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MAPPING CLASS GROUP ACTIONS ON CONFIGURATION
SPACES AND THE JOHNSON FILTRATION

ANDREA BIANCHI, JEREMY MILLER, AND JENNIFER C. H. WILSON

ABSTRACT. Let F;,(3g4,1) denote the configuration space of n ordered points
on the surface ¥4,1 and let I'y 1 denote the mapping class group of ¥, 1. We
prove that the action of I'y,1 on H;(Fn(X4,1);Z) is trivial when restricted to
the ith stage of the Johnson filtration [J (i) C I'y,1. We give examples showing
that J(2) acts nontrivially on H3(F3(Xg4,1)) for g > 2, and provide two new
conceptual reinterpretations of a certain group introduced by Moriyama.

1. INTRODUCTION

1.1. Statement of results. In this paper we study the action of mapping class
groups on the homology of configuration spaces. Given a topological space Z, let

Fo(Z)=A(z1,...,2n) € Z" | 2z; # z; for i # j}
denote the configuration space n distinct ordered points in Z.
Let M = X, denote a smooth, compact, connected, oriented surface of genus
g with one boundary component M. Let Homeo(M, M) denote the topological
group of homeomorphism of M that fix M pointwise. Note that a homeomor-

phism fixing the boundary is automatically orientation-preserving. The action of
Homeo(M, M) on F, (M) factors through an action of the mapping class group

(M, 0M): = mo Homeo(M, IM).
We investigate the following question.
Question 1.1. What is the kernel of the action of I'(M, M) on H;(F,(M))?

Let J (i) C T'(M,0M) denote the ith stage of the Johnson filtration. That is,
J () is the kernel of the action of I'(M, 0M) on m1 (M) /~im1 (M), where v;m1 (M)
is the ith term in the lower central series of m1(M). Our main theorem is the
following.

Theorem 1.2. Let M be a compact orientable surface with one boundary compo-
nent and let n,i > 0. Then the ith stage of the Johnson filtration of the mapping
class group, J (i) C T'(M,dM), acts trivially on H;(F,(M)) and H'(F,(M)), the
ith homology and cohomology of the ordered configuration space of n points in M.
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We remark that if M C M denotes the interior of M, then the natural map
Fn(./\/l) — F,(M) is a homotopy equivalence. For technical reasons it will be
convenient to work with the space Fn(./\/l), so we shall focus on this space in the
rest of the paper.

Theorem [L.2] is sharp for small values of 7 in the sense that there are examples
of mapping classes in J (¢ — 1) acting nontrivially on H,(Fn(J\/l)) Basically by
definition the kernel of the action of I'(M,dM) on Hy(Fy(M)) = Hy(M) is the
Torelli group J(1). In particular, J(0) does not act trivially on Hy(M) for g >
1. The first author [Bia20, Page 32] showed that J(1) does not act trivially on
Hy(Fy(M)) for g > 2. A similar result for configuration spaces of closed surfaces
was obtained in [Lo020]. In Propositions [6.1] and [6.2] we show that 7 (2) does not
act trivially on Hs(Fs(M)) for g > 2.

We note that (i) does not coincide with the entire kernel of the action of
(M, M) on H;(F,(M)) in general. For example, when n > i, H;(F,(M)) = 0
and so the kernel of the action of T'(M,dM) on H;(F,(M)) is all of T(M, M) =
J(0). Even when H;(F,(M)) is nonzero, the kernel of the action of I'(M,dM)

on H;(F,(M)) is generally larger than [J(i). For example, a Dehn twist around
a curve parallel to M acts trivially on H;(F,(M)) but is not in J (i) for i > 2;
see Subsection [6.31 We conjecture (Conjecture [6.3) that the subgroup generated
by J(i) and this Dehn twist is exactly the kernel of the action of I'(M,dM) on
H(F,(M)) for i <n.

Finally, we mention that [Sta21] has recently shown, for the unordered configura-
tion spaces Cp, (M) := F,,(M)/&,, that J(2) acts trivially on all rational homology

groups H;(C,,(M);Q).

1.2. Relationship to the work of Moriyama. The inspiration for our paper
is a related theorem of Moriyama [MorQ7] concerning the following quotient of
configuration space.

Definition 1.3. Fix py € OM, let T = OM\{po} = (0,1), and let M’ = MUZ. For
n >0 let F,, 1(M’,Z) denote the subspace of F,(M’) containing all configurations
for which at least one point lies in Z.

Moriyama proves that the reduced cohomology H* (F,,(M’)/F, (M, T)) is con-
centrated in degree * = n, and that the kernel of the action of I'(M, M) on the
reduced cohomology group H™(F,(M')/F,1(M',T)) is precisely J(n). See also
Theorem [2.2] for an equivalent statement.

Our Theorem [L.2]is a version of Moriyama’s result for the classical configuration
space Fn(./\/l), which is homotopy equivalent to F,(M’), but clearly not to the
quotient F,(M')/F, 1(M’,I) for n > 1. Unfortunately, unlike Moriyama, we are
unable to determine the kernel completely.

Our result depends on Moriyama’s work. In Proposition [5.5] we describe a
chain complex computing the (co)homology of F,(M) built out of (co)chains on
configuration space of R? and Moriyama’s groups H™(F,(M’)/F, (M, T)).

In Appendix[A] we give two different conceptual reinterpretations of Moriyama’s
groups. In Propositions[B.5land Corollary [A.10, we explain how Moryiama’s groups
are dual to the syzygies of chains of configurations of a surface when viewed as a

module over chains of configurations of a disc. In Theorem [A.9] we prove that
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Moriyama’s groups are linear dual to the pure-surface-braid-group-equivariant ho-
mology of the spherical arc complexes of Hatcher—Wahl [HW10, Proposition 7.2].
These spaces appear in work of the second and third authors on higher order rep-
resentation stability [MW19] and our proof of Theorem [1.2l was inspired by higher
order representation stability.

1.3. Proof sketch and paper outline. We prove Theorem [1.2] by constructing
chain complexes computing the (co)homology of Fn(/\/l) built out of Moriyama’s
groups and chains on configuration spaces of R2. Using this, our results follow
almost immediately as the mapping class group of a surface acts trivially on config-
urations supported in a disk. In Section 2] we review background on the Johnson
filtration, Moriyama’s work, and actions of different kinds of maps on configuration
spaces. In Section[3] we describe a cell structure on configuration spaces in the spirit
of Fox—Neuwirth and Fuchs’ stratifications [FN62|[Fuc70] which gives the desired
chain complex model. In Section 4] we describe how to homotope homeomorphisms
to respect this cell structure so that elements of the mapping class group act on
our chain complex. In Section [5, we prove the main theorem. In Section [6] we de-
scribe some examples relating to the sharpness/nonsharpness of the main theorem.
In Appendix [A] we give some alternative descriptions of the groups appearing in
Moriyama’s work.

2. PRELIMINARIES

2.1. The Johnson filtration. We fix a basepoint py € M and abbreviate m =
7T1(./\/l,p0) and I' = F(M, 8./\/1)

Recall that 7 is a free group on 2g generators, and that it admits a lower central
series

T =T D Y17 D Y2 D ...,

where o7 is defined to be 7, and for ¢ > 0 we define ;117 = [m,v;7]. All groups
~;m are characteristic subgroups of .

Definition 2.1. For ¢ > 0 we define J (i) C T to be the kernel of the action of T
by automorphisms of the lower central quotient 7 /~;7.

For example, J(0) =T, as the quotient 7/yo7 is the trivial group; and (1) is
the Torelli group, i.e. the subgroup of I' acting trivially on the first homology of
M.

2.2. Action of homeomorphisms on configuration spaces. The topological
group Homeo(M, dM) acts continuously on the following spaces

e on M, tautologically;
e on M", by taking the n-fold diagonal action of the previous example;
e on I, (M), by restriction of the previous example.
Note that the action is by homeomorphisms in all cases (indeed a group can only act

by homeomorphisms on a space!). Homotopic homeomorphisms of M give rise to

o

homotopic homeomorphisms of F,,(M). In particular the action of Homeo(M, M)

on the homology and cohomology groups of Fn(/\/l) factors through an action of
the mapping class group I' on H,(F,(M)) and H*(F,,(M)) respectively. In the
entire article we refer to this action.
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2.3. Naturality of quasi-isomorphisms. We recollect some basic facts about
Poincare-Lefschetz duality, equivalence of cellular and singular homology, and nat-
urality with respect to maps of topological spaces.

Let X be an oriented, possibly noncompact manifold of dimension N > 0 with-
out boundary. We will denote by X'*>° the one-point compactification of X, with
basepoint the point at infinity co. If X' is compact, then X = X U {co}.

Poincare-Lefschetz duality can be expressed as an isomorphism of singular ho-
mology/cohomology groups

PL: HY, *(X) = Hi"8 (X, o00)
or as a quasi-isomorphism (canonical up to chain homotopy) of singular chain and
cochain complexes

PL: ChlY *(X) = Chi™8 (X, c0).

sing
Suppose now that X' is endowed with a cell decomposition, with co being a zero-
cell, and denote by Chiell(X . 00) the cellular chain complex of X relative to
00, and by HSM (X, 00) the relative cellular homology. The standard comparison
between cellular and singular theories takes the form of an isomorphism of homology
groups

Ising , Hiing(Xoo7 OO) i) H:CH(XOO, OO)

cell
or of a quasi-isomorphism (canonical up to chain homotopy) of chain complexes
INE: Chi™8 (X, 00) = Che™(X°, 00).

cell

If p: X — X is an orientation-preserving homeomorphism, then there is an
induced homeomorphism ¢>°: X*° — X'°°. Suppose moreover that ¢: X~ — X'
is a cellular approximation of ¢°°, so in particular ¢» and ¢> are homotopic; then
the following diagram of chain complexes is homotopy commutative

sing

Chl—*(x) 2L Cnsins (x>, 00) —by Che! (X, c0)

sing

(1) l(wl)* Jw? lw*

Chl " (X) 2 Chi™8 (x>, 00) —<b Chi™ (X, 00)
and induces a commutative diagram of homology/cohomology groups.

The upshot of this discussion is that we can study the behaviour of p: X — X in
cohomology by understanding the behaviour of a cellular approximation 1 of >
on the cellular homology of (X°°, 00).

We will apply these remarks to X = Fn(./\/l)7 which is a 2n-manifold with-
out boundary: this is essential advantage of taking configurations in M rather
than in M. In particular we can study the action of I' on the homology groups
Hoy,—i(F (M), 00) instead of the action on the cohomology groups H'(F,(M)).

2.4. Moriyama’s results. Let py € OM be a point. Moriyama considers two
subspaces A, (M) and A, (M) of M™, namely

Ap(M) ={(z1,...,2n) € M"| 2z, = z; for some i # j},
Ap(M) ={(21,.-.,2n) € M"™ | z; = pg for some i} .
He proves then Theorem [2.2]
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Theorem 2.2 ([Mor07, Theorem Al). The relative homology group

Hi(M"™, An(M) U Ap(M))
vanishes for i # n, and is free abelian of rank (2g)-(2g+1)...(2g+n—1) fori=n.
The action of T' on Hp(M™, A, (M) U A,(M)) has kernel precisely the subgroup
J(n) CT.

Here the action of I' on H,(M", A, (M) U A, (M)) is defined similarly as in
Subsection 2.2] by noting that the action of Homeo(M,dM) on M™ preserves
both subspaces A, (M) and A, (M) of M™. The equivalence of Theorem [2.2] with
the statement of Subsection [I.2]is an application of Poincare-Lefschetz duality and

was already observed by Moriyama. For completeness, we added the argument in
Lemma [AT in Appendix [Al

Notation 2.3. For all n > 0 we denote by Mor, the I'-representation given by
H,(M", A, (M)U A, (M)).
Definition 2.4. We denote by A/ (M) C M™ the subspace

AL (M) ={(21,...,2n) € M™| 2z; € M for some i} .

Clearly A,, C A’,. Moreover the one-point compactification F,,(M)> can be re-
garded as the quotient of the space M"™ by the subspace A™(M)UA! (M). In other
words, using also the remarks from Subsection[2.3] we can identify H*(F,(M)) with

H (M, A (M) U A (M) 2 H, (F (M), 00)
as ['-representations.
2.5. Functoriality. In the previous subsection we have associatgd several spaces
with our surface M, namely M", A, (M), A,(M), A}, (M), F,(M) and F, (M)

Let f: M — M be a continuous map; then f always induces a map f": M" —
M™; the map f™ restricts to a map:

An(f): Ap(M) = Ap (M), always;
An(f): Ap(M) — Ap (M), if f(po) = po;
((f)

(40— 4,0t F0M) € 0a
Fo(f): Fo(M) — F,(M), if f is injective (and hence f(M) C M, since
M is a manifold with boundary);
and induces a map F,,(f)*: F,(M)™ — F,(M)*>, if f(9M) C M.
The previous discussion can be enhanced to an enriched setting; for us it suffices
to note that a homotopy f: M x [0,1] — M between the maps fo, f1: M — M
induces a homotopy f™: M"™ x [0, 1] — M, restricting to homotopies

An(f): Ap(M) x [0,1] = Ap(M), always;

hd An(f) An(M) X [O’ 1] - An(M)v if ft(pO) = Do for all t € [O’ 1];
o AL(f): AL (M) X [0,1] = AL (M), if f,(OM) € OM for all ¢ € [0, 1];
o Fo(f): Fpo(M) x [0,1] = E, (M), if f; is injective for all t € [0, 1];

and inducing a homotopy F,,(f)>: F,,(M)> x [0,1] = F,(M)>, if f;(dM) C M
for all ¢ € [0, 1].

One of the advantages of working with the couples (M™ A, (M)U A, (M)) and
(M™, A, (M) U A), or with the one-point compactification F,,(M)>, rather than
with the plain configuration space Fj, (/\/l), is that in the first cases one can leverage
on functoriality of a much larger class of self-maps of M.
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From now on we will abbreviate A,, = A, (M), A,, = A,,(M) and 4], = A (M).

We also expand our notation as follows. For a finite set S we denote:
e M? for the space of all maps of sets S — M;

Ay € M? for the subspace of those maps whose image intersects OM;
Ag C Al for the subspace of those maps which have pg in their image;
Ag C M? for the subspace of those maps which are not injective;
Fs(M) C M? for the subspace of those maps which are injective and have
image in /\;l;
e Morg for the I'-representation Hg (M® As U Ag).

3. CELL STRATIFICATIONS OF CONFIGURATION SPACES

o

In this section we define a cell stratification of the space F,(M), or equivalently
a relative cell structure of the couple (Fn(/\/l)oo, 00). This construction is similar
in spirit to the Fox—Neuwirth and Fuchs stratifications of unordered configuration
spaces of R? [FN62|[Fuc70]. A similar construction was used in [Bia20].

3.1. A convenient model for M. We introduce a convenient model T'(M) for
our surface M = ¥, 1, arising as a quotient of the rectangle [0,2] x [0, 1].

Notation 3.1. We consider the following dissection of the unit interval [0, 1] into 4g
intervals denoted I;, J;, I}, J/, for 1 < i < g: we set

I, = [41‘—4 4i—3] = [41'—3 4i—2} ,

4g 7 4g 4g 7 4g |

i 4g ° 4y i 4g °4g

I — [41'72 41‘71} N (- {41‘71 42‘} .

We consider, for 1 < i < g, the following linear homeomorphism between the above
intervals and the entire interval [0, 1]:
pl:[0,1] = Iy pl:te At s

p;’: [0,1] — J;; p;’:t'—>—42j’-|-i

4g;
pl (0,1 = Il pf :t»—)ﬁ;l—%;
ol 1 [0,1] — J; p{:tHj—;—ﬁ.

Definition 3.2. We define T(M) as the space obtained from the rectangle [0, 2] x
[0, 1] applying the following identifications.
e For 1 <i < g we identify the right vertical segments 2 x I; and 2 x I/ along
the homeomorphism (2, p! (t)) — (2, p!' (1)), for ¢ € [0,1].
e For 1 < i < g we identify the right vertical segments 2 x .J; and 2 x J! along
the homeomorphism (2, p/ (¢)) — (2, p/ (), for t € [0,1].
The space T(M) is obtained from T (M) by removing the image in the quotient
of the subspace {0} x [0,1] U [0,2] x {0,1}.

The space T(M) is homeomorphic to the closed surface M = ¥, 1, and T(M)
is homeomorphic to its interior. The space T(M) is endowed with the following
cell decomposition:

e there is 1 zero-cell, that we call pg, following Moriyama; it is the image in
the quotient of the points 2 x ﬁ for 0 <4 < 4g;
e there are 2g + 1 one-cells, namely:
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— there is 1 one-cell Z, which is the image in the quotient of the union
{0} > [0,1]U0,2) x {0,1};
— there are g one-cells, denoted U; for 1 < ¢ < g, which are the images
in the quotient of the pairs of open segments {1} x I; and {1} x I/;
— there are g one-cells, denoted V; for 1 < i < g, which are the images
in the quotient of the pairs of open segments {1} x .J; and {1} x .J/.
e There is 1 two-cell E, which is the image in the quotient of (0,2) x (0,1).

See Figure[ll where the space T'(M) is represented in the case g = 2. Clearly T'(M)
is the union of the open cells E, U; and V; for 1 <i < g.

Po
Do

Po
Po
Po
Po

Do
Do

Po

FIGURE 1. A cell decomposition of T'(M)

From now on we will not distinguish between the surface M and its model T'(M).
3.2. Cell stratification of configuration spaces. We stratify Fn(M) by open
cells eq.

Definition 3.3. Let S be a finite set. A tuple on the set S, denoted generically ¢,
is a choice of the following set of data:

e an integer £ > 0 called the length of the tuple;
e a partition of the set S into subsets Pi,..., P, Uy,..., Uy, Vi,..., V,, with
Py, ..., P, nonempty;

e a total order <p,, <y, or <y, on each of the previous subsets.
We generically write t = (¢, P,U,V), where each underlined letter denotes the
sequence of finite sets, and we omit the sequence of total orders from the notation.
We replace P, U or V by “()” whenever we want to emphasize that P, U or V
consists of no set. We define the weight of t to be the cardinality of S, and write
w(t) = |S|. The degree of t is defined as d(t) = w(t) + £.

For a tuple on S, let e, be the subspace of Fs(M) of configurations (z;);cs of

|S| distinct points in M such that

o for all 1 < ¢ < g the points z; with j € U; lie on the one-cell U;; for all
J.j' € Uj, regard z; and z; as real numbers in the interior of the interval
I;, under the identification I; = {2} x I; followed by the quotient map
[0,2] x [0,1] = M: then j <y, 5 if and only if z; < zj/;
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e for all 1 < i < g the points z; with j € V; lie on the one-cell V;; for all
J.j' € Vi, regard z; and zjs as real numbers in the interior of the interval
Ji, under the identification J; = {2} x J; followed by the quotient map
[0,2] x [0,1] = M: then j <y, j" if and only if z; < zj/;

e there are precisely ¢ numbers 0 < z; < -+ < xp < 2 such that each
point z; € E lies on some open segment {x;} x (0, 1), and vice versa each
segment {z;} x (0,1) contains some point z;; for all j € P; the point z; lies
on {z;} x (0,1); for all j,j' € P;, regard z; and z;/ as real numbers in (0,1)
under the identification {z;} x (0,1) = (0,1): then j <p, j' if and only if
25 < zjr.

See Figure 2

FIGURE 2. A configuration lying in the open cell e, C Fya(M),
where t = (¢, P,U,V) satisfies, for instance, £ = 4, 11 <p, 9,
Py = {10} and 1 <y, 4

The space e is homeomorphic to an open ball of dimension d(t). More precisely,
let At be the following multisimplex

L g
A=A JTAP < TTAlP s aAlVil),

i=1 i=1
Then there is a map ®': At - M® with the following properties:

e &' maps At homeomorphically onto e
e &' maps OA" inside the union of Ag, A’y and all subspaces ey corresponding
to tuples ' on S of length < /.

Note that if t' and t are tuples on S and the length of t' is strictly smaller than
the length of t, then d(t') < d(t), i.e. the dimension of the cell ey is lower than the
dimension of the cell e¢. It follows that the cells e¢, for t varying among tuples on
S, give a relative cell decomposition for the couple of spaces (M*, Ag U A%); and
taking the quotient by Ag U A, we obtain a cell decomposition on Fg(M)> with
a single zero-cell co.
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The map ®! is constructed explicitly as follows. First we construct a map
ot At — ([0,2] x [0,1])%, ie. [S| maps ®t: At — [0,2] x [0,1], one for each
jes:

e for all j € P;, denote by 1 < ¢ < |P;| the position of j in the total order
<p,; we define ® = (22;) x y, where z;: A* — [0, 1] is the ith coordinate
of the factor A, and ny is the tth coordinate of the factor APl

e for all j € U;, denote by 1 < ¢ < |U;| the position of j in the total order
<y,; we define <i>; =2x (plo y%), where y% is the tth coordinate of the
factor AlUil,

e for all j € V;, denote by 1 < ¢ < |V;] the position of j in the total order
<v;; we define <i>; =2 x (p] oyl,), where Y, is the tth coordinate of the
factor AlVil,

We then let @ be the composition of ®t with the quotient map ([0,2] x [0,1])% —
M5,

4. CELLULAR APPROXIMATION OF HOMEOMORPHISMS

Let D denote a closed disc in M embedded near the boundary, i.e. M can be
regarded as the boundary connected sum of D and another subsurface of type X 1.

In the model T(M) of the surface M, we let D be the left unit square, i.e. the
image in the quotient of [0, 1] x [0, 1] C [0, 2] x [0, 1].

Definition 4.1. We denote by Homeo(M,dM U D) C Homeo(M, IM) the sub-
group of homeomorphisms that fix 9M U D pointwise.

The inclusion Homeo(M,dM U D) — Homeo(M, dM) is a homotopy equiva-
lence, in particular it induces a bijection

7o (Homeo(M, OM U D)) — mp(Homeo(M, IM)).
We can thus identify I" with the group mo(Homeo(M, M U D)).

4.1. The map 7. In Section Bl we constructed a cell structure giving a chain
complex computing the homology of configuration spaces. In order to prove our
results about mapping class groups, we need to show that this cell structure is
compatible with the mapping class group action. To do this, we will define a map
7: M — M which is homotopic to the identity, and use 7 to show the action of an
arbitrary homeomorphism in Homeo(M, dM U D) is homotopic to a cellular map.

Definition 4.2. We define a continuous (but not injective) map 7: M — M; it is
induced on the quotient by the map 7: [0,2] x [0,1] — [0,2] x [0, 1] given by the
following formula
_f 2z,y) H0<zx<1;
(@) = { (2,y) ifl<z<2

The map 7 expands the disc D horizontally and collapses the dark grey region
onto the “right side” of M. Note that 7 preserves M but does not fix it pointwise;
note also that 7 is homotopic to the identity of M through maps that preserve OM.
See Figure 3

Let S be a finite set. As remarked in Subsection 2.5] 7 does not induce a map
on configuration spaces Fg(M) — Fg(M), since it is not injective. Nevertheless,
7 induces a map 7%: M — M? preserving all subspaces Ag, Ag and Ayt in the
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FiGURE 3. The map 7 expands D and contracts horizontally the
rest of M

case of Ag we use in particular that 7: M — M fixes the point pg. It follows that
7 induces also a map Fg(7)*: Fs(M)> — Fg(M)®.

Lemma 4.3. The map Fs(7)>: Fs(M)*® — Fg(M)>® is cellular. More generally,
let f € Homeo(M,0M U D). Then Fs(1)* o Fg(f)™ = Fs(1 0 f)* is a cellular
self-map of Fg(M)=°.

Proof. 1t suffices to prove the second statement, since the first follows by considering
f = Idam. It is clear that both Fg(f)> and Fgs(7)> preserve the point co €
Fg(M)*°, hence Fg(7 o f)> preserves the zero-skeleton of Fg(M)>.

Let t = (¢,P,U,V) be a tuple on S, and let (2;);cs € ey C Fg(M) C Fg(M)>.
There are three possibilities:

(1) the map 7o f: M — M is not injective on the set {z;}
zi + po; then Fg(7 o f)* sends (2;)ies to 0o;

(2) the map 7o f is injective on {2;},.g U {po}, and some z; lies in the region
[1,2) x (0,1) C M; then Fs(r o )™ sends (z)ics to a configuration in
Fg(M) C Fs(M)> belonging to a cell ey with t being a tuple on S of
strictly lower length than S, in particular ey has strictly lower dimension
than eg;

(3) the map 7o f is injective on {z;},.g U {po}, and all points z; lie either in
the interior of D, or on the open one-cells U; and V;; then Fg(7o f)° sends
(2i)ics to a configuration in Fs(M) belonging to a cell ey with t' of the
form (¢, P,U’,V’) for some U’ and V'.

ics» or it sends some

O

A particular instance of the fact that Fg(7 o f)* is cellular is the following. Let
t = (4,P,(),()) be a tuple on S, where we use the notation from Definition [B.3}
denote by e{j C ey the subspace of configurations (z;);cs € e; such that all points
z; lie in D. Then Fs(7 0 f)°° maps e? homeomorphically onto e, and sends every
configuration in e; \ e? to 0o or to cells ey of strictly lower dimension.

4.2. Superposition of configurations. One of the advantages of working with
the one-point compactified configuration space Fg(M)> is that we can allow col-
lisions between points in a configuration: if two points z; and z; collide, we simply
declare the result to be the “configuration” oo € Fg(M)°.

We have already encountered this idea in the discussion of functoriality in Sub-
section[2.5] and exploited it in the previous subsection, where postcomposition with
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Fg(7)%° makes every map Fg(f)*, coming from a homeomorphism f, into a cellu-
lar map. In this subsection we use this principle again to construct superposition
maps.

Definition 4.4. For all bipartitions QU R = S, possibly with @ or R being empty,
we define a map
HQ,R: FQ(M)OO A FR(M)OO — FS(M)OO
We start with the canonical identification fig r: M@ x ME = M5 and note that
it restricts to an inclusion
fig.r: (AQUALR) x MF U M x (ARUAR) — Ag U A.
We denote pg,r the induced map on the quotients.

For any continuous map f: M — M preserving M the following diagram is
commutative on the nose:

FQ(M)>® A Fr(M)>* 225 Fg(M)>

lfﬂf* lf*

Fo(M)>® A Fr(M)> £25 Bg(M)e.

This holds in particular when f has the form 7 o f, for some homeomorphism

f € Homeo(M,0M U D).

Lemma 4.5. The map pg r: Fo(M)>® A Fr(M)® — Fs(M)*> is cellular, where
we endow Fo(M)>® A Fr(M)> with the product cell structure.

Proof. Let (zi)icq € Fo(M) C Fo(M)*™ and (z})jer € Fr(M)> be two con-
figurations, and note that (z;);eq lies in the interior of some cell e¢ C Fg(M) of
dimension |Q| + ¢1, where ¢; is the cardinality of the set

{zx€(0,2)|3Fi e, z € {z} x(0,1)}.
Similarly (z});er lies in the interior of a cell of Fr(M) of dimension |R|+ (2, where
{3 is the cardinality of {z € (0,2)|3j € R, 2} € {x} x (0,1)}.
Unless some 2; coincides with some 2’ (in which case pg,r sends ((2i)icq, (25)jer)

to 0o), we have that ug r((2i)icq, (25)jer) lies in Fg(M), in the interior of a cell of
dimension | S| + ¢, where ¢ is the cardinality of the union of the two sets considered

above:

e:‘{x €(0,2)|Fi e R, z € {z} x (0,1)}u{z €(0,2)|3j € R, 2} € {z} x (0,1)}‘
<Ay + L.

The claim follows. ]

Remark 4.6. A particular instance of the fact that pg g is cellular is the following.
Let t = (¢, P,(),()) be a tuple on @, where we use the notation from Definition [.3]
and let t' = (0, (),U, V). Then the product cell e; X ey C Fo(M)>® A Fr(M)™ is
mapped along g r homeomorphically onto the cell ey C Fg(M)>, where t/ =
(¢,P,U,V); vice versa, note that each tuple t’ admits a unique “factorisation” as
product of two tuples of the form (¢, P, (), ()) and (0, (),U, V).
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Let f € Homeo(M,0M U D): to understand the behaviour of 7, o f. on the
cell ey, it suffices to understand its behaviour on the “factors” e¢ and ef, using
the fact that ug g is a cellular map. At the end of Subsection [4.I] we have given a
satisfactory (for our purposes) description of the action of 7, o f, on the first factor
e¢. In the next section we will focus on the second factor, invoking Moriyama’s
result.

5. THE CELLULAR CHAIN COMPLEX OF Fg(M)®>

Fix a homeomorphism f € Homeo(M,dM U D) as in the previous section. In
this section we study the action of Fs(7 o f) on the relative cellular chain complex
Ch (Fs(M)®): = ChE™ (F5 (M), o),
which is freely generated, as abelian group, by elements [e(] corresponding to the
cells e, which in turn correspond to all tuples on S. We will simplify the notation

and write 7 f, for the induced map of chain complexes
ell 1l
Fs(70 )2 Ch,” (Fs(M)™) = Ch,™ (Fs(M)™).
By the discussion in Subsection 4.1} we have that 7f.[e;] = [e(] for all tuples t of
the form (¢, P, (), ()). In this section we shall focus on the opposite type of tuples,
namely those of the form (0, (),U, V).

5.1. The one-skeleton X of M.

Definition 5.1. Following Moriyama’s notation, we let X C M be the union
g

X:{po}UU(Z/{lUM)

i=1
Note that X is a quotient of the space 2 x [0,1]. We let 0: M — X be the
map induced on the quotient by the map &: [0,2] x [0,1] — 2 x [0,1] given by

(z,y) = (2,9).

Note that o is a retraction of M onto X, and ¢ is homotopic to the identity of
M through self-maps of M that fix X (and in particular fix pg).

Notation 5.2. We denote by C~h*E(FS(./\/l)°°) the subgraded abelian group of
cell

Ch, (Fs(M)>) spanned by all generators [e(] corresponding to tuples on S of
the form (¢, P, (), ().

We denote by CNhf (Fs(M)®) the subgraded abelian group of dh (
spanned by all generators [e¢] corresponding to tuples on S of the form 0,0, U

s(M ) )
U Y).

Note that dhf(Fs(M)Oo) is indeed a subchain complex of C~h:e (Fg(M)>).
More precisely we can consider the subspace X C M?®, and denote by Ag(X) and
As(X), respectively, the intersections Ag(M) N X and Ag(M) N X°; then the
relative cell decomposition of the couple (M?®, Ag U Ag) restricts to a relative cell
decomposition of the couple (X*, Ag(X) U Ag(X)), and (jhf(Fs(M)oo) can be
canonically identified with the cellular chain complex Ch¢" (X5, Ag(X)U Ag(X)).
On the contrary, dh*E(FS(M)m) is in general not a subchain complex.

Lemma [5.3]is essentially [Mor07, Lemma 4.1]; we sketch its proof for complete-
ness.
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- X
Lemma 5.3. The chain complex Ch, (Fs(M)™) is concentrated in degree |S|, so
in particular it is isomorphic to its |S|th homology group

His) (O (Fs(M)™)) 2 Hig (X5, As(X) U Ag(X)).

The inclusion of couples (X°, Ag(X)UAg(X)) C (M5, Ag(M)UAs(M)) is a ho-
motopy equivalence, in particular it induces an isomorphism on the |S|th homology
group.

Proof. A tuple t of length 0 has degree d(t) = |S|; the degree d(t) is the dimension
of ey, i.e. the degree in the cellular chain complex dhiCll(F 's(M)®) of the generator

[e¢]. Since C~hf (Fs(M)>) is spanned by all generators [e;] corresponding to tuples
of length 0, the first statement is proved.

For the second statement, note that the map oc: M — X C M is a defor-
mation retraction; since the deformation preserves pg at all times, the induced
map 0%: M — X9 is a deformation retraction preserving the subspaces Ag(M),
Ag(M), X% as well as the intersections Ag(X) and Ag(X). Hence

0% (M, Ag(M)U Ag(M)) = (M®, Ag(X) U Ag(X))
is an inverse homotopy equivalence to the inclusion of couples
(X%, As(X) U Ag(X)) C (M?, Ag(M) U Ag(M)).
The claim follows. ]

For f € Homeo(M,dM U D), note now that (7o f)%: M — M5 restricts to a
map X — X9, and the following diagram of couples of spaces is commutative on
the nose

(X5, Ag(X) U Ag(X)) —= (M5, Ag(M) U Ag(M)) —— (Fs(M)>,00)
l(fof)s l(fof)s Fs(r
(X5, Ag(X)UAg(X)) —— (M5 Ag(M)UAg(M)) —— (Fg(M)>,

)

[e]
00).
Passing to cellular chain complexes we obtain a strictly commutative diagram

Ch) (Fs(M)™) —= Hj5)(X5, Ag(X) U As(X)) — Mors

J/Tf* J/Tf* le*

Ch (Fs(M)®) —= Hig (X5, As(X) U Ag(X)) —=— Mors.

It follows that the action of 7f, on the subcomplex dhf(Fg(./\/l)C’o) of the cellular
chain complex Ch, (Fs(M)>) corresponds to the action of 7 f, (or just f.) on the
homology group Morg. This shows in particular that if f, fo € Homeo(M, dMUD)
are two homeomorphisms, then the actions of Fg(7 o f1)* and Fs(7 o f2)> on

the subcomplex dhf(Fs(M)Oo) behave well under composition, i.e. we have an
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equality of maps of chain complexes (for our purposes, abelian groups sitting in
degree |S))

Fs(70 f1)™ 0 Fs(r o f2)™ = Fs(r0 fi o f2): Chl (Fs(M)®) = Ch (Fs(M)™).

This last remark could be more easily deduced from the fact that 7o f; o170 fo and
T o f1 o fo are homotopic maps (M, pg) — (M, pg). The previous discussion gives
Lemma [5.4]

Lemma 5.4. For f ranging in Homeo(M,0M U D), the cellular chain maps
Tf« assemble into an action of I' on the abelian group (jh*X(Fs(M)oo) The T-

- X
representations Ch, (Fg(M)>) and Morg are isomorphic.

5.2. Cohomological portion of Theorem [1.2l Let S be a finite set. Lemma
[4.5] states that the product map

wo.r: Fo(M)® A Fr(M)*® — Fg(M)™

is cellular and hence it induces a map on cellular chains. By Remark [4.6] every
cell in Fg(M)*> decomposes uniquely as a product of a cell of the form (0, (),U,V)
and a cell of the form (¢, P,(),()). In the language of Notation [5.2] this gives an
isomorphism of graded abelian groups

~ cell

- E - X
Ch, (Fs(M)*)= B Ch, (Fo(M)>)® Ch; (Fr(M)™).
5=QUR
For f € Homeo(M,0M U D), the action of 7f, on the left hand side corre-
sponds to the direct sum of the tensor product of the identity action on each
factor dhf(FQ(./\/l)oo) with the Moriyama action of 7f, on dhf(FR(M)‘X’). By
the discussion of the previous subsection we obtain Proposition [5.5]

Proposition 5.5. Let S be a finite set. There is an isomorphism of graded T'-
representations

~ cell

)
Ch, (Fs(M)®)= P Ch, (Fp(M)>)® Morg.
S=QUR
Here @ and R range among all couples of (possibly empty) subsets of S whose

disjoint union is S. The action of I' on the right hand side preserves direct sum-
mands, is diagonal on each tensor product, is the identity action on each tensor

o
factor Ch, (Fo(M)™) and is the Moriyama action on each tensor factor Morg.

In particular, if f € Homeo(M,dM U D) represents an element in (i), then
by Moriyama’s result (Theorem [2.2]) we have that 7f, restricts to the identity on
those direct summands in the formula of Proposition [5.5] that depend on a subset
R C S with |R| <. The direct sum

@ dh*E(FQ(M)OO) ® Morg
S=QUR, |R|<i

~ cell
contains the degree > 25| —i part of the chain complex Ch;,  (Fg(M)>). It follows
that 7 f,, hence f,, are the identity on the homology group

~ cell

Hys)—iCh,  (Fs(M)™).

Licensed to Univ of Michigan. Prepared on Sat Oct 28 22:00:35 EDT 2023 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAPPING CLASS GROUP ACTIONS ON CONFIGURATION SPACES 5475

By Poincare-Lefschetz duality and the comparison between cellular and singular ho-
mology (see Equation (), this implies that f. acts as the identity on H'(Fg(M)),
which is the cohomological portion of Theorem [1.2]

In the case i = |S| we can say a little more: for all f € Homeo(M,0M UU)

representing an element in J(]S|), we have that 7f. is the identity on the entire
~ cell

chain complex Ch, (Fs(M)®); using the quasi-isomorphisms of Subsection 2.3]
we obtain that

fi: Chg(Fs(M)) = Chgye (Fs(M))

sing sing

is chain homotopic to the identity. In other words, [J7(|S|) acts homotopy-trivially
on the cochain complex Ch,(Fs(M)).

sing

5.3. Homological portion of Theorem [1.2l By Poincare-Lefschetz duality, and
the comparison between cellular and singular homology, Ch%"8(Fg(M)) can be
replaced by the reduced cellular cochain complex Chl,(Fs(M)>, 00), which is
just the dual of the chain complex Ch®"(Fg (M), 00): note indeed that the latter
chain complex is finitely generated and free abelian. The rest of the arguments are

replaced by their duals. We therefore deduce the homological portion of Theorem

L2l

5.4. An analogue of Theorem [1.2] for labeled configuration spaces. The
same strategy of proof generalises to the setting of labeled configuration spaces.
Let Y be a topological space with an action of the group &,,. We consider the
space Fn(./\/l) X@, Y, ie. the quotient of Fn(./\/l) x Y by the diagonal &,,-action.
The most prominent example is when Y = Z”™ for some topological space Z, with
G,, acting on Y by permuting the n coordinates of Z": in this case Fn(/\/l) Xa, Y
is also known as the unordered configuration spaces of n points in M with labels in
Z and denoted C,,(M; Z).

The topological group Homeo(M, M) acts on F,, (M) xY: naturally on the first
factor, trivially on the second. This action induces an action of Homeo(M, M) on

F,(M) xe, Y; the latter descends to a homotopy action of I on the chain complex
Chi™8(F, (M) xe, Y). We will prove Corollary 5.6

Corollary 5.6. The action of J(n) C T' on Chi"8(F, (M) xe, Y) is homotopy-

o

trivial. In particular J(n) acts trivially on Hy(F,(M) xg, Y).

Proof. We first observe that Ch3"8(F,(M)) can be regarded as a &,-equivariant
chain complex. All arguments leading to Theorem [[.2] hold in the setting of &,,-
equivariant spaces and chain complexes: in particular if f € Homeo(M, M) repre-
sents a mapping class in 7 (n) C T, then F,,(f),: Chi™8(F,(M)) — Chi8(E, (M)
is &,-equivariantly chain homotopic to the identity of Ch3"8(F,(M)).

Consider now the Eilenberg-Zilber map

EZ: Chi"8(F,(M)) ®s, ChSm8(Y) — Chi"8(F,(M) xs, Y),

it is a quasi-isomorphism of chain complexes; moreover if f € Homeo(M,OM) is
any homeomorphism, the action of (F,(f) xe, Idy). on the right hand side is
compatible with the action of F,(f). ®s,, Idy,sins 3y On the left hand side, i.e. the
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following diagram of chain complexes commutes (on the nose)
ChI"8(F(M)) e, CRI™(Y) —2= ChI™8(F, (M) xe, V)
an<f)*®enIdChimg<y) J(Fn(f)xgnmy)*
Ch™5(F, (M) @6, CHI™E(Y) — ChI™(Fy(M) xs, Y).

Suppose now that f represents a mapping class in J(n) C I': then the left verti-
cal map is chain homotopic to the identity of ChI"*(F},(M)) ®s, ChI™*(Y), be-
cause F, (f)« is &, -equivariantly chain homotopic to the identity of Ch}"®(F,,(M)).
Since EZ is a quasi-isomorphism of chain complexes, it follows that the right vertical
map is also chain homotopic to the identity of Chi"®(F,,(M) xg, Y). O

6. SHARPNESS OF THEOREM [1.2] AND EXAMPLES

In this section we present some examples testing the sharpness of our main
theorem. We first show that J(2) acts nontrivially on H3(F5(M)) if M has genus
> 3 and, with a finer argument, if M has genus 2.

We then observe that, if M has genus > 2, the subgroup of I' = TI'(M, OM)
generated by the boundary Dehn twist is not contained in J7(3), and nevertheless
this subgroup acts trivially on H;(F,(M)) for all n,i > 0. In particular, J(4) is
not generally equal to the kernel of the action of T on H;(F,(M)).

o

6.1. J(2) does not act trivially on H3(F5(M)) for g > 3.

o

Proposition 6.1. Let g > 3. The group J(2) acts nontrivially on Hs(F3(M)).

Proof. Consider a subsurface ¥31 C M. Let 7y be the simple closed curve shown in
Figure [ and let T, denote the Dehn twist about «y. Since 7 is a separating curve,
T, € J(2) by work of Johnson [Joh80,lJoh85].

FIGURE 4. The surface ¥3; and the curve v

Consider the disjoint subsurfaces ¥/ = ¥y ; and X" = ¥, ; shown in Figure [5l
We will construct chains a € Co(Fy123(X')) and b € C1(Fy33(X")) and write aeb
to denote the image under the natural map
Ca(Fi12y (X)) ® Cr(F5y(X") — Cs((Fia 2,3y (83.0)),
a®@br— aeb.
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FIGURE 5. The disjoint subsurfaces ¥’ and X"

The chain b corresponds to the loop in Fyay () in which particle 3 traverses the
curve § in Figure [l We construct the chain a as follows.

FIGURE 6. The chain a e b

Consider the simple closed curves oy, 1, ag, B2 in Figurel6l The curves oy and
(1 intersect at a single point x1, and ay and [y intersect at a single point xo. We
define an embedded torus

ol T2 = 5" x ST — ()2
by letting particle 1 traverse «; and particle 2 traverse 1. Delete an open ball B

from our torus around the preimage z € T2 of (21, 1) € (£’)2. The restriction of
o} to T2 \ B = X, ; is then an embedding into the configuration space

o1: T2\ B = Fyy 01 ().

The restriction o1]sp to the boundary of B takes values in the configuration space
Fp12y(Dy, ), where D, C ¥/ is a small disc around x1; more precisely, the re-
stricted map o1]op: OB — Fyy21(Dy, ) describes, up to homotopy in Fyy 23 (D, ) a
planetary system, i.e. a curve of configurations of two particles labelled 1 and 2 in
a disc, in which particle 2 spins once clockwise around particle 1.

We repeat the construction for the curves ag and fs, to produce a second em-
bedding

o2 T2\ B — Fp 9y (2),

and again the restriction o;|sp gives a planetary system in Fyy 2y (Dy,) for a small
disc D,, C Y around zs.
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Our chain a corresponds to an embedded surface of genus 2
0: %y = (T?\ B) Ugp (OB x [0,1]) Usp (T2 \ B) = Fy(3)

obtained by extending the maps o1 and o9 over a cylinder glued by its boundary
components homeomorphically to the boundary components of two copies of T'\ B.
The extension depends on a choice of an arc 1 in ¥’ connecting 1 with zs, yielding
an isotopy between o1|sp and o2|sp. A schematic of the resulting chain a is shown
in Figure [6l

We will prove that T’,(a e b) is not homologous to a e b. The difference

d=T,(aeb) — (aeb)

is homologous to the 3-torus shown in Figure [0 consisting of particle 3 traversing
the loop § and the particle 1-2 planetary system traversing the loop ~.

FIGURE 7. The chain d =T,(aeb) — (a ®b)

To verify that d is nonzero in homology, consider the oriented, properly embedded
arc w C 293371 shown in Figure [§l Consider the properly embedded sub-3-manifold
of Fg(E“) consisting of all configurations in which particles 1, 2, and 3 lie on w in
this order. This oriented submanifold intersects d transversely once.

FIGURE 8. The chain d =T,(a eb) — (a ®b)

We conclude that d is nonzero in homology, and hence that T (a  b) is not
homologous to (a e b). O
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6.2. J(2) does not act trivially on Hs(F5(M)) for g = 2. We refine the previ-
ous argument in the genus 2 case.

°

Proposition 6.2. The group J(2) acts nontrivially on H3z(F3(M)) for M of genus
2.

Consider the surface 337 and the separating curve v shown in Figure [0

FIGURE 9. The surface ¥5; and the curve v

We construct a class a € Hs(F3(221)), as follows. We first embed a 3-torus
T3 = (S(ll) X 5(12) X 5(13)) in (¥5,1)% as in the first image in Figure [0

Consider the embedded 2-torus T{12 = S(ll) X 5(12) C T3 parameterised by
the particles 1 and 2. As in the proof of Proposition [6.1] we delete a small ball
Bis € T112} around the collision point of the two particles. Correspondingly, we
delete a solid torus Tis = Bja X 5(13) from T3. In the same way we remove the
collision point of particles 1 and 3. The result is an embedded 3-manifold with
boundary )

O'/ : ’]:I3 \ (T12 L T13) — F3(22)1)
defined by the complement of two disjoint solid tori in a 3-torus.

To construct the class a, we will extend ¢’ to a closed 3-manifold obtained by
gluing two other 3-manifolds with boundary along 0Ti2 and 9T;3. These are
illustrated in the second and third images in Figure [I0] respectively, using the
conventions of Figure [(l The second image shows the product of the circle 8(12)

(parameterised by particle 2) with a surface X2 22 3}, | (parameterised by particles
1 and 3). The embedding 0'?: & — Fyy 33(321) is defined as follows: first, we
regard X' as the union

213 = (T{l’g} \ Blg) |_|('9313 8313 X [0, 1],

we use the cylinder dB;3 x [0, 1] to isotope the restriction ¢’|sp,, to a map with
values in a small disc inside the rightmost handle X" C ¥ 1; then we use (T3} \
Bi3) to close off the planetary system described by particles 1 and 3, letting again
particles 1 and 3 trace the loops shown in Figure [0l We can assume that no
configuration hit by the embedding o? touches with some particle the curve « in the
middle image of Figure[L0} therefore we can cross o with the map 5(12) — F23(82,1)
in which we let particle 2 traverse the curve «, obtaining finally an embedding
Sigy x ¥ — F3(22,1) extending on the boundary the map oy, ..

The third image is analogous.

Let T, be the Dehn twist about v. We will show that T, acts nontrivially on
the class a by verifying that the difference d = T (a) — a is nonzero. This class is
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FIGURE 10. The class a € H3(F5(35.1))

shown in Figure [11] as the sum of two homology classes represented by embedded
3-tori in F5(X21).

FIGURE 11. The difference T),(a) — a as a sum of chains

We verify that d is nonzero in homology by the same method as in the proof of
Proposition [6.11 Consider the 3-manifold of all configurations with particles 1, 2,
and 3 lying in this order on the directed arc w in Figure [[21

This 3-manifold intersects our representative of d once transversely. We conclude
that d is nonzero, as claimed.
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FIGURE 12. The transverse intersection of sub-3-manifolds

o

6.3. J(i) is not the entire kernel of the action on H;(F,,(M)) for i > 3,9 > 2.
The Dehn twist Torq € T' generates, for g > 1, an infinite cyclic subgroup (Tor)
of the mapping class group.

Let Ugpq denote a small collar neighbourhood of M in M; then Ty can be
represented by a homeomorphism f: M — M fixing M \ Usrq pointwise. The
inclusion M\ Uprq C M induces a homotopy equivalence F,(M\ Ugrq) ~ F, (M),
so we can study the action of f on H,(F,(M)) by considering the restricted action
of f on H.(F,(M\ Ugnm)). The latter action is trivial, since f acts as the iden-
tity on Fj,(M \ Usgm). Tt follows that Torq acts trivially on all homology groups

In fact (Tharq) is contained in J(2) C T, since Ty is a Dehn twist about a
separating curve. In the following we argue that (Tya) intersects J(3) trivially,
for all g > 1.

Let m = m1(M, po) be generated as a free group by elements aq,b1,...,ag, by,
such that the boundary loop dM, based at pg, represents the product of commu-
tators ¢ := [a1,b1] ... [ag,by] € .

Then Thrq induces the inner automorphism of 7 given by conjugation by ¢, and
similarly, for k € Z, the power Tg/\/t induces conjugation by ¢* on 7.

In order to show that for k # 0 the mapping class Tg '\ 1s not in J(3), it suffices
to check that T, (a1) - a;* does not lie in v3m. Since 7%, (a1) - a7’ does lie in
o, it suffices to evaluate [T%,,(a1) - a; '] in the quotient vo7/y37.

Recall that, for £ > 0, the quotient ;7 /~,417 is isomorphic to the degree-(£+1)
part of the free Lie algebra generated over Z by elements Ay, By, ..., A4, By sitting
in degree 1. In ~om/v3m we then have the following chain of equalities, where
C =[A1,B1] + -+ [Ay, By] denotes the class in ;7 /v2m represented by c:

[Tom(ar) - ay'] = [Farc™ ar ]

== [/CC,Al]
= k({41 Bi). A + [ Az, Bl i) + -+ + [[Ag, Byl Au]).

The last expression is k£ times a sum of g standard generators of the free abelian
group 2w /37, hence it does not vanish. This shows that (Thrq) intersects J(3)
in the trivial group. We conclude this section with a conjecture.

Conjecture 6.3. Let M be a surface of genus g > 1 with one bogndary component,
and let 0 < i < n. Then the kernel of the action of T' on H;(F,,(M)) is the subgroup
of T' generated by J (i) and (Torm).
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In the case of surfaces without boundary, conceivably the kernel of the mapping
class group action on H;(F,(M)) is exactly J (7).

APPENDIX A. REINTERPRETATIONS OF MORIYAMA’S GROUP

The goal of this appendix is to give alternative descriptions of Moriyama’s group
Mor,,. We first show that it is related to arc complexes playing an important role
in homological stability and representation stability. Then we compare Mor,, to
certain symmetric sequence valued hypertor groups which measure how to construct
configuration spaces of surfaces in terms of configuration spaces of discs.

In this appendix we switch from homeomorphisms to diffeomorphisms of sur-
faces: this allows us to work with smoothly embedded arcs rather than topolog-
ically embedded arcs, and thus to be in line with most of the literature on the
subject. We recall that for a smooth surface M of genus g with one boundary
component, the mapping class group I' = I'(M, M) can be equivalently defined
as o (Diff (M, OM)), where Diff (M, dM) is the group of diffeomorphisms of M
that fix OM pointwise, endowed with the Whitney C'*°-topology.

A.1. Moriyama’s group seen under Poincaré—Lefschetz duality. Lemma
[A1 was also observed by Moriyama, and the proof is included for completeness.
For an abelian group A, we let A* denote Hom(A,Z). See Definition [L.3] for the
definition of M’ and Z.

Lemma A.1. There is a natural isomorphism
Mor} 2 H, (F,(M'), F,, 1 (M, T)).
Proof. Since H;(M™, A,,(M)U A, (M)) vanishes for i # n, the universal coefficient
theorem provides an isomorphism
Mor,, = H,(M™, Ap,(M)U A,(M))* = H*"(M", A,(M)U A, (M)).
Note that
H™(M", Ap(M) U Ap(M)) = H(M™\ (Ap(M) U Ap(M))) = H(F(M)).

The space F,,(M’) is a 2n-manifold with boundary F, (M’,Z); by Poincaré-
Lefschetz duality we obtain an isomorphism

Hg(Fn(M/)) = Hn(Fn(M/)v Fn,l(M/vz))-
This establishes the claim. (]
A.2. The semi-simplicial space | | 5_,.; £},s(M'). Givenaset S C {1,...,n},

let F,, s(M'’,Z) denote the subspace of F), s(M’) containing all configurations in
which all particles with labels in S lie in Z. For T' C S, there are inclusion maps

Fnys(./\/l,) — FnﬁT(M/).
These inclusion maps give the assignment
pr— |_| Fn S
[S|=p+1
the structure of an augmented semi-simplicial space which we denote by

|| FusM)

|S|=e+1

Licensed to Univ of Michigan. Prepared on Sat Oct 28 22:00:35 EDT 2023 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAPPING CLASS GROUP ACTIONS ON CONFIGURATION SPACES 5483

Note that the space of (—1)-simplices is exactly F,,(M’). The augmentation map
from 0-simplices to (—1)-simplices factors as

|| FusM) = Foi(M,I) = Fo(M).
|S|=0+1

Lemma A.2. The map H |_|‘S|:.Jrl FnS(M/)H — F 1 (M) is a weak equivalence.

o

Proof. Fix an embedding [0, 1) x Z into M’ sending {0} xZ to Z. Let Ug C F,,(M)
be the subspace of configurations satisfying the following properties:
e cach point of the configuration with label ¢ € S is of the form (t;,¢;) €
[0,1) x Z;
e for all ¢+ € S, no point of the configuration lies on the half-open segment
[0,t;) x {¢;} C[0,1) x Z.
Note that the subspaces Uy;y form an open cover of F, (M’ ,Z), and the nerve
of this cover is weakly equivalent to F;, 1(M’,T). Note also that Us = ,cg Ui},
hence the nerve of the open cover by the subspaces Uy;, is the semi-simplicial space
|_||S|:o+1 US‘

The semi-simplicial space || g_q;; Fn,s(M’) is the nerve of the cover of the
space Fy,1(M’,I) by the subspaces F, (;1(M’,I); again we have F, 5(M’') =
ﬂieS Fn{z}(M/aI)

For all S, we have that F), s(M’,Z) is a subspace of Ug and the inclusion is a
homotopy equivalence: a deformation retraction of Ug onto F,, ¢(M’,T) is given
by pushing each point (¢;,¢;) with label ¢ € S along the segment [0,¢;] x {¢;}. It
follows that the inclusion of semi-simplicial spaces

|| FosM)c || Us

‘Sl:.Jrl ‘S‘:Q+1

is a level-wise weak equivalence, yielding a weak equivalence on (thick) geometric
realizations. O

A.3. The arc resolution of configuration spaces. We now recall the arc reso-
lution of [KM18[MW19]. Given two smooth manifolds A and B, let Emb(A, B) de-
note the space of smooth embeddings, topologised with the Whitney C*°-topology.

Definition A.3. Let
Arc,(F,(M)) C F,(M) x Emb(U,11[0,1], M)

be the subspace of sequences of points and smooth arcs (z1,...,Zn;a0,...,0Qp)
satisfying the following conditions:

e «,;(0) € v([0,1]) and «; is transverse to M at 0;

o a;(1) e {z1,...,zn};

o a;(t) ¢ OMU{zy,...,z,} for t € (0,1);

e ;(0) > ;(0) whenever i > j, using a fixed identification Z = (0, 1).
An element of Arc,(F,(M)) is shown in Figure [13]

Let AICZ(Fn (M)) denote the quotient of Arc,(F,,(M)) by the following equiva-
lence relation: (z1,...2n;a0,...qp) is equivalent to (z1,...,2n;0ap,. .. aj,) if there
is a smooth ambient isotopy of M fixing at all times {x1,...,x,}, preserving at all
times Z, and bringing «; to o for all 0 <7 < p. We denote by

(@1, g [0, - p)) € Acm(Fn(M))
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FIGURE 13. A point in Arcs(Fg(M))

the equivalence class of (x1,...Tn; o, ... qp).

As p varies, the spaces Arc,(F,,(M)) assemble into an augmented semi-simplicial
space. The ith face map d; : Arc,(F,,(M)) — Arc,_1(F,(M)) is given by forgetting
the ith arc «;. The space Arc_;(F),(M)) is homeomorphic to F,, (M), and so the
augmentation map induces a map | Arce (F,(M))| — F,(M).

Similarly, the spaces ArCZ (F,(M)) assemble into an augmented semi-simplicial
space; moreover we have Arc™ | (F,(M)) 2 Arc_,(F,(M)) = F,,(M), and we have
a natural map of augmented semi-simplicial spaces Arce (F,(M)) — Arcl(F,(M)),
given levelwise by the quotient map.

Lemma A.4. There is a zig-zag of level-wise weak equivalences of augmented semi-
simplicial spaces between

| | Fus(M) and Arce(F,(M)).
|S|=e+1

Proof. We introduce a “Moore version” Arcy(F,,(M)) of the semi-simplicial space
Arce(F,,(M)). For p > 0 we define Arc,(F,,(M)) as the space of sequences

(@1, (o, o), - - -, (Qp, Tp),
where:
o (z1,...,a,) € E(M');
o ty,...,t, are elements of the interval [0, 1];

e «; is an embedding of the (possibly degenerate) segment [0, ¢;] in M’ with
a;(0) € T, a; transverse to OM at 0 whenever ¢; > 0, a;(s) € M for
0<s <t and a;(t;) € {z1,...,x,}; we further require that the images of
the embeddings oy, ..., a, are disjoint;

e @;(0) > ;(0) whenever i > j, using a fixed identification Z = (0, 1).

We obtain a zig-zag of levelwise weak equivalences of semi-simplicial spaces

Arce(Fy(M)) = Arce(F, (M) « | | Fas(M),
|S|=e+1

by regarding Arc,(F,(M)) as the subspace of Arc,(F,(M)) containing sequences
for which all ¢;’s are equal to 1, and by regarding | |;g/_, 1 Fn,s(M’)) as the sub-
space containing sequences for which all ¢;’s are equal to 0.

The space Arc,(F,(M)) deformation retracts onto Usj=p+1 Fns (M) by push-
ing the point

(@1, T (o, t0)s - - -, (Qp, Tp))
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along the path

(a0 ((1=8)to), - -, ap((1=5)tp); (a0l [0, (1-s)t0]> (1=8)t0)s - - -, (Apl [0, (1—-s)t,]5 (1—=8)Ep)).-

As the parameter s varies from 0 to 1 all arcs degenerate to constant paths in Z.
Similarly, Arc,(F,(M)) can be deformation retracted onto Arc,(F,(M)) by
pushing all values ¢; to 1. Precisely, we first choose a path ¢; of embeddings
M — M starting at the identity and pushing Z in the interior of M. We then use
¢ to convert each arc «; defined on an interval [0, ¢;] with ¢; < 1, into a new arc
o defined on [0,1]: we push the image of «; in the interior of M using ¢, and
concatenate the path ¢ — @:(;(0)) for t € [0,1 — ¢;] to obtain an arc beginning
on Z with parameter 1. By standard smoothing techniques one can improve the
previous construction so that it yields smooth arcs (also near the concatenation
point). O

A.4. The arc complex of Hatcher—Wahl. We now recall a semi-simplicial ver-
sion of the arc complex of Hatcher-Wahl [HW10| Section 7] (see also Randal-
Williams—Wahl [RWW17, Section 5.6.2]). Fix distinct points P,..., P, € M.

Definition A.5. We define a semi-simplicial set A,,(M),. The set of p-simplices
contains isotopy classes [ag,...,qp] of collections of disjoint smooth arcs «; :
[0,1] = M’, for i =0,...,p, such that:

«;(0) € Z and «; is transverse to M at 0;

a;(t) € M for t > 0;

a;(1) €{P,...., P };

a;(0) > a;(0) whenever 7 > j, using a fixed identification Z = (0, 1).

The face map d; is given by forgetting the ith arc.

An element is shown in Figure [L4]

FIGURE 14. The distinguished points {P, ..., P,} and a point in Ag(M)3

The semi-simplicial set A,, (M), and the semi-simplicial space Arc?(F,(M)) are
related as follows. Forgetting all arcs yields, for all p > 0, a map

pp: Arch(Fn(M)) = F(M).
The map p,, is a covering map, and A, (M), is defined as the fibre p, ' (P, ..., Py).

Definition A.6. We let Diffo(M, dM) denote the connected component of Id o4 in
Diff(M, OM). We let Diff (M, OMU{ P, ..., P,}) be the subgroup of Diff (M, dM)
containing diffeomorphisms f: M — M fixing OIM U { Py, ..., P,} pointwise.

We define

PBr,: = Diffo(M,dM) N Diff(M,0M U{Py,...,P,}) C Diff(M,dM).
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The reason for the notation ﬁgrn is that the pure braid group PBr, can be
defined as ﬂo(lgﬁrn). A classical result by Earle and Schatz for mapping class groups
of surfaces with nonempty boundary [ES70] ensures that all groups Diff (M, OM),
Diffo(M, OM), Diff (M, OMU{ Py, ..., P,}) and PBr,, have contractible connected
components; moreover the pull-back diagram

PBr, Diff (M, OM)

l l

Dif (M, OMU{P,...,P,}) —— Diff (M, M)
gives, after applying my, a pull-back diagram of discrete groups

PBr, ——1

| |

D(M,OMU{P,,... P,}) —» T,

which is equivalent to the Birman short exact sequence.

Let // denote the homotopy quotient by an action of a (topological) group. We
can view A, (M), as an augmented semi-simplicial set with set of (—1)-simplices
a single point. This lets us view A, (M), //PBr,, as an augmented semi-simplicial

space. Here we consider the natural action of PBr, = Wo(lg—B\I'n) on each set of
homotopy classes of collections of arcs A, (M),, and take levelwise the homotopy
quotient.

Lemma A.7. There is a zig-zag of weak equivaolences of augmented semi-simplicial
spaces between A, (M)e//PBr,, and Arce(F, (M)).

Proof. We can consider on A, (M), the levelwise action of the topological group
ﬁﬁrn, which acts through its quotient PBr,. We consider the semi-simplicial space
Ap(M)e //P/BTrn, which is levelwise weakly equivalent to A,,(M),//PBr, because
the projection of groups ﬁﬁrn — PBr,, is a weak equivalence.

Next, we observe that for all p > 0, the space Arcz (F,(M)) is homeomorphic to
the space

(Diffg(M, OM) x An(M),)/PBr,.

Here ¢ € ISE?I"H acts on Diffo(M, M) by f — fot~1 and it acts on A,,(M), by
[, ..., 0p] = [Yoag,...,¢oal.

—

There is a PBr,-invariant map
pp: (Diffo(M, DM) x A (M),) = Arcp(F, (M)
given by
Pp: (fa [Oéo,...70[p]) = (f(P1)7...,f(Pn);[fOOZO,...,fOOZpD-
The map p induces a homeomorphism, also denoted
pp: (Diffg (M, IM) x A,(M),)/PBr, = Arcl(F,(M)).
The homeomorphisms p,, give a levelwise homeomorphism of semi-simplicial spaces

p: (Diffg(M, M) x A,(M),)/PBr, = Arcl(F,(M)).
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Since the action of PBr, on Diffg(M,IM) is free and admits local sections, and
since the topological group Diffy(M, dM) is contractible, the semi-simplicial space

(Diffg(M, M) x A,(M),)/PBr,

is a model for the homotopy quotient A, (M), //PBr,.

To complete the proof, we note that the quotient map Arc,(F,(M)) —
Arcz (F(M)) is also a weak equivalence for all p > 0: this uses that the quo-
tient map is a fibre bundle, and that the fibre, i.e. the space of collections of arcs
(o, - .., ap) in a given homotopy class [ao, ..., ap] € Acm(Fn(./\/l)), is contractible
by Gramain [Gra73, Theorems 5 and 6]. O

A similar result for unordered configuration spaces is implicit in work of Krannich
[Kral9l Theorem 5.5 and Section 7.3].

A.5. Moriyama’s groups as twisted group homology.
Lemma A.8. There is an isomorphism

Ho(PBr,,(M); Hy—1(An(M)s)) = H, (BPBr,, | A, (M)e//PBr,]) .
Proof. There is a natural isomorphism

Hi(BPBry, | A4, (M)o//PBral) = Hy 1 (PBry; Ch” (JA (M).]))

where the right hand side denotes the hyperhomology of PBr, with twisted coeffi-
cients in the cellular chain complex (jhieu(”An(M).”).

By Hatcher-Wahl [HW10, Proposition 7.2], H;(A,(M),) vanishes except for
i =n — 1. Thus the hyperhomology spectral sequence collapses, showing

< cell
Hipnr (PBro; ChZ” (|4 (M)a]) ) 2 Hi(PBr; H ot (Au(M)a)):
Combining these two isomorphisms gives the result. |
Stringing together all the previous lemmas gives Theorem [A.9.

Theorem A.9. There is an isomorphism
Mor? 2 Ho(PBr, (M); H,_1(An(M)a)).

A.6. Moriyama’s groups as hypertor groups. In this subsection, we note that
the groups Mor, can be viewed as certain symmetric sequence valued hypertor
groups. Recall that the category of symmetric sequences of chain complexes is
endowed with a symmetric monoidal product called Day convolution. This product
lets us make sense of monoid objects, modules over monoid objects, tensor products
over monoid objects, Tor groups, algebras over operads, etc.

The sequence of chain complexes {Ch,(F,,(R?))}, has the structure of an Es-
algebra in symmetric sequences of chain complexes; in particular, it is an F;-algebra
and it is equivalent after rectification to a monoid object, which we denote by
Ch, (F(R?)). Picking an embedding R™ U M < M gives maps

Fu(R?) X Fp(M) = Fpyyo(M).
After rectification, these maps give rise to a Ch,(F(R?))-module Ch,(F(M)),
whose nth component is equivalent to Ch, (F,(M)).

Regard Z as a symmetric sequence of chain complexes concentrated in homolog-
ical degree 0. It is a Ch,(F(R?))-module via the augmentation Ch,(F(R?)) — Z,
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which is nontrivial only on the Oth component, where it induces an isomorphism
Hy(Ch, (Fy(R?))) 5 Z. View Mor], as a symmetric sequence of abelian groups by
viewing all but the nth component as 0. After applying Poincaré-Lefschetz duality,
Proposition [5.5] can be rephrased as saying that Ch,(F (./\/l)) has a resolution by
free Ch, (F(R?))-modules with nth syzygy given by Mor}, in homological degree n.
This gives Corollary [A.T0.

Corollary A.10. There is an isomorphism of symmetric sequences of abelian
groups

Torgh*(F(Rz))(Ch*(F(/\;l)), 7) = Mor;, .
Hypertor groups of this form are often referred to as “derived indecomposables”.

A.7. Some questions. We close the article with two questions.

Question A.11. Starting with the Solomon-Tits theorem [Sol69], there is a long
literature on generating sets for the top homology of spherical simplicial complexes
(see e.g. Broaddus [Brol2, Theorem 1.2] and [MW19, Theorem 2.40]). Can one
describe a generating set for PNI,L_l (A, (M)e)? Does this shed light on the homology
of configuration spaces?

o

Question A.12. The complexes A, (M)e and Arce(F,(M)) have primarily been
studied from the perspective of homological stability and representation stability
[HWI10|RWWI17MW19]. Is there a way of deducing Theorem [[.2] using stability?

For instance, representation stability for the sequence {Hi(Fy,(M))}n, together
with the fact that M has genus at least 1, implies that there is a surjection

mdg s, Hi(Fi(M)) = Hi(F,(M)).

o

Since J(1) acts trivially on Hy(Fi(M)) = Hi(M), one can conclude that J(1)
acts trivially on Hy(F,(M)) as well.

It is also easy to see that [J (i) acts trivially on H;(F;(M)) for i > 0, using that
H;(F;(M)) injects into Mor?. Can one show 7 (i) acts trivially on H;(F, (M)) for
all n by constructing H;(F,(M)) out of classes in H,(Fy(R?)) and in H,(F.(M))
with a sensible set of operations? This should be related to the fact that both
Moriyama’s space M"™ /(A (M)UA,,(M)) and the arc complex A,,(M), are spher-
ical.

ACKNOWLEDGMENTS

We would like to thank Benson Farb for suggesting this problem to the second
author. We would like to thank Manuel Krannich and Andrew Putman for helpful
conversations. We thank the referee for helpful comments.

REFERENCES

[Bia20] Andrea Bianchi, Splitting of the homology of the punctured mapping class group, J.
Topol. 13 (2020), no. 3, 1230-1260, DOI 10.1112/topo.12153. MR4125755

[Brol2] Nathan Broaddus, Homology of the curve complex and the Steinberg module of the map-
ping class group, Duke Math. J. 161 (2012), no. 10, 1943-1969, DOI 10.1215/00127094-
1645634. MR2954621

[EST0] C. J. Earle and A. Schatz, Teichmiiller theory for surfaces with boundary, J. Differential
Geometry 4 (1970), 169-185. MR277000

Licensed to Univ of Michigan. Prepared on Sat Oct 28 22:00:35 EDT 2023 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


https://www.ams.org/mathscinet-getitem?mr=4125755
https://www.ams.org/mathscinet-getitem?mr=2954621
https://www.ams.org/mathscinet-getitem?mr=277000

[FN62]
[Fuc70]
[Gra73]

[HW10]

[Joh80]

[Joh85]

[KM18]

[Kral9]
[Loo20]

[Mor07]

[MW19]

[RWW17]

[Sol69]

[Sta21]

MAPPING CLASS GROUP ACTIONS ON CONFIGURATION SPACES 5489

R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126, DOI
10.7146 /math.scand.a-10518. MR150755

D. B. Fuks, Cohomology of the braid group mod2 (Russian), Funkcional. Anal. i
Prilozen. 4 (1970), no. 2, 62-73. MR0274463

André Gramain, Le type d’homotopie du groupe des difféomorphismes d’une surface
compacte (French), Ann. Sci. Ecole Norm. Sup. (4) 6 (1973), 53-66. MR326773

Allen Hatcher and Nathalie Wahl, Stabilization for mapping class groups of 3-
manifolds, Duke Math. J. 155 (2010), no. 2, 205-269, DOI 10.1215/00127094-2010-055.
MR2736166

Dennis Johnson, An abelian quotient of the mapping class group Iy, Math. Ann. 249
(1980), no. 3, 225-242, DOI 10.1007/BF01363897. MR579103

Dennis Johnson, The structure of the Torelli group. II. A characterization of the group
generated by twists on bounding curves, Topology 24 (1985), no. 2, 113-126, DOI
10.1016,/0040-9383(85)90049-7. MR793178

Alexander Kupers and Jeremy Miller, E,-cell attachments and a local-to-global
principle for homological stability, Math. Ann. 370 (2018), no. 1-2, 209-269, DOI
10.1007/s00208-017-1533-3. MR3747486

Manuel Krannich, Homological stability of topological moduli spaces, Geom. Topol. 23
(2019), no. 5, 23972474, DOI 10.2140/gt.2019.23.2397. MR4019896

Eduard Looijenga, Torelli group action on the configuration space of a surface, Journal
of Topology and Analysis, DOI 10.1142/S1793525322500030.

Tetsuhiro Moriyama, The mapping class group action on the homology of the config-
uration spaces of surfaces, J. Lond. Math. Soc. (2) 76 (2007), no. 2, 451-466, DOI
10.1112/jlms/jdm077. MR2363426

Jeremy Miller and Jennifer C. H. Wilson, Higher-order representation stability and
ordered configuration spaces of manifolds, Geom. Topol. 23 (2019), no. 5, 2519-2591,
DOI 10.2140/gt.2019.23.2519. MR4019898

Oscar Randal-Williams and Nathalie Wahl, Homological stability for automorphism
groups, Adv. Math. 318 (2017), 534-626, DOI 10.1016/j.aim.2017.07.022. MR3689750
Louis Solomon, The Steinberg character of a finite group with BN -pair, Theory of
Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New
York, 1969, pp. 213-221. MR0246951

Andreas Stavrou, Cohomology of configuration spaces of surfaces as mapping class
group representations, larXiv:2107.08462, 2021.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARK-
EN 5, COPENHAGEN 2100, DENMARK
Email address: anbi@math.ku.dk

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 NORTH UNIVERSITY, WEST
LAFAYETTE, INDIANA 47907
Email address: jeremykmiller@purdue.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, 530 CHURCH ST., ANN ARBOR,
MICHIGAN 48109
Email address: jchw@umich.edu

Licensed to Univ of Michigan. Prepared on Sat Oct 28 22:00:35 EDT 2023 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


https://www.ams.org/mathscinet-getitem?mr=150755
https://www.ams.org/mathscinet-getitem?mr=0274463
https://www.ams.org/mathscinet-getitem?mr=326773
https://www.ams.org/mathscinet-getitem?mr=2736166
https://www.ams.org/mathscinet-getitem?mr=579103
https://www.ams.org/mathscinet-getitem?mr=793178
https://www.ams.org/mathscinet-getitem?mr=3747486
https://www.ams.org/mathscinet-getitem?mr=4019896
https://www.ams.org/mathscinet-getitem?mr=2363426
https://www.ams.org/mathscinet-getitem?mr=4019898
https://www.ams.org/mathscinet-getitem?mr=3689750
https://www.ams.org/mathscinet-getitem?mr=0246951
https://arxiv.org/abs/2107.08462

	1. Introduction
	1.1. Statement of results
	1.2. Relationship to the work of Moriyama
	1.3. Proof sketch and paper outline

	2. Preliminaries
	2.1. The Johnson filtration
	2.2. Action of homeomorphisms on configuration spaces
	2.3. Naturality of quasi-isomorphisms
	2.4. Moriyama’s results
	2.5. Functoriality

	3. Cell stratifications of configuration spaces
	3.1. A convenient model for \M
	3.2. Cell stratification of configuration spaces

	4. Cellular approximation of homeomorphisms
	4.1. The map 𝜏
	4.2. Superposition of configurations

	5. The cellular chain complex of 𝐹_{𝑆}(\M)^{∞}
	5.1. The one-skeleton 𝑋 of \M
	5.2. Cohomological portion of Theorem 1.2
	5.3. Homological portion of Theorem 1.2
	5.4. An analogue of Theorem 1.2 for labeled configuration spaces

	6. Sharpness of Theorem 1.2 and examples
	6.1. \cJ(2) does not act trivially on 𝐻₃(𝐹₃(\mathring{\M})) for 𝑔≥3
	6.2. \cJ(2) does not act trivially on 𝐻₃(𝐹₃(\mathring{\M})) for 𝑔=2
	6.3. \cJ(𝑖) is not the entire kernel of the action on 𝐻ᵢ(𝐹_{𝑛}(\mathring{\M})) for 𝑖≥3,𝑔≥2

	Appendix A. Reinterpretations of Moriyama’s group
	A.1. Moriyama’s group seen under Poincaré–Lefschetz duality
	A.2. The semi-simplicial space ⨆_{|𝑆|=∙+1}𝐹_{𝑛,𝑆}(\M’)
	A.3. The arc resolution of configuration spaces
	A.4. The arc complex of Hatcher–Wahl
	A.5. Moriyama’s groups as twisted group homology
	A.6. Moriyama’s groups as hypertor groups
	A.7. Some questions

	Acknowledgments
	References

