained in a self-supervised manner,
without the need for substantial gold-labeled nodes. For the sake
of generality, we choose two simplest and most universally-used
pretext tasks, node attribute reconstruction and structure recovery,
to pretrain the GT encoder [2, 49]. An exhaustive discussion of
methods for pretraining GTs is out of the scope of this paper, please
see more details for GT pretraining in Appendix A. Then, with
a pretrained GT, each node v; is projected into a F-dimensional
embedding space. With both node attribute and topology (or po-
sition) structure considered, the embedding matrix of all nodes in
the graph G is:

0 0 0
E° = [e];..;e5;5 ..

%;..sey] = Embed(G) = Embed(X, A) € RV*F,

1

2179

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

where n is the number of nodes in the given graph G and V is the
embedding size. Then, the node embeddings Ed-1 computed by
the d — 1-th layer are fed into the following transformer layer L4
(Vd € N,1 < d < D) to get more high-level node representations,
which can be formulated as:

E = [e‘li; ...;e‘-l;...;ef,] =141 e RVXF, 2)

J

Conventionally, to adapt the pretrained GT to different down-
stream tasks, further fine-tuning of the GT on the corresponding
datasets [2, 30, 49] is performed. However, according to our experi-
ments in Section 4, this vanilla approach suffers from the following
limitations when applied to FSNC tasks: (1) The number of labeled
nodes for each FSNC task is very limited (usually less than 5 la-
bels), making the fine-tuned GT highly overfit on them and hard
to generalize to query set. (2) This method neglects the inherent
gap between the training objective of the pretext tasks and that of
the downstream FSNC tasks, rendering the transferred node em-
beddings sub-optimal for the target FSNC tasks. (3) For every new
task, all the parameters of GT models need to be updated, making
the model hard to converge and greatly raising the cost to apply
GTs to real-world applications. (4) GTs are generally pretrained in
an unsupervised manner. How to utilize the labels (which can be
sparse) in base classes to extract generalizable graph patterns for
GTs remains unresolved. This work is the first to propose a simple
yet effective and efficient prompting method for GTs to tackle the
four aforementioned limitations.

3.2 Virtual Node Tuning

Since the GT encoder is pretrained on the given graph in a self-
supervised manner, it does not require or utilize any label infor-
mation from base classes. This characteristic fits the FSNC tasks
where no source task exists, i.e., M = 0. Then, in this section, we
introduce the proposed Virtual Node Tuning (VNT) method which
effectively utilizes the limited few labeled nodes in the support set S
from the target label space C to customize the node representations
from the pretrained GT for each specific FSNC task.

We introduce an extra set of p randomly initialized continuous
trainable vectors with the same embedding size F, i.e. prompt, de-
noted as P = [p1; s Pps s PPl (pp € RF). Our virtual node tun-
ing strategy is simple to implement. We fix the pretrained weights
of the GT encoder during fine-tuning while keeping the prompt
parameter P trainable, and we concatenate this prompt with the
pretrained node embedding right after the embedding layer and
feed it to the first transformer layer of the GT. The injected prompts
can be viewed as task-specific virtual nodes that help modulate the
pretrained node representations and elicit the learned substantial
knowledge from the pretrained GT for different target FSNC tasks.
In such a manner, our approach allows the frozen large transformer
layers to update the intermediate-layer node representations for
different tasks, as contextualized by those virtual nodes (more de-
tailed discussion about the effect from those virtual nodes on target
FSNC tasks is presented in Section 4.3 and 4.5.1):

[EY|Z'] = LY([E°||P]) € ROVHDIXE, (3)

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Zhen Tan, Ruocheng Guo, Kaize Ding, & Huan Liu

Sample pseudo
H target task
v
Pretrained
GT
-------- ®—5® Transformer
Fair ML @ @ — Iayers Inferenced prompt

Explainable Al
{ea}

{us}

Node attribute reconstruction

representation for
target FSNC task

J

Input Graph

Y
Virtual Node Tuning (VNT)

[
Graph-based Pseudo Prompt Evolution (GPPE)

Figure 1: The illustration of the proposed framework, VNT-GPPE. Colors indicate different classes (e.g., Neural Networks, SVM,
Fair ML, Explainable AI). Especially, white nodes mean labels of those nodes are unavailable. Different types of nodes indicate
if nodes are from base classes or novel classes. Note that during VNT and GPPE, the parameters of the GT, including the

embedding layer and transformer layers, are fixed.

where || denotes the concatenation operator. Then we feed the
learned node representations and the prompt to the following trans-
former layers 4 (Vd € N, 2 < d < D), which is formulated as:

[Ed“Zd] :Ld([Ed—IHZd—l]) c R(V+P)><F. (4)

With the modulated node representations, we can get the predicted
label for any node v; by applying a simple classifier, f, (e.g. SVM,
Logistic Regression, shallow MLP, etc.):

y=fy(e}).)
Then, for each target N-way K-shot FSNC task 7; = {S;, Q;}, we
can predict labels for all the few labeled nodes in the support set S;,
and calculate the Cross-entropy loss, Lcg, to update the prompt pa-
rameters P and the simple classifier f;,. This optimization procedure
can be formulated as:

Py= argrgililﬁcE(Si:Ps 2] (6)
Finally, following the same procedure, we use the fine-tuned prompt
P, classifier fy, and node representations from the pretrained GT to
predict labels for unlabeled nodes in the query set Q;. It is notable
that the parameters of the pretrained GT are frozen throughout the
VNT process and are recycled for all downstream FSNC tasks. In
other words, to adapt to a new FSNC task, we only need to train
a small prompt tensor P to modulate the intermediate-layer node
representations to be customized by the few labeled nodes, which is
computationally similar to training a very shallow MLP. This
signifies that the proposed VNT method requires a low per-task
storage and computation cost to retain its effectiveness.
According to our experiments, the proposed VNT method can
still achieve competitive performance even if no label in base classes
is used. Furthermore, since during each downstream FSNC task,
those virtual node prompts are tuned via conditioning on the same

2180

frozen GT backbone, we interpret the learned task prompts as task
embeddings to form a semantic space of FSNC tasks. We give expla-
nations in Section 4.5.1. Based on this interpretation, we propose
a novel Graph-based Prompt Transfer method to tackle scenarios
where labeled nodes are available in the base classes.

3.3 Prompt Transferring via Graph-based
Pseudo Prompt Evolution

For real-world scenarios, there could exist sparsely labeled nodes
in base classes, i.e., a few source tasks exist, or M # 0. On the
other hand, we find that first training a prompt on one FSNC task,
and then using the resulting prompt as the initialization for the
prompt of another task could outperform tuning the virtual node
prompt from scratch. We give a motivating example in Section 4.5.1.
Inspired by this phenomenon, in this section, we propose a novel
Graph-based Pseudo Prompt Evolution (GPPE) mechanism that trans-
fers the generalizable knowledge within tasks from base classes
to target downstream FSNC tasks. The motivation behind prompt
transferring is that, since all the source tasks and target tasks are
sampled from the same input graph G, incorporating context from
all the individual source tasks will likely yield positive transfer. The
details of GPPE are as follows.

To start with, as discussed in Section 2, we assume that, for all the
nodes in base classes, there exists a subset of nodes that can form M
N-way K-shot R-query node classification tasks, termed as source
tasks. Note that M, N, K, R < |V], so the labels can be very sparse
and the value of M determines the label sparsity in the base classes.
In practice, we achieve this by random sampling M FSNC tasks from
base classes. Without more explanation, we use M = 48, R = 10
as default for experiments. Next, following the same procedure in
Section 3.2, we first pretrain the GT encoder on the whole graph in

Virtual Node Tuning for Few-shot Node Classification

an unsupervised manner, then we add virtual node prompts for each
source task, and finally, those prompts are tuned on such M source
tasks. In this way, we obtain M prompts, each of which can be
interpreted as a task embedding. Notably, according to equation 6,
while performing VNT on the M source tasks, we only use the
support set to optimize the prompt. These M prompts are stored
as a prompt dictionary D = [P[;..;Pp;..s Py] € RMXPXE for
transferring knowledge to target FSNC tasks. The required space to
store this dictionary is O(M-P-F), and as M, P, F are small constants,
storing this dictionary will not take much extra space, compared
to the storage for the weights of the GT or the node embeddings.
To further reinforce positive transfer from source tasks to target
tasks, we propose a Prompt Evolution module to refine those learned
representations of virtual node prompts on each target FSNC task
based on the task embeddings of all source FSNC tasks. We propose
to use a fully connected Graph Attention Network (GAT) [38] to
model the relations between these prompts and propagate context
knowledge from all source FSNC tasks, where all the task-specific
prompts can be regarded as the nodes in the GAT model. We choose
GAT as the prompt evolution module for its desired properties:
GAT can be inductive and is permutation invariant to the order of
learning from source tasks.

For training the prompt evolution module, we draw inspiration
from meta-learning [10], where a small classification task is con-
structed episodically to mimic the test scenarios and enable learning
on the meta-level beyond a specific task. Similarly, in each episode,
we randomly select one task 7,,, = {S},,Q/,} as a pseudo target
FSNC task, and the rest are still regarded as source tasks to ex-
tract transferable knowledge. The prompt evolution module will
be trained through a number of episodes till its convergence. As
the episodes iterate through the prompt dictionary O, the prompt
evolution module learns to refine all the prompt representation
within 9, and simultaneously, learns to adapt to a target FSNC task
given a set of source tasks. Here, we illustrate the detailed learning
procedure for one episode. We first compute a relation coefficient
Cm.k between the prompt of the m-th pseudo target FSNC task 7,
and the k-th prompts for a source task in the dictionary D. The
coefficient is calculated based on the following kernel function:

Cmk = (0(Pp,), O(Py)), @)

where 0 is a shallow MLP that projects the original prompts to a
new metric space. Let (-, -) denote a similarity function. In this
paper, we use cosine similarity for its simplicity and effectiveness.
We then normalize all the coefficients with the softmax function to
get the final attention weights corresponding to the prompt P}, of
the current pseudo target FSNC task:

exp (Cm,k)

Amk =

e me (8)
exp(2).2) ¢mp)

Based on the learned coefficients, the GAT model aggregates in-
formation from all the prompts learned from the source tasks in
the graph and fuses it with P},,, the original prompt representation
from a pseudo target task, to obtain a refined prompt P/, :

D]

By =P+ () amyLP)), ©
k=1

2181

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

where L denotes the weight matrix of a linear transformation. Then,
with the refined prompt representation P/, and the simple classifier
fy» we use it to predict the labels of nodes in the corresponding
query set Q7,. Based on the predicted labels, Cross-entropy loss is
adopted to update the prompt evolution module:

0Ly =arg 5mr11p Lep(Q), P 0, L), (10)
L,

Once the prompt evolution module is learned, we freeze the pa-

rameters in the module and deploy it for any target FSNC task

Ti = {Si,Q;} to get the refined prompt representation P. Next, we

train a separate simple classifier f;, for final predictions:

¥ = argml/}HLCE(Si,ﬁ;lﬁ)- (11)
The proposed GPPE module also has a similar parameter number as
a shallow MLP, and we find that the proposed GPPE can be learned
even if M, the number of source tasks, is very small. We give the
analysis on the effect of M in Fig. 5 in Section 4.5.3. The results
show that GPPE improves the performance of VNT even with a
very small number of source FSNC tasks (e.g., M = 8). The process
of our framework is illustrated in Fig. 1.

4 EXPERIMENTAL STUDY
4.1 Experimental Settings

We conduct systematic experiments to compare the proposed VNT
method with the baselines on the few-shot node classification task.
In this work, we consider two categories of baselines, i.e., meta-
learning based methods, graph contrastive learning (GCL) based
Transductive Linear Probing (TLP) methods [35], and prompting
methods on graphs. For meta-learning, we test typical methods
(fully-supervised) including: ProtoNet [31], MAML [10], Meta-
GNN [51], G-Meta [15], GPN [4], AMM-GNN [41],and TENT [42].
For GCL-based TLP methods, we evaluate TLP with self-supervised
GCL methods including: MVGRL [12], GraphCL [48], GRACE [52],
BGRL [36], MERIT [18], and SUGRL [27]. For prompting meth-
ods on graphs, we evaluate GPPT [32] and Graph Prompt [25].
For those GCL-based methods and the proposed VNT, we choose
Logistic Regression as the classifier f. For comprehensive stud-
ies, we report the results of those methods on four prevalent real-
world graph datasets: CoraFull [1], ogbn-arxiv [13], Cora [46],
CiteSeer [46]. Each dataset is a graph that contains a considerable
number of nodes. This ensures that the evaluation involves various
tasks for a more comprehensive evaluation. A detailed description
of those datasets is provided in Appendix B, with their statistics and
class splits in Table 5 in Appendix B. For explicit comparison, we
compare our method with all the baselines under various N-way
K-shot 10-query settings. The default values of the dictionary size
M and the query set size R are 48 and 10, respectively.

4.2 Comparable Study

Table 1 presents the performance comparison of all the methods on
the few-shot node classification task. Specifically, we present results
under four different few-shot settings for a more comprehensive
comparison: 5-way 1-shot, 5-way 5-shot, 2-way 1-shot, and 2-way
5-shot. We choose the average classification accuracy and the 95%
confidence interval over 5 repetitions with different random seeds

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Zhen Tan, Ruocheng Guo, Kaize Ding, & Huan Liu

Table 1: The overall comparison between the proposed VNT method and meta-learning or self-supervised GCL-based TLP
methods under different settings. Accuracy (T) and confident interval (|) are in %. The best results are bold, and the second best
results in each category of methods are underlined. OOM denotes the out-of-memory issue.

Dataset CoraFull Ogbn-arxiv CiteSeer Cora
Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot
MAML 22.63+1.19 27.21+£1.32 27.36+1.48 29.09+1.62 52.39+2.20 54.13+£2.18 53.13+2.26 57.39+2.23
ProtoNet 32.43+1.61 51.54+1.68 37.30+£2.00 53.31+1.71 52.51+2.44 55.69+2.27 53.04+2.36 57.92+2.34
Meta-GNN 55.33+2.43 70.50+2.02 27.14+1.94 31.52+1.71 56.14+2.62 67.34+2.10 65.27+2.93 72.51+1.91
GPN 52.75%2.32 72.82+1.88 37.81+£2.34 50.50+2.13 53.10£2.39 63.09+2.50 62.61+2.71 67.39£2.33
AMM-GNN 58.77+2.32 75.61+1.78 33.92+1.80 48.94+1.87 54.53+2.51 62.93+2.42 65.23+2.67 82.30£2.07
G-Meta 60.44+2.48 75.84+1.70 31.48+1.70 47.16+1.73 55.15+2.68 64.53+2.35 67.03+3.22 80.05+1.98
TENT 55.44+2.08 70.10+£1.73 48.26+1.73 61.38+1.72 62.75+3.23 72.95+2.13 53.05+2.78 62.15+2.13
MVGRL 59.91+2.39 76.76+1.63 OOM OOM 64.45+2.77 80.25+1.82 71.17+3.04 89.91+1.44
GraphCL 64.20%2.56 83.74+1.46 OOM OOM 73.51£3.09 92.38+1.24 73.50£3.18 92.35+1.30
GRACE 66.69+2.26 84.06+1.43 OOM OOM 69.85+2.75 85.93+1.57 69.13+2.69 88.68+1.37
BGRL 43.83+2.11 70.44+1.62 36.76+1.74 53.44+0.36 54.32+1.63 70.50+2.11 60.14+2.33 79.86+1.92
MERIT 73.38+2.25 87.66+1.43 OOM OOM 64.53+2.81 90.32+1.66 67.67+£2.99 95.42+1.21
SUGRL 77.35+2.20 83.96+1.52 60.04+2.11 77.52+1.45 77.34+2.83 86.32+1.57 82.35+2.20 92.22+1.15
GPPT 62.35+2.34 73.68+2.24 40.36+1.68 51.68+1.92 68.93+2.20 82.53+1.86 70.32+1.86 85.58+1.73
Graph Prompt 72.45+2.08 81.29+2.36 44.58+1.84 75.62+£1.96 69.85+2.26 85.26+1.78 78.65+1.98 89.38+1.96
VNT (Ours.) 68.50+2.13 84.56+2.15 50.40+1.97 74.91+1.87 70.60+2.15 86.23+1.75 84.50+1.94 90.50+1.55
VNT-GPPE (Ours.) 76.68+2.25 88.75+2.07 61.34+1.86 79.93+1.69 75.85+2.45 93.46+1.72 88.62+2.12 95.65+1.51

as the evaluation metrics. For each repetition, we sample 100 FSNC
tasks for evaluation and calculate the evaluation metrics. From
Table 1, we obtain the following observations:

e Generally speaking, for both TLP and the proposed GT,
self-supervised pretraining can outperform the meta-
learning-based method. However, one most recent pre-
training method, BGRL, when transferred for downstream
FSNC tasks, shows surprisingly frustrating performance.
This further validates the impact from the gap of training
objective between pretexts and target FSNC tasks. The pre-
text of BGRL minimizes the Mean Square Error of the original
node representation and its slightly perturbed counterpart
but does not enforce the model to discriminate between dif-
ferent nodes as the other GCL baselines do. The objective of
this pretext deviates more from the downstream FSNC tasks,
thus leading to worse results. We further show the impact
of this in ablation studies in Section 4.3.

Even without any label information from base classes,
the proposed method, VNT, outperforms meta-learning-based
methods and most GCL-based TLP baselines. This demon-
strates the superiority of the proposed VNT in terms of
accuracy. The pretrained GT has learned substantial prior
knowledge and the injected virtual node prompts effectively
elicit the knowledge for different downstream FSNC tasks.
Given a few source FSNC tasks, the proposed method,
VNT-GPPE, consistently outperforms all the baselines, in-
cluding existing prompt methods for graphs. This further
validates that GPPE effectively generalizes the knowledge
learned from the few source tasks to target tasks, yielding
positive transfer.

Compared to all the baselines, the proposed VNT-GPPE
method is more robust to extremely scarce label sce-
narios, i.e, the number of labeled nodes in the support set

2182

K equals 1. The performance degradation resulting from
decreasing the number of shots K is significant for all the
methods. Smaller K makes the encoder or the classifier more
prone to overfitting, thus leading to worse generalization
to query sets. In contrast, the proposed method injects vir-
tual nodes into the model, which have separate learnable
embeddings for different FSNC tasks. This implies that our
method implicitly performs adaptable data augmentation for
the few labeled nodes, which makes our framework more
robust to tasks with extremely scarce labeled nodes. Also,
the improvement of involving GPPE is more significant
when K is extremely small. This shows that transferring
knowledge from source tasks helps to mitigate the overfit-
ting on novel tasks. Further analysis and explanation are
given in Section 4.5.1.

4.3 Ablation Study

In this subsection, we conduct ablation studies to investigate the
effectiveness of different components, i.e., VNT and GPPE, of the
proposed framework. We consider both cases: when the encoder
is frozen and when it is not frozen. We present the results of ex-
periments on the Cora and Ogbn-arxiv datasets, under different
N-way K-shot settings (similar results can be observed on the other
datasets and settings). For the GCN baselines, following the com-
mon practice [4, 51], we pretrain a 2-layer GCN using all the data
from base classes with Cross-Entropy Loss. Specifically, Frozen
means during fine-tuning, the GNN encoder is fixed, and only the
classifier is fine-tuned. Prompt refers to the proposed virtual node
tuning method. GPPE is the proposed graph-based pseudo prompt
evolution module. Because GPPE is based on the proposed frame-
work of VNT, for the tested variant with GPPE, we freeze the GT
encoder and add virtual node prompts. The scores reported are
averaged over 5 runs with different random seeds. The results of

Virtual Node Tuning for Few-shot Node Classification

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 2: Ablation study on Cora and Ogbn-arxiv datasets to analyze the effectiveness of different components in our method.

Encoder Frozen VNT GPPE‘ Cora

‘ Ogbn-arxiv

‘ 2-way 1-shot 2-way 5-shot ‘ 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot

GCN 52.12+2.62 57.93+2.23 57.62+2.31 64.11+2.65 26.68+1.57 27.90+1.45
GCN v 68.43+2.94 78.20+2.83 65.21+2.86 77.10+2.46 38.47+1.77 51.46+1.69
GT 67.50+2.24 79.42+1.89 63.00+2.35 79.84+1.98 40.73+2.65 55.35+1.88
GT v 75.50+2.54 84.94+1.74 53.64%2.62 73.64+2.33 31.64+2.45 52.36x2.04
GT v 77.85+1.99 85.43+1.84 71.82+2.58 82.73+2.14 36.36+2.74 65.45+2.31
GT v v 84.50+1.94 90.50+1.55 82.00+1.77 87.27+1.64 50.40+1.97 74.91+1.87
GT v v v ‘ 88.62+2.12 95.65+1.51 ‘ 85.35+1.72 89.98+1.66 61.34+1.86 79.93+1.69

the ablation study are presented in Table 2, from which we draw
the following conclusions:

o Our simple implementation of GT can consistently yield

better results than traditional GNNs, such as GCN. This

is because the GT has a much larger number of parameters,
making it capable of learning more complex relations among

nodes. Besides, pretrained with the two pretext tasks, i.e.,
node attribute reconstruction and structure recovery, in a self-
supervised manner, GT can learn more transferable graph

patterns compared to those GCN-based methods.

Freezing the GNN encoder during fine-tuning on the down-
stream FSNC tasks consistently leads to better results. This

shows that fine-tuning the graph encoder on the few labeled

nodes could lead to overfitting and negatively impact the

quality of the learned node embeddings.

The proposed method, VNT, which contains a frozen pre-
trained GT encoder with virtual node, exhibits competitive

performance compared with vanilla GTs. This implies that

the introduced virtual nodes can help the model modulate

the learned substantial graph knowledge for each FSNC task

while avoiding impairing the pretrained embeddings.

The proposed method, VNT-GPPE, which involves the prompt
evolution module achieves the best performance. This

validates that the introduced GPPE module can effectively

provide positive transfer from source tasks to target tasks

and mitigate the overfitting on novel tasks.

4.4 Node Embedding Analysis

To explicitly illustrate the advantage of the proposed framework, in
this subsection, we analyze the quality of the learned node represen-
tations from different training strategies. Particularly, we leverage
two prevalent clustering evaluation metrics: Normalized Mutual
Information (NMI) and adjusted random index (ARI), on learned
node embeddings clustered based on K-Means. Also, we deploy
t-SNE to visualize them and compare them with those learned
by baseline methods on the CoraFull dataset. We choose nodes
from 5 randomly selected novel classes for visualization. The re-
sults are presented in Table 3 and Fig. 2. Complete results with
all the baselines are included in Appendix F. We observe that the
proposed VNT-GPPE method enhances the quality of the node
representations of GTs and achieves the best clustering perfor-
mance on novel classes. Also, we find that a vanilla GT without
VNT cannot learn node embeddings that are discriminative enough

2183

compared to strong baselines like TENT and SUGRL. However,
when equipped with the proposed VNT, a GT can learn highly dis-
criminative node embeddings. Furthermore, GPPE can significantly
improve the performance of VNT. This also authenticates that the
introduced prompts help to elicit more customized knowledge for
each downstream FSNC task, and GPPE can effectively transfer the
knowledge learned from source FSNC tasks to target FSNC tasks.

Table 3: The overall NMI (T) and ARI (T) scores of baselines
and ablated variants of the proposed framework on CoraFull
and CiteSeer datasets.

Dataset CoraFull CiteSeer
Metrics NMI ARI NMI ARI
TENT 0.5760 0.4652 0.0930 0.0811
SUGRL 0.7680 0.7049 0.3952 0.4460
GT 0.5225 0.3864 0.3452 0.3189
VNT 0.7768 0.6427 0.5998 0.6331
VNT-GPPE 0.7927 0.7075 0.6324 0.6762

(a) TENT

g

" ‘;‘.éif‘;e
Rt '

(d) GT (e) VNT (f) VNT-GPPE

Figure 2: The t-SNE results on CoraFull (5-way 5-shot).

4.5 Design Discussion

4.5.1 Interpretation of Virtual Nodes as Prompt. In this study, we
explore the interpretability of virtual node prompts in graph data.
Unlike previous works in NLP, where prompts are composed of hu-
man language that is easily interpretable by humans, virtual nodes
in graph data are injected into the node embedding space, making it

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

@ Few Labeled Node Y
Virtual Node

Virtual Nodes as Prompt
—_—

— Existing Edge
X --- Predicted Edge

Figure 3: The illustration of effect from introduced virtual
nodes under 2-way node classification setting. Different col-
ors indicate different node classes.

Table 4: The L, distance and cosine similarity scores between
prompting virtual nodes and real nodes from two novel
classes on Cora dataset. P denotes virtual node prompts, and
N denotes existing nodes.

Metrics Ly Cosine Ly Cosine
Nodes P in class-1 P in class-2
Nin class-1 0.0622 0.7625 0.6725 0.2344
Nin class-2 0.6520 0.8627 0.0548 0.1165

difficult to understand their effect. To gain insight into the behavior
of virtual node prompts, we exploit Walkpooling [28], which is the
state-of-the-art for link prediction, to predict the links that are the
most likely to exist between the virtual nodes and the few labeled
nodes from the support set of each task. We train the model on the
whole graph dataset and use it to predict the most possible links be-
tween the virtual nodes and the existing ones. Specifically, we only
consider potential links with at least one virtual node as their vertex.
Under the 2-way few-shot node classification setting, we initialize
half of the virtual node prompts as the prototype vector of the first
class, and the other half of the virtual node as the prototype vector
of the second class. As indicated in Fig. 3, after the convergence of
virtual node tuning, we find that the vertices of the most possible
links always connect existing nodes with virtual prompt nodes
from the same classes. This implies that the introduced virtual node
prompts can learn node representations semantically similar to
those from the same class, and thus help push node represen-
tations from the same classes closer. To further validate this,
on Cora dataset, we calculate the average cosine similarities and L
distances (normalized by the longest distance of any pair of nodes)
for virtual nodes and existing nodes from the two novel classes. As
presented in Table 4, we can see that the virtual nodes and existing
nodes from the same classes have smaller Ly distances and larger
cosine similarities. We provide further analyses of the effect from
different numbers of virtual nodes in Fig. 7 in Appendix E.

4.5.2 Motivation of Virtual Node Prompt Transfer. In this experi-
ment, we empirically study the transferability across randomly sam-
pled 10 source FSNC tasks and 10 target FSNC tasks from CoraFull
dataset under the 5-way 5-shot setting. To test this, we first perform
VNT on a source task and then directly reuse the learned virtual
node prompts for other target tasks. As shown in Fig. 4 (a), we ob-
serve that reusing the prompts learned from some source tasks will
provide decent performance on corresponding target tasks. Then,
we examine a very naive approach to transfer prompts: we use the
learned virtual node prompt from a source task as the initializer
of prompts for a target task, and then fine-tune it with VNT. As

2184

Zhen Tan, Ruocheng Guo, Kaize Ding, & Huan Liu

035 005

| oo XU
6 7 8 9
Target tasks

Target tasks

(a) Learned prompts reuse (b) Learned prompts as initializer

Figure 4: Relative prompt transfer performance (transfer
performance / original VNT performance) on the target tasks
of the virtual node prompts trained on the source tasks.

demonstrated in Fig. 4 (b), we can see that through such a simple
transfer, VNT can perform better on some target tasks than training
from scratch. Both these results imply that selectively transferring
learned knowledge from prompts learned in source tasks to target
tasks will likely yield positive transfer. This experiment motivates
us in designing the GPPE module.

4.5.3 The Effect of Source Task Number M. In this experiment, we
evaluate the effect of the source task number M on our framework,
VNT-GPPE. A larger value of M signifies more labeled nodes in base
classes. M = 0 means no source task exists. Thus, the framework
will be reduced to VNT. Fig. 5 reports the results of our framework
with varying values of M under different few-shot settings. From
the results, we observe that generally increasing M will lead to
better performance. This is because more labeled nodes in base
classes contain more transferable graph knowledge, and the pro-
posed GPPE module can effectively transfer the learned knowledge
to target novel classes. We choose M = 48 as the default setting.
An important observation is that, given a very small number of
source FSNC tasks, e.g., M = 8, GPPE can still improve VNT by a
large margin. This shows that the proposed framework scales well
to scenarios with sparsely labeled base classes.

9 100 9 100
?; 90 °:‘ 90 ./.__.,,._0——4
9 = * o 80 M__*dk—/—k—-*
© 80 c 70
g r0leet " | g0
,<(_, 60{ —* 2-way 1-shot —@— 5-way 1-shot f(_, 50 —8— 2-way 1-shot —@— 5-way 1-shot
'q_"} 2-way 5-shot —%— S-way 5-shot E 40 2-way 5-shot —#— 5-way 5-shot
30 0 8 1624 48 72 30 0 8 1624 48 72
Value of M Value of M
(a) CoraFull (b) Ogbn-arxiv

Figure 5: The results of our proposed framework, VNT-GPPE,
under different few-shot settings with varying values of the
number of source FSNC tasks M on CoraFull and Ogbn-arxiv.

4.6 Sensitivity Analysis of VNT

In this experiment, we aim to study the sensitivity of the VNT
framework under various conditions. Specifically, we conduct ex-
periments to evaluate its performance when no source tasks exist
in the base classes, i.e., M = 0. This setup allows us to observe the
general performance of the VNT framework in different scenarios.
The results of these experiments will provide valuable insights into
the robustness and flexibility of the VNT framework, and help guide
the design of future research in this area.

Virtual Node Tuning for Few-shot Node Classification

4.6.1 Prompt Initialization. Noticeably, results in subsection 4.5.1
imply that initializing the virtual nodes as prototype representa-
tions could benefit the virtual node tuning process. Intuitively,
given a test node, an ideal model should produce an output node
embedding that is close to the corresponding class prototype rep-
resentations. To test this, we initialize equal portions of virtual
prompt nodes to all novel node classes as their prototype represen-
tations. The results, presented in Table 6 in Appendidx D, show that
this simple initialization can consistently enhance the performance
on downstream few-shot node classification tasks. This suggests
that providing the model with hints about the target categories
through initialization can help improve the optimization process.

4.6.2 Prompt Ensemble. Previous research by Lester et al. [22] has
demonstrated the efficiency of using prompts for ensembling, as the
large transformer backbone can be frozen after pretraining, reduc-
ing the storage space required and allowing for efficient inference
through the use of specially-designed batches [16, 22]. Given such
advantages, we investigate the effectiveness of enabling prompt
ensembling for VNT. Concretely, to facilitate the ensembling with
the prompt initialization strategy, we add independently sampled
Gaussian noise tensors to 5 prompts for each FSNC task. Each
prompt contains virtual nodes initialized as node class prototypes.
We use majority voting to compute final predictions from the en-
semble. Table 6 in Appendidx D shows that the ensembled model
outperforms the average or even the best single prompt counterpart.

4.6.3 Effectiveness with regard to the Scale of GTs. In Fig. 6 in
Appendix D, we present the accuracy of the proposed framework
against the scale of the GT encoder as a heat map. We analyze
the impact of varying the width (embedding size F) and the depth
(number of transformer layers D) of the GT on the performance of
our framework. The results shown are from the Cora dataset under
the 2-way 1-shot setting and similar trends are observed on other
datasets under different settings. We have the following findings:

i. Increasing the depth of the GT encoder does not necessarily
improve the performance of downstream FSNC tasks. In fact, as
the depth increases, the final accuracy may decrease. This is likely
because the virtual node prompts are injected only before the first
transformer layer, and their effect diminishes as they go deeper.
This highlights the importance and effectiveness of the proposed
VNT framework for better adaptation in FSNC tasks.

ii. On the other hand, increasing the width of the GT encoder, i.e.,
the embedding size, leads to improved accuracy. A larger embedding
size implies that the input node embeddings contain more detailed
semantic and topological information, allowing the injected virtual
nodes to modulate the node embeddings more precisely.

5 RELATED WORK
5.1 Few-shot Node Classification.

Episodic meta-learning [10] has become the most dominant para-
digm for Few-shot Node Classification (FSNC) tasks. It trains the
GNN encoders by explicitly mimicking the test environment for
few-shot learning [4, 51]. Nonetheless, these methodologies depend
on the supposition that ’base classes’ are available, with ample la-
beled nodes per class for episode sampling. This leads to a limitation,

2185

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

as these existing techniques do not cater to the more general FSNC
problem defined in our study.

5.2 Graph Transformer.

Graph Transformers (GTs) [2, 30, 49] are a new breed of GNNs
that leverage the transformer architecture [37]. GTs typically con-
sist of two parts: an embedding network that projects raw graphs
to the embedding space, and a transformer-based network that
learns the complex relationships among the embeddings. Due to
their vast number of parameters, GTs have the ability to capture
a greater depth and complexity of knowledge. They are usually
trained in a self-supervised way using pre-defined pretext tasks,
such as such as node attribute reconstruction [49] and structure
recovery [2] to encode both topological and semantic informa-
tion. Recent advancements in GTs aim to encode increasingly com-
plex topological knowledge, such as adaptive mechanisms for po-
sition encoding from graph spectrums [7, 20] and iterative encod-
ing of local sub-structures as auxiliary information [26]. A recent
study [29] presents a generalized recipe for developing GTs. De-
spite the promising results of GTs in general transfer learning tasks,
no current studies have successfully applied them to the unique
challenge of few-shot learning scenarios with limited labeled data.

5.3 Learning with Prompts on Graphs.

Prompting, as highlighted in [22, 23], is a recent development in Nat-
ural Language Processing (NLP) that adapts large language models
to various downstream tasks by adding task descriptions to input
texts. This technique has inspired several studies [8, 25, 32] to apply
such prompting methods to pretrained message-passing GNNs on
symbolic graph data. For instance, GPF [8] introduces learnable per-
turbations as prompts for graph-level tasks. GPPT [32] and Graph
Prompt [25] propose a uniform template for pretext tasks and tar-
geted downstream tasks to facilitate prompting. Contrasting with
these works, our framework introduces adjustable virtual nodes in
the embedding space of Graph Transformers. By incorporating a
unique GPPE module, our framework can address scenarios with
sparse labels in base classes. Our paper is the first to present a
prompt-based method for GTs, specifically designed for few-shot
node classification tasks.

6 CONCLUSION

In this paper, we propose a novel approach, dubbed as Virtual Node
Tuning (VNT), to tackle the problem of general few-shot node
classification (FSNC) on symbolic graphs. This method adjusts pre-
trained graph transformers (GTs) by incorporating virtual nodes
in the embedding space for tailored node embeddings. We also
design a Graph-based Pseudo Prompt Evolution (GPPE) module for
efficient knowledge transfer in scenarios with sparse labels. Our
comprehensive empirical studies showcase our method’s effective-
ness and its potential for prompt initialization and ensemble. Our
research thus pioneers a novel approach for learning on graphs
under limited supervision and fine-tuning GTs for a target domain.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation (NSF)
under grants IIS-2229461.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

REFERENCES

(1]

[2

—

Aleksandar Bojchevski and Stephan Giinnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR.
Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. 2022. Structure-aware
transformer for graph representation learning. In International Conference on
Machine Learning. PMLR, 3469-3489.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

&

[9

=

[10

[11]

[12]

[13]

[14

[15]

[16

[17]

(18]

[19]

[20]

[21]

[22]

[23

[24]

[25

[26

[27

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.
2020. Graph prototypical networks for few-shot learning on attributed networks.
In CIKM.

Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. 2022. Data augmentation
for deep graph learning: A survey. arXiv preprint arXiv:2202.08235 (2022).
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2021. Graph neural networks with learnable structural and
positional representations. arXiv preprint arXiv:2110.07875 (2021).

Taoran Fang, Yunchao Zhang, Yang Yang, and Chunping Wang. 2022. Prompt
Tuning for Graph Neural Networks. arXiv preprint arXiv:2209.15240 (2022).
Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NeurIPS. 1024-1034.

Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116-4126.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NeurIPS.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of The Web Conference 2020. 2704-2710.
Kexin Huang and Marinka Zitnik. 2020. Graph meta learning via local subgraphs.
In NeurIPS.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie,
Bharath Hariharan, and Ser-Nam Lim. 2022. Visual prompt tuning. arXiv preprint
arXiv:2203.12119 (2022).

Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong
Zhu. 2020. Sub-graph contrast for scalable self-supervised graph representation
learning. In 2020 IEEE international conference on data mining (ICDM). IEEE,
222-231.

Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, and Shirui
Pan. 2021. Multi-scale contrastive siamese networks for self-supervised graph
representation learning. In International Joint Conference on Artificial Intelligence
2021. Association for the Advancement of Artificial Intelligence (AAAI), 1477-
1483.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Pru-
dencio Tossou. 2021. Rethinking graph transformers with spectral attention.
Advances in Neural Information Processing Systems 34 (2021), 21618-21629.

Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, and Xiaohong Guan.
2020. Node classification on graphs with few-shot novel labels via meta trans-
formed network embedding. Advances in Neural Information Processing Systems
33 (2020), 16520-16531.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).
Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. arXiv preprint arXiv:2107.13586
(2021).

Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. 2021. Relative and
absolute location embedding for few-shot node classification on graph. In AAAL
Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. GraphPrompt:
Unifying Pre-Training and Downstream Tasks for Graph Neural Networks. In
Proceedings of the ACM Web Conference 2023. 417-428.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. 2021. Graphit:
Encoding graph structure in transformers. arXiv preprint arXiv:2106.05667 (2021).
Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. 2022. Simple
unsupervised graph representation learning. AAAIL

2186

(28]

[29

[30

(33]

[34

[35

'S
S

[37

[38

[39

[40

[42]

[43

[44

'S
&

[46

[47

[48

[49

[50

[51

[52

Zhen Tan, Ruocheng Guo, Kaize Ding, & Huan Liu

Liming Pan, Cheng Shi, and Ivan Dokmani¢. 2021. Neural Link Prediction with
Walk Pooling. In International Conference on Learning Representations.

Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable
graph transformer. Advances in Neural Information Processing Systems 35 (2022),
14501-14515.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. Advances in Neural Information Processing Systems 33 (2020),
12559-12571.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In NeurIPS.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. Gppt:
Graph pre-training and prompt tuning to generalize graph neural networks. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1717-1727.

Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. Graph few-shot
class-incremental learning. In WSDM.

Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. A Simple Yet Effective
Pretraining Strategy for Graph Few-shot Learning. arXiv preprint arXiv:2203.15936
(2022).

Zhen Tan, Song Wang, Kaize Ding, Jundong Li, and Huan Liu. 2022. Transductive
Linear Probing: A Novel Framework for Few-Shot Node Classification. arXiv
preprint arXiv:2212.05606 (2022).

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Remi Munos,
Petar Velickovi¢, and Michal Valko. 2021. Bootstrapped Representation Learning
on Graphs. In ICLR Workshop on Geometrical and Topological Representation
Learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies (2020).

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua
Zheng. 2020. Graph Few-Shot Learning with Attribute Matching. In Proceed-
ings of the 29th ACM International Conference on Information and Knowledge
Management.

Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. 2022. Task-
Adaptive Few-shot Node Classification. arXiv preprint arXiv:2206.11972 (2022).
Zhihao Wen, Yuan Fang, and Zemin Liu. 2021. Meta-inductive node classification
across graphs. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In Proceedings of the 2019 International Conference
on Learning Representations.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40-48.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang,
Nitesh Chawla, and Zhenhui Li. 2020. Graph few-shot learning via knowledge
transfer. In Proceedings of the 34th AAAI Conference on Artificial Intelligence.
Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. NeurIPS (2020).
Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert:
Only attention is needed for learning graph representations. arXiv preprint
arXiv:2001.05140 (2020).

Shengzhong Zhang, Ziang Zhou, Zengfeng Huang, and Zhongyu Wei. 2018. Few-
shot Classification on Graphs with Structural Regularized GCNs. In Proceedings
of the 32nd AAAI Conference on Artificial Intelligence.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji
Geng. 2019. Meta-gnn: On few-shot node classification in graph meta-learning.
In CIKM.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

Virtual Node Tuning for Few-shot Node Classification

A IMPLEMENTATION DETAIL
A.1 General Settings

All experiments are implemented using PyTorch. We run all experi-
ments on a single 80GB Nvidia A100 GPU.

A.2 Implementation of the Simplified GT

For generality, we try to keep the used GT encoder very simple
and easy to transfer to other complicated architectures. Specifically,
we use a 1-layer MLP to project the raw graph, including node
attributes and structural positions into the embedding space. We
use simple summation to merge those embeddings together and feed
them into the following transformer layers. We use the transformer
module released by huggingface [44]. We perform a grid search
like Section 4.6.3 to get the width and depth of the GT.

For pretraining, we utilize two prevailing pretext tasks, node at-
tribute reconstruction and structure recovery, to train the GT encoder
in a self-supervised manner. Concretely, for node attribute recon-
struction pretext, given a node, we minimize the Mean Square Error
(MSE) between the original node attributes and the reconstructed
version via a fully connected layer and the learned node embedding
from the GT. For structure recovery pretext, given any pair of nodes,
we try to predict if there is a link between them and compare the
result with the ground truth by an MSE loss. To accommodate a
larger graph, similar to Jiao et al. [17], Mo et al. [27], we adopt
the mini-batch strategy to sample a portion of nodes with their
subgraphs (based on PPR) in each epoch for pretraining.

B DETAILS OF BENCHMARK DATASETS

Table 5: Statistics of benchmark node classification datasets.
Ctrain denotes the base classes for training, C;., and Cieyt
denote novel classes for validation and test respectively.

Dataset # Nodes # Edges # Features [s]] |Ctrainl |Cgeol |Cresel
CoraFull 19,793 63,421 8,710 70 40 15 15
Ogbn-arxiv 169,343 1,166,243 128 40 20 10 10
Cora 2,708 5,278 1,433 7 3 2 2
CiteSeer 3,327 4,552 3,703 6 2 2 2

In this section, we provide detailed descriptions of the benchmark
datasets used in our experiments. All the datasets are public and
available on both PyTorch-Geometric [9] and DGL [40].

e CoraFull [1] is a citation network that extends the preva-
lent small Cora network. Specifically, it is achieved from
the entire citation network, where nodes are papers, and
edges denote the citation relations. The classes of nodes are
obtained based on the paper topic.

Ogbn-arxiv [13] is a directed citation network that consists
of CS papers from MAG [39]. Here nodes represent CS arXiv
papers, and edges denote the citation relations. The classes
of nodes are assigned based on the 40 subject areas of CS
papers in arXiv.

Cora [46] is a citation network dataset where nodes mean

paper and edges mean citation relationships. Each node has
a predefined feature with 1433 dimensions. The dataset is de-

signed for the node classification task. The task is to predict
the category of a certain paper.

2187

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

e CiteSeer [46] is also a citation network dataset where nodes
mean scientific publications and edges mean citation rela-
tionships. Each node has a predefined feature with 3703
dimensions. The dataset is designed for the node classifi-
cation task. The task is to predict the category of a certain
publication.

C A MORE DETAILED REVIEW FOR
FEW-SHOT NODE CLASSIFICATION

The task of few-shot node classification (FSNC) aims to train models
that can assign labels to unlabeled nodes in graphs, using only a
few labeled nodes per class for training. Recently, episodic meta-
learning [10] has become a popular paradigm for addressing label
scarcity in FSNC tasks. This approach trains GNN encoders by
emulating the test environment for few-shot learning. For example,
Meta-GNN [51] uses MAML [10] to learn optimization directions
with limited labels. GPN [4] employs Prototypical Networks [31] to
perform classification based on the distance between node features
and prototypes. MetaTNE [21] and RALE [24] also use episodic
meta-learning to improve the adaptability of learned GNN encoders
and achieve similar results. Additionally, G-Meta [15], GFL-KT [47],
and MI-GNN [43] use meta-learning to transfer knowledge when
other auxiliary graphs are available. TNT [42] further takes into
account the variance among different meta-tasks.

D EXPERIMENT RESULTS OF DESIGN
DISCUSSION

D.1 Prompt Initilization and Ensemble

Table 6: The accuracy scores of VNT on Cora and Ogbn-arxiv
datasets. Init. indicates the prototype-based prompt initial-
ization strategy described in Section 4.6.1. Method without
Init. means the prompts are randomly initialized. The best
results are bold. MV refers to majority voting.

VNT | Cora | Ogbn-arxiv

Init. | Ensemble | 2-way 1-shot 2-way 5-shot | 2-way I-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot
| | 9050 |
v | 8525 9130 |

85.50 89.64
86.24 92.38
87.63 92.52

84.50 82.00 87.27 50.40 74.91

83.05 88.34 51.06 75.86

82.50
85.45
84.72

89.65
90.63
91.50

48.82
53.68
52.15

75.65
78.82
79.60

Avg.
v Best
MV

v

D.2 Effectiveness with regard to the Scale of GTs

1 2 3 456 7 8 910

o
¥ 16 90
N
n 32
o 80
£ 64

70
E 128
€ 256 60
w

Number of Transformer Layers: D

Figure 6: The 2-way 1-shot accuracy (%) of the proposed VNT
according to the scale of the GT encode on the Cora dataset.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Table 7: The overall NMI (T) and ARI () scores of baselines
and ablated variants of the proposed framework on CoraFull
and CiteSeer datasets. The best results among the variants

and baselines are bold and underlined, respectively.

Dataset CoraFull CiteSeer
Metrics NMI ARI NMI ARI
Meta-learning

MAML 0.1622 0.0597 0.0754 0.0602
ProtoNet 0.2669 0.1263 0.0915 0.0765
AMM-GNN 0.6247 0.5087 0.2090 0.1781
G-Meta 0.5003 0.3702 0.1913 0.1502
Meta-GNN 0.5534 0.4196 0.1317 0.1171
GPN 0.6001 0.4599 0.2119 0.2087
TENT 0.5760 0.4652 0.0930 0.0811
GCL-based TLP
MVGRL 0.6227 0.4788 0.2554 0.2232
GraphCL 0.7023 0.5628 0.5579 0.5890
GRACE 0.6781 0.5856 0.2663 0.2778
BGRL 0.5137 0.4382 0.2051 0.1875
MERIT 0.7419 0.6590 0.3923 0.4014
SUGRL 0.7680 0.7049 0.3952 0.4460
Ablated variants of VNT
GT 0.5225 0.3864 0.3452 0.3189
VNT 0.7768 0.6427 0.5998 0.6331
VNT-GPPE 0.7927 0.7075 0.6324 0.6762

2188

Zhen Tan, Ruocheng Guo, Kaize Ding, & Huan Liu

E NUMBER OF VIRTUAL NODES

The number of virtual nodes P is an important hyper-parameter to
tune. On the four benchmark datasets, we give the results under
the 2-way 5-shot setting. Specifically, we use a parameter a to
control the number of virtual nodes. For a N-way K-shot FSNC
task, we define a = ﬁ. Larger @ means more virtual nodes are
introduced. From the results shown in Fig. 7, we find that when
a = 1, the proposed VNT can give the best performance. Therefore,
we choose P = a X (N - K) = N - K as the default number of virtual
nodes per prompt.

100%

s a=05 a=0.75 a=10 a =125 a=15

©
v
X

75% I
70%

CoraFull Ogbn-arxiv CiteSeer Cora

Test Accuracy under the 2-way 5-shot Setting (%)
o
3
=

Figure 7: The test accuracy (%) under different ¢ values on
four benchmark datasets.

F MORE RESULTS ON NODE CLUSTERING

In table 7, we present the complete results on Node Clustering in
terms of NMI and ARI.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Preliminary: Graph Transformers
	3.2 Virtual Node Tuning
	3.3 Prompt Transferring via Graph-based Pseudo Prompt Evolution

	4 Experimental Study
	4.1 Experimental Settings
	4.2 Comparable Study
	4.3 Ablation Study
	4.4 Node Embedding Analysis
	4.5 Design Discussion
	4.6 Sensitivity Analysis of VNT

	5 Related Work
	5.1 Few-shot Node Classification.
	5.2 Graph Transformer.
	5.3 Learning with Prompts on Graphs.

	6 Conclusion
	Acknowledgments
	References
	A Implementation Detail
	A.1 General Settings
	A.2 Implementation of the Simplified GT

	B Details of Benchmark Datasets
	C A More Detailed Review for Few-shot Node Classification
	D Experiment Results of Design Discussion
	D.1 Prompt Initilization and Ensemble
	D.2 Effectiveness with regard to the Scale of GTs

	E Number of Virtual Nodes
	F More Results on Node Clustering

