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Abstract

Min-max optimization problems involving nonconvex-nonconcave objectives have found
important applications in adversarial training and other multi-agent learning settings. Yet,
no known gradient descent-based method is guaranteed to converge to (even local notions
of) min-max equilibrium in the nonconvex-nonconcave setting. For all known methods,
there exist relatively simple objectives for which they cycle or exhibit other undesirable
behavior different from converging to a point, let alone to some game-theoretically meaningful
one [VGFP19, HMC21]. The only known convergence guarantees hold under the strong
assumption that the initialization is very close to a local min-max equilibrium [WZB19].
Moreover, the afore-described challenges are not just theoretical curiosities. All known methods
are unstable in practice, even in simple settings.

We propose the first method that is guaranteed to converge to a local min-max equilibrium
for smooth nonconvex-nonconcave objectives. Our method is second-order and provably
escapes limit cycles as long as it is initialized at an easy-to-find initial point. Both the definition
of our method and its convergence analysis are motivated by the topological nature of the
problem. In particular, our method is not designed to decrease some potential function, such
as the distance of its iterate from the set of local min-max equilibria or the projected gradient
of the objective, but is designed to satisfy a topological property that guarantees the avoidance
of cycles and implies its convergence.
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1 Introduction
Min-max optimization lies at the foundations of Game Theory [vN28b], Convex Optimiza-
tion [Dan51a, Adl13] and Online Learning [Bla56, Han57, CBL06], and has found many ap-
plications in theoretical and applied fields including, more recently, in adversarial training and
other multi-agent learning problems [GPM+14, MMS+18, ZYB19]. In its general form, it can be
written as

min
θ∈Θ

max
ω∈Ω

f (θ, ω), (1)

where Θ and Ω are convex subsets of the Euclidean space, and f is continuous.
Eq. (1) can be viewed as a model of a sequential-move game wherein a player who is interested

in minimizing f chooses θ first, and then a player who is interested in maximizing f chooses ω

after seeing θ. A solution to (1) corresponds to a Nash equilibrium of this sequential-move game.
We may also study the simultaneous-move game with the same objective f wherein the mini-

mizing player and the maximizing player choose θ and ω simultaneously. The Nash equilibrium
of the simultaneous-move game, also called a min-max equilibrium, is a pair (θ?, ω?) ∈ Θ×Ω such
that

f (θ?, ω?) ≤ f (θ, ω?), for all θ ∈ Θ and f (θ?, ω?) ≥ f (θ?, ω), for all ω ∈ Ω. (2)

It is easy to see that a Nash equilibrium of the simultaneous-move game also constitutes a
Nash equilibrium of the sequential-move game, but the converse need not be true. Here, we focus
on solving the (harder) simultaneous-move game. In particular, we study the existence of dynamics
which converge to solutions of the simultaneous-move game, namely the existence of methods
that make incremental updates to a pair (θt, ωt) so as the sequence (θt, ωt) converges, as t→ ∞,
to some (θ∗, ω∗) satisfying (2) or some relaxation of it.

This problem has been extensively studied in the special case where Θ and Ω are convex and
compact and f is convex-concave — i.e. convex in θ for all ω and concave in ω for all θ. In this case,
the set of Nash equilibria of the simultaneous-move game is equal to the set of Nash equilibria
of the sequential-move game, and these sets are non-empty and convex [vN28b]. Even in this
simple setting, however, many natural dynamics surprisingly fail to converge: gradient descent-
ascent, as well as various continuous-time versions of follow-the-regularized-leader, not only fail to
converge to a min-max equilibrium, even for very simple objectives, but may even exhibit chaotic
behavior [MPP18, VGFP19, HMC21]. In order to circumvent these negative results, an extensive
line of work has introduced other algorithms, such as extragradient [Kor76] and optimistic gradient
descent [Pop80], which exhibit last-iterate convergence to the set of min-max equilibria in this
setting; see e.g. [DISZ18, DP18, MR18, RLLY18, HA18, ADLH19, DP19, LS19, GHP+19, MOP19,
ALW19, GPDO20, GPD20]. Alternatively, one may take advantage of the convexity of the problem,
which implies that several no-regret learning procedures, such as online gradient descent, exhibit
average-iterate convergence to the set of min-max equilibria [CBL06, SS12, BCB12, SSBD14, Haz16].
Moreover, [LJJ20, KM21, OLR21] show that convexity with respect to one of the two players is
enough to design algorithms that exhibit average-iterate convergence to min-max equilibria.

Our focus in this paper is on the more general case where f is not assumed to be convex-
concave, i.e. it may fail to be convex in θ for all ω, or may fail to be concave in ω for all θ, or
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both. We call this general setting where neither convexity with respect to θ nor concavity with
respect to ω is assumed, the nonconvex-nonconcave setting. This setting presents some substantial
challenges. First, min-max equilibria are not guaranteed to exist, i.e. for general objectives there
may be no (θ?, ω?) satisfying (2); this happens even in very simple cases, e.g. when Θ = Ω = [0, 1]
and f (θ, ω) = (θ − ω)2. Second, it is NP-hard to determine whether a min-max equilibrium
exists [DSZ21] and, as is easy to see, it is also NP-hard to compute Nash equilibria of the sequential-
move game (which do exist under compactness of the constraint sets). For these reasons, the
optimization literature has targeted the computation of local and/or approximate solutions in
this setting [DP18, MR18, JNJ19, WZB19, DSZ21, MV21]. This is the approach we also take in this
paper, targeting the computation of (ε, δ)-local min-max equilibria, which were proposed in [DSZ21].
These are approximate and local Nash equilibria of the simultaneous-move game, defined as
feasible points (θ?, ω?) which satisfy a relaxed and local version of (2), namely:

f (θ?, ω?) < f (θ, ω?) + ε, for all θ ∈ Θ such that ‖θ − θ?‖ ≤ δ; (3)

f (θ?, ω?) > f (θ?, ω)− ε, for all ω ∈ Ω such that ‖ω−ω?‖ ≤ δ. (4)

Besides being a natural concept of local, approximate min-max equilibrium, an attractive feature
of (ε, δ)-local min-max equilibria is that they are guaranteed to exist when f is Λ-smooth and the
locality parameter, δ, is chosen small enough in terms of the smoothness, Λ, and the approximation

parameter, ε, namely whenever δ ≤
√

2ε
Λ . Indeed, in this regime of parameters the (ε, δ)-local

min-max equilibria are in correspondence with the approximate fixed points of the Projected
Gradient Descent/Ascent dynamics. Thus, the existence of the former can be established by invoking
Brouwer’s fixed point theorem to establish the existence of the latter. (Theorem 5.1 of [DSZ20]).

There are a number of existing approaches which would be natural to use to find a solution
(θ?, ω?) satisfying (3) and (4), but all run into significant obstacles. First, the idea of averaging,
which can be leveraged in the convex-concave setting to obtain provable guarantees for otherwise
chaotic algorithms, such as online gradient descent, no longer works, as it critically uses Jensen’s
inequality which needs convexity/concavity. On the other hand, negative results abound for
last-iterate convergence: [HMC21] show that a variety of zeroth, first, and second order methods
may converge to a limit cycle, even in simple settings. [VGFP19] study a particular class of
nonconvex-nonconcave games and show that continuous-time gradient descent-ascent (GDA)
exhibits recurrent behavior. Furthermore, common variants of gradient descent-ascent, such as
optmistic GDA (OGDA) or extra-gradient (EG), may be unstable even in the proximity of local
min-max equilibria, or converge to fixed points that are not local min-max equilibria [DP18, JNJ19].
While there do exist algorithms, such as Follow-The-Ridge proposed by [WZB19], which provably
exhibit local convergence to a (relaxation of) local min-max equilibrium, these algorithms do not
enjoy global convergence guarantees, and no algorithm is known with guaranteed convergence to
a local min-max equilibrium.

These negative theoretical results are consistent with the practical experience with min-
maximization of nonconvex-nonconcave objectives, which is rife with frustration as well. A
common experience is that the training dynamics of first-order methods are unstable, oscillatory
or divergent, and the quality of the points encountered in the course of training can be poor; see
e.g. [Goo16, MPPSD16, DISZ18, MGN18, DP18, MR18, MPP18, ADLH19]. In light of the failure of
essentially all known algorithms to guarantee convergence, even asymptotically, to local min-max
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convex-concave nonconvex-concave
nonconvex-
nonconcave

existence yes [vN28a] no† no†

complexity
poly-time

e.g. [Dan51b, FS97, SS12]
NP-hard? NP-hard [DSZ21]

N
as

h
Eq

.

convergent
dynamics

many
e.g. [FS97, CBL06, SS12]

not applicable not applicable

existence same as above yes yes [DSZ21]

complexity same as above poly-time
[LJJ20, KM21, OLR21]

PPAD-hard [DSZ21]

Lo
ca

lN
as

h
Eq

.

convergent
dynamics

same as above many
[LJJ20, KM21, OLR21]

This paper

Table 1: Summary of known results for equilibrium existence, equilibrium complexity, and
existence of dynamics converging to equilibrium for simultaneous zero-sum games with differing
complexity in their objective function.

(†) For example, the zero-sum game with objective function f (θ, ω) = −(θ−ω)2, where the minimizing player chooses
θ ∈ [−1, 1] and the maximizing player chooses ω ∈ [−1, 1], does not have any Nash Equilibrium.

(?) Although it is not explicitly stated in [DSZ21], this is a consequence of the proof of Theorem 10.1 in [DSZ20].

equilibria, we ask the following question: Is there an algorithm which is guaranteed to converge to a
local min-max equilibrium in the nonconvex-nonconcave setting [WZB19]?

1.1 Our Contribution

In this work we answer the above question in the affirmative: we propose a second-order method
that is guaranteed to converge to a local min-max equilibrium (Theorem 1). Our algorithm,
called STay-ON-the-Ridge or STON’R, has some similarity to Follow-The-Ridge or FTR, which
only converges locally and to a relaxed notion of min-max equilibrium. Both the structure of
our algorithm and its global convergence analysis are motivated by the topological nature of
the problem, as established by [DSZ21] who showed that the problem is computationally (and
mathematically) equivalent to Brouwer fixed point computation. In particular, the structure and
analysis of STON’R are not based on a potential function argument but on a parity argument (see
Section 4), akin to the combinatorial argument used to prove the existence of Brouwer fixed points.

Table 1 shows our contributions in the context of what was known prior to our work about
equilibrium existence, equilibrium complexity, and existence of dynamics with guaranteed conver-
gence to equilibrium in zero-sum games with objectives of differing complexity.
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1.2 Simulated Experiments

As a warm-up we present some simulated experiments to compare the performance of our
algorithm with the widely used algorithms for min-max optimization. More precisely, we compare:
Gradient Descent Ascent (GDA; Figure 1), Extra-Gradient (EG; Figure 2), Follow-the-Ridge (FtR;
Figure 3), and STay-ON-the-Ridge (STON’R; Figure 4) in the following 2-D examples:

min
θ∈[−1,1]

max
ω∈[−1,1]

f1(θ, ω) := (4θ2 − (ω− 3θ +
θ3

20
)2 − ω4

10
) exp(− θ2 + ω2

100
), and

min
θ∈[−1,1]

max
ω∈[−1,1]

f2(θ, ω) := −θω− 1
20
·ω2 +

2
20
· S
(

θ2 + ω2

2

)
·ω2

where S is the smooth-step function S(θ) =


0, θ ≤ 0

3θ2 − 2θ3, θ ∈ [0, 1]

1, θ ≥ 1

.

We do not provide separate plots for Optimistic Gradient Descent Ascent (OGDA) because its
behavior is almost identical with the behavior of EG in these examples and hence all our comments
about EG transfer to OGDA as well. In all the following figures the different colors represent
trajectories with different initialization. The initialization of every trajectory is represented by a
dot and the line represent the path that the algorithm follows starting from the dot.

Observe that all the known methods either get trapped on a limit cycle, or they only converge
when initialized very close to the solution. Our algorithm (Figure 4) is the only one that converges
in both of these examples when initialized in (−1,−1) which is far away from the solution.

(a) f1(θ, ω). (b) f2(θ, ω).

Figure 1: (Algorithm: GDA) (a) We observe that for any initial condition the algorithm converges
to the same limit cycle. The only exception is when the algorithm is initialized exactly on (0, 0)
where the gradients are 0 and hence it does not move. So in this example, unless initialized on the
equilibrium, the algorithm converges to a specific limit cycle. (b) In this example, if the algorithm
is initialized far away from the equilibrium, which is (0, 0), then it diverges, i.e., it moves towards
the boundary. On the other hand, if the algorithm is initialized close enough to the equilibrium
then it slowly converges to the equilibrium point with a very slow rate.
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(a) f1(θ, ω). (b) f2(θ, ω).

Figure 2: (Algorithm: EG/OGDA) (a) we observe that for every initial conditions the algorithm
converges to the same limit cycle with the only exception of (0, 0) as for GDA in Figure 1. (b) The
behavior of the algorithm for f2(θ, ω) is again similar to the behavior of GDA as we can see in
Figure 1 (b). There only two differences with GDA: (1) when initialized close to equilibrium, EG
converges very fast, and (2) the region of attraction to the equilibrium is larger compared to GDA.

(a) f1(θ, ω). (b) f2(θ, ω).

Figure 3: (Algorithm: FtR) (a) We observe that for any initial condition the algorithm, in this
example, converges to the equilibrium, in contrast with GDA or EG or OGDA. (b) In this example
the behavior of the algorithm is very similar with GDA or EG or OGDA. If the algorithm is
initialized far away from the equilibrium then it converges to either (1, 1) or (−1,−1) and none of
them are equilibrium points. It is only when the algorithm is initialized next to the equilibrium
that it converges to the equilibrium. Moreover, the algorithm needs to be initialized even closer
than GDA to guarantee convergence. On the other hand, if the algorithm is initialized next to the
equilibrium then it converges extremely fast, even faster than EG.
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(a) f1(θ, ω). (b) f2(θ, ω).

Figure 4: (Algorithm: STON’R) The STON’R algorithm is always initialized at (−1,−1) indepen-
dently of the objective function f . Hence, there is a good initialization for STON’R that is trivial
to compute. This is contrast with the FtR algorithm that requires to be initialized close to the
equilibrium. Such initialization might be as difficult to compute as finding the equilibrium itself.
(a) we observe that the algorithm converges to the equilibrium almost directly and in particular it
does not even need to spiral around the equilibrium. (b) The same for this example as well. The
algorithm converges very fast and directly to the equilibrium although it is initialized far away
from it. To the best of our knowledge, none of the known algorithms can achieve such a converge
guarantee in this example.

2 Solution Concept
First, a standard notation that we use is this: if m is a natural number then [m] = {1, . . . , m}.
Although our main goal is to design optimization methods that have guaranteed convergence to
local min-max equilibria of smooth objectives in the nonconvex-nonconcave setting, we choose
formulate this problem in the language of non-monotone variational inequalities. This not only
simplifies our definitions and notations but also makes our framework applicable to more general
settings such as multi-player concave games that are easily captured from the framework of
variational inequalities [Ros65].

Variational Inequalities (VI). For K ⊆ Rn, consider a continuous map V : K → Rn. We say that
x ∈ K is a solution of the variational inequality VI(V, K) iff: V(x)> · (x− y) ≤ 0 for all y ∈ K.

It is well known that finding local min-max equilibria of smooth objectives can be expressed
as a non-monotone VI problem. Specifically, consider the min-max optimization problem (1), take
K = Θ×Ω and simplify notation by using x ∈ K to denote points (θ, ω) ∈ K. Call the subset of
coordinates of x identified with θ the “minimizing coordinates” and the subset of coordinates of x
identified with ω the “maximizing coordinates.” Then define V : K → Rn as follows:

For j ∈ [n]: set Vj(x) := −∂ f (x)
∂xj

, if j is minimizing, and Vj(x) :=
∂ f (x)

∂xj
, otherwise.

With these definitions, it is easy to see that computing (ε, δ)-local min-max equilibria of smooth
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objectives, i.e. points satisfying (3) and (4), can be reduced to finding solutions to VI(V, K). (In
fact, finding even an approximate VI solution x satisfying V(x)>(x− y) ≥ −α, ∀y ∈ K, would
suffice as long as α > 0 is small enough. For more details see Theorem 5.1 of [DSZ20].)

In view of the above, for the remainder of the paper we focus on solving non-monotone
variational inequality problems. For simplicity of exposition throughout we will take our constraint
set to be K = [0, 1]n. In this case there is a simple characterization of the solutions to VI(V, K).

Definition 1. We call a coordinate i at point x ∈ [0, 1]n,

1. zero-satisfied if Vi(x) = 0,

2. boundary-satisfied if (Vi(x) ≤ 0 and xi = 0) or (Vi(x) ≥ 0 and xi = 1),

3. satisfied if i is zero- or boundary- satisfied and unsatisfied if it is not satisfied.

Lemma 1 (Proof in Appendix C). x is a solution of VI(V, [0, 1]n) iff j is satisfied at x, ∀j ∈ [n].

Finally, in the rest of the paper we make the following assumptions for V:

(Λ-Lipschitz) ‖V(x)−V(y)‖2 ≤ Λ · ‖x− y‖2, for all x, y ∈ [0, 1]n.

(L-smooth) ‖J(x)− J(y)‖F ≤ L · ‖x− y‖2, for all x, y ∈ [0, 1]n.

where J is the Jacobian of V, and ‖A‖F denotes the Frobenious norm of the matrix A.

3 STay-ON-the-Ridge: High-Level Description
In this section we describe our algorithm and discuss the main design ideas leading to its
convergence properties presented in Section 5. As explained in the previous section, our goal is to
find a point x such that every coordinate i ∈ [n] is satisfied at x according to the Definition 1.

Our algorithm is initialized at point x(0) = (0, . . . , 0) where a number of coordinates may
be unsatisfied. The goal of the algorithm is to satisfy all unsatisfied coordinates one-by-one in
lexicographic order (although, as we will see, coordinates may go from being satisfied to being
unsatisfied in the course of the algorithm). We say that our algorithm “starts epoch i at point x”
iff all coordinates ≤ i− 1 are satisfied at x and the algorithm’s immediate goal is to find a point
x′ 6= x that satisfies all coordinates ≤ i, namely:

Goal of epoch i, starting at point x: find x′ 6= x satisfying all coordinates ≤ i.

We now describe how the algorithm tries to meet the afore-described goal. So let us assume that,
at time t, our algorithm starts epoch i at point x(t). Postponing full details to Section 5.1, where
we describe our algorithm in detail, for simplicity of exposition let us assume in this section that,
at x(t), all coordinates ≤ i − 1 are zero-satisfied, i.e. Vj(x(t)) = 0 for all j ≤ i − 1. To achieve
the goal of epoch i starting at x(t), our algorithm will try to find a point x′ 6= x(t) where all
coordinates ≤ i− 1 remain zero-satisfied and coordinate i is also satisfied as follows:

• First, it will try to find such a point in the connected subset Si(x(t)) ⊆ [0, 1]n that contains x(t)
and all points z satisfying the following: (a) all coordinates ≤ i− 1 are zero-satisfied at z, and (b)
for all j ≥ i + 1, zj = xj(t).
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• Next, let us describe how our algorithm navigates Si(x(t)) in the hopes of identifying a point
x′ 6= x(t) where all coordinates ≤ i are satisfied. A natural approach is to run a continuous-
time dynamics {z(τ)}τ≥0 that is initialized at z(0) = x(t) and moves inside Si(x(t)). What
are possible directions of movement for such dynamics so that it stays within Si(x(t))? If the
dynamics is at some point z ∈ Si(x(t)), it will remain in this set if it moves, infinitessimally, in a
unit direction d satisfying the following constraints:

1. dj = 0, for all j ≥ i + 1; /* this is so that (b) in the definition of Si(x(t)) is maintained */

2. (∇Vj(z))> · d = 0, for all j ∈ {1, . . . , j− 1}. /* this is so that (a) is maintained */

Notice that 1 and 2 specify n− 1 constraints on n variables. We will place mild assumptions on f
so that there is a unique, up to a sign flip, unit direction satisfying these constraints. (Specifically
see Assumption 1 in Section 5.2, where our main result is formally stated.) Moreover, we will
specify a way to break ties so that we choose one of the two unit directions satisfying our
constraints. (Specifically this is done in part 3 of Definition 2 in Section 5.1.) Let us denote by
Di(z) the unit direction that our tie-breaking rule selects at z.

• With the above choices, the continuous-time dynamics ż(τ) = Di(z(τ)), initialized at z(0) = x(t),
is well-defined. We follow this dynamics until the earliest time that one of the following happens
(if both events happen at the same time we will say that the good event happened):

– (Good Event): the dynamics stops at a point x′ 6= x(t) where coordinate i is satisfied;

– (Bad Event): the dynamics stops at a point x′ lying on the boundary of [0, 1]n (and if it were to
continue it would violate the constraints).

So we have described what our algorithm does if, at time t, it starts epoch i at some point x(t).
Suppose x′ is the point where the continuous-time dynamics executed during epoch i terminates.
If the good event happened, coordinate i is satisfied at x′, and our algorithm starts epoch i + 1 at
x′. If the bad event happened, our algorithm will in fact start epoch i− 1 at point x′. What does
this mean? That it will run the continuous-time dynamics corresponding to epoch i− 1 on the
set Si−1(x′) starting at x′ in order to find some point x′′ 6= x′ where all coordinates ≤ i− 1 are
satisfied. It may fail to do this, in which case it will start epoch i− 2 next. Or it may succeed, in
which case, it will start epoch i, and so on so forth until (as we will show!) all coordinates will be
satisfied. The high-level pseudocode of our algorithm is given in Dynamics 1.

At this point we have described an algorithm that explores the space in a natural way in its
effort to satisfy coordinates, but it is unclear why it would succeed in eventually satisfying all
of them, how it would escape cycles, and how it would not get stuck at non-equilibrium points.
Importantly, there is no quantity that seems to be consistently improving during the execution
of the algorithm. For example, the number of satisfied coordinates might decrease during the
algorithm’s execution.

How we can show this algorithm converges since no quantity seems to be consistently
improving during its execution?

To show the convergence of our algorithm we need to use a different kind of argument than
the classical arguments used in optimization which are based on some quantity improving. In
particular, we use a topological argument that we describe in Section 4.
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Dynamics 1 STay-ON-the-Ridge (STON’R) — High-Level Description

1: Initially x(0) ← (0, . . . , 0), i ← 1, t ← 0.
2: while x(t) is not a VI solution do
3: Initialize epoch i’s continuous-time dynamics, ż(τ) = Di(z(τ)), at z(0) = x(t).
4: while exit condition of this dynamics has not been reached do
5: Execute ż(τ) = Di(z(τ)) forward in time.
6: end while
7: Set x(t + τ) = z(τ) for all τ ∈ [0, τexit] (where τexit is time exit condition was met).
8: if x(t + τexit) �= x(t) and coordinate i is satisfied at x(t + τexit) then
9: Update the epoch i ← i + 1.

10: else
11: (Bad event happened so) move to the previous epoch i ← i − 1.
12: end if
13: Set t ← t + τexit.
14: end while
15: return x(t)

4 A Topological Argument of Convergence
As discussed in Section 3, there seems to be no clear potential function that decreases in the course
of our algorithm’s execution, which we could track to show that it converges. Indeed, even the
number of satisfied coordinates might decrease in the course the algorithm’s execution as we
explained in Section 3. So how we can show that our algorithm converges?

Our main idea is to use topological arguments that have been successfully employed to show
the convergence of other equilibrium computation algorithms. In the celebrated [LH64] algorithm,
e.g., the following argument is used to prove the algorithm’s convergence.

Lemma 2. Let G = (N, E) be a directed graph such that every node has in-degree at most 1 and out-degree
at most 1. If there exists some node v ∈ N with in-degree 0 and out-degree 1, then there is unique directed
path starting at v and ending at some v′ ∈ N that has in-degree 1 and out-degree 0.

Figure 5: A directed graph whose nodes have in-degree and out-degree at most 1 is a collection
of directed paths, directed cycles, and isolated nodes. Hence, if a node v has in-degree 0 and
out-degree 1 then it has to be the start of a directed path that must end at a node v′ after a finite
number of steps.

The proof of Lemma 2 is straightforward, as Figure 5 illustrates. The lemma suggests the following
recipe for proving the convergence of some deterministic, iterative algorithm, with update rule
vt+1 ← F(vt), whose iterates lie in a finite set N:
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1. Define a directed graph G whose vertex set is V and edge set is E = {(u, v) | u 6= v and v =

F(u)}, i.e. there is a directed edge from u to v iff v is different from u and v is reached after one
iteration of the algorithm starting at u.

2. Argue that every vertex of G has in-degree ≤ 1. It is clear that every vertex has out-degree ≤ 1.

3. Show that the algorithm can be initialized at some v0 that has in-degree 0 and out-degree 1.

4. Employ Lemma 2 to argue that if the algorithm is initialized at v0 it must, eventually, arrive at
some node vend whose out-degree is 0. Out-degree 0 means that vend = F(vend).

5. The above prove that if the algorithm starts at v0 it is guaranteed to converge.

Having this topological argument in place we are ready to formally describe our algorithm
and argue its convergence. In the course of our description we will be sure to specify a finite
set of points V that will act as the nodes of the finite graph that we will construct to employ
the above convergence argument. Intuitively, these are all the points at which our algorithm can
possibly start an epoch. The map F(·) that we use to construct our graph is the outcome of the
continuous-time process that our algorithm execute when it starts an epoch at such a point.

5 Detailed Description of STON’R and Main Result
We provide a formal description of our algorithm, state our main convergence theorem, and
provide the main components of its proof building on the ideas from Section 4.

5.1 STON’R: Detailed Description

We provide a detailed description of our algorithm, building on the framework from Section 3.
To simplify our exposition in that section, we only described the behavior of the algorithm
when it starts an epoch at some x where coordinates ≤ i− 1 are zero-satisfied and its goal is to
identify some x′ 6= x at which coordinates ≤ i are satisfied. To achieve this goal the algorithm
executed a continuous-time dynamics constrained by keeping all coordinates ≤ i− 1 zero-satisfied.
However, in the course of its execution the algorithm might be hitting the boundary in its effort to
satisfy coordinates. So, in the general case, when it starts a new epoch, some coordinates will be
zero-satisfied and some will be boundary-satisfied. As such, what the algorithm will do in the
general case during some epoch is execute a continuous-time dynamics constrained by keeping
the zero-satisfied coordinates zero-satisfied and the boundary-satisfied coordinates at the right
boundary.

More precisely, the epochs of our algorithm are, in fact, indexed not only by some coordinate
i but also by a subset of coordinates S ⊆ [i− 1] that are zero-satisfied at the point x where the
epoch starts. The goal of the epoch is the following.

Goal of epoch (i, S), starting at point x (where S ⊆ [i− 1], coordinates in S are zero-
satisfied and coordinates in [i− 1] \ S are boundary-satisfied): find x′ 6= x where all
coordinates ≤ i are satisfied, all coordinates in S are zero-satisfied and all coordinates
in [i− 1] \ S are boundary-satisfied.

As in our high-level description in Section 3, epoch (i, S) starting at x might achieve its goal
or end before it achieves its goal. In both cases, a new epoch will start. Now, how does the
algorithm try to achieve its goal in some epoch? Similar to the special case discussed in Section
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3, in the general case considered here the algorithm will execute a continuous-time dynamics
that maintains all the coordinates j ∈ S zero-satisfied, all the coordinates j ∈ [i− 1] \ S boundary-
satisfied, and leaves all coordinates [n] \ ({i} ∪ S) unchanged. The following definition captures
the tangent unit vector of the curve that this continuous-time dynamics travels.

Definition 2. Given i ∈ [n], a set of coordinates S = {s1, . . . , sm} ⊆ [i− 1], and some point x, we say
that a unit vector d ∈ Rn is admissible iff it satisfies the following:

1. dj = 0, for all j /∈ S ∪ {i}.

2. ∇Vj(x)> · d = 0, for all j ∈ S.

3. The sign of

∣∣∣∣∣∣∣∣∣∣∣

∂Vs1 (x)
∂xs1

∂Vs2 (x)
∂xs1

. . . ∂Vsm (x)
∂xs1

ds1

...
...

...
...

...
∂Vs1 (x)

∂xsm

∂Vs2 (x)
∂xsm

. . . ∂Vsm (x)
∂xsm

dsm

∂Vs1 (x)
∂xi

∂Vs2 (x)
∂xi

. . . ∂Vsm (x)
∂xi

di

∣∣∣∣∣∣∣∣∣∣∣
equals sign

(
(−1)|S|

)
.

If there is a unique unit direction satisfying the above constraints, we denote that direction Di
S(x).

We will place mild assumptions on V so that Di
S(x) is (uniquely) defined for all x ∈ [0, 1]n

where coordinates S are zero-satisfied. (Specifically see Assumption 1 in Section 5.2, where our
main result is formally stated.) With this definition in place, when our algorithm starts epoch (i, S)
at point x, it will execute the continuous-time dynamics ż(τ) = Di

S(z(τ)), initialized at z(0) = x,
forward in time. The algorithm executes this dynamics until the earliest time τexit such that z(τexit)

is an exit point, as per the definition below.

Definition 3. Suppose i ∈ [n], S ⊆ [i− 1] and x′ is a point where coordinates in S are zero-satisfied and
coordinates in [i− 1] \ S are boundary-satisfied. Then x′ is an exit point for epoch (i, S) iff it satisfies one
of the following:

• (Good Exit Point): Coordinate i is satisfied at x′, i.e., Vi(x′) = 0, or x′i = 0 and Vi(x′) < 0, or x′i = 1
and Vi(x′) > 0.

• (Bad Exit Point): For some j ∈ S ∪ {i}, it holds that (Di
S(x′))j > 0 and x′j = 1, or (Di

S(x′))j < 0 and
x′j = 0; in other words, if the dynamics for epoch (i, S) were to continue from x′ onward, they would
violate the constraints.

• (Middling Exit Point): For some j ∈ [i − 1] \ S, it holds that Vj(x′) = 0 and one of the following
holds: ∇Vj(x′)>Di

S(x′) > 0 and x′j = 0, or ∇Vj(x′)>Di
S(x′) < 0 and x′j = 1; in other words, if the

dynamics for epoch (i, S) were to continue from x′ onward, some boundary-satisfied coordinate would
become unsatisfied.

We will place mild assumptions on V so that there can be a unique j triggering the condition
of Bad Exit Point in Definition 3 and there can be a unique j triggering the Middling Exit Point
condition, when x′ is a point where coordinates in S are zero-satisfied and coordinates in [i− 1] \ S
are boundary-satisfied. (Specifically, see Assumptions 2 and 3 in Section 5.2). Here are the actions
that we need to take if one of the above exit conditions has been reached happen.

Action at Good Events. In case of a good event, we start epoch (i + 1, S′) at x′, where S′ = S∪ {i},
if i is zero-satisfied at x′, and S′ = S, if i is boundary-satisfied at x′.
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Action at Bad Events. In case of a bad event, note that the coordinate j responsible for the condition
in the bad event to trigger must lie in S ∪ {i} because in all other coordinates (Di

S(x′))j = 0 by
definition. Depending on which j triggers the condition of the bad event we do one of the
following:
(1) if the triggering j = i, then we start epoch (i− 1, S \ {i− 1}) at x′.
(2) if the triggering j 6= i, then we start epoch (i, S \ {j}) at x′.

Action at Middling Events. In the case of a middling event, we start epoch (i, S ∪ {j}) at x′

(because the coordinate j that trigger this event is both zero- and boundary-satisfied at x′ so we
add it to S to constrain the dynamics to zero-satisfy it next.).

Combining all the aforementioned ideas we describe our algorithm in Dynamics 2. In Section B
we do a step-by-step analysis of what the algorithm would do for a simple min-max optimization
problem.

Dynamics 2 STay-ON-the-Ridge (STON’R)

1: Initially x(0)← (0, . . . , 0), i← 1, S← ∅, t← 0.
2: while x(t) is not a VI solution do
3: Initialize epoch (i, S)’s continuous-time dynamics, ż(τ) = Di

S(z(τ)), at z(0) = x(t).
4: while z(τ) is not an exit point as per Definition 3 do
5: Execute ż(τ) = Di

S(z(τ)) forward in time.
6: end while
7: Set x(t + τ) = z(τ) for all τ ∈ [0, τexit] (where τexit is earliest time z(τ) became an exit point).
8: if x(t + τexit) is (Good Exit Point) as in Definition 3 then
9: if i is zero-satisfied at x(t + τexit) then

10: Update S← S ∪ {i}.
11: end if
12: Update i← i + 1.
13: else if x(t + τexit) is a (Bad Exit Point) as in Definition 3 for j = i then
14: Update i← i− 1 and S← S \ {i− 1}.
15: else if x(t + τexit) is a (Bad Exit Point) as in Definition 3 for j 6= i then
16: Update S← S \ {j}.
17: else if x(t + τexit) is a (Middling Exit Point) as in Definition 3 for j < i then
18: Update S← S ∪ {j}.
19: end if
20: Set t← t + τexit.
21: end while
22: return x(t)

5.2 Our Assumptions and Our Main Theorem

We next present the assumptions on V that are needed for our convergence proof. We discuss
these assumptions further in Appendix A explaining why they are mild.

Assumption 1. There exist positive real numbers 0 < σmin < σmax so that the following holds: For all
x ∈ [0, 1]n and set of coordinates S = {s1, . . . , sm}, if V`(x) = 0 for all ` ∈ S, then the singular values of
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the m×m matrix

JK
S (x) :=


∂Vs1 (x)

∂xs1
. . .

∂Vs1 (x)
∂xsm

...
...

∂Vsm (x)
∂xs1

. . . ∂Vsm (x)
∂xsm


are greater than σmin and less than σmax.

Assumption 2. For any x ∈ [0, 1]n, set of coordinates S = {s1, . . . , sm}, and i /∈ S: If (V`(x) = 0 for all ` ∈ S)
and (x` ∈ {0, 1} for all ` /∈ S ∪ {i}) then there is at most one coordinate j ∈ S ∪ {i} such that xj = 0 or
xj = 1.

One may ensure Assumption 2 holds by restricting the domain of each variable i in the subset
[αi, 1− βi] of [0, 1], where αi, βi are uniformly random in [0, ε]. For details we refer to Section A.

Assumption 3. For all: (i) collection of coordinates S = (s1, . . . , sm), (ii) coordinate i /∈ S, (iii) point
x ∈ [0, 1]n such that (V`(x) = 0 for all ` ∈ S) and (x` ∈ {0, 1} for all ` /∈ S ∪ {i}), and (iv) vector
(ds1 , . . . , dsm , di) satisfying the equations,

∇S∪{i}Vj(x)> · (ds1 , . . . , dsm , di) = 0 for all j ∈ S,

we have that dj 6= 0 if xj = 0 or xj = 1.

We are now ready to state our main theorem whose is presented in Appendix D.

Theorem 1. Under Assumptions 1, 2, and 3, there exists some T̄ = T̄(σmin, σmax, n, L, Λ) > 0 such that
STay-On-the-Ridge (Dynamics 2) will stop, at some time T ≤ T̄, at some point x(T) ∈ [0, 1]n that is a
solution of VI(V, [0, 1]n).

Remark 1 (Discrete-time Algorithm). It is possible to combine the proof of Theorem 1 with standard
numerical analysis techniques to show the convergence of a simple discrete version of the dynamics assuming
that the step size is small enough. For more details about this we refer to Appendix I.

5.3 Sketch of Proof of Theorem 1

A sketch of our proof of Theorem 1 comes from the recipe that we described in Section 4.

1. We start with the definition of the set of nodes N. The set N contains triples of the form (i, S, x)
where i ∈ [n], S is a subset of [i− 1] and x ∈ [0, 1]n that satisfies the following:

• (a) all coordinates in S are zero-satisfied, (b) all coordinates in [i− 1] \ S are boundary-satisfied,
(c) xj = 0 for all j ≥ i + 1, and either (d1) xi = 0 or (d2) x is an exit point for epoch (i, S)
according to Definition 3 1.

We show in the Appendix the size of N is finite (see Lemma 3).

Next we describe a mapping F : N → N as in Section 4. Let (i, S, x) ∈ N we use the dynamics
ż = Di

S(z) with initial condition z(0) = x and we find the minimum time τexit such that z(τexit)

is an exit point. We then update i, S to i′, S′ according to the rules for actions on exit points

1The actual set of nodes that we used in the proof does not contain the information of i and S but we refer to the
Appendix for the exact proof.
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of Section 5.1 and we define F((i, S, x)) = (i′, S′, z(τexit)). As we show in the appendix the
dynamics ż = Di

S(z) have a unique solution under our assumptions and hence F is well defined
(Lemma 4).

The set N and the mapping F define the directed graph G as we described in Section 4 that
is guaranteed to have vertices with out-degree at most 1. We also show that any v ∈ V with
out-degree 0 is an equilibrium point (Lemma 4).

2. To show that the in-degree is at most 1 too we show that we can actually solve the dynamics
backwards in time. In particular, if we specify z(0) and there is the smallest time τexit such that
z(−τexit) is an exit point then z(−τexit) is uniquely determined. This means that there exists
F−1 : N → N such that if v′ = F(v) then F−1(v′) = v which means that no vertex in N can have
in-degree more than 1 (Lemma 5).

3. We show that v0 = (1, ∅, (0, . . . , 0)) ∈ N. Also, if run the dynamics ż = D1
∅(z) backwards in

time starting at z(0) = 0 then we get outside [0, 1]n and so v0 has in-degree 0. We also show that
the dynamics ż = D1

∅(z) can move forward in time and stay inside [0, 1]n so v0 has out-degree 1
(Lemma 6).

4. The above show that our algorithm converges.
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Appendix

A Discussion Of Assumptions 1, 2 and 3
In this section we discuss about the generality of our Assumptions 1, 2, and 3. We follow a general
recipe in our arguments. In particular, we consider any VI problem VI(V, K) that does not satisfy
some of our Assumptions, then we argue that there exists a small random perturbation VI(Ṽ, K̃)
of VI(V, K) such that: (1) any approximate solution of VI(Ṽ, K̃) is also an approximate solution of
VI(V, K) with slightly higher approximation loss, and (2) VI(Ṽ, K̃) satisfies all our Assumptions.

The arguments that we present in the next sections are heuristic but we conjecture that
our statements are true in general which we leave as an interesting open problem. The main
component that we miss towards this direction is the following: we can so that for a particular
problem VI(V, K) if a particular point x ∈ K violates some of the assumptions then a random
perturbation suffices to make x satisfy all the assumptions. The argument is missing is to show
that these random perturbations produce instances that satisfy the assumptions for every point
in the space. As we said before we conjecture that this is actually true and we have verified our
conjecture in some simple experiments.

A.1 Assumption 1

To understand this assumption, consider the instance V(x) = 3x2 which is the simplest single-
dimensional VI problem violating our assumption. This corresponds to a local maximization
problem with objective function f (x) = x3 as per our discussion in Section 2. In this case, at
x = 0 we have that V(0) = 0 and V ′(0) = 0 at the same time and hence Assumption 1 is violated.
However, it is easy to perturb f and V in this problem to a problem that does not have this
issue. We can simply add to f a periodic function, e.g., α · sin(x + ψ), with parameter α very
small and in particular α ≤ ε and we suppose that we chose ψ uniformly. Let f̃ be the modified
maximization objective, i.e., f̃ (x) = f (x) + α · sin(x + ψ). It is not hard to see that any stationary
point of f̃ is also approximate stationary points of f and that the probability that f̃ has both
first and second derivatives small at the same time is close to zero. This example suggests that
in single-dimensional problems adding a periodic function with small magnitude and random
period can produce an instance that satisfies Assumption 1, while preserving the set of solutions.

In higher dimensions the situation is more complicated and a formal argument to show
that a regularization procedure, as the one we described above, exists becomes more technically
challenging. Our conjecture though is that such a procedure exists for high-dimensions as well.
To support this conjecture we ran some simple experiments with objective functions that do
not satisfy 1 and we observe that indeed small random perturbations always produce objective
functions that satisfy Assumption 1. A theoretical proof for the possibility of this regularization
approach is a very interesting open problem.

A.2 Assumption 2

We can ensure that Assumption 2 holds by restricting the domain of each variable i in the subset
[αi, 1− βi] of [0, 1], where αi, βi are uniformly random in [0, ε]. Is we choose αi and βi to be very
small, a solution to the VI problem in the restricted domain, corresponds to a Θ(ε)-approximate
one in the original domain. Moreover, it is not hard to see that due to the randomness in the
αi’s and the βi’s, Assumption 2 holds with probability 1 in the new domain (with the natural
adjustment of the assumption statement, taking αi and 1− βi be the boundary values for each
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coordinate i).
As an example, consider the curve C = {x ∈ [0, 1]n such that V1(x) = 0, . . . , Vn−1(x) = 0} and

assume (because of Assumption 1) that for all x ∈ C the matrix

J(x) :=


∂V1(x)

∂x1
. . . ∂V1(x)

∂xn
...

...
∂Vn−1(x)

∂x1
. . . ∂Vn−1(x)

∂xn


admits singular values greater than σmin and smaller than σmax. If the boundaries [αi, 1− βi]

for each coordinate i are selected uniformly at random from the interval [0, ε], then with high
probability the curve C hits the random rectangle [α1, 1− β1]× · · · × [αn, 1− βn] only in pure facets
(only one coordinate i equals αi or 1− βi).

A.3 Assumption 3

We argue about the generality of Assumption 3 using the same idea as before. We argue that
there exists a small random perturbation of every problem so that the resulting VI satisfies
Assumption 3 with high probability. In particular, consider any VI problem with map V(x) and
define Ṽ(x) = V(x) + Ax, where each entry Aij is selected uniformly at random from [−ε, ε]. A
VI solution x∗ for Ṽ is a Θ(εn)-approximate VI solution for V.

Now Item 2 of Definition 2 defining the notion of direction d = Di
S(x) takes the following

form, (
∇S∪{i}Vj(x) + Aj

S∪{i}

)>
· (ds1 , . . . , dsm , di) = 0

where Aj
S∪{i} denotes the j-th row of A restricted to the columns ` ∈ S ∪ {i}. Due to the fact

that all vectors ∇S∪{i}Vj(x) are linearly independent and the fact that the entries Aij have been
selected uniformly at random in [−ε, ε] we can easily conclude that

Pr[there exists j ∈ S ∪ {i} with dj = 0] = 0

which suggests that Assumption 3 holds with high probability at x.

B 2-d Example of STOR’N Execution
In Figure 6, we show the trajectory that our algorithm follows when it is applied to solve a
min-max optimization problem with objective f (θ, ω) := (θ − 1/2) · (ω − 1/2) where θ is the
minimizing and ω is the maximizing variable. We explain below how this trajectory is derived by
following Dynamics 2.

First, using our notation in Section 2, let x1 correspond to θ and x2 correspond to ω. As
explained in the same section, finding a local min-max equilibrium can be reduced to a non-
monotone VI problem where V1(x1, x2) := 1/2− x2 and V2(x1, x2) := x1 − 1/2. Next we describe
the steps that our algorithm follows.

. x(0) = (0, 0), i = 1, S = ∅, t = 0, STON’R goes to Step 3. V1(0, 0) = 1/2 > 0 and x1 = 0, hence
coordinate 1 is not satisfied. Thus, the loop of Step 2 is activated and STON’R goes to Step 3.

. STON’R goes to Step 5 and executes ż(τ) = (1, 0) with initialization z(0) = (0, 0). Note that at
x = (0, 0) the only unit direction satisfying the constraints of Definition 2 is (1, 0) and that
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Figure 6: The path of STON’R for f (θ, ω) = (θ − 1/2) · (ω − 1/2).

the same is true for any point (·, 0). Thus, for all these points D1
∅((·, 0)) = (1, 0), and the

continuous-time dynamics executed at Step 5 is ż(τ) = (1, 0).

� STON’R goes to Step 7 and sets x(1) = (1, 0). For any point z = (z1, 0), V1(z) = 1/2. Thus the
continuous-time dynamics of Step 5 only terminates when it hits the boundary of the square at
point (1, 0), which happens at time τexit = 1. At Step 7, the algorithm sets x(1) = z(1) = (1, 0).

� STON’R goes to Step 12 and sets i = 2. V1(x(1)) = 1/2 > 0 thus coordinate 1 is boundary-
satisfied at this point. Because this is the good event of Definition 3, the condition of the if
statement of Step 8 triggers. Because coordinate 1 is boundary-satisfied the condition of the if
statement of Step 9 is not triggered. Thus the algorithm arrives at Step 12 and sets i = 2.

� STON’R goes to Step 3 with i = 2, S = ∅. At x(1) = (1, 0) coordinate 1 is boundary-satisfied
since V1(1, 0) = 1/2 > 0 but coordinate 2 is not satisfied since V2(1, 0) = 1/2 > 0. Thus, the
while condition of Step 2 is triggered and STON’R goes to Step 3.

� STON’R goes to Step 5 and executes ż(τ) = (0, 1) with initialization z(0) = (1, 0). Note that at
x = (1, 0) the only unit direction satisfying the constraints of Definition 2 is (0, 1) and that
the same is true for any point (1, ·). Thus, for all these points D2

∅((1, ·)) = (0, 1), and the
continuous-time dynamics executed at Step 5 is ż(τ) = (0, 1).

� STON’R goes to Step 7 and sets x(1.5) = (1, 0.5). For any point z = (1, z2), V1(z) = 1/2− z2 and
V2 = 1/2. Thus the continuous-time dynamics of Step 5 only terminates when it hits point (1, 0.5),
which happens at time τexit = 1/2. The reason the continuous-time dynamics terminates at this
point is because the middling condition of Definition 3 is triggered for j = 1. Indeed, coordinate 1
is boundary satisfied from the beginning of the continuous-time dynamics until it reaches point
(1, 0.5) but if the continuous-time dynamics were to continue onward, then coordinate 1 would
become unsatisfied as V1 would turn negative. Thus the continuous-time dynamics stops at time
τexit = 1/2, the algorithm moves to Step 7 and it sets x(1.5) = z(0.5) = (1, 0.5).
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. STON’R goes to Step 18 and sets S = {1}. Since the most recently executed continuous-time
dynamics at Step 5 ended at a middling exit point, the condition of Step 17 is activated, so the
algorihtm moves to Step 18 where S is set to {1}.

. STON’R goes to Step 3 with i = 2, S = {1}. At x(1.5) = (1, 0.5) coordinate 1 is both zero- and
boundary-satisfied since V1(1, 0.5) = 0 but coordinate 2 is still not satisfied since V2(1, 0.5) = 1/2.
Thus, the while condition of Step 2 is triggered and STON’R goes to Step 3.

. STON’R goes to Step 5 and executes ż(τ) = (−1, 0) with initialization z(0) = (1, 0.5). Note that
at x = (1, 0.5) the only unit direction satisfying the constraints of Definition 2 is (−1, 0) and that
the same is true for any point (·, 0.5). Thus, for all these points D2

{1}((·, 0.5)) = (−1, 0), and the
continuous-time dynamics executed at Step 5 is ż(τ) = (−1, 0).

. STON’R goes to Step 7 and sets x(2) = (0.5, 0.5). For any point z = (z1, 0.5), V1(z) = 0 and
V2 = z1 − 1/2. Thus the continuous-time dynamics of Step 5 only terminates when it hits
point (0.5, 0.5), which happens at time τexit = 1/2. The reason the continuous-time dynamics
terminates at this point is because the good condition of Definition 3 is triggered for i = 2 at
this point. Thus the continuous-time dynamics stops at time τexit = 1/2, the algorithm moves to
Step 7 and it sets x(2) = z(0.5) = (0.5, 0.5).

. STON’R goes to Step 22 and outputs (0.5, 0.5). The condition of the if statement of both Steps 8
and 9 are triggered, so S = {1, 2} and i = 3. At x(2) = (0.5, 0.5) both coordinate 1 and coordinate
2 are satisfied, so the while loop of Step 2 is not activated. So the algorithm goes to Step 22 and
returns (0.5, 0.5).

It is easy to verify that the point (θ, ω) = (1/2, 1/2) is a (local) min-max equilibrium of
(θ − 1/2) · (ω− 1/2).

C Proof of Lemma 1
Proof. (←−) Let Z denote the zero-satisfied coordinates (Vi(x) = 0), BS+ the boundary satisfied
coordinates with xi = 1 (and thus Vi(x) > 0) and BS− the boundary satisfied coordinates with
xi = 0 (and thus Vi(x) < 0). For any y ∈ [0, 1]n, we have ∑n

i=1 Vi(x)(xi − yi) ≥ 0, which can
easily be seen by breaking up the sum into three sums corresponding to indices in Z, BS+ and BS−.

(−→) Let x ∈ [0, 1]n be a solution of the V, i.e. V(x)>(x − y) ≤ 0 for all y ∈ [0, 1]n. Con-
sider an arbitrary i ∈ [n] and a vector y such that yj = xj for all j 6= i. If xi = 1, take yi = 0,
and plug this into V(x)(x − y) ≤ 0 to get Vi(x) ≥ 0. If xi = 0, take yi = 1, and plug this into
V(x)>(x− y) ≤ 0 to get Vi(x) ≤ 0. If xi ∈ (0, 1) consider first yi = xi + δ for some small δ > 0 and
plug this into V(x)>(x− y) ≤ 0 we get V(xi) ≥ 0. By repeating the same argument for yi = xi − δ

we that get Vi(x) ≤ 0. As a result, Vi(x) = 0.

D Proof of Theorem 1
In this section we present the proof of Theorem 1. The proof follows closely the sketch exhibited
in Section 5.3 with some slight modifications on the definition of the nodes N of the directed
graph G.
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D.1 Helpful Definitions and Lemmas

We start with the definition of pivots that will play the role of nodes N.

Definition 4. A point x ∈ [0, 1]n is called a pivot if and only if the following hold,

• If coordinate i is not satisfied then Vi(x) > 0.

• If ` is the minimum unsatisfied coordinate then xj = 0 for all coordinates j ≥ `+ 1.

• If ` is the minimum unsatisfied coordinate then there exists at least one coordinate j ∈ M ∪ {`} with
xj = 0 or xj = 1 where M := {j ≤ `− 1 : Vj(x) = 0}.

As in the proof sketch of Section 5.3, given a pivot x (that admits at least one unsatisfied
variable) we argue that STOR’N visits another pivot at some finite time. As depicted in Dynamics 2,
the latter happens by following the continuous curve ż(t) = Di

S(z(t)). Recall that in Dynamics 2
the pair (i, S) is updated in the previous steps of the algorithm (Steps 8, 13, 15 and 17). In the
next Definitions 5, 6 and 7, we provide an alternative way of "computing locally" the pair (i, S) by
using only the knowledge of x(t) at Step 3 of Dynamics 2.

Definition 5. Consider the direction Di
S(x) := (d1, . . . , dn) of Definition 2 for the set of zero-satisfied

coordinates S = {j < i with Vj(x) = 0} (recall that dj = 0 for all j /∈ S ∪ {i}). If, for all k ∈ S, one of
the following holds: (a) xk ∈ (0, 1), or (b) xk = 0 and dk ≥ 0, or (c) xk = 1 and dk ≤ 0, then we define
Di(x) := Di

S(x). Otherwise, let j ∈ S be the unique coordinate (uniqueness follows from Assumption 2)
such that either {xj = 0 and dj < 0} or {xj = 1 and dj > 0}, and we define Di(x) := Di

S\{j}(x). Di(x)
is called the ideal direction of movement at point x ∈ [0, 1]n with respect to coordinate i.

Definition 6. Given a point x ∈ [0, 1]n coordinate i is called frozen if and only if (xi = 0 and [Di(x)]i < 0)
or (xi = 1 and [Di(x)]i > 0) where Di(x) is the ideal direction at x with respect to coordinate i
(Definition 5).

Definition 7. Given a pivot x ∈ [0, 1]n consider

• ` := min1≤j≤n{coordinate j is not satisfied at x}.

• i := maxj≤`{coordinate j is not frozen at x}.

• S← the set of coordinates such that Di(·) = Di
S(·) (see Definition 5).

The coordinate i is called the under examination coordinate, the pair (i, S) is called the admissible pair for
pivot x.

Remark 2. Computing the (i, S) admissible pair of the pivot x(t) at Step 3 in Dynamics 2 is equivalent
with Dynamics 2 at which (i, S) is updated at Steps 8, 13, 15 and 17.

D.2 Main Steps of the Proof

To simplify notation we describe STOR’N using the notion of pivots and admissible pairs (i, S) of
Definition 4 and 7.

We are now ready to present the topological argument described in Section 5.3. As already
mentioned the nodes N of the directed graph G will be the set of pivots while we say that there
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Dynamics 3 STay-ON-the-Ridge (STON’R)

1: Initially x(0)← (0, . . . , 0), i← 1, S← ∅, t← 0.
2: while x(t) is not a VI solution do
3: At point x(t) compute the admissible pair (i, S) for pivot x(t).
4: Follows the continuous-time dynamics, ż(τ) = Di

S(z(τ)), at z(0) = x(t).
5: while z(τ) is not an exit point as per Definition 3 do
6: Execute ż(τ) = Di

S(z(τ)) forward in time.
7: end while
8: Set x(t + τ) = z(τ) for all τ ∈ [0, τexit] (where τexit is earliest time z(τ) became an exit point).
9: Set t← t + τexit.

10: end while
11: return x(t)

exists an edge (x, x′) from pivot x to pivot x′ in case setting z(0) := x and following the direction
ż(t) = Di

S(z(t)) (where (i, S) is the admissible pair of x) leads to pivot x′ once one of the "if" loops
in Steps 9, 11, 13 and 15 is activated.

In Lemma 3 we establish the fact that the pivots which correspond to the number of nodes of
directed graph G are finite.

Lemma 3. There exists a finite number of pivots.

In Definition 8 we formalize the notion of directed edge (x, x′) in graph G which we addition-
ally denote as x′ = Next(x).

Definition 8. Given a pivot x ∈ [0, 1]n consider the trajectory ż(t) = Di
S(z(t)) with z(0) = x where

(i, S) is the admissible pair of x. We say that pivot x′ is the next pivot of x, i.e. x′ = Next(x) if and only if
there exists t∗ > 0 such that

• z(t∗) = x′

• z(t) is not a pivot for all t ∈ (0, t∗).

In Lemma 4 we establish the fact that any pivot with at least one unsatisfied variable must
necessarily admit outdegree equal to 1. The latter directly implies that any pivot with outdegree 0
must correspond to a solution since all coordinates are satisfied.

Lemma 4. For any pivot x ∈ [0, 1]n with at least one unsatisfied coordinate there exists a pivot x′ such that
x′ = Next(x). Moreover let (i, S) be the admissible pair for pivot x, z(t) be the trajectory ż(t) = Di

S(z(t))
with z(0) = x and t′ be the time at which x′ = z(t′). Then for all t ∈ [0, t′],

• all coordinates j ∈ S admit Vj(z(t)) = 0.

• all coordinates j ≤ i− 1 are satisfied at z(t).

• all coordinates j ≥ i + 1 admit zj(t) = 0.

• all coordinates j admit zj(t) ∈ [0, 1].
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Using Lemma 4 we additionally obtain Corollary 1 ensuring that the point x(t) at Step 3 of
Dynamics 3 is always a pivot and thus Dynamics 3 is well-defined.

Corollary 1. Let x(t) at Step 3 of Dynamics 3 be a pivot. Then the point x(t + τexit) at Step 8 of
Dynamics 3 is also a pivot. Moreover the point (0, . . . , 0) is a pivot.

In Lemma 5 we establish the fact that no pivot/node can admit in-degree more than 2. The
latter implies if we start with a pivot with 0 in-degree we must essentially visit a pivot with
out-degree 0 that consists a solution.

Lemma 5. Any pivot x ∈ [0, 1]n admits in-degree at most 1. In other words in case x∗ = Next(x1) and
x∗ = Next(x2) for some pivots x1, x2 then x1 = x2.

We conclude the proof by showing that (0, . . . , 0) that is the initial pivot that Dynamics 3 visits
admits 0 in-degree.

Lemma 6. There is no pivot x ∈ [0, 1]n such that Next(x) = (0, . . . , 0).

E Proof of Lemma 3
Lemma 7. Let the functions F1(x), . . . , Fi(x) where F` : [0, 1]i 7→ R and the set B := {x ∈ [0, 1]i : F`(x) =
0 for all ` = 1, . . . , i}. In case F1, . . . , F` satisfy the following assumptions

• ‖∇F`(x)−∇F`(y)‖2 ≤ L · ‖x− y‖2

• For all x ∈ B the matrix

J(x) :=


∂F1(x)

∂x1
. . . ∂F1(x)

∂xi
...

...
∂Fi(x)

∂x1
. . . ∂Fi(x)

∂xi


admits singular values that are at least σmin and at most σmax.

Then the set B is finite. More precisely, |B| ≤ 2i/Voli
(

2σ2
min√

iLσ2
max

)
where Voli(ρ) is the volume of the

i-dimensional ball with radius ρ.

Lemma 3 directly follows by Lemma 7. More precisely, we get that the number of pivots in

[0, 1]n is at most n · 4n/Voln
(

2σ2
min√

nLσ2
max

)
.

E.1 Proof of Lemma 7

Let us assume the existence of x, y ∈ B such that ‖x − y‖2 ≤ ρ and x 6= y. Notice that the
∇F1(x), . . . ,∇Fi(x) are linearly independent and thus

x− y =
i

∑
j=1

µj · ∇Fj(x)

which implies that

‖µ‖2 ≤
ρ

σmin
(5)
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By Taylor expansion of x and the fact that ‖∇F`(x)−∇F`(y)‖ ≤ L · ‖x− y‖2 we get,∣∣∣∣∣F`(y)− F`(x)− (∇F`(x))> ·
i

∑
j=1

µj · ∇Fj(x)

∣∣∣∣∣ ≤ 1
2

L · ‖
i

∑
`=1

µj · ∇Fj(x)‖2

which due to the fact that F`(y) = F`(x) = 0 implies,[
J>(x) · J(x) · µ

]
`
≤ 1

2
L · σ2

max · ‖µ‖2

and thus
‖µ‖2 ≥

2σmin√
iLσ2

max
(6)

Combining Equation 5 and 6 we get ρ ≥ 2σ2
min√

iLσ2
max

. To this end we know that in case x, y ∈ B with

x 6= y then ‖x− y‖2 ≥ 2σ2
min√

iLσ2
max

. Thus,

|B| ≤ 2i/Voli

(
2σ2

min√
iLσ2

max

)

F Proof of Lemma 4
Lemma 8. Let a pivot x ∈ [0, 1]n and (i, S) the admissible pair for x. Then the following hold,

• There exists a unique trajectory z(t) with ż(t) = Di
S (z(t)) and z(0) = x.

• Vj(z(t)) = 0 for all coordinates j ∈ S.

• There exists t∗ > 0 such that for all t ∈ [0, t∗] all coordinates j ≤ i − 1 are satisfied at z(t) and
zj(t) ∈ [0, 1] for all coordinates j.

Lemma 9. Let a set of coordinates S, a coordinate i and a point x ∈ [0, 1] such that xj ∈ (0, 1) for all
j ∈ S ∪ {i}. Consider the trajectory γ̇(t) = Di

S(γ(t)) with γ(0) = x. Then there exists t∗ ∈ (0, C] such
that

γj(t∗) = 0 or 1 for some j ∈ S ∪ {i}

where C is constant depending on the parameters σmin, σmax and L.

Lemma 10. Let a pivot x ∈ [0, 1]n with at least one unsatisfied coordinate. Let (i, S) the admissible pair of
pivot x (Definition 7) and ` the minimum unsatisfied coordinate at x. Then the following hold,

• The under examination variable admits i ≥ 1.

• xj = 0 for all coordinates j ≥ i + 1.

Additionally one of the following holds,

• i = ` and V`(x) > 0

• xi = 1 and Vi(x) > 0

• Vi(x) = 0 and Di
S(x)>∇Vi(x) > 0
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F.1 Proof of Lemma 4

Given the pivot x ∈ [0, 1]n with at least one unsatisfied variable and let (i, S) denote its admissible
pair. By Lemma 10 we know that the under examination variable i admits i ≥ 1. Now consider
the the trajectory ż(t) = Di

S(z(t)) with z(0) = x. Due to the fact that i ≥ 1 and by Assumption 3
we known that for all t ∈ (0, δ) where δ > 0 is sufficiently small, the following hold

• zj(t) ∈ (0, 1) for all j ∈ S ∪ {i}

• zj(t) = 0 or zj(t) = 1 for all coordinates j /∈ S ∪ {i}.

By Lemma 9 there exists t∗ > 0 such that zj(t∗) = 0 or 1 for some coordinate j ∈ S ∪ {i} and
zj(t) ∈ [0, 1]) for all coordinates j and t ∈ [0, t∗].

We first show that if there exists a coordinate j ≤ i− 1 such that j is not satisfied at z(t∗) then
there exists t̂ < t∗ such that z(t̂) is a pivot.

Let ` denote the unsatisfied coordinate at z(t∗). Notice that by Lemma 8 all coordinates j ∈ S
admit Vj (z(t∗)) = 0 and thus ` /∈ S. The latter implies that (x` = 0 and V`(x) ≤ 0) or (x` = 1 and
V`(x) ≥ 0) and since coordinate ` stands still in the trajectory ż(t) = Di

S(z(t)), z`(t̂) = x` there
are two mutually exclusives cases:

• x` = z`(t̂) = 0, V`(x) ≤ 0 and V`(z(t̂)) > 0

• x` = z`(t̂) = 1, V`(x) ≥ 0 and V`(z(t̂)) < 0

Then by Lemma 12 we additionally get that for sufficiently small δ > 0,

• If x` = 0 then V`(z(t)) < 0 for t ∈ (0, δ)

• If x` = 1 then V`(z(t)) > 0 for t ∈ (0, δ)

As a result, in any case there exists t` ∈ (0, t∗) such that V`(z(t`)) = 0, coordinate ` lies on the
boundary at z(t`) = 0 and coordinate ` is satisfied at z(t) for all t ∈ [0, t`].

Now consider the set of coordinates A := {j ≤ i− 1 : coordinate j is not satisfied at z(t∗)}
and let t̂ := min`∈A t̂`. Then all coordinates j ≤ i − 1 are satisfied at z(t̂) while there exists a
coordinate ˆ̀ ∈ A such that Vˆ̀(z(t̂)) = 0 with coordinate ˆ̀ being on the boundary at z(t̂). Up next
we argue that z(t̂) is a pivot.

Consider the set of coordinates M := {j ≤ i− 1 : Vj(z(t̂)) = 0}. Since ˆ̀ ∈ M and ˆ̀ lies on the
boundary at z(t̂) the third item of Definition 4 is satisfied. Since x is a pivot, Lemma 10 implies
all coordinates j ≥ i + 1 admit xj = 0. Since [Di

S(·)]j = 0 for all j ≥ i + 1 the latter implies that
zj(t̂) = xj = 0. Due to the fact that all coordinates j ≤ i− 1 are satisfied at z(t̂) we get that the
second item of Definition 4 is satisfied. Finally notice that by Lemma 10, Vi(z(t)) > 0 for all
t ∈ (0, δ) for sufficiently small δ. In case Vi(z(t̂)) < 0 then there exist t′ < t̂ such that V(z(t′)) = 0
implying that z(t′) is a pivot. As a result, without loss of generality we assume that Vi(z(t̂)) > 0
which implies that the first item of Definition 4 is satisfied.

As a result, without loss of generality we assume that all coordinates j ≤ i− 1 are satisfied for
all z(t) in [0, t∗]. Up next we show that in this case either the point x∗ := z(t∗) is a pivot or z(t̂) is
pivot for some t̂ ∈ (0, t∗).

Notice that by Lemma 10 all coordinates j ≥ i + 1 admit xj = 0. Since [Di
S(·)]j = 0 for all

j ≥ i + 1 the latter implies that x∗j = xj = 0. As a result, x∗j = 0 for all j ≥ i + 1. Due to our
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assumption that all coordinates j ≤ i− 1 are satisfied at x∗, the minimum unsatisfied coordinate
at x∗ is greater than i and thus the second item of Definition 4 is satisfied. Moreover due to the
fact that x∗j = 0 or 1 for some j ∈ S∪ {i} and Vj(x∗) = 0 for all j ∈ S, the third item of Definition 4
is satisfied.

Up next we argue that in case coordinate i is not satisfied at x∗ then Vi(x∗) > 0. Let us assume
that coordinate i is not satisfied at x∗ and Vi(x∗) < 0. Let ` denote the minimum unsatisfied
variable at x then Lemma 10 provides us with the following mutually exclusive cases:

• i = ` then V`(x) > 0: Since V`(z(0)) = V`(z) > 0 and V`(z(t∗)) = V`(x∗) < 0 there exists
t̂ ∈ (0, t∗) such that V`(z(t̂)) = 0. Notice that z(t̂) satisfies all the three items of Definition 4.

• xi = 1 with Vi(x) > 0: Same as above.

• Vi(x) = 0 and Di
S(x)> ·Vi(x) > 0: Notice that Vi(z(t)) > 0 for all t ∈ (0, δ) once δ is selected

sufficiently small. By repeating the same argument as above we conclude that there is t̂ such
that z(t̂) is a pivot.

F.2 Proof of Lemma 8

Let the set of coordinates S, we first establish in Lemma 11 that Di
S(x) is M-Lipschitz. The proof

of Lemma 11 is presented at Section F.4

Lemma 11. Let x ∈ [0, 1]n and a set of coordinates S such that Vj(x) = 0 for all j ∈ S. Then for any
coordinate i /∈ S and for any y ∈ Rn such that ‖x− y‖2 ≤ σmin/2L

√
n,

‖Di
S(x)− Di

S(y)‖2 ≤ M · ‖x− y‖2

for M := Θ
(

σmax
σ2

min
·
√

n · L
)

.

To simplify notation let Zi(x) := {` < i such that V`(x) = 0} and Fi(x) := {` < i such that coordinate ` is fixed at x}.
Since x is a pivot, all coordinates ` ≤ i− 1 are satisfied and thus each coordinate ` ≤ i− 1 either
belongs to Zi(x) or to Fi(x).

Let us first consider the case where one of the following holds for all coordinates ` ∈ Zi(x).

• x` ∈ (0, 1)

• x` = 0 and [Di
Zi(x)]` ≥ 0

• x` = 1 and [Di
Zi(x)]` ≤ 0

Notice that in this case Definition 5 and 7 imply S = Zi(x). Now consider the set B := {y ∈
Rn such that ‖x− y‖2 ≤ σmin/2L}. Then combining Lemma 11 with the Picard–Lindelöf theorem
we get that there exists a unique z(t) such that

1. ż(t) = Di
S (z(t))

2. z(0) = x

By taking δ > 0 sufficiently small we get that for all t ∈ [0, δ] the following hold,
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• V` (z(t)) = 0 for all ` ∈ S

• z`(t) ∈ (0, 1) for all ` ∈ S.

• coordinate ` is boundary satisfied at z(t) for all ` ∈ {1, . . . , i− 1}/S.

• zj(t) ∈ [0, 1]n for all coordinates j.

Now consider the case in which there exists a coordinate j ∈ Zi(x) such that (xj = 0 and
[Di

Zi(x)]j < 0) or (xj = 1 and [Di
Zi(x)]j > 0). By Assumption 2 we know that such a coordinate

must be unique. In this case by Definition 5 we get Di(x) = Di
Zi(x)/{j}(x) and thus by Definition 7,

S = Zi(x)/{j}.
Lemma 12 establish the fact that in this case following the direction Di

S(x) consists the variable
j boundary satisfied. The proof of Lemma 12 is presented in Section F.3.

Lemma 12. For any x ∈ [0, 1]n if there exists coordinate j with

• xj = 0 and [Di
Zi(x)(x)]j < 0 then

(
Di

Zi(x)/{j}(x)
)>
· ∇Vj(x) < 0.

• xj = 1 and [Di
Zi(x)(x)]j > 0 then

(
Di

Zi(x)/{j}(x)
)>
· ∇Vj(x) > 0.

By the exact same arguments as above, we get that there exists a unique trajectory z(t) such
that ż(t) = Di

S (z(t)) and x(0) = x and by taking δ > 0 sufficiently small we get,

• V` (z(t)) = 0 for all ` ∈ S

• z`(t) ∈ (0, 1) for all ` ∈ S

• coordinate ` is boundary satisfied at z(t) for all ` ∈ Fi(x)

• zj(t) ∈ [0, 1]n for all coordinates j.

In order to complete the proof of Lemma 8 we need to argue that the coordinate j is satisfied
for all z(t) with t ∈ [0, δ′]. Without loss of generality consider xj = 0 (the case xj = 1 follows

symmetrically). Recall that Vj(x) = 0 and by Lemma 12 we get that
(

Di
S(x)

)> · ∇Vj(x) < 0. Thus
by selecting δ′ < δ sufficiently small we get

Vj (z(t)) < 0 and zj(t) = 0

for all t ∈ (0, δ′].

F.3 Proof of Lemma 12

To simplify notation let Zi(x) = {1, . . . , i− 1}, Di
Zi(x)(x) = (d1, . . . , dj, . . . , di) and Di

Zi(x)/{j}(x) =

(d̂1, . . . , d̂j−1, d̂j−1, . . . , d̂i). Moreover let assume that xj = 0 and i is even. The cases xj = 0 and i is
odd, xj = 1 and i is even, xj = 1 and i is odd follow symmetrically.

We will prove that

(
d̂1, . . . , d̂j−1, d̂j+1, . . . , d̂i

)>
·
(

∂Vj(x)
∂x1

, . . . ,
∂Vj(x)
∂xj−1

,
∂Vj(x)
∂xj+1

, . . . ,
∂Vj(x)
∂xi−1

)
< 0
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Since i is even we get by Definition 2,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂Vj−1(x)
∂x1

∂Vj+1(x)
∂x1

. . . ∂Vi−1(x)
∂x1

d̂1
...

...
...

...
∂V1(x)
∂xj−1

. . . ∂Vj−1(x)
∂xj−1

∂Vj+1(x)
∂xj−1

. . . ∂Vi−1(x)
∂xj−1

d̂j−1

∂V1(x)
∂xj+1

. . . ∂Vj−1(x)
∂xj+1

∂Vj+1(x)
∂xj+1

. . . ∂Vi−1(x)
∂xj+1

d̂j+1

...
...

...
...

...
∂V1(x)

∂xi
. . . ∂Vj−1(x)

∂xi

∂Vj+1(x)
∂xi

. . . ∂Vi−1(x)
∂xi

d̂i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (7)

and that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂Vj−1(x)
∂x1

∂Vj(x)
∂x1

∂Vj+1(x)
∂x1

. . . ∂Vi−1(x)
∂x1

d1
...

...
...

...
...

...
∂V1(x)
∂xj−1

. . . ∂Vj−1(x)
∂xj−1

∂Vj(x)
∂xj−1

∂Vj+1(x)
∂xj−1

. . . ∂Vi−1(x)
∂xj−1

dj−1

∂V1(x)
∂xj

. . . ∂Vj−1(x)
∂xj

∂Vj(x)
∂xj

∂Vj+1(x)
∂xj

. . . ∂Vi−1(x)
∂xj

dj
∂V1(x)
∂xj+1

. . . ∂Vj−1(x)
∂xj+1

∂Vj(x)
∂xj+1

∂Vj+1(x)
∂xj+1

. . . ∂Vi−1(x)
∂xj+1

dj+1

...
...

...
...

...
...

∂V1(x)
∂xi

. . . ∂Vj−1(x)
∂xi

∂Vj(x)
∂xi

∂Vj+1(x)
∂xi

. . . ∂Vi−1(x)
∂xi

di

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

< 0 (8)

Combining the fact that
(

∂V`(x)
∂x1

, . . . , ∂V`(x)
∂xi

)>
· (d1, . . . , di) = 0 (see Definition 2) with dj < 0 (we

have assumed that xj = 0) we get by Equation 8,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂Vj−1(x)
∂x1

∂Vj(x)
∂x1

∂Vj+1(x)
∂x1

. . . ∂Vi−1(x)
∂x1

d1
...

...
...

...
...

...
∂V1(x)
∂xj−1

. . . ∂Vj−1(x)
∂xj−1

∂Vj(x)
∂xj−1

∂Vj+1(x)
∂xj−1

. . . ∂Vi−1(x)
∂xj−1

dj−1

0 . . . 0 0 0 . . . 0 d2
1 + . . . + d2

i
∂V1(x)
∂xj+1

. . . ∂Vj−1(x)
∂xj+1

∂Vj(x)
∂xj+1

∂Vj+1(x)
∂xj+1

. . . ∂Vi−1(x)
∂xj+1

dj+1

...
...

...
...

...
...

∂V1(x)
∂xi

. . . ∂Vj−1(x)
∂xi

∂Vj(x)
∂xi

∂Vj+1(x)
∂xi

. . . ∂Vi−1(x)
∂xi

di

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0 (9)

which implies that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂Vj−1(x)
∂x1

∂Vj+1(x)
∂x1

. . . ∂Vi−1(x)
∂x1

∂Vj(x)
∂x1

...
...

...
...

...
∂V1(x)
∂xj−1

. . . ∂Vj−1(x)
∂xj−1

∂Vj+1(x)
∂xj−1

. . . ∂Vi−1(x)
∂xj−1

∂Vj(x)
∂xj−1

∂V1(x)
∂xj+1

. . . ∂Vj−1(x)
∂xj+1

∂Vj+1(x)
∂xj+1

. . . ∂Vi−1(x)
∂xj+1

∂Vj(x)
∂xj+1

...
...

...
...

...
∂V1(x)

∂xi
. . . ∂Vj−1(x)

∂xi

∂Vj+1(x)
∂xi

. . . ∂Vi−1(x)
∂xi

∂Vj(x)
∂xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 0 (10)
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Multiplying with Equation 7 we get,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂V1(x)
∂xi

...
...

...
∂Vj−1(x)

∂x1
. . . ∂Vj−1(x)

∂xi
∂Vj+1(x)

∂x1
. . . ∂Vj+1(x)

∂xi
...

...
...

∂Vi−1(x)
∂x1

. . . ∂Vi−1(x)
∂xi

d̂1 . . . d̂i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂Vj−1(x)
∂x1

∂Vj+1(x)
∂x1

. . . ∂Vi−1(x)
∂x1

∂Vj(x)
∂x1

...
...

...
...

...
∂V1(x)
∂xj−1

. . . ∂Vj−1(x)
∂xj−1

∂Vj+1(x)
∂xj−1

. . . ∂Vi−1(x)
∂xj−1

∂Vj(x)
∂xj−1

∂V1(x)
∂xj+1

. . . ∂Vj−1(x)
∂xj+1

∂Vj+1(x)
∂xj+1

. . . ∂Vi−1(x)
∂xj+1

∂Vj(x)
∂xj+1

...
...

...
...

...
∂V1(x)

∂xi
. . . ∂Vj−1(x)

∂xi

∂Vj+1(x)
∂xi

. . . ∂Vi−1(x)
∂xi

∂Vj(x)
∂xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 0

Now using the fact that
(

∂V`(x)
∂x1

, . . . , ∂V`(x)
∂xj−1

, ∂V`(x)
∂xj+1

, . . . , ∂V`(x)
∂xi

)>
· (d̂1, . . . , d̂j−1, d̂j+1, . . . , d̂i) = 0 (see

Definition 2) implies that∣∣∣∣∣∣∣∣∣∣∣∣

Φ>1 (x) ·Φ1(x) Φ>1 (x) ·Φ2(x) . . . Φ>1 (x) ·Φi−1(x) A1

Φ>2 (x) ·Φ1(x) ΦT
2 (x) ·Φ2(x) . . . ΦT

2 (x) ·Φi−1(x) A2
...

... . . .
...

...
Φ>i−1(x) ·Φ1(x) Φ>i−1(x) ·Φ2(x) . . . Φ>i−1(x) ·Φi−1(x) Ai−1

0 0 . . . 0 (d̂1, . . . , d̂i)
> ·
(

∂Vj(x)
∂x1

, . . . , ∂Vj(x)
∂xi

)

∣∣∣∣∣∣∣∣∣∣∣∣
< 0

where Φ` =
(

∂V`(x)
∂x1

, . . . , ∂V`(x)
∂xj−1

, ∂V`(x)
∂xj+1

, . . . , ∂V`(x)
∂xi

)
. The latter implies Claim 12.

F.4 Proof of Lemma 11

To simplify notation let S := {1, . . . , i− 1} and for x ∈ [0, 1]n consider the matrix A(x) and the
vector b(x)

A(x) :=


∂V1(x)

∂x1

∂V2(x)
∂x1

. . . ∂Vi−1(x)
∂x1

∂V1(x)
∂x2

∂V2(x)
∂x2

. . . ∂Vi−1(x)
∂x2

...
...

...
...

...
∂V1(x)
∂xi−1

∂V2(x)
∂xi−1

. . . ∂Vi−1(x)
∂xi−1

 and b(x) :=


∂V1(x)

∂xi
∂V2(x)

∂xi
...

∂Vi−1(x)
∂xi


Notice that since Vj(x) = 0 for all j = 1, . . . , i− 1, Assumption 1 ensures that the matrix A(x)
admits singular value greater than σmin and thus A(x) is invertible. Moreover due to the fact that
for all x, y ∈ [0, 1]n

‖∇Vj(x)−∇Vj(y)‖2 ≤ L · ‖x− y‖2

we get that

‖A(x)− A(y)‖2 ≤
√

nL · ‖x− y‖2 and ‖b(x)− b(y)‖2 ≤ L · ‖x− y‖2.

To simplify notation CA :=
√

nL and Cb := L. Since ‖x− y‖2 ≤ σmin
2
√

nL we get that A(y) admits
singular value greater than σmin/2 and thus A(y) is invertible.
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Notice that the direction Di
S(x) of Definition 2 is either A−1(x) · b(x)√

1 + ‖A−1(x) · b(x)‖2
2

,
1√

1 + ‖A−1(x) · b(x)‖2
2

 or

− A−1(x) · b(x)√
1 + ‖A−1(x) · b(x)‖2

2

,− 1√
1 + ‖A−1(x) · b(x)‖2

2


depending on the sign of the determinant. We show that for an appropriately selected L,

‖
(

A−1(x)·b(x)√
1+‖A−1(x)·b(x)‖2

2

, 1√
1+‖A−1(x)·b(x)‖2

2

)
−
(

A−1(y)·b(y)√
1+‖A−1(y)·b(y)‖2

2

, 1√
1+‖A−1(y)·b(y)‖2

2

)
‖2

≤ M · ‖x− y‖2

In order to prove the above, we use a standard lemma in sensitivity analysis of linear systems.

Lemma 13. 2 Let the invertible square matrices A, B such that F := ‖(A− B) · A−1‖2 < 1. Then,

‖A−1b− B−1b‖2

‖A−1b‖2
≤ σmax(A)

σmin(A)
· ‖F‖2

1− ‖F‖2

We prove the following 4 inequalities,

• ‖
(

A−1(x)·b(x)√
1+‖A−1(x)·b(x)‖2

2

, 1√
1+‖A−1(x)·b(x)‖2

2

)
−
(

A−1(y)·b(x)√
1+‖A−1(x)·b(x)‖2

2

, 1√
1+‖A−1(x)·b(x)‖2

2

)
‖2 ≤ M1 · ‖x− y‖2

• ‖
(

A−1(y)·b(x)√
1+‖A−1(x)·b(x)‖2

2

, 1√
1+‖A−1(x)·b(x)‖2

2

)
−
(

A−1(y)·b(x)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
‖2 ≤ M2 · ‖x− y‖2

• ‖
(

A−1(y)·b(x)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
−
(

A−1(y)·b(y)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
‖2 ≤ M3 · ‖x− y‖2

• ‖
(

A−1(y)·b(y)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
−
(

A−1(y)·b(y)√
1+‖A−1(y)·b(y)‖2

2

, 1√
1+‖A−1(y)·b(y)‖2

2

)
‖2

2 ≤ M4 · ‖x− y‖2

and then Lemma 2 follows for M := M1 + M2 + M3 + M4.

Let the matrix F := (A(x)− A(y)) · A−1(x) then the fact that ‖x− y‖2 ≤ σmin
2CA

implies,

‖F‖2 = ‖(A(x)− A(y)) · A−1(x)‖2 ≤
CA

σmin
· ‖x− y‖2 ≤

1
2

(11)

2https://www.colorado.edu/amath/sites/default/files/attached-files/linearsystems_0.pdf
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For the first case we get,

‖
(

A−1(x)·b(x)√
1+‖A−1(x)·b(x)‖2

2

, 1√
1+‖A−1(x)·b(x)‖2

2

)
−
(

A−1(y)·b(x)√
1+‖A−1(x)·b(x)‖2

2

, 1√
1+‖A−1(x)·b(x)‖2

2

)
‖2

2

=
‖A−1(x)·b(x)−A−1(y)·b(x)‖2

2
1+‖A−1(x)·b(x)‖2

2

≤ ‖A−1(x)·b(x)−A−1(y)·b(x)‖2
2

‖A−1(x)·b(x)‖2
2

≤
(

σmax
σmin
· ‖F‖2

1−‖F‖2

)2
by Lemma 13

≤
(

σmax
σmin
· 2 · ‖F‖2

)2
by Equation 11

≤ σ2
max

σ2
min
· 4 · ‖(A(x)− A(y)) · A−1(x)‖2

2 ≤ 4 σ2
max

σ4
min
· C2

A · ‖x− y‖2
2

Thus M1 := 2CA
σmax
σ2

min

For the second case

‖
(

A−1(y)·b(x)√
1+‖A−1(x)·b(x)‖2

2

, 1√
1+‖A−1(x)·b(x)‖2

2

)
−
(

A−1(y)·b(x)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
‖2

2

=
(
‖A−1(y) · b(x)‖2 + 1

) (√1+‖A−1(x)·b(x)‖2
2−
√

1+‖A−1(y)·b(x)‖2
2

)2

(1+‖A−1(y)·b(x)‖2
2)·(1+‖A−1(x)·b(x)‖2

2)

≤
(
‖A−1(y) · b(x)‖2 + 1

) (‖A−1(x)·b(x)‖2−‖A−1(y)·b(x)‖)
2

(1+‖A−1(y)·b(x)‖2
2)·(1+‖A−1(x)·b(x)‖2

2)
since

√
1 + b−

√
1 + a ≤

√
b−
√

a

≤ (‖A−1(x)·b(x)‖2−‖A−1(y)·b(x)‖)
2

‖A−1(x)·b(x)‖2
2

≤ ‖A−1(x)·b(x)−A−1(y)·b(x)‖2
2

‖A−1(x)·b(x)‖2
2

Applying the exact same arguments as before, we get M2 := 2CA
σmax
σ2

min
.

For the third case,

‖
(

A−1(y)·b(x)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
−
(

A−1(y)·b(y)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
‖2

2

=
‖A−1(y)·b(y)−A−1(y)·b(x)‖2

2
1+‖A−1(y)·b(x)‖2

2
≤ C2

b
σ2

min
· ‖x− y‖2

2

For the forth case,

‖
(

A−1(y)·b(y)√
1+‖A−1(y)·b(x)‖2

2

, 1√
1+‖A−1(y)·b(x)‖2

2

)
−
(

A−1(y)·b(y)√
1+‖A−1(y)·b(y)‖2

2

, 1√
1+‖A−1(y)·b(y)‖2

2

)
‖2

2

≤
(
‖A−1(y) · b(y)‖2

2 + 1
)
· ‖A−1(y)·b(y)−A−1(y)·b(x)‖2

(1+‖A−1(y)·b(y)‖2)·(1+‖A−1(y)·b(x)‖2)

≤ ‖A−1(y) · b(y)− A−1(y) · b(x)‖ ≤ C2
b

σ2
min
· ‖x− y‖2

2
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As a result, we overall get that M := Θ
(

σmax
σ2

min
· L ·
√

n
)

.

F.5 Proof of Lemma 9

To simplify notation let S := (1, . . . , i− 1) and let Di
S(x) be denoted as D(x). The existence and

uniqueness of trajectory γ(t) follows by the Picard–Lindelöf theorem and the fact that D(x) is
M-Lipschitz continuous (see the proof Lemma 8 and Lemma 11).

We also denote as Φ`(x) the gradient of V`(x) with respect to the coordinates {1, . . . , i}, i.e.
Φ(x) :=

(
∂V`(x)

∂x1
, . . . , ∂V`(x)

∂xi

)
. To simplify things we repeat the definition of D(x) of Definition 2

with respect to the notation of this section.

Definition 9. Given x ∈ [0, 1]i the direction D(x) is defined as follows,

• ∇Vj(x)> · (d1, . . . , di−1, di) = 0 for all j = 1, . . . , i.

• the sign of

∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

∂V2(x)
∂x1

. . . ∂Vi−1(x)
∂x1

d1
∂V1(x)

∂x2

∂V2(x)
∂x2

. . . ∂Vi−1(x)
∂x2

d2
...

...
...

...
...

∂V1(x)
∂xi

∂V2(x)
∂xi

. . . ∂Vi−1(x)
∂xi

di

∣∣∣∣∣∣∣∣∣∣
equals sign

(
(−1)i−1).

• d2
1 + · · ·+ d2

i−1 + d2
i = 1.

Assumption 1 ensures that at any point x ∈ [0, 1]i the matrix

Φ(x) :=


Φ1(x)
Φ2(x)

...
Φi−1(x)

 :=


∇V1(x)
∇V2(x)

...
∇Vi−1(x)

 (12)

admits singular values greater than σmin and smaller than σmax.

Corollary 2. For all x, y ∈ [0, 1]i with V`(x) = V`(y) = 0 for ` ∈ {1, . . . , i− 1},

‖D(x)− D(y)‖2 ≤ M · ‖x− y‖2

for M := Θ( σmax
σ2

min
·
√

n · L).

Corollary 2 follows directly by Lemma 11. Up next we show that there exist a finite time t∗ > 0
at which γ(t) hits the boundary [0, 1]i.

Claim 1. For each t0, there exists t ≤ 1/M such that ‖γ(t + t0)− γ(t0)‖2 ≥ 1
4M .

Proof. To simplify notation let t0 := 0. and let us assume that ‖γ(t) − γ(0)‖2 ≤ 1
4M for all

t ∈ [0, 1/M]. The latter implies that for all t1, t2 ∈ [0, 1/M],

‖γ(t1)− γ(t2)‖2 ≤
1

2M
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which implies that for all t1, t2 ∈ [0, 1/M]

‖D(γ(t1))− D(γ(t2))‖2 ≤
1
2

.

Using the fact that ‖D(γ(t1))‖2 = ‖D(γ(t2))‖2 = 1 we get that,

D>(γ(t1)) · D(γ(t2)) ≥ 1/2

As a result,

‖γ(1/M)− γ(0)‖2
2 = ‖

∫ 1/M

0
D(γ(s)) ∂s‖2

=
∫ 1/M

0

∫ 1/M

0
D>(γ(s)) · D(γ(s′)) ∂s ∂s′ ≥ 1

2M2

and thus ‖γ(1/M)− γ(0)‖2 ≥ 1√
2M

which is a contradiction.

Claim 2. For any t0, there exist 0 ≤ t1, t2 ≤ 1
M such that

1. ‖γ(t0 + t1)− γ(t0)‖2 ≥ 1
4M .

2. ‖γ(t0 − t2)− γ(t0)‖2 ≥ 1
4M

Proof. Symmetrically as Claim 1.

Lemma 14. Let δ ≤ 1/4 and γ ∈ [0, 1]n such that ‖γ(t0) − γ‖ ≤ δ
2M . Then there exists t∗ ∈

[−1/M, 1/M] such that

• ‖γ(t∗ + t0)− γ(t0)‖2 ≤ δ
M .

• D>(γ(t∗ + t0)) · (γ(t∗ + t0)− γ) = 0.

Proof. By Claim 2 there exists 0 ≤ t1 ≤ 1/M such that ‖γ(t1 + t0) − γ(t0)‖ ≥ 1
4M . Let t′ =

inf0≤t≤1/M{‖γ(t + t0)− γ(t0)‖2 ≥ δ
M}. By the triangle inequality, we get that ‖γ(t′ + t0)− γ‖2 ≥

δ
2M and thus there exists t̂1 ∈ [0, t′] such that

• ‖γ(t̂1 + t0)− γ‖2 = δ
2M

• ‖γ(t + t0)− γ‖2 < δ
2M for t ≤ t̂1.

The latter implies that

• ‖γ(t + t0)− γ(t0)‖2 ≤ δ
M for all 0 ≤ t ≤ t̂1.

• D>
(
γ(t0 + t̂1)

)
·
(
γ(t0 + t̂1)− γ

)
≥ 0.

Symmetrically we can prove that there exists t̂2 such that

• ‖γ(t0 − t)− γ(t0)‖2 ≤ δ
M for all 0 ≤ t ≤ t̂2.

• D>
(
γ(t0 − t̂2)

)
· (γ(t0 − t̂2)− γ) ≤ 0.
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The proof follows by continuity of g(t) := D> (γ(t0 + t)) · (γ(t0 + t)− γ) for t ∈ [−t̂2, t̂1].

Up next we present the main lemma of the section.

Lemma 15. Let ρ = Θ
(

σ3
min√

n·σ2
max·L

)
and a point p ∈ B(γ(t0), ρ) with p /∈ γ[t− 1/M, t + 1/M] then

V`(p) 6= 0 for some j ≤ i− 1.

Proof. Let δ = M · ρ and assume the that V`(p) = 0 for all j ≤ i− 1. By Lemma 14 we get that
there exists t∗ ∈ [t− 1/M, t + 1/M] such that

1. ‖γ(t0 + t∗)− γ(t0)‖2 ≤ δ
M .

2. D>(γ(t∗ + t0)) · (γ(t∗ + t0)− p) = 0.

Using the fact that the matrix Φ (γ(t + t0)) admits singular value greater than σmin we get that,

1. ‖γ(t0 + t∗)− γ(t0)‖2 ≤ δ
M .

2. p = γ(t0 + t∗) + ∑i−1
j=1 µj ·Φj (γ(t0 + t∗)).

By the fact that ‖γ(t0)− p‖2 ≤ δ
M (recall that δ = M · ρ) we get that,

‖
i−1

∑
j=1

µj ·Φj (γ(t0 + t∗))‖2 = ‖γ(t0 + t∗)− p‖2 ≤ ‖γ(t0)− γ(t0 + t∗)‖2 + ‖γ(t0)− p‖2 ≤ 2
δ

M

and thus
‖µ‖2 ≤

2δ

σmin ·M
(13)

Recall that ‖Φj(x)−Φj(y)‖2 ≤ L · ‖x− y‖2 and thus by applying the Taylor expansion on Vj(·)
we get that∣∣∣∣∣Vj(p)−Vj

(
γ(t0 + t′)

)
−Φ>` (γ(t + t∗)) ·

i−1

∑
j=1

µjΦj (γ(t + t∗))

∣∣∣∣∣ ≤ Θ
(

L · ‖γ(t + t0)− p‖2
2
)

Since V`(p) = V` (γ(t + t∗)) = 0∣∣∣∣∣Φ>` (γ(t + t∗)) ·
i−1

∑
j=1

µjΦj (γ(t + t∗))

∣∣∣∣∣ ≤ Θ

(
L · ‖

i−1

∑
j=1

µj ·Φj (γ(t + t∗))‖2

)
≤ Θ

(
L · σ2

max · ‖µ‖2
2
)

meaning that |
[
ΦT ·Φ · µ

]
`
| ≤ Θ

(
L · σ2

max · ‖µ‖2
2
)

and thus

σ2
min‖µ‖2 ≤ ‖VT ·Vµ‖2 ≤ Θ

(√
n · L · σ2

max · ‖µ‖2
2
)
→ ‖µ‖2 ≥ Θ

(
σ2

min√
n · L · σ2

max

)

selecting δ ≥ Θ
(

σ3
min·M√

n·L·σ2
max

)
leads to contradiction.

We conclude the section with the proof of Lemma 9. Let Voln(ρ) denote the volume of n-
dimensional ball with radius ρ and let us assume that γ(t) ∈ [0, 1]n for all t ∈ (0, 2·2n

M·Voln(ρ/2) ]
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where ρ = Θ
(

σ3
min√

n·σ2
max·L

)
.

Let ti := t1 +
2i
M and let the ball Bi := B(γ(ti), ρ/2) where ρ = Θ

(
σ3

min√
n·σ2

max·L

)
. Thus there

are 2n

Voln(ρ/2) such balls. Notice that by Lemma 15, Bi ∩Bj = ∅ for i 6= j and thus the latter is a

contradiction due to the fact that Bi ∩ [0, 1]i are disjoint sets with volume greater than Voln(ρ/2)
2n .

F.6 Proof of Lemma 10

Let Z`(x) = {coordinates j ≤ ` − 1 such that Vj(x) = 0} and F`(x) = {coordinates j ≤ ` −
1 that are satisfied at x}
By the definition of pivot we known that V`(x) > 0. In case x` ∈ (0, 1) then the coordinate is not
frozen and the first item of Lemma 10 follows. In case x` = 0 and [DZ`(x)(x)]` ≥ 0 then again
the first item follows. As a result, without loss of generality we assume that [DZ`(x)(x)]` < 0 and
x` = 0.

At first notice that in case Z`(x) = ∅ then by Definition 2 we get that [D`(x)]` = 1 which
contradicts with the fact that coordinate ` is frozen. Also notice that since x` = 0, Assumption 2
implies that xj ∈ (0, 1) for all coordinates j ∈ Z`(x).

Let assume that x`−1 = 0. As discussed above, Assumption 2 implies that `− 1 /∈ Z`(x) and thus
Z`−1(x) = Z`(x) which implies that sign

(
[D`−1(x)]`−1

)
= sign

(
[D`(x)]`

)
and thus coordinate

`− 1 is also frozen. As a result, the only candidate is the coordinate

i := the maximum k ≤ ` with xk > 0

Note the existence of such a coordinate is guaranteed by the fact that Z`(x) 6= ∅ and by the fact
that for all j ∈ Z`(x), xj ∈ (0, 1) (Assumption 2).

Let us consider the case where xi = 1. Notice again that by Assumption 2, i /∈ Zi+1(x) = Z`(x)
and thus Zi(x) = Zi+1(x) = Z`(x) which implies that [Di(x)]i < 0. Thus coordinate i is not frozen
and at the same time Vi(x) > 0 since coordinate i is satisfied at x and Vi(x) 6= 0 (Assumption 2).

Now let us consider the case where xi ∈ (0, 1) and coordinate i is not frozen. Due to the
fact that x is a pivot and thus coordinate i is satisfied, we get that Vi(x) = 0 and thus i ∈ Z`(x).
Let D`(x) := (d1, . . . , di, d`) and Di(x) := (d̂1, . . . , d̂i). Let us assume that |Z`(x)| is even. Then by
Definition 2 we get that, ∣∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂Vi(x)
∂x1

d1
...

...
...

∂V1(x)
∂xi

. . . ∂Vi(x)
∂xi

di
∂V1(x)

∂x`
. . . ∂Vi(x)

∂x`
d`

∣∣∣∣∣∣∣∣∣∣∣
> 0 (14)
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Since d` < 0 then we get that∣∣∣∣∣∣∣∣∣∣

∂V1(x)
∂x1

. . . ∂Vi(x)
∂x1

d1
...

...
...

∂V1(x)
∂xi

. . . ∂Vi(x)
∂xi

di

0 . . . 0 d2
1 + . . . + d2

i + d2
`

∣∣∣∣∣∣∣∣∣∣
< 0 (15)

implying that ∣∣∣∣∣∣∣∣
∂V1(x)

∂x1
. . . ∂Vi(x)

∂x1
...

...
∂V1(x)

∂xi
. . . ∂Vi(x)

∂xi

∣∣∣∣∣∣∣∣ < 0 (16)

Since |Z`(x)| is even then |Zi(x)| is odd (Z`(x) = Zi(x) ∪ {i}) and thus by Definition 2∣∣∣∣∣∣∣∣
∂V1(x)

∂x1
. . . ∂Vi−1(x)

∂x1
d̂1

...
...

...
∂V1(x)

∂xi
. . . ∂Vi−1(x)

∂xi
d̂i

∣∣∣∣∣∣∣∣ < 0 (17)

Multiplying Equation 17 with Equation 15 we get that,

(d̂1, . . . , d̂i)
> ·
(

∂Vi(x)
∂x1

, . . . ,
∂Vi(x)

∂xi

)
> 0

G Proof of Lemma 5
Let the pivots x1 and x2 with admissible pairs (i, S) and (i′, S′) respectively. Consider the trajectory
ż(t) = Di

S(z(t)) with z(0) = x1 and the trajectory ẏ(t) = Di′
S′(y(t)) for y(0) = x2 where x1 6= x2.

We first assume that x∗ = z(t1) for some t1 and x∗ = y(t2) for some t2 where ẏ(t) = Di′
S′(y(t))

for y(0) = x2 and we will reach a contradiction. Let M := (S′/S) ∪ (S/S′).

• |M| ≥ 2:

– i = i′: In this case i /∈ S′ and i′ /∈ S. Let `1, `2 ∈ M. We will show that `1 (resp. `2) lies on the
boundary (x`1 = 0 or x`1 = 0) and V`1(x∗) = 0. Once the latter is established, consider the
set of coordinates A := S ∪ S′ ∪ {i} ∪ {i′} . Notice that x∗j = 0 or x∗j = 1 for any coordinates
j /∈ A. At the same time there exist two coordinates `1, `2 ∈ A that both lie on the boundary
and admit V`1(x∗) = V`2(x∗) = 0. The latter violates Assumption 2.

Up next we establish that x∗`1
= 0 and V`1(x∗) = 0. Without loss of generality let `1 ∈ S′/S.

Since x′ = Next(x2) and `1 ∈ S′ then Lemma 4 implies that V`1(x∗) = 0. At the same time
since `1 /∈ S and `1 6= i, we get that either x1

`1
= 0 or x1

`1
= 1. Since `1 /∈ S the coordinate `1

stands still in the trajectory ż(t) := Di
S(z(t)) with z(0) = x1 and thus x∗`1

= 1 or x∗`1
= 0.

– i′ > i: Since x1 is a pivot at which i is the under examination coordinate. By Definition 4 we
get that x1

i′ = 0. The latter implies that x∗i′ = 0 since coordinate i′ stands still in the trajectory
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ż(t) = Di
S(z(t)) with z(0) = x1. Consider the set A := {j ≤ i′ − 1 : Vj(x∗) = 0}. Since x∗j = 0

or x∗j = 1 for all j /∈ A ∪ {i′} and x∗i+1 = 0, Assumption 2 implies that x∗j ∈ (0, 1) for all
coordinates j ∈ A. Then Definition 5 and Definition 7 imply that S = {j ≤ i− 1 : Vj(x∗) = 0}.

Since (i, S) is the admissible pair of pivot x1, x1
j = 0 for j ≥ i + 1 which implies that x∗j = 0 for

all j ≥ i + 1. As a result, Vj(x∗) 6= 0 for all j ≥ i + 1. Then Definition 5 and Definition 7 imply
that S′ ⊆ {j ≤ i− 1 : Vj(x∗)} ∪ {i} = S ∪ {i}. However the latter contradicts with the fact that
|M| = 2.

• |M| = 1 and i′ > i: Without loss of generality we consider ` ∈ S′/S. Since ` ∈ S′, by Lemma 4
we get that V`(x∗) = 0. At the same time since i is the under examination coordinate at x1 and
i′ > i by Lemma 4 we get that x∗i′ = 0.

– ` 6= i: Since ` 6= i and ` /∈ S, we get that either x1
` = 0 or x1

` = 1. Since coordinate ` stands still
in the trajectory ż(t) := Di

S(z(t)) with z(0) = x1 we get that x∗` = 0 or x∗` = 1.

Since x∗ = Next(x1) and i is the under examination variable at x1, by Lemma 4 we know
that x∗j = 0 for all j ≥ i + 1. As a result, x∗i′ = 0. Now consider the set of coordinates
A = {j ≤ i′ − 1 : Vj(x∗) = 0} ∪ {i′}. Notice that x∗j = 0 or x∗j = 1 for all coordinates j /∈ A. At
the same time both coordinates i′, ` ∈ A lie on the boundary at x∗. The latter contradicts with
Assumption 2.

– ` = i: In this case S′ = S ∪ {i}. Since i′ > i and i is the under examination coordinate
at point x1 we get that x∗i′ = 0. Due to the fact that i′ is the under examination coordi-
nate at x2 we also get that [Di′

S′(x∗)]i′ = [Di′
S∪{i}(x∗)]i′ ≤ 0 while Assumption 3 implies

[Di′
S′(x∗)]i′ = [Di′

S∪{i}(x∗)]i′ < 0. The latter implies that Di
S(x∗)> · ∇Vi(x∗) > 03.

Since i ∈ S′, Lemma 4 implies that Vi(x∗) = 0. Since i is the under examination coordinate at
x1, by Lemma 10 we get that Vi(z(t)) > 0 for all t ∈ (0, δ) where δ is sufficiently small. Since
Vi(x∗) = 0 the latter implies that Di

S(x∗)>∇Vi(x∗) ≤ 0 which is a contradiction.

• |M| = 1 and i′ = i: Consider ` ∈ S′/S. Since x∗ = Next(x2) by Lemma 4 we get that V`(x∗) = 0
since ` ∈ S′. By the fact that ` /∈ S, i 6= ` and x1 is a pivot, we know by Definition 4 that either
x1
` = 0 or x1

` = 1. Since [Di
S(·)]` = 0, we get that x∗` = 0 or x∗` = 1.

Let us consider the following mutually exclusive cases,

– xi = 0 or xi = 1: Consider the set of coordinates A = {j ≤ i− 1 : Vj(x∗) = 0} ∪ {i}. For all
coordinates j ∈ S it holds Vj(x∗) = 0 while for j /∈ S, x∗j = 0 or x∗j = 1. Since S ⊆ A, all
coordinates j /∈ A admit x∗j = 0 or x∗j = 1. Notice that both coordinates i, ` ∈ A lie on the
boundary at x∗ which contradicts Assumption 2.

3See Equations (14)-(17) in the proof of Lemma 10.
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– xi ∈ (0, 1) and Vi(x∗) = 0: Consider the set A := {j ≤ i− 1 : Vj(x∗) = 0} ∪ {i} ∪ {i + 1}. For
all coordinates j ∈ S it holds Vj(x∗) = 0 while for j /∈ S, x∗j = 0 or x∗j = 1. Since S ⊆ A, all
coordinates j /∈ A admit x∗j = 0 or x∗j = 1. At the same time coordinates `, i + 1 ∈ A′ lie on the
boundary at x∗. The latter violates Assumption 2.

– xi ∈ (0, 1) and Vi(x∗) > 0: Without loss of generality we assume that x∗` = 0. By Lemma 4 we
know that ` remains satisfied during the trajectory ż(t) = Di

S(z(t)) with z(0) = x1. Moreover
z`(t) = 0 since [D`

S(z(t))]` = 0 and x1
` = 0. The latter implies that Di

S(x∗)> · ∇V`(x∗) ≥ 0.

Since ` ∈ S′, we get that y`(t) ∈ (0, 1) for t ∈ (0, t2). The latter implies that [Di
S′(x∗)]` =

[Di
S∪{`}(x∗)]` ≤ 0. By Assumption 3 we additionally get that [Di

S′(x∗)]` = [Di
S∪{`}(x∗)]` < 0.

Then Lemma 12 implies that Di
S(x∗)> · ∇V`(x∗) < 0 which is a contradiction.

• |M| = 0 and i′ > i: Without loss of generality let us assume that i′ > i. Since i is the under
examination variable at x1, Lemma 4 implies that x∗i′ = 0. Since yi′(t) ∈ [0, 1] for all t ∈ [0, t2] we
additionally get that [Di′

S(x∗)]i′ < 0. Since i /∈ S, sign([Di
S(x∗)]i) = sign([Di′

S(x∗)]i′) < 0 (see the
proof of Lemma 10).

Since i < i′ we know that coordinate i is satisfied at x∗ and thus one of the following holds,

– x∗i ∈ (0, 1) and Vi(x∗) = 0.

– x∗i = 1 and Vi(x∗) ≥ 0.

– x∗i = 0 and Vi(x∗) ≤ 0.

Since i /∈ S coordinate i lies on the boundary at point x2 while it stands still in the trajectory
ẏ(t) = Di′

S(y(t)) with y(0) = x2. Thus x∗i = 0 or x∗i = 1. The latter excludes the first case. Since
coordinate i is under examination at x1, in case x∗i = 1 then [Di

S(x∗)]i ≥ 0 which contradicts
with the fact that [Di

S(x∗)]i < 0. Up next we exclude the third case where x∗i = 0 and Vi(x∗) ≤ 0.
By Lemma 10 we know that Vi(z(t)) > 0 for all t ∈ (0, δ) once δ is selected sufficiently small.
The latter together with the fact that Vi(x∗) ≤ 0 implies that Vi(x∗) = 0. Now consider the set
A := S∪ {i} ∪ {i′} and notice that x∗j = 0 for all j /∈ A. The fact that x∗i = x∗i′ = 0 and Vj(x∗) = 0
for all j ∈ S ∪ {i} contradicts with Assumption 2.

• |M| = 0 and i′ = i: In case i = i′ then ż(t) = Di
S(z(t)) and ẏ(t) = Di

S(y(t)). The Lipschitz-
continuity of Di

S(·) implies that z(t1) = y(t2) can only occur in case x1 = x2.

H Proof of Lemma 6
Let the trajectory ż(t) = Di

S(z(t)) with z(0) = x where x is a pivot and (i, S) is an admissible pair
for pivot x. Let us assume that there exists t∗ such that z(t∗) = (0, . . . , 0) and z(t) is not a pivot for
all t ∈ (0, t∗). Notice that in case |S| = 0 then [Di

S(z(t))]i = 1 which leads to a contradiction. As a
result, |S| ≥ 1. Notice that for all j ∈ S, Vj(z(t)) = 0 for all t ∈ [0, t∗] and thus Vj(0, . . . , 0) = 0 for
all coordinates j ∈ S. Now consider the set A = {j ≤ i− 1 : Vj(0, . . . , 0) = 0} ∪ {i}. Notice that
all coordinates j ∈ A admit Vj(0, . . . , 0) = 0 and Assumption 3 is violated.
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I Discrete-Time Dynamics
We begin with the adaptation of the Dynamics 2 to discrete-time algorithms. The main change we
need to make is to change the step 5 of Dynamics 2 to the following z(k+1) ← z(k) + Di

S(z
(k)). But

then we need also to adapt the notion of exit points as follows.

Definition 10 ((ε, γ)-Exit Points). Suppose i ∈ [n], S ⊆ [i− 1] and x′ is a point where coordinates in S
are zero-satisfied and coordinates in [i− 1] \ S are boundary-satisfied. Then x′ is an exit point for epoch
(i, S) iff it satisfies one of the following:

• (Good Exit Point): Coordinate i is almost satisfied at x′, i.e., ‖Vi(x′)‖ ≤ ε, or x′i = 0 and Vi(x′) < ε,
or x′i = 1 and Vi(x′) > −ε.

• (Bad Exit Point): For some j ∈ S ∪ {i}, it holds that (Di
S(x′))j > 0 and x′j = 1, or (Di

S(x′))j < 0 and
x′j = 0; in other words, if the dynamics for epoch (i, S) were to continue from x′ onward, they would
violate the constraints.

• (Middling Exit Point): Let x′′ = x′ + γDi
S(x′) and for some j ∈ [i− 1] \ S, one of the following holds:

V(x′′j ) > 0 and x′j = 0, or V(x′′j ) < 0 and x′j = 1; in other words, if the dynamics for epoch (i, S) were
to continue from x′ onward, some boundary-satisfied coordinate would become unsatisfied.

We next present our solution concept for the discrete-time dynamics.

Definition 11. We say that a point x is an α-approximate solution of VI(V, [0, 1]n) if and only if
V(x)>(x− y) ≤ α.

We also define Π : Rn → [0, 1]n to be the Euclidean projection of a vector in Rn to the hypercube
[0, 1]n. In Dynamics 4 we define our discrete-time dynamics for which we show Theorem 2.

Theorem 2. We assume Assumptions 1, 2, and 3. For every α > 0, there exist constants ε, γ, M̄, K such
that Dynamics 4 with step size γ and error ε finish after M ≤ M̄ iterations of the while-loop at line 2 and
it holds that x(M) is an α-approximate solution of VI(V, [0, 1]n). Additionally, for every iteration m ≤ M
of the while-loop in line 2, the while-loop in line 4 does at most K iterations.

Proof. The main idea of the proof is to show that, for sufficiently small step size γ, the Dynamics
4 will always stay in Euclidean distance at most δ := α/Λ from the continuous-time Dynamics
2. Then, since Dynamics 2 converge to a solution of VI(V, [0, 1]n) (see Theorem 1) and since
V is Λ-Lipschitz we conclude that the discrete Dynamics 4 will converge to a point that is an
α-approximate solution of VI(V, [0, 1]n).

The proof of Theorem 2 boils down to showing that there exists a step size γ and an error ε

such that Dynamics 4 are always α/Λ close to Dynamics 2. To show this we use standard tools for
the error of Euler discretized differential equations. In particular we use the following theorem.

Theorem 3 (Section 1.2 of [Ise09]). Let y(t) ∈ Rn be the solution to the differential equation ẏ = G(y)
with initial condition y(0) = w, where G is a Lipschitz map Rn → Rn. Let also y(k+1) = y(k)+γ ·G(y(k)),
with initial condition y(0) = w′, with ‖w−w′‖2 ≤ ζ. Then, for every η > ζ and every T > 0, there exists
a step size γ > 0 such that

‖y(k · γ)− y(k)‖2 ≤ η for all 0 ≤ k ≤ T/γ.

Additionally, if the above holds for some γ = γ̄ then it also holds for all γ ≤ γ̄.
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Dynamics 4 Discrete STay-ON-the-Ridge with step size γ and errors α, ε

1: Initially x(0) ← (0, . . . , 0), i← 1, S← ∅, m← 0.
2: while x(m) is not an α-approximate VI solution do
3: z(0) ← x(m)

4: while Π(z(k)) is not an (ε, γ)-exit point as per Definition 10 do
5: z(k+1) ← z(k) + γ · Di

S(z
(k))

6: k← k + 1
7: end while
8: x(m+1) ← Π(z(k))
9: if x(m+1) is a (Good Exit Point) as in Definition 10 then

10: if i is zero-satisfied at x(t + 1 then
11: Update S← S ∪ {i}.
12: end if
13: Update i← i + 1.
14: else if x(m+1) is a (Bad Exit Point) as in Definition 10 for j = i then
15: Update i← i− 1 and S← S \ {i− 1}.
16: else if x(m+1) is a (Bad Exit Point) as in Definition 10 for j 6= i then
17: Update S← S \ {j}.
18: else if x(m+1) is a (Middling Exit Point) as in Definition 10 for j < i then
19: Update S← S ∪ {j}.
20: end if
21: Set m← m + 1.
22: end while
23: returnx(m)

Given that Di
S(x) is Lipschitz (see Lemma 11) we can apply Theorem 3 to the while-loop of

line 4 in Dynamics 4 and inductively show that x(m) of Dynamics 4 is close to the corresponding
point of Dynamics 2.

Let τj be the value of the τexit variable after the j-th time that the while-loop of line 4 in
Dynamics 2 has ended. For every i ∈ N we define ti = ∑i

j=1 τi. Our goal is to show that
the ‖x(m) − x(tm)‖2 is small. We do this inductively. For the base of our induction observe
that x(0) = x(0). Now assume that we have chosen a step size γm and that we have achieved
‖x(m) − x(tm)‖2 ≤ ζm Also we assume as an inductive hypothesis that before the beginning of
mth while-loop of line 4 we have same epoch (i, S) in both the execution of Dynamics 2 and the
execution of Dynamics 4. Then, in the next execution of the while-loop of line 4 we have that
‖z(0) − z(0)‖2 ≤ ζm. Also, from the proof of Theorem 1 we know that there exists a finite τm+1

such that z(τm+1) is an exit point. Hence, we can apply Theorem 3 and we get that for every
η > ζm, there exists a step size Γm+1 such that

‖z(k) − z(k · Γm+1)‖2 ≤ ζm +
δ

2m+1 := ζm+1 for all 0 ≤ k ≤ τm+1/Γm+1.

Since x(tm + τm+1) = z(τm+1) we get that ‖x(m+1) − x(tm+1)‖2 ≤ ζm+1. The only thing that is
missing is to show that the update on (i, S) will be the same in the continuous and the discrete
dynamics. Observe that if an exit point happens in the continuous dynamics then due to the

42



Lipschitzness of V the same exit point has to occur in as an (ζm+1, Γm+1)-exit point in the discrete
dynamics. Now repeating the argument from the proof of Theorem 1 we can easily show that
it is impossible for more than one exit events to happen even in the discrete case. In particular,
this follows easily from Assumption 2 and Assumption 1. Hence, the update on (i, S) will be the
same. Then, we set γm+1 = min{γm, Γm+1} and due to the last sentence of Theorem 3 we know
that using the step size γm+1 in all the steps before m + 1 it will result only to better guarantees
for the distance between x(`) and x(t`) and therefore our induction follows. At the last iteration
M we will have

‖x(M) − x(tM)‖2 ≤ ζM ≤ δ

(
m

∑
j=1

1
2j

)
≤ δ.

Since x(tM) is a solution to VI(V, [0, 1]n) we have that x(M) is an α-approximate solution to
VI(V, [0, 1]n) and the step size that we used is γ = γM.

Finally, the quantities M̄ and K are bounded by the constant T̄ of Theorem 1 divided by
γ = γm.
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