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Abstract. Existing risk-averse reinforcement learning approaches still
face several challenges, including the lack of global optimality guaran-
tee and the necessity of learning from long-term consecutive trajecto-
ries. Long-term consecutive trajectories are prone to involving visit-
ing hazardous states, which is a major concern in the risk-averse set-
ting. This paper proposes Transition-based vOlatility-controlled Policy
Search (TOPS), a novel algorithm that solves risk-averse problems by
learning from transitions. We prove that our algorithm—under the over-
parameterized neural network regime—finds a globally optimal policy
at a sublinear rate with proximal policy optimization and natural policy
gradient. The convergence rate is comparable to the state-of-the-art risk-
neutral policy-search methods. The algorithm is evaluated on challenging
Mujoco robot simulation tasks under the mean-variance evaluation met-
ric. Both theoretical analysis and experimental results demonstrate a
state-of-the-art level of TOPS’ performance among existing risk-averse
policy search methods.

Keywords: Reinforcement learning · Risk control · Volatility control

1 Introduction

The world has witnessed the successes of reinforcement learning (RL, [46]) in
multiple fields and domains [36]. However, there are still three concerns with
existing RL approaches, which are risk, long-term shocks, and global optimality.
The first concern, risk, refers to the instability with respect to the uncertainty
of future outcomes [13], often measured by the variance of the future outcome
(e.g., expected cumulative rewards). Most RL settings are risk-neutral [36,50,
53], meaning that an agent’s goal is merely to learn to maximize the expected
return (cumulative rewards) without considering the variance. Controlling risk
is necessary in a variety of applications, including financial decision-making [27],
healthcare [39], and robotics [32].
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The second concern, long-term shocks, is about visiting fatal or hazardous
states (i.e., states with extremely low future outcomes) in the process of long-
term interactions with the environment [18,20]. Unfortunately, avoiding haz-
ardous state visitation is not always guaranteed for risk-averse RL. A key obser-
vation is that visiting hazardous states are often caused by the agent’s long-
term consecutive interactions with the environment [7,24,48]. Long-term con-
secutive interactions with the environment tend to generate trajectories with
hazardous state visitations [7]. The possibility of triggering hazardous state visi-
tations would be significantly reduced if the agent does not learn from long-term
trajectories. However, most existing risk-averse RL algorithms require learning
from long-term trajectories. Otherwise, one has to use an additional learning
rate for the bootstrap-based critic learning, resulting in a multi-timescale step-
size tuning scheme, which is quite inconvenient in practice.

The third concern regards global optimality. The theoretical understanding
of policy gradient methods is under tentative study. Work on this topic has
been done mostly in the tabular setting. [11] and [44] establish non-asymptotic
convergence guarantees for various policy gradient methods with regularization.
[35] show convergence rate for softmax parametrization. [1] analyze multiple
policy gradient methods in the tabular setting as well as the linear approximation
setting. [28,61] extend their work to an off-policy setting. A large spectrum of
work has been done on the global optimality of policy gradient methods in a
non-linear approximation setting with over-parameterized neural networks [31,
51,62].

In this paper, we aim to answer one question: Can risk-aware policy gradient
algorithms have global optimality convergence guarantee and learn safely witho-
ut the need for long-term trajectories?Motivated by addressing this question, we
propose Transition-based vOlatility-controlled Policy Search (TOPS), a risk-
averse RL framework with reward volatility [7] as its risk measurement and
establish its global convergence and optimality. This paper makes two major
contributions. First, instead of learning from long-term rollouts [55,57,62], our
method TOPS does not require learning from long-term, uninterrupted trajec-
tories. Instead, it can be either trained with segments of long-term rollouts,
short-term trajectories, or a combination of them. This is achieved by using a
lower-bound surrogate loss mean-volatility loss function (other than the original
mean-variance loss function as in [14]) inspired by [7,60]. Second, we present a
theoretical analysis of the global optimality of the proposed algorithm and prove
that TOPS converges to a globally optimal policy at the rate of 1/

√
K, where K

is the number of iterations. This is achieved by the primal-dual formulation of
the mean-volatility function used in [60] and the primal-dual sample complexity
analysis inspired by [57,62].

The roadmap of the paper is as follows. We introduce the background in
Sect. 2. In Sect. 3, we formulate the TOPS algorithm. We present the major
result on its global convergence in Sect. 4. In Sect. 5, we perform experiments
on benchmark domains and compare them with state-of-the-art methods. We
discuss related work in Sect. 6 and conclude the paper in Sect. 7.



TOPS and Its Global Convergence 5

2 Background

This section introduces the background knowledge of the building blocks of this
paper, such as reinforcement learning, policy gradient, over-parameterized neural
networks. A detailed notation system is provided in Appendix A.

Reinforcement Learning. We consider the infinite-horizon discounted Markov
Decision Process (MDP) (S,A,P, r(s, a), γ) with state space S, action space
A, the transition kernel P : S × S × A → [0, 1], the reward function r(s, a) :
S × A → R, the initial state S0 ∈ S and its distribution µ0 : S → [0, 1],
and the discounted factor γ → (0, 1). At time step t, given a state st, an
action at is taken according to policy π(at|st) : S × A → [0, 1] , generating a
reward rt := r(st, at) and the next state st+1 based on p(st+1|st, at) the reward
function is assumed to be deterministic and bounded—a constant rmax > 0
exists such that rmax = sup(s,a)∈S×A|r(s, a)|. A change in states upon an action
(s, a, r(s, a), s′) is termed a transition, where the state s′ is the successive state
of the state s. With a little bit abuse of notation, r(s, a) is denoted as rs,a, and
r(st, at) is denoted as rt in the rest of the paper. A trajectory of length T is
a consecutive sequence of transitions {(st, at, rt, s′

t)}T−1
t=0 over a set of contigu-

ous timestamps, where ∀t, s′
t = st+1. Therefore, the trajectory is also equiva-

lently denoted by {(st, at, rt, st+1)}T−1
t=0 . To evaluate the performance of policy

π, we introduce state value function Vπ(s) := (1 − γ)Ea∼π(a|s)
[ ∑∞

t=0 γtrt
∣∣S0 =

s, at ∼ π(a|st), st+1 ∼ P(s|st, at)
]
and state-action value function Qπ(s, a) :=

(1 − γ)Ea∼π(a|s)
[ ∑∞

t=0 γtrt
∣∣s0 = s, a0 = a, at ∼ π(a|st), st+1 ∼ P(s|st, at)

]
.

Bounded reward implies |Vπ(s)| ≤ rmax and |Qπ(s, a)| ≤ rmax ∀π. Addi-
tionally, the advantage function Aπ : S × A → R of policy π is defined as
Aπ(s, a) := Qπ(s, a) − Vπ(s). The normalized state and state action occupancy
measure of policy π is denoted by νπ(s) and σπ(s, a) := π(a|s)νπ(s), respec-
tively. Therefore, νπ(s) := (1 − γ)

∑∞
t=0 γtPr(st = s|µ0,π,P) and σπ(s, a) :=

(1−γ)
∑∞

t=0 γtPr(st = s, at = a|µ0,π,P), where Pr(st = s|µ0,π,P) is the prob-
ability of st = s given µ0,π,P. Finally, the return is defined as G :=

∑∞
t=0 γtrt.

Policy Gradient Methods. In the following, we discuss two policy gradient meth-
ods, where the policy πθ is parameterized by the parameter θ. For natural policy
gradient (NPG, [22]), we first define the Fisher information matrix,

F (θ) := E(s,a)∼σπθ

[
∇θ log(πθ)(∇θ log(πθ))⊤

]
(1)

The update of parameter θ then takes the form,

θk+1 = θk + ηNPG

(
F (θk)

)−1∇Jθ(πθk) (2)

where
(
F (θk−1)

)−1 is the inverse of the Fisher information matrix F (θ) in
Eq. (1), ∇Jθ is the objective gradient and ηNPG the learning rate.

In proximal policy optimization (PPO, [43]), at the k-th iteration the update
of policy parameter θ takes the following form, where β is the penalty hyper-
parameter:

argmax
θ

E(s,a)∼σk

[
πθAθk/πθk

− βKL(πθ∥πθk)
]
. (3)
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Policy Network with Over-Parameterized Neural Networks. Policy π with the
two-layer over-parameterized neural network is defined as: for ∀(s, a) ∈ S × A,

f
(
(s, a); θ, b

)
:=

1√
m

m∑

v=1

bvReLU
(
(s, a)⊤[θ]v

)
. (4)

Here (s, a) is the input andm is the width of the network. θ = ([θ]⊤1 , · · · , [θ]⊤m)⊤ ∈
Rm×d is the input weight matrix in the first layer of the neural network.
b = (b1, · · · , bm)⊤ ∈ Rm×1 are the output weights in the second layer. We
present a block diagram of a over-parameterized neural network with Fig. 4 in
the Appendix B. At the start of training, the parameters θ, b are initialized by

θ = Θinit ∈ Rm×d([Θinit]v ∼ N (0, Id/d), (5)

and bv ∼ Unif
(
{−1, 1}

)
,∀v ∈ [m], respectively, where N denotes Gaussian dis-

tribution and Unif denotes uniform distribution. f((s, a); θ, b) can be simplified
to f((s, a); θ) by updating only [W ]v during training, and fixing b as its initial-
ization [3]. We also restrict the possible value of θ within the space denoted by
D = {ξ ∈ Rmd : ∥ξ −Θinit∥2 ≤ Υ,Υ > 0}. Therefore the policy is defined πθ(a|s)
in the following form, where τ is the temperature parameter.

πθ(a|s) :=
exp

(
τf

(
(s, a); θ

))
∑

a′∈A exp
(
τf

(
(s, a′

)
; θ

) .

Furthermore, the feature mapping of a two-layer neural network f((s, a); θ)
is defined as, φθ :=

(
[φθ]⊤1 , · · · , [φθ]⊤m

)⊤, where [φθ]⊤v = bv√
m
ReLU((s, a)⊤[θ]v),

∀v ∈ [m]. By Eq. (4), it holds that f((s, a); θ) = φ(s, a)⊤θ and ∇θf((s, a), θ) =
φ(s, a) [51]. Furthermore, we assume that there exists a constant M > 0 such
that,

E(s,a)∼init

[
sup

(s,a)∈S×A

∣∣φ((s, a)⊤Θinit)
∣∣2

]
≤ M2.

Mean-Variance and Mean-Volatility RL. In a variance-constraint problem with
the variance of the total reward, the objective can be formulated as,

max
π

J(π), subject to V(G) ≤ Y (6)

where J(π) := E(s,a)∼σπ
[G] = 1

1−γE(s,a)∼σπ
[rs,a] is the expected return, V(·) is

the variance of a random variable and Y > 0 is the upper bound for this variance.
The constrained formulation in Eq. (6) is NP-hard [45], and in reality, the relaxed
formulation JG

λ (π) defined in Eq. (7) is often solved instead [14,26,55] as follows,
where λ is called variance-controlling parameter.

JG
λ (π) := E[G] − λV(G) = E[G] − λE[G2] + λ(E[G])2 (7)

Meanwhile, [7] proposed a reward-volatility risk measure. Volatility is defined as
the variance of per-step reward—per-step reward R is a discrete random variable
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with a probability mass function of p(R = x) =
∑

s,a σπ(s, a)1{rs,a = x}, where
1{·} is the indicator function. It is easy to see that E[R] = (1−γ)J(π) [60]. V(R)
is the variance of R. Likewise, Jλ(π) is proposed as a counterpart of Eq. (7) in
the sequel, which is defined with respect to R.

Jλ(π) := E[R] − λV(R) = E[R] − λE[R2] + λ(E[R])2

We first present the following lemma based on Lemma 1 in [7] to show that
Jλ(π) is a reasonable counterpart to JG

λ (π).

Lemma 1. Given λ ≥ 0, 1
(1−γ)J λ

(1−γ)
(π) is a lower-bound of JG

λ (π), i.e.,
1

(1−γ)J λ
(1−γ)

(π) ≤ JG
λ (π).

A detailed proof is provided in Appendix D.5. Given Lemma 1, maximizing
JG

λ (π) can be reduced to maximizing its lower bound 1
(1−γ)J λ

(1−γ)
(π). There are

several advantages of optimizing Jλ(π). Compared to optimizing V(G), optimiz-
ing V(R) is computationally easier [60]. [7] argue that V(R) is better at capturing
short-term risk and leads to smoother trajectories that avoid possible “shocks”
caused by long-horizon trajectories [7].

3 Algorithm Formulation

In this section, we present our risk-averse policy-search algorithm. In particular,
we use (i) reward volatility to construct the mean-volatility objective, which
circumvents the long-horizon reward issue and avoids large variance, and (ii)
over-parameterized neural network [10] as the neural network architecture of
the actor and the critic to facilitate global convergence analysis.

3.1 Augmented MDP

As [7] shows, reward volatility has advantages over mean-variance methods,
including a smoother trajectory and much-reduced variance. Therefore, in our
paper, we choose volatility as the risk measurement. Compared with the con-
ventional mean-variance objective, the mean-volatility objective function enables
the agent to learn from transitions instead of trajectories and greatly reduces the
chance of getting into hazardous states due to consecutive long-horizon explo-
rations. This can greatly help improve safety. Note that because of compositional
expectations (E[R])2, double-sampling is needed, which is a heavy burden for
sampling.1

1 For more details on double-sampling and the more general compositional expecta-
tions, please refer to [30,52].
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To avoid double-sampling, we resort to augmented MDP. First, note that it
holds (E[R])2 = maxy∈R(2E[R]y − y2). Then the optimization objective trans-
forms into:

max
π,y

Jy
λ(π) := E(s,a)∼σπ

(rs,a − λr2s,a + 2λrs,ay) − λy2 (8)

We now introduce the augmented MDP, with the augmented reward defined as
follows:

r̃s,a := rs,a − λr2s,a + 2λrs,ay (9)

We refer to this new MDP as the augmented MDP M̃ = {S,A,P, r̃(s, a), γ},
and denote corresponding terms by the˜sign—for example, the associated state
value function and state-action value function are Ṽπ(s) and Q̃π(s, a). r̃(s, a) is
denoted by r̃s,a) for notation simplicity in the remainder of this paper. We solve
Eq. (8) by maximizing y and π of the augmented MDP in two steps iteratively.

3.2 Proposed Algorithms

Fig. 1. A simple block diagram of TOPS

We present TOPS in Algorithm 1. A block diagram of TOPS is illustrated in
Fig. 1, where there are three sets of parameters to update, i.e., θ for the actor,
ω for the critic, and the auxiliary variable y. Note that the mean-volatility
framework allows incorporating any off-the-shelf policy optimization methods
as pointed out by [60]. Since most global optimality analysis literature is based
on NPG and PPO [9,31,51,62], we also use NPG and PPO as inner policy search
algorithms for a fair comparison.

y Update: Since Eq. (9) is quadratic in y, to update y in each iteration, we have
yk = (1 − γ)J(πk). However, we do not have direct access to the exact value of
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J(πk). As an alternative, we estimate this value with a sample average in the
k-th iteration,

ŷk :=
1
T

T∑

t=1

rt, (10)

as an estimator of yk, where T is the sample (batch) size.

θ Update: We update πθ with an actor-critic scheme, particularly NPG and
PPO. NPG and PPO are the two most widely used policy gradient methods.
According to empirical studies [54], PPO usually achieves state-of-the-art per-
formance among on-policy policy gradient methods, and NPG has the advantage
of easy hyperparameter tuning compared with PPO. On the other hand, NPG
and PPO’s global convergences under the risk-neutral setting have been studied
intensively and can show good results [1,51]. Therefore, PPO and PNG are used
as the inner actor algorithm of the TOPS framework to make fair comparisons
with existing approaches. Additionally, over-parameterized neural networks are
widely used in proving global convergence of gradient-based methods under the
risk-neutral setting, which show impressive results [17,31,51]. The capability of
a gradient-based neural network method to reach the global optimum in an over-
parameterization setting is explained in theory [10]. Therefore, we parameterize
the policy in the paper with a two-layer over-parameterized neural network. We
first introduce the actor part of the two methods, respectively.

θ Update for Neural NPG. Per the update rule for NPG in Eq. (2), we need
to estimate the natural policy gradient

(
F (θk)

)−1∇θJ(πθ). However F (θk) is
difficult to invert due to its high-dimensionality. Instead the gradient is estimated
by solving minξ∈D ∥F̂ (θk)ξ − τk∇̂θJ(πθk)∥2, where

∇̂θJ(πθk) :=
τk
T

T∑

t=1

Qωk(st, at)
(
φθk(st, at)

− Ea∼πθk
[φθk(st, a

′
t)]

)
,

F̂ (θk) :=
τ2
k

T

T∑

t=1

((
φθk(st, at) − Ea∼πθk

[φθk(st, a
′
t)]

)

(
φθk(st, at) − Ea∼πθk

[φθt(st, a
′
t)]

)⊤
)
,

are unbias estimations of ∇θJ(πθ) and F (θk) respectively, with the help of fea-
ture mapping, θ is, therefore, updated as,

τk+1 = τk + ηNPG,

θk+1 =
(
τkθk + ηNPG argmin

ξ∈D
∥F̂ (θk)ξ − τk∇̂θJ(πθk)∥2

)
/τk+1 (11)

θ Update for Neural PPO. Given the update rule of PPO in Eq. (3), the PPO’s
objective function L(θ) can be rewritten as L(θ) := Es∼νπk

[
Ea∼πθ [Qπk ] −
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βKL(πθ∥πθk)
]
. With energy-based policy π ∝ exp{τ−1f}, the solution to the

subproblem π̂k+1 = argmaxπL(θ) can be obtained by solving the following [31]:

θk+1 = argmin
θ∈D

E(s,a)∼σ

[(
fθ − τk+1(β−1Qπk + τ−1

k fθk)
)2] (12)

The stochastic gradient method can be used to solve Eq. (12).

ω Update. To estimate the state-action function value of the augmented MDP
Q̃π, a critic network parameterized by ω is constructed, denoted as Q̃ω. Note
that the critic uses the same two-layer neural network architecture as the actor
defined in Eq. (4), which indicates that the policy network πθ’s parameter θ and
critic network Q̃π’s parameter ω are of identical dimensions, i.e., θ ∈ Rd,ω ∈
Rd. The critic network is parameterized with a different set of parameters ω =
([ω]⊤1 , · · · , [ω]⊤m)⊤ ∈ Rmd, denoted by f((s, a);ω). For simplicity, we then learn
Q̃ω by applying the semi-gradient TD method. Other approaches, such as the
Gradient TD (GTD) algorithm family [47], can also be applied. For each iteration
t of the TD update,

ωt+1 = ωt − ηTD

(
Q̃ωt(s, a) (13)

− (1 − γ)r̃s,a − γQ̃ωt(s
′, a′)

)
∇ωQωt(s, a),

where ηTD is the learning rate for TD update.

4 Theoretical Analysis

Although NPG and PPO’s global convergences under the risk-neutral setting
show prominent result [1,51], the techniques used by these methods only apply
to the primal constrained-MDP case and remain challenging to apply to the
analysis of the primal-dual case as in our augmented MDP, where the dual
variable y is critical. For example, Lemma (5.2) of [31], a critical step in the
error-bound analysis of risk-neutral PPO, cannot be applied to our primal-dual
risk-averse case. In this section, we establish the global convergence rate of TOPS
with both NPG and PPO.

4.1 Assumptions

We first impose regularity condition assumptions, which are common in the
literature on TD analysis with a neural network approximation [9,31,51,62].

Assumption 1 (Variance upper bound) [51]. Let D = {α ∈ Rmd : ∥α −
Θinit∥2 ≤ Υ}. For all k ∈ [K], We assume that for all k ∈ [K], there exists
an absolute constant σξ > 0 such that,

E[∥ξk(δk)∥22] ≤ τ4
kσ2

ξ/T, E[∥ξk(ωk)∥22] ≤ τ4
kσ2

ξ/T.

where δk = argminδ∈D∥F̂ (θk)δ − τk∇̂θJ(πθk)∥2 and ξk(δ) = F̂ (θk)δ −
τk∇̂θJ̃(πθk) − E[F̂ (θk)δ − τk∇̂θJ̃(πθk)]. The expectation is taken over σ given
θk and ωk.
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Algorithm 1: TOPS: Transition-based VOlatility-controlled Policy
Search
1 Input: number of iteration K, learning rate for natural policy gradient (resp.

PPO) and neural TD ηNPG (resp. ηPPO), temperature parameters {τk}Kk=1;
2 Initialize policy network f((s, a); θ, b) as defined in Eq. (5). Set τ1 = 1. Initialize

Q-network with (b,ω1) similarly;
3 for k = 1, · · · ,K do
4 Sample a batch of transitions {st, at, rt, s

′
t}Tt=1 following current policy with

size of T ;

5 y = 1
T

∑T
t=1 rt;

6 for t = 1, · · · , T do
7 r̃t = rt − λr2t + 2λrty, a

′
t ∼ π(a|s′

t);
8 end
9 Q-value update: update ωk according to Eq. (13);

10 if select NPG update then
11 update θk according to Eq. (11) ;
12 else if select PPO update then
13 update θk according to Eq. (12) ;

14 end
15 Output: πθK ;

Note that δk and ωk have the same dimension due to the compatible neural
network setting. ξk(δ) can be generalized to both δk and ωk. We then intro-
duce a regularity condition assumption on visitation measures and stationary
distributions in the sequel, respectively.

Assumption 2 (Upper bounded concentrability coefficient) [51]. ν∗ and σ∗ are
denoted as the state and state-action visitation measures corresponding to the
global optimum π∗. For all k ∈ [K], we define the following terms:

ϕk =

{
E(s,a)∼σπk

[(
dσ∗

d(σπk)
)2]

}1/2

, ψk =

{
Es∼νπk

[(
dν∗

d(νπk)
)2]

}1/2

,

ϕ′
k =

{
E(s,a)∼σ′

πk
[(

dσ∗

d(σ′
πk
)
)2]

}1/2

, ψ′
k =

{
Es∼ν′

πk
[(

dν∗

d(ν′
πk
)
)2]

}1/2

.

We assume that ϕk,ψk,ϕ′
k,ψ

′
k are uniformly upper bounded by an absolute con-

stant c0 > 0.

σ′
πk

and ν′
πk

are state-action and state stationary distribution. ϕk,ψk,ϕ′
k,ψ

′
k

are the concentrability coefficients, which reflects how much the starting state
and state-action distribution diverge from the state and state-action distribu-
tion under the optimal policy [37]. Assumption 2 impose a upper bound on
such divergence. This regularity condition is commonly used in the literature [4,
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16,38,51,58]. More over, we define ϕ∗
k = E(s,a)∼σπ

[(
dπ∗

dπ0
− dπθk

dπ0

)2
]1/2

,ψ∗
k =

E(s,a)∼σπ

[(dσπ∗
dσπ

− dνπ∗
dνπ

)2
]1/2

.

4.2 Major Theoretical Results

In the following, we present the major theoretical results, i.e., the global opti-
mality and convergence rate of TOPS with neural PPO. We define the optimal-
ity gap mink∈[K]

(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)
, where π∗, y∗ are respectively defined as

π∗ := argmaxπ Jλ(π), ŷ∗ := (1−γ)J(π∗), and yk is defined in Eq. (10). Jy∗

λ (π∗)
(resp. J ŷk

λ (πk)) represents the risk-averse objective under π∗ (resp.πk, i.e., the
policy at the k-th iteration).

Theorem 1 (Global Optimality and Rate of Convergence on neural PPO). We
set the learning rate of PPO ηPPO = min{(1 − γ)/3(1 + γ)2, 1/

√
KTD}, the

learning rate of TD update ηTD = min{(1− γ)/3(1 + γ)2, 1/
√
KTD} where KTD

is the total iteration of TD update, and β0 := β/
√
K. Under Assumptions 3–4,

we have, with a probability of 1 − δ,

min
k∈[K]

(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)

≤
β2
0 log |A|+ U + β2

0

∑K
k=1(εk + ε′

k)
(1 − γ)β0

√
K

+
4λc3rmax(1 − γ)√

K

where ε′′
k = O(Υ 3m−1/2 log(1/δ) + Υ 5/2m−1/4·
√
log(1/δ) + Υ · r2maxm

−1/4 + Υ 2K−1/2
TD + Υ ),

εk = τ−1
k+1ε

′′
kϕ∗

k+1 + β−1ε′′
kψ∗

k,

ε′
k = |A|τ−2

k+1ϵ
2
k+1,

U = 2Es∼νπ∗ [max
a∈A

(Q̃ω0)
2] + 2Υ 2

Similarly, we present TOPS global optimality and convergence rate with
neural NPG.

Theorem 2 (Global Optimality and Rate of Convergence for neural NPG). We
set the learning rate of NPG ηNPG = 1/

√
K, the learning rate of TD update

ηTD = min{(1− γ)/3(1+ γ)2, 1/
√
KTD} where KTD is the total iteration of TD

update, and the temperature parameters τk = (k−1)ηNPG. Under Assumptions 3–
4, with a probability of 1 − δ, we have

min
k∈[K]

(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)
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≤ 1
(1 − γ)

√
K

(
log |A|+ 9Υ 2 +M2 + 4c3M(1 − γ)2λ

)

+
1
K

K∑

k=1

(
ϵk

)

where ϵk =
√
8c0Υ 1/2σ1/2

ξ T−1/4

+O
(
(τk+1K

1/2 + 1)Υ 3/2m−1/4 + Υ 5/4m−1/8
)

+ c0O(Υ 3m−1/2 log(1/δ) + Υ 5/2m−1/4
√

log(1/δ)

+ Υ r2maxm
−1/4 + Υ 2K−1/2

TD + Υ )

Remark 1. Theorem 1 and 2 show the upper bound of the optimality gap

min
k∈[K]

(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)

∼ O(
1
K

),

where K is the maximum number of updates. It reflects how close the policy
produced by TOPS can achieve to the global optimal policy.

From Theorem 1 and 2, we can conclude that our risk-averse algorithm TOPS
with PPO and NPG version of the actor both converge to the global optimal
policy at a O(1/

√
K) rate. We provide a detailed proof in Appendix D.

5 Experiments

In this section, we aim to empirically examine the performance of our algorithm
on Mujoco robot manipulation benchmark tasks from OpenAI gym [8], as [60]
does. The Mujoco benchmark is a set of challenging robot control tasks in simu-
lated environments designed for controller optimization in reinforcement learn-
ing [49]. In this domain, the simulated robots are expected to achieve consistent
performances while avoiding failures that lead to dangerous results.

Experiment Setup. We conduct our experiments in an online learning set-
ting and include several recent risk-averse RL methods as baselines: the
mean-variance policy optimization (MVP) [55], mean-variance policy iteration
(MVPI) [60], and variance-constrained actor-critic (VARAC) [62]. We set λ = 1
and run each algorithm for 106 steps and evaluate the algorithm every 104
steps for 20 episodes. All curves are averaged over 10 independent runs and
use shaded areas to indicate standard errors. The experiment’s details are pro-
vided in Appendix C. All experiments’ parameters are tuned through rigorous
grid search.

We report the learning curves of TOPS with NPG and PPO, respectively, in
Fig. 2 and 3. For MVP, since the algorithm uses coordinate gradient at each step,
it does not have a PPO or NPG version, and therefore we only report its learning
curve in Fig. 2. For MVPI, we use its on-policy version for the experiment. As
it works with any off-the-shelf policy search method, we implement NPG and
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Fig. 2. Training progress of TOPS-NPG and baseline algorithms.

Fig. 3. Training progress of TOPS-PPO and baseline algorithms.

PPO with two-layer over-parameterized neural networks as its policy search
component.

There are several interesting findings of our experiments. First, the results
show that TOPS outperforms other baselines in most of the testbeds with respect
to initial learning speed, the variance during the learning process, and the steady-
state mean. In particular, TOPS outperforms other methods with a large margin
with respect to the mean and variance of the learning curve on Walker2d-v2,
Hopper-v2 and InvertedPendulum-v2, as seen from Fig. 2 and Fig. 3. Second,
the partial order of performance level tends to be consistent across different
tasks, regardless of the base method (NPG or PPO). The order of performance
level (from the best to the worst) in most subfigures of Fig. 2 is TOPS-NPG,
VARAC-NPG, and MVPI-NPG. Similar results are observed in the majority



TOPS and Its Global Convergence 15

of the subfigures in Fig. 3, where the order is TOPS-PPO, VARAC-PPO, and
MVPI-PPO. Compared to other methods, MVP performs poorly in all tested
domains, which indicates it may not suit the tasks. Note that on domains such
as Walker2d-v2 and Hopper-v2, MVP’s curves show zero variance with zero
mean. This is due to the fact that these domains have a sparse reward nature
(i.e., the reward is 0 for most states), and zero mean and zero reward indicate
that MVP simply learns nothing useful. Overall, these results demonstrate that
our TOPS algorithm can achieve state-of-the-art risk-averse performance on the
challenging robot simulator testbeds.

6 Related Work

In risk-averse RL, variance is a more popular risk measure among its many
peers [14,26,33,45,55], with the related approaches usually referred to as mean-
variance RL. Variance stands out due to its advantage in interpretability and
computation [29,34]. Most mean-variance RL methods consider the variance of
the total reward [14,26,55]. In contrast, [7] and [60] propose a reward-volatility
risk measure using the variance of a per-step reward. They show that the reward-
volatility method is better at capturing the short-term risk and easier to com-
pute.

In particular, we distinguish our method with [7,55], and [60]. [55] utilize the
variance of the cumulative rewards. However, this method’s theoretical analysis
is limited to the sample complexity of episodic average-reward MDP, and the
choice of solvers is restricted. Both [7] and [60] use the variance of the per-step
reward, which introduces a policy-dependent-reward issue. [7] solve this directly,
but it is much more difficult than normal MDP due to the lack of tools, and this
approach also requires double-sampling. [60] avoid these issues by proposing an
augmented MDP in a flexible framework that can apply any off-the-shelf policy
evaluation and control method and name it MVPI. Our paper is inspired by
[60], but our approach differs from MVPI. At any iteration, MVPI needs to keep
updating π until it maximizes the objective function defined in Eq. (8) with a
fixed y, while TOPS is only required to update π once. This key difference enables
TOPS to train faster, as shown in Sect. 5. We present an algorithm comparison
between TOPS and MVPI in Algorithm 2 of the Appendix B. Furthermore, we
can also provide a theoretical analysis of global convergence.

Second, we compare our proof technique with those of [31,51,57,62]. These
papers share a similar method in the first part of the analysis, but the second
parts are different because each works on a different policy gradient method.
Our paper adopts the methods of [51] and [31] for neural NPG and neural
PPO, respectively, and develops a method for the Q-function value based on
the two. Compared with [51] and [31], our results of convergence are in proba-
bility rather than expectation because we utilize different techniques when we
characterize certain error bounds. Specifically, we develop a high probability
bound for the critic part while using an expectation bound in the actor part.
The closest work to ours is [62], which utilizes the variance of the cumulative
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rewards and therefore needs to learn from consecutive trajectories instead of
non-consecutive transitions. A corresponding disadvantage is that it requires two
critics to represent value functions associated with the original reward and the
squared reward. On the contrary, TOPS only needs one due to the deployment of
the augmented MDP. Additionally, while they present theoretical proofs, they do
not provide empirical results. Moreover, in their proof, Eq. (4.15) does not hold,
which leads to an invalid core conclusion regarding their Eq. (4.17), an essential
part of the proof. Therefore, the validity of the theoretical analysis starting from
their Eq. (4.15) remains unclear. The details are mentioned in Appendix D.2.
The most recent work along this research line is [57]. Unlike other works, they
solve safe reinforcement learning problems in the primal space, termed CRPO.
In addition, the theoretical analysis of CRPO is restricted to a simplified ver-
sion of NPG. In contrast, we present theoretical proof for neural NPG and PPO
as the policy search algorithms. Other related work includes [56,63], and [6]. A
more detailed discussion is provided in Appendix E.

7 Conclusion

This paper aims to answer the following question: can risk-averse algorithms have
a global convergence guarantee and learn from short trajectories? Theoretical
analysis for both neural NPG and neural PPO with two-layer over-parameterized
neural networks are presented to show that TOPS can find the global optimality
at an O(1/

√
K) converge rate. We also demonstrate the empirical success of

TOPS in Mujoco robot simulation domains.

Acknowledgment. BL’s research is funded by the National Science Foundation
(NSF) under grant NSF IIS1910794, Amazon Research Award, and Adobe gift fund.

A Notation Systems

– (S,A,P, r, γ) with state space S, action space A, the transition kernel P,
the reward function r, the initial state S0 and its distribution µ0, and the
discounted factor γ.

– rmax > 0 is a constant as the upper bound of the reward.
– State value function Vπ(s) and state-action value function Qπ(s, a).
– The normalized state and state action occupancy measure of policy π is

denoted by νπ(s) and σπ(s, a)
– T is the length of a trajectory.
– The return is defined as G. J(π) is the expectation of G.
– Policy πθ is parameterized by the parameter θ.
– τ is the temperature parameter in the softmax parameterization of the policy.
– F (θ) is the Fisher information matrix.
– ηTD is the learning rate of TD update. Similarly, ηNPG is the learning rate

of NPG update. ηPPO is the learning rate of PPO update.
– β is the penalty factor of KL difference in PPO update.
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– f
(
(s, a); θ

)
is the two-layer over-parameterized neural network, with m as its

width.
– φθ is the feature mapping of the neural network.
– D is the parameter space for θ, with Υ as its radius.
– M > 0 is a constant as the initialization upper bound on θ.
– JG

λ (π) is the mean-variance objective function.
– Jλ(π) is the reward-volatility objective function, with λ as the penalty factor.
– Jy

λ(π) is the transformed reward-volatility objective function, with y as the
auxiliary variable.

– r̃ is the reward for the augmented MDP. Similarly, Ṽπ(s) and Q̃π(s, a) are
state value function and state-action value function of the augmented MDP,
respectively. J̃(π) is the risk-neural objective of the augmented MDP.

– ŷk is an estimator of y at k-th iteration.
– ω is the parameter of critic network.
– δk = argminδ∈D∥F̂ (θk)δ − τk∇̂θJ(πθk)∥2.
– ξk(δ) = F̂ (θk)δ − τk∇̂θJ̃(πθk) − E[F̂ (θk)δ − τk∇̂θJ̃(πθk)].
– σξ is a constant associated with the upper bound of the gradient variance.
– ϕk,ψk,ϕ′

k,ψ
′
k are the concentability coefficients, upper bounded by a constant

c0 > 0.

– ϕ∗
k = E(s,a)∼σπ

[(
dπ∗

dπ0
− dπθk

dπ0

)2
]1/2

.

– ψ∗
k = E(s,a)∼σπ

[(dσπ∗
dσπ

− dνπ∗
dνπ

)2
]1/2

.

– K is the total number of iterations. Similarly, KTD is the total number of TD
iterations.

– c3 > 0 is a constant as to quantify the difference in risk-neutral objective
between optimal policy and any policy.

Algorithm 2: A comparison between TOPS and MVPI
1 for k = 1, . . . ,K do
2 Step 1: yk := (1 − γ)J(πk);

3 Step 2: J̃(πθk ) := E(s,a)∼σπθ
(rs,a − λr2s,a + 2λrs,ayk);

4 if MVPI: then
5 θk := argmaxθ(J̃(πθk ));

// This is achieved by line 9 to 15 in Algorithm 3

6 else if TOPS: then
7 if select NPG update then
8 update θk according to Eq. (11) ;
9 else if select PPO update then

10 update θk according to Eq. (12) ;

11 end
12 Output: πθK ;
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B Algorithm Details

We provide a comparison between MVPI and TOPS. Note that neither NPG
nor PPO solve θk := argmaxθ(J̃(πθk)) directly, but instead solve an approxi-
mation optimization problem at each iteration. We provide pseudo-code for the
implementation of MVPI and VARAC in Algorithm 3 and 4.

C Experimental Details

Note that although the mean-volatility method can be adapted to off-policy
methods [60], in this paper, for the ease of the theoretical analysis, our proposed
method is an on-policy actor-critic algorithm.

C.1 Testbeds

We use six Mujoco tasks from Open AI gym [8] as testbeds. They are Half
Cheetah-v2, Hopper-V2, Swimmer-V2, Walker2d-V2, InvertedPendulum-v2,
and InvertedDoublePendulum-v2.

C.2 Hyper-parameter Settings

In the experiment we set λ = 1. We then tune learning rate for different
algorithms. For MVP, we use the same setting as [60]. For MVPI, TOPS and
VARAC with neural NPG, we tune the learning rate of the actor network from
{0.1, 1×10−2, 1×10−3, 7×10−4} and the learning rate of the critic network from
{1×10−2, 1×10−3, 7×10−4}. For MVPI, TOPS and VARAC with neural PPO,
we tune the learning rate of the actor network from {3×10−3, 3×10−4, 3×10−5}
and the learning rate of the critic network from {1 × 10−2, 1 × 10−3, 1 × 10−4}.
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Algorithm 3: MVPI with over-parameterized networks
1 Input: number of iteration K, learning rate for natural policy gradient (resp.

PPO) TD ηNPG (resp. ηPPO), temperature parameters {τk}Kk=1;
2 Initialization: Initialization: Initialize policy network f((s, a); θ, b) as defined

in Eq. (5). Set τ1 = 1. Initialize Q-network with (b,ω1) similarly;
3 for k = 1, · · · ,K do
4 Sample a batch of transitions {st, at, rt, s

′
t}Tt=1 following current policy with

size of T ;

5 y = 1
T

∑T
t=1 rt ;

6 for t = 1, · · · , T do
7 r̃t = rt − λr2t + 2λrty, a

′
t ∼ π(a|s′

t);
8 end
9 repeat

10 Q-value update: update ωk according to Eq. (13);
11 if select NPG update then
12 update θk according to Eq. (11);
13 else if select PPO update then
14 update θk according to Eq. (12);

15 until CONVERGE ;

16 end
17 Output: πθK ;

C.3 Computing Infrastructure

We conducted our experiments on a GPU GTX 970 and GPU GTX 1080Ti.

D Theoretical Analysis Details

In this section, we discuss the theoretical analysis in detail. We first present the
overview in Sect. D.1. Then we provide additional assumptions in Sect.D.2. In
the rest of the section, we present all the supporting lemmas and the proof for
Theorem 1 and 2.

D.1 Overview

We provide Fig. 5 to illustrate the structure of the theoretical analysis. First,
under Assumption 3 and 4, as well as Lemma 13. We can obtain Lemma 14, 15
and 16. These are the building blocks of Lemma 2, which is a shared component
in the analysis of both NPG and PPO. The shared components also include
Lemma 3, as well as Lemma 4 obtained under Assumption 5. For PPO analysis,
under Assumption 2 and 4, we obtain Lemma 7 and 8 from Lemma 2 and 6,
Then combined with Lemma 3, 4 and 9, we obtain Theorem 1, the major result
of PPO analysis. Likely for NPG analysis, we first obtain Lemma 11 and 12
under Assumption 1, 2 and 4. Then together with Lemma 2, 3, 4 and 10, we
obtain Theorem 2, the major result of NPG analysis.
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Algorithm 4: VARAC
1 Input: number of iteration K, learning rate for natural policy gradient (resp.

PPO) TD ηNPG (resp. ηPPO), temperature parameters {τk}Kk=1;
2 Initialization: Initialize policy network f((s, a); θ, b) as defined in Eq. (5). Set

τ1 = 1. Initialize Q-network with (b,ω1) similarly;
3 for k = 1, · · · ,K do
4 Sample a batch of transitions {st, at, rt, s

′
t}Tt=1 following current policy with

size of T ;

5 y = 1
T

∑T
t=1 rt;

6 Q-value update: update both networks’ ωk according to Eq. (13);
7 Output Qk and Wk;
8 update θk with NPG or PPO;

9 end
10 Output: πθK ;

Fig. 4. A block diagram of over-parameterized neural network
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Fig. 5. A flow chart of the theoretical analysis
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D.2 Additional Assumptions

Assumption 3 (Action-value function class). We define

FΥ,∞ :=

{
f(s, a; θ) = f0(s, a))

+
∫

1{θ⊤(s, a) > 0}(s, a)⊤ι(θ)dµ(w) : ∥ι(θ)∥∞ ≤ Υ/
√
d

}

where µ : Rd → [0, 1] is a probability density function of N (0, Id/d). f0(s, a) is
the two-layer neural network corresponding to the initial parameter Θinit, and
ι : Rd → Rd is a weighted function. We assume that Q̃π ∈ FΥ,∞ for all π.

Assumption 4 (Regularity of stationary distribution). For any policy π, and
∀x ∈ Rd,∀∥x∥2 = 1, and ∀u > 0, we assume that there exists a constant c > 0
such that E(s,a)∼σπ

[
1{|x⊤(s, a)| ≤ u}

]
≤ cu.

Assumption 3 is a mild regularity condition on Qπ, as FΥ,∞ is a sufficiently
rich function class and approximates a subset of the reproducing kernel Hilbert
space (RKHS) [40]. Similar assumptions are widely imposed [4,16,38,51,58].
Assumption 4 is a regularity condition on the transition kernel P. Such regularity
holds so long as σπ has an upper bound density, satisfying most Markov chains.

In [62] Lemma 4.15, they make a mistake in the proof. They accidentally
flip a sign in y∗ − ȳ when transitioning from the first equation in the proof to
Eq. (4.15). This invalidates the conclusion in Eq. (4.17), an essential part of the
proof. We tackle this issue by proposing the next assumption.

Assumption 5 (Convergence Rate of J(π)). We assume π∗ (the optimal policy
to the risk-averse objective function Jλ(π)) converges to the risk-neutral objective
J(π) for both NPG and PPO with the over-parameterized neural network to be
O(1/

√
k). Specifically, there exists a constant c3 > 0 such that,

J(π∗) − J(πk) ≤ c3√
k

It was proved [31,51] that the optimal policy w.r.t the risk-neutral objective
J(π) obtained by NPG and PPO method with the over-parameterized two-layer
neural network converges to the globally optimal policy at a rate of O(1/

√
K),

where K is the number of iteration. Since our method uses similar settings, we
assume the convergence rates of risk-neutral objective J(π) in our paper follow
their results.

In the following subsections, we study TOPS’s convergence of global opti-
mality and provide a proof sketch.

D.3 Proof of Theorem 1

We first present the analysis of policy evaluation error, which is induced by TD
update in Line 9 of Algorithm 1. We characterize the policy evaluation error in
the following lemma:
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Lemma 2 (Policy Evaluation Error). We set learning rate of TD ηTD =
min{(1 − γ)/3(1 + γ)2, 1/

√
KTD}. Under Assumption 3 and 4, it holds that,

with probability of 1 − δ,

∥Q̃ωk − Q̃πk∥2νπk

= O(Υ 3m−1/2 log(1/δ) + Υ 5/2m−1/4
√

log(1/δ)

+ Υ r2maxm
−1/4 + Υ 2K−1/2

TD + Υ ), (14)

where Q̃πk is the Q-value function of the augmented MDP, and Q̃ωk is its esti-
mator at the k-th iteration. We provide the proof and its supporting lemmas
in Appendix D.6. In the following, we establish the error induced by the policy
update. Equation (8) can be re-expressed as

Jy
λ(π) =

∑

s,a

σπ

(
rs,a − λr2s,a + 2λrs,ayk+1

)
− λy2k+1 (15)

It can be shown that ∀π,maxy Jy
λ(π) = Jλ(π) [55,60]. We denote the optimal

policy to the augmented MDP associated with y∗ by π∗(y∗). By definition, it is
obvious that π∗ and π∗(y∗) are equivalent. For simplicity, we will use the unified
term π∗ in the rest of the paper. We present Lemma 3 and 4.

Lemma 3 (Policy’s Performance Difference). For mean-volatility objective
w.r.t. auxiliary variable y as Jy

λ(π) defined in Eq. (15). For any policy π and π′,
we have the following,

Jy
λ(π

′) − Jy
λ(π) = (1 − γ)−1Es∼νπ′

[
Ea∼π′ [Q̃π,y]

− Ea∼π[Q̃π,y]
]
,

where Q̃π,y is the state-action value function of the augmented MDP, and its
rewards are associated with y.

Proof. When y is fixed,

Jy
λ(π

′) − Jy
λ(π)

=
∑

s,a

σπ′ r̃s,a −
∑

s,a

σπ r̃s,a = J̃(π′)) − J̃(π) (16)

We then follow Lemma 6.1 in [21]:

J̃(π′) − J̃(π) = (1 − γ)−1E(s,a)∼σπ′

[
Ãπ

]
(17)

where Ãπ = Q̃π − Ṽπ is the advantage function of policy π. Meanwhile,

Ea∼π′ [Ãπ] = Ea∼π′ [Q̃π] − Ṽπ = Ea∼π′ [Q̃π] − Ea∼π[Q̃π] (18)

From Eq. (16), Eq. (17) and Eq. (18), we complete the proof.
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Lemma 3 is inspired by [21] and adopted by most work on global convergence [1,
31,57]. Next, we derive an upper bound for the error of the critic update in
Line 5 of Algorithm 1:

Lemma 4 (y Update Error). We characterize the error induced by the esti-
mation of auxiliary variable y w.r.t the optimal value y∗ at k-th iteration as,
Jy∗

λ (π∗) − J ŷk

λ (π∗) = 2c3rmax(1−γ)λ√
k

, where rmax is the bound of the original
reward, and c3 is a constant error term.

Proof. We start from the subproblem objective defined in Eq. (15) with y∗ and
ŷk:

Jy∗

λ (π∗) − J ŷk

λ (π∗)

=
( ∑

s,a

σπ∗
(
rs,a − λr2s,a + 2λrs,ay∗) − λy∗2

)

−
( ∑

s,a

σπ∗
(
rs,a − λr2s,a + 2λrs,aŷk

)
− λŷ2k

)

= 2λ
( ∑

s,a

σπ∗rs,a
)
(y∗ − ŷk) − λ(y∗2 − ŷ2k)

= λ⟨y∗ − ŷk, 2(1 − γ)J(π∗) − y∗ − ŷk⟩
= (1 − γ)λ⟨y∗ − ŷk, J(π∗) − Ĵ(πk)⟩

where we obtain the final two equalities by the definition of Jπ and y. Because
rs,a is upper-bounded by a constant rmax, we have |y∗ − ŷk| ≤ 2rmax. Under
Assumption 5 we have,

Jy∗

λ (π∗) − J ŷk

λ (π∗) =
2c3rmax(1 − γ)λ√

k

Thus we finish the proof.

From Lemma 3 and 4, we can also obtain the following Lemma.

Lemma 5 (Performance Difference on π and y). For mean-volatility objective
w.r.t. auxiliary variable y as Jy

λ(π) defined in Eq. (15). For any π, y and the
optimal π∗, y∗, we have the following,

Jy∗

λ (π∗) − Jy
λ(π) = (1 − γ)−1Es∼νπ∗

[
Ea∼π∗ [Q̃π,y]

− Ea∼π[Q̃π,y]
]
+

2c3rmax(1 − γ)λ√
k

.

where Q̃π,y is the state-action value function of the augmented MDP, and its
rewards are associated with y.

Proof. It is easy to see that Jy∗

λ (π∗)−Jy
λ(π) = Jy∗

λ (π∗)−Jy
λ(π

∗)+Jy
λ(π

∗)−Jy
λ(π).

Then replace Jy
λ(π

∗)−Jy
λ(π) with Lemma 3 and Jy∗

λ (π∗)−Jy
λ(π

∗) with Lemma 4,
we finish the proof.
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Lemma 5 quantifies the performance difference of Jy
λ(π) between any pair π, y

and the optimal π∗, y∗, while Lemma 3 only quantifies the performance difference
of Jy

λ(π) between π and π′ when y is fixed.
We now study the global convergence of TOPS with neural PPO as the policy

update component. First, we define the neural PPO update rule.

Lemma 6 [31]. Let πθk ∝ exp{τ−1
k fθk} be an energy-based policy. We define

the update
π̂k+1 = argmax

π
Es∼νk [Eπ[Qωk ] − βkKL(πθ∥πθk)],

where Qωk is the estimator of the exact action-value function Qπθk . We have

π̂k+1 ∝ exp{β−1
k Qωk + τ−1

k fθk}

And to represent π̂k+1 with πθk+1 ∝ exp{τ−1
k+1fθk+1}, we solve the following sub-

problem,

θk+1 = argmin
θ∈D

E(s,a)∼σk
[(fθ(s, a) − τk+1(β−1

k Qωk(s, a)

+ τ−1
k fθk(s, a)))

2]

We analyze the policy improvement error in Line 13 of Algorithm 1. [31] proves
that the policy improvement error can be characterized similarly to the policy
evaluation error as in Eq. (14). Recall Q̃ωk is the estimator of Q-value, fθk

the energy function for policy, and fθ̂ its estimator. We characterize the policy
improvement error as follows: Under Assumptions 3 and 4, we set the learning
rate of PPO ηPPO = min{(1− γ)/3(1 + γ)21/

√
KTD}, and with a probability of

1 − δ:

∥(fθ̂ − τk+1(β−1Q̃ωk + τ−1
k fθk)∥2

= O(Υ 3m−1/2 log(1/δ) + Υ 5/2m−1/4
√

log(1/δ)

+ Υ r2maxm
−1/4 + Υ 2K−1/2

TD + Υ ). (19)

We quantify how the errors propagate in neural PPO [31] in the following.

Lemma 7 [31]. (Error Propagation) We have,
∣∣Es∼νπ∗

[
Ea∼π∗ [log(πθk+1/πk+1] − Ea∼πθk

[log(πθk+1/πk+1]
]∣∣ ≤ τ−1

k+1ε
′′
kϕ∗

k+1 + β−1ε′′
kψ∗

k (20)

ε′′
k are defined in Eq. (14) as well as Eq. (19). ϕ∗

k = E(s,a)∼σπ

[(
dπ∗

dπ0
−

dπθk
dπ0

)2
]1/2

,ψ∗
k = E(s,a)∼σπ

[(dσπ∗
dσπ

− dνπ∗
dνπ

)2
]1/2

. dπ∗

dπ0
,
dπθk
dπ0

, dσπ∗
dσπ

, dνπ∗
dνπ

are the

Radon-Nikodym derivatives [23]. We denote RHS in Eq. (20) by εk =
τ−1
k+1ε

′′
kϕ∗

k+1 + β−1ε′′
kψ∗

k. Lemma 7 essentially quantifies the error from which
we use the two-layer neural network to approximate the action-value function
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and policy instead of having access to the exact ones. Please refer to [31] for
complete proofs of Lemma 6 and 7.

∣∣Es∼νπ∗

[
Ea∼π∗ [log(πθk+1/πk+1]

− Ea∼πθk
[log(πθk+1/πk+1]

]∣∣ ≤ τ−1
k+1ε

′′
kϕ∗

k+1 + β−1ε′′
kψ∗

k

We then characterize the difference between energy functions in each
step [31]. Under the optimal policy π∗,

Lemma 8 [31]. (Stepwise Energy Function difference) Under the same condi-
tion of Lemma 7, we have

Es∼νπ∗ [∥τ−1
k+1fθk+1 − τ−1

k fθk∥2∞] ≤ 2ε′
k + 2β−2

k U, (21)

where ε′
k = |A|τ−2

k+1ϵ
2
k+1

and U = 2Es∼νπ∗ [maxa∈A(Q̃ω0)2] + 2Υ 2.

Proof. By the triangle inequality, we get the following,

∥τ−1
k+1fθk+1 − τ−1

k fθk∥2∞
≤ 2

(
∥τ−1

k+1fθk+1 − τ−1
k fθk − β−1Q̃ωk∥2∞ + ∥β−1Q̃ωk∥2∞

)
(22)

We take the expectation of both sides of Eq. (22) with respect to s ∼ νπ∗ . With
the 1-Lipshitz continuity of Q̃ωk in ω and ∥ωk − Θinit∥2 ≤ Υ , we have,

Eνπ∗

[
∥τ−1

k+1fθk+1 − τ−1
k fθk∥2∞

]

≤ 2(|A|τ−2
k+1ϵ

2
k+1 + Es∼νπ∗ [max

a∈A
(Q̃ω0)

2] + Υ 2)

Thus complete the proof.

We then derive a difference term associated with πk+1 and πθk , where at the
k-th iteration πk+1 is the solution for the following subproblem,

πk+1 = argmax
π

(
Es∼νπk

[
Ea∼π[Q̃πk,ŷk ] − βKL(π∥πθk)

])

and πθk is the policy parameterized by the two-layered over-parameterized neu-
ral network. The following lemma establishes the one-step descent of the KL-
divergence in the policy space:

Lemma 9 (One-step difference of π). For πk+1 and πθk , we have

KL(π∗∥πθk) − KL(π∗∥πθk+1)

≥
(
Ea∼π∗ [log(

πθk+1

πk+1
)] − Ea∼πθk

[log(
πθk+1

πk+1
)]

)

+ β−1
(
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πθk

[Q̃πk,ŷk ]
)

+
1
2
∥πθk+1 − πθk∥21 +

(
Ea∼πθk

[τ−1
k+1fθk+1 − τ−1

k fθk ]

− Ea∼πθk+1
[τ−1

k+1fθk+1 − τ−1
k fθk ]

)
(23)
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Proof. We start from

KL(π∗∥πθk) − KL(π∗∥πθk+1) = Ea∼π∗ [log(
πθk+1

πθk

)]

(By definition, KL(πθk+1∥πθk) = Ea∼πθk+1
[log(

πθk+1

πθk

)]
)
)

=
(
Ea∼π∗ [log(

πθk+1

πθk

)] − Ea∼πθk+1
[log(

πθk+1

πθk

)]
)
+

KL(πθk+1∥πθk)
We then add and subtract terms,

= Ea∼π∗ [log(
πθk+1

πθk

)] − Ea∼πθk+1
[log(

πθk+1

πθk

)] + KL

(πθk+1∥πθk) + β−1
(
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πθk

[Q̃πk,ŷk ]
)

− β−1
(
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πθk

[Q̃πk,ŷk ]
)

+ Ea∼πθk
[log(

πθk+1

πθk

)] − Ea∼πθk
[log(πθk+1πθk)]

Rearrange the terms and we get,

=
(
Ea∼π∗ [log(πθk+1) − log(πθk) − β−1Q̃πk,ŷk ]

− Ea∼πθk
[log(πθk+1) − log(πθk) − β−1Q̃πk,ŷk ]

)

+ β−1
(
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πθk

[Q̃πk,ŷk ]
)
+KL

(πθk+1∥πθk) +
(
Ea∼πθk

[log(
πθk+1

πθk

)] − Ea∼πθk+1

[log(πθk+1πθk)]
)

(24)

Recall that πk+1 ∝ exp{τ−1
k fθk + β−1Q̃y

πk
}. We define the two normalization

factors associated with ideal improved policy πk+1 and the current parameterized
policy πθk as,

Zk+1(s) :=
∑

a′∈A
exp{τ−1

k fθk(s, a
′) + β−1Q̃y

πk
(s, a′)}

Zθk+1(s) :=
∑

a′∈A
exp{τ−1

k+1fθk+1(s, a
′)}

We then have,

πk+1(a|s) =
exp{τ−1

k fθk(s, a) + β−1Q̃y
πk
(s, a)}

Zk+1(s)
, (25)

πθk+1(a|s) =
exp{τ−1

k+1fθk+1(s, a)}
Zθk+1(s)

(26)

For any π,π′ and k, we have,

Ea∼π[logZθk+1 ] − Ea∼π′ [logZθk+1 ] = 0 (27)
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Ea∼π[logZk+1] − Ea∼π′ [logZk+1] = 0 (28)

Now we look back at a few terms on RHS from Eq. (24):

Ea∼π∗
[
log(πθk) + β−1Q̃πk,ŷk

]

− Ea∼πθk

[
log(πθk) + β−1Q̃πk,ŷk

]

=
(
Ea∼π∗ [τ−1

k fθk + β−1Q̃πk,ŷk − logZθk+1 ]

− Ea∼πθk
[τ−1

k fθk + β−1Q̃πk,ŷk − logZθk+1 ]
)

=Ea∼π∗

[
log

exp{τ−1
k fθk + β−1Q̃πk,ŷk}

Zk+1

]

− Ea∼πθk

[
log

exp{τ−1
k fθk + β−1Q̃πk,ŷk}

Zk+1

]

=Ea∼π∗ [log πk+1] − Ea∼πθk
[log πk+1] (29)

For Eq. (29), we obtain the first equality by Eq. (26). Then, by swapping Eq. (27)
with Eq. (28), we obtain the second equality. We achieve the concluding step
with the definition in Eq. (25). Following a similar logic, we have,

Ea∼πθk
[log(

πθk+1

πθk

) − Ea∼πθk+1
[log(

πθk+1

πθk

)]

=Ea∼πθk
[τ−1

k+1fθk+1 − logZθk+1 − τ−1
k fθk + logZθk ]−

Ea∼πθk+1
[τ−1

k+1fθk+1 − logZθk+1 − τ−1
k fθk + logZθk ]

=Ea∼πθk
[τ−1

k+1fθk+1 − τ−1
k fθk ] − Ea∼πθk+1

[τ−1
k+1fθk+1−

τ−1
k fθk ] (30)

Finally, by using the Pinsker’s inequality [12], we have,

KL(πθk+1∥πθk) ≥ 1/2∥πθk+1 − πθk∥21 (31)

Plugging Eqs. (29), (30), and (31) into Eq. (24), we have

KL(π∗∥πθk) − KL(π∗∥πθk+1)

≥
(
Ea∼π∗ [log(πθk+1) − log(πk+1)] − Ea∼πθk

[log(πθk+1)

− log(πk+1)]
)
+ β−1

(
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πθk

[Q̃πk,ŷk ]
)

+
1
2
∥πθk+1 − πθk∥21 +

(
Ea∼πθk

[τ−1
k+1fθk+1 − τ−1

k fθk ]

− Ea∼πθk+1
[τ−1

k+1fθk+1 − τ−1
k fθk ]

)

Rearranging the terms, we obtain Lemma 9.

Lemma 9 serves as an intermediate-term for the major result’s proof. We
obtain upper bounds by telescoping this term in Theorem 1. Now we are ready
to present the proof for Theorem 1.
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Proof. First we take expectation of both sides of Eq. (23) with respect to s ∼ νπ∗

from Lemma 9 and insert Eq. (20) to obtain,

Es∼νπ∗ [KL(π∗∥πθk+1)] − Es∼νπ∗ [KL(π∗∥πθk)]

≤ εk − β−1Es∼νπ∗

[
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πθk

[Q̃πk,ŷk ]
]

− 1/2Es∼νπ∗

[
∥πθk+1 − πθk∥21

]
− Es∼νπ∗

[
Ea∼πθk

(32)

[τ−1
k+1fθk+1 − τ−1

k fθk ] − Ea∼πθk+1
[τ−1

k+1fθk+1 − τ−1
k fθk ]

]

Then, by Lemma 3, we have,

β−1Es∼νπ∗

[
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πθk

[Q̃πk,ŷk ]
]

= β−1(1 − γ)
(
J ŷk

λ (π∗) − J ŷk

λ (π)
)

(33)

And with Hölder’s inequality, we have,

Es∼νπ∗

[
Ea∼πθk

[τ−1
k+1fθk+1 − τ−1

k fθk ] − Ea∼πθk+1

[τ−1
k+1fθk+1 − τ−1

k fθk ]
]

=Es∼νπ∗

[〈
τ−1
k+1fθk+1 − τ−1

k fθk ,πθk − πθk+1

〉]
(34)

≤Es∼νπ∗

[
∥τ−1

k+1fθk+1 − τ−1
k fθk∥∞∥πθk − πθk+1∥1

]

Insert Eqs. (33) and (34) into Eq. (32), we have,

Es∼νπ∗ [KL(π∗∥πθk+1)] − Es∼νπ∗ [KL(π∗∥πθk)]

≤ εk − (1 − γ)β−1
(
J ŷk

λ (π∗) − J ŷk

λ (π)
)

− 1/2Es∼νπ∗
[
∥πθk+1 − πθk∥21

]
+ Es∼νπ∗

[
∥τ−1

k+1fθk+1 − τ−1
k fθk∥∞

∥πθk − πθk+1∥1
]

≤ εk − (1 − γ)β−1
(
Jy∗

λ (π∗) − J ŷk

λ (π) − Jy∗

λ (π∗)

+ J ŷk

λ (π∗)
)
+ 1/2Es∼νπ∗

[
∥τ−1

k+1fθk+1 − τ−1
k fθk∥2∞

]

≤ εk − (1 − γ)β−1
(
Jy∗

λ (π∗) − J ŷk

λ (π)
)

+ (1 − γ)β−1
(
Jy∗

λ (π∗) − J ŷk

λ (π∗)
)

+ 1/2Es∼νπ∗

[
∥τ−1

k+1fθk+1 − τ−1
k fθk∥2∞

]
.

The second inequality holds by using the inequality 2AB−B2 ≤ A2, with a minor
abuse of notations. Here, A := ∥τ−1

k+1fθk+1 − τ−1
k fθk∥∞ and B := ∥πθk −πθk+1∥1.

Then, by plugging in Lemma 4 and Eq. (21) we end up with,

Es∼νπ∗ [KL(π∗∥πθk+1)] − Es∼νπ∗ [KL(π∗∥πθk)]

≤ εk − (1 − γ)β−1
(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)

(35)

+ (1 − γ)β−1
(2c3M(1 − γ)λ√

k

)
+ (ε′

k + β−2
k U)
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Rearrange Eq. (35), we have

(1 − γ)β−1
(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)

≤Es∼νπ∗ [KL(π∗∥πθk)] − Es∼νπ∗ [KL(π∗∥πθk+1)]

+
(2c3M(1 − γ)2λ

β
√
k

)
+ εk + ε′

k + β−2
k U (36)

And then telescoping Eq. (36) results in,

(1 − γ)
K∑

k=1

β−1 min
k∈[K]

(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)

≤ (1 − γ)
K∑

k=1

β−1
(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)

≤Es∼νπ∗ [KL(π∗∥π0)] − Es∼νπ∗ [KL(π∗∥πK)]

+ λrmax(1 − γ)2
K∑

k=1

β−1
(2c3√

k

)
+ U

K∑

k=1

β−2
k

+
K∑

k=1

(εk + ε′
k) (37)

We complete the final step in Eq. (37) by plugging in Lemma 4 and Eq. (20).
Per the observation we make in the proof of Theorem 2,

1. Es∼νπ∗ [KL(π∗∥π0)] ≤ logA due to the uniform initialization of policy.
2. KL(π∗∥πK) is a non-negative term.

We now have,

min
k∈[K]

Jy∗

λ (π∗) − J ŷk

λ (πk)

≤
log |A|+ UKβ−2 +

∑K
k=1(εk + ε′

k

(1 − γ)Kβ−1
)

+ λrmax(1 − γ)
(2c3√

k

)

Replacing β with β0

√
K finishes the proof.

D.4 Proof of Theorem 2

In the following part, we focus the convergence of neural NPG. We first define
the following terms under neural NPG update rule.

Lemma 10 [51]. For energy-based policy πθ, we have policy gradient and Fisher
information matrix,
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∇θJ(πθ) = τEdπθ
(s,a)[Qπθ (s, a)(φθ(s, a) − Eπθ [φθ(s, a′)])]

F (θ) = τ2Edπθ
(s,a)[(φθ(s, a) − Eπθ [φθ(s, a′)])

(φθ(s, a) − Eπθ [φθ(s, a′)])⊤]

We then derive an upper bound for Jy∗

λ (π∗)−Jy∗

λ (πk) for the neural NPG method
in the following lemma:

Lemma 11 (One-step difference of π). It holds that, with probability of 1 − δ,

(1 − γ)
(
J ŷk

λ (π∗) − J ŷk

λ (πk)
)

≤ η−1
NPGEs∼νπ∗

[
KL(π∗∥πk) − KL(π∗∥πk+1)

]

+ ηNPG(9Υ 2 + r2max) + 2c0ϵ′
k + η−1

NPGϵ′′
k ,

where

ϵ′
k = O(Υ 3m−1/2 log(1/δ) + Υ 5/2m−1/4

√
log(1/δ)

+ Υ r2maxm
−1/4 + Υ 2K−1/2

TD + Υ ),

ϵ′′
k = 8ηNPGΥ 1/2c0σ

1/2
ξ T−1/4

+O((τk+1 + ηNPG)Υ 3/2m−1/4

+ ηNPGΥ 5/4m−1/8),

c0 is defined in Assumption 2 and σξ is defined in Assumption 1. Meanwhile, Υ
is the radius of the parameter space, m is the width of the neural network, and
T is the sample batch size.

Proof. We start from the following,

KL(π∗∥πk) − KL(π∗∥πk+1) − KL(πk+1∥πk)

= Ea∼π∗
[
log(

πk+1

πk
)
]
− Ea∼πk+1

[
log(

πk+1

πk
)
]

(38)

(by KL’s definition).

We now show the building blocks of the proof. First, we add and subtract
a few terms to RHS of Eq. (38) then take the expectation of both sides with
respect to s ∼ νπ∗ . Rearrange these terms, we get,

Es∼νπ∗

[
KL(π∗∥πk) − KL(π∗∥πk+1) − KL(πk+1∥πk)

]

= ηNPGEs∼νπ∗

[
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πk [Q̃πk,ŷk ]

]

+Hk (39)
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where Hk is denoted by,

Hk := Es∼νπ∗

[
Ea∼π∗ [log(

πk+1

πk
) − ηNPGQ̃ωk

]

− Ea∼πk

[
log(

πk+1

πk
) − ηNPGQ̃ωk ]

]

+ ηNPGEs∼νπ∗

[
Ea∼π∗ [Q̃ωk − Q̃πk,ŷk ]

− Ea∼πk [Q̃ωk − Q̃πk,ŷk ]
]

+ Es∼νπ∗

[
Ea∼πk [log(

πk+1

πk
)]

− Ea∼πk+1 [log(
πk+1

πk
)]

]
(40)

By Lemma 3, we have

ηNPGEs∼νπ∗

[
Ea∼π∗ [Q̃πk,ŷk ] − Ea∼πk [Q̃πk,ŷk ]

]

= ηNPG(1 − γ)
(
J ŷk

λ (π∗) − J ŷk

λ (πk)
)

(41)

Insert Eqs. (41) back to Eq. (39), we have,

ηNPG(1 − γ)
(
J ŷk

λ (π∗) − J ŷk

λ (πk)
)

= Es∼νπ∗

[
KL(π∗∥πk) − KL(π∗∥πk+1) − KL(πk+1∥πk)

]

− Hk

≤Es∼νπ∗

[
KL(π∗∥πk) − KL(π∗∥πk+1) − KL(πk+1∥πk)

]

+ |Hk| (42)

We reach the final inequality of Eq. (42) by algebraic manipulation. Second, we
follow Lemma 5.5 of [51] and obtain an upper bound for Eq. (40). Specifically,
with probability of 1 − δ,

Ea∼init

[
|Hk| − Es∼νπ∗ [KL(πk+1∥πk)]

]

≤ η2
NPG(9Υ

2 + r2max) + 2ηNPGc0ϵ
′
k + ϵ′′

k (43)

The expectation is taken over randomness. With these building blocks of
Eqs. (42) and (43), we are now ready to reach the concluding inequality. Plugging
Eqs. (43) back into Eq. (42), we end up with, with probability of 1 − δ,

ηNPG(1 − γ)
(
J ŷk

λ (π∗) − J ŷk

λ (πk)
)

≤Es∼νπ∗

[
KL(π∗∥πk) − KL(π∗∥πk+1)

]

+ η2
NPG(9Υ

2 + r2max) + 2ηNPGc0ϵ
′
k + ϵ′′

k (44)

Dividing both sides of Eq. (44) by ηNPG completes the proof. The details are
included in the Appendix.

We have the following Lemma to bound the error termsHk defined in Eq. (40)
of Lemma 11.
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Lemma 12 [51]. Under Assumptions 4, we have

Ea∼init

[
|Hk| − Es∼νπ∗ [KL(πk+1∥πk)]

]

≤ η2
NPG(9Υ

2 + r2max) + ηNPG(ϕ′
k + ψ′

k)ϵ
′
k + ϵ′′

k

Here the expectation is taken over all the randomness. We have ϵ′
k := ∥Qωk −

Qπk∥2νπk
and

ϵ′′
k =

√
2Υ 1/2ηNPG(ϕk + ψk)τ−1

k

{
E(s,a)∼σπθk

[∥ξk(δk)∥22]

+ E(s,a)∼σπωk
[∥ξk(ωk)∥22]

}1/2

+O((τk+1 + ηNPG)Υ 3/2m−1/4 + ηNPGΥ 5/4m−1/8).

Recall ξk(ωk) and ξk(ωk) are defined in Assumption 1, while ϕk,ψk, ϕ′
k, and ψk

are defined in Assumption 2.

Please refer to [51] for complete proof. Finally, we are ready to show the proof
for Theorem 2.

Proof. First, we combine Lemma 4 and 11 to get the following:

(1 − γ)
(
Jy∗

λ (π∗) − J ŷk

λ (π∗) + J ŷk

λ (π∗) − J ŷk

λ (πk)
)

≤ η−1
NPGEs∼νπ∗ [KL(π∗∥πk) − KL(π∗∥πk+1)]

+ ηNPG(9Υ 2 + r2max) + 2c0ϵ′
k + η−1

NPGϵ′′
k

+
2c3M(1 − γ)2λ√

k
(45)

We can then see this:

1. Es∼νπ∗ [KL(π∗∥π1)] ≤ log |A| due to the uniform initialization of policy.
2. KL(π∗∥πK+1) is a non-negative term.

And by setting ηNPG = 1/
√
K and telescoping Eq. (45), we obtain,

(1 − γ) min
k∈[K]

(
Jy∗

λ (π∗) − J ŷk

λ (πk)
)

≤ (1 − γ)
1
K

K∑

k=1

E(Jy∗

λ (π∗) − J ŷk

λ (πk))

≤ 1√
K

(Es∼νπ∗ [KL(π∗∥π1)] + 9Υ 2 + r2max) +
1
K

K∑

k=1

(2
√
Kc0ϵ

′
k + η−1

NPGϵ′′
k +

2c3M(1 − γ)2λ√
k

) (46)
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plug ϵ′
k and ϵ′′

k defined in Lemma 11 into Eq. (46), and set ϵk as,

ϵk =
√
8c0Υ 1/2σ1/2

ξ T−1/4

+O
(
(τk+1K

1/2 + 1)Υ 3/2m−1/4 + Υ 5/4m−1/8
)

+ c0O(Υ 3m−1/2 log(1/δ) + Υ 5/2m−1/4
√

log(1/δ)

+ Υ r2maxm
−1/4 + Υ 2K−1/2

TD + Υ )

we complete the proof.

D.5 Proof of Lemma 1

Proof. First, we have E[G] = 1
1−γE[R], i.e., the per-step reward R is an unbi-

ased estimator of the cumulative reward G. Second, it is proved that V(G) ≤
V(R)

(1−γ)2 [7]. Given λ ≥ 0, summing up the above equality and inequality, we have

1
(1 − γ)

J λ
(1−γ)

(π) =
1

(1 − γ)

(
E[R] − λ

(1 − γ)
V(R)

)

≤ E[G] − λV(G) = JG
λ (π).

It completes the proof.

D.6 Proof of Lemma 2

We first provide the supporting lemmas for Lemma 2. We define the local lin-
earization of f((s, a); θ) defined in Eq. (4) at the initial point Θinit as,

f̂((s, a); θ) =
1√
m

m∑

v=1

bv1{[Θinit]⊤v (s, a) > 0}[θ]⊤v (s, a) (47)

We then define the following function spaces,

FΥ,m :=

{
1√
m

m∑

v=1

bv1
{
[Θinit]⊤v (s, a) > 0

}
[θ]⊤v (s, a) :

∥θ − Θinit∥2 ≤ Υ

}
,

and

F̄Υ,m :=

{
1√
m

m∑

v=1

bv1
{
[Θinit]⊤v (s, a) > 0

}
[θ]⊤v (s, a) :

∥[θ]v − [Θinit]v∥∞ ≤ Υ/
√
md

}
.

[Θinit]r ∼ N (0, Id/d) and br ∼ Unif({−1, 1}) are the initial parameters. By
the definition, F̄Υ,m is a subset of FΥ,m. The following lemma characterizes the
deviation of F̄Υ,m from FΥ,∞.
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Lemma 13 (Projection Error) [40]. Let f ∈ FΥ,∞, where FΥ,∞ is defined in
Assumption 3. For any δ > 0, it holds with probability at least 1 − δ that

∥ΠF̄Υ,m
f − f∥ς ≤ Υm−1/2[1 +

√
2 log(1/δ)]

where ς is any distribution over S × A.

Please refer to [40] for a detail proof.

Lemma 14 (Linearization Error). Under Assumption 4, for all θ ∈ D, where
D = {ξ ∈ Rmd : ∥ξ − Θinit∥2 ≤ Υ}, it holds that,

Eνπ

[(
f
(
(s, a); θ

)
− f̂

(
(s, a); θ

))2]
≤ 4c1Υ 3

√
m

where c1 = c
√
EN (0,Id/d)[1/∥(s, a)∥22], and c is defined in Assumption 4.

Proof. We start from the definitions in Eq. (4) and Eq. (47),

Eνπ

[(
f
(
(s, a); θ

)
− f̂

(
(s, a); θ

))2]

= Eνπ

[( 1√
m

∣∣∣
m∑

v=1

((
1{[θ]⊤v (s, a) > 0} − 1{[Θinit]⊤v (s, a)

> 0}
)
bv[θ]⊤v (s, a)

)∣∣∣
)2]

≤ 1
m
Eνπ

[( m∑

v=1

(∣∣∣1{[θ]⊤v (s, a) > 0} − 1{[Θinit]⊤v (s, a)

> 0}
∣∣∣
∣∣∣bv

∣∣∣
∣∣∣[θ]⊤v (s, a)

∣∣∣
))2]

(48)

The above inequality holds because the fact that |
∑

W | ≤
∑

|W |, where
W =

(
(1{[θ]⊤v (s, a) > 0} − 1{[Θinit]⊤v (s, a) > 0})bv[θ]⊤v (s, a)

)
. Θinit is defined in

Eq. (5). Next, since 1{[Θinit]⊤v (s, a) > 0} ̸= 1{[θ]⊤v (s, a) > 0}, we have,

|[Θinit]⊤v (s, a)| ≤ |[[θ]⊤v (s, a) − Θinit]⊤v (s, a)|
≤ ∥[θ]v − [Θinit]v∥2, (49)

where we obtain the last inequality from the Cauchy-Schwartz inequality. We
also assume that ∥(s, a)∥2 ≤ 1 without loss of generality [31,51]. Equation (49)
further implies that,

|1{[θ]⊤v (s, a) > 0} − 1{[Θinit]⊤v (s, a) > 0}|
≤1{|[Θinit]⊤v (s, a)| ≤ ∥[θ]v − [Θinit]v∥2} (50)

Then plug Eq. (50) and the fact that |bv| ≤ 1 back to Eq. (48), we have
the following,
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Eνπ

[(
f
(
(s, a); θ

)
− f̂

(
(s, a); θ

))2]

≤ 1
m
Eνπ

[( m∑

v=1

1
{∣∣∣[Θinit]⊤v (s, a)

∣∣∣ ≤
∥∥∥[θ]v − [Θinit]v

∥∥∥
2

}

∣∣∣[θ]⊤v (s, a)
∣∣∣
)2]

≤ 1
m
Eνπ

[( m∑

v=1

1
{∣∣∣[Θinit]⊤v (s, a)

∣∣∣ ≤
∥∥∥[θ]v − [Θinit]v

∥∥∥
2

}

(∣∣∣
(
[θ]v − [Θinit]v

)⊤(s, a)
∣∣∣ +

∣∣∣[Θinit]⊤v (s, a)
∣∣∣
))2]

≤ 1
m
Eνπ

[( m∑

v=1

1
{∣∣∣[Θinit]⊤v (s, a)

∣∣∣ ≤
∥∥∥[θ]v − [Θinit]v

∥∥∥
2

}

(∥∥∥[θ]v − [Θinit]v
∥∥∥
2
+

∣∣∣[Θinit]⊤v (s, a)
∣∣∣
))2]

≤ 1
m
Eνπ

[( m∑

v=1

1
{∣∣∣[Θinit]⊤v (s, a)

∣∣∣ ≤
∥∥∥[θ]v − [Θinit]v

∥∥∥
2

}

2
∥∥∥[θ]v − [Θinit]v

∥∥∥
2

)2]
(51)

We obtain the second inequality by the fact that |A| ≤ |A−B|+ |B|. Then follow
the Cauchy-Schwartz inequality and ∥(s, a)∥2 ≤ 1 we have the third equality. By
inserting Eq. (49) we achieve the fourth inequality. We continue Eq. (51) by
following the Cauchy-Schwartz inequality and plugging

∥∥[θ] − [Θinit]
∥∥
2

≤ Υ ,

Eνπ

[(
f
(
(s, a); θ

)
− f̂

(
(s, a); θ

))2]

≤ 4Υ 2

m
Eνπ

[ m∑

v=1

1{|[Θinit]⊤v (s, a)| ≤ ∥[θ]v − [Θinit]v∥2}
]

=
4Υ 2

m

m∑

v=1

Pνπ |[Θinit]⊤v (s, a)| ≤ ∥[θ]v − [Θinit]v∥2)

≤ 4cΥ 2

m

m∑

v=1

∥[θ]v − [Θinit]v∥2
∥Θinit]v∥2

≤ 4cΥ 2

m

( m∑

v=1

∥[θ]v − [Θinit]v∥22
)−1/2( m∑

v=1

1
∥Θinit]v∥22

)−1/2

≤ 4c1Υ 3

√
m

(52)

We obtain the second inequality by imposing Assumption 4 and the
third by following the Cauchy-Schwartz inequality. Finally, we set c1 :=
c
√
EN (0,Id/d)[1/∥(s, a)∥22]. Thus, we complete the proof.
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In the t-th iterations of TD iteration, we denote the temporal difference terms
w.r.t f̂((s, a); θt) and f((s, a); θt) as

δ0t ((s, a), (s, a)
′; θt) = f̂((s, a)′; θt) − γf̂((s, a); θt)

− rs,a,

δθ
t ((s, a), (s, a)

′; θt) = f((s, a)′; θt) − γf((s, a); θt)
− rs,a.

For notation simplicity in the sequel we write δ0t ((s, a), (s, a)′; θt) and
δθ
t ((s, a), (s, a)′; θt) as δ0t and δθ

t . We further define the stochastic semi-gradient
gt(θt) := δθ

t ∇θf((s, a); θt), its population mean ḡt(θt) := Eνπ [gt(θt)]. The local
linearization of ḡt(θt) is ĝt(θt) := Eνπ [δ0t ∇θf̂((s, a); θt)]. We denote them as
gt, ḡt, ĝt respectively for simplicity.

Lemma 15. Under Assumption 4, for all θt ∈ D, where D = {ξ ∈ Rmd :
∥ξ − Θinit∥2 ≤ Υ}, it holds with probability of 1 − δ that,

∥ḡt − ĝt∥2

= O
(
Υ 3/2m−1/4

(
1 + (m log

1
δ
)−1/2

)
+ Υ 1/2rmaxm

−1/4
)

Proof. By the definition of ḡt and ĝt, we have
∥∥ḡt − ĝt

∥∥2

2

=
∥∥Eνπ [δ

θ
t ∇θf((s, a); θt) − δ0t ∇θf̂((s, a); θt)]

∥∥2

2

=
∥∥Eνπ [(δ

θ
t − δ0t )∇θf((s, a); θt) + δ0t (∇θf((s, a); θt)−

∇θf̂((s, a); θt))]
∥∥2

2

≤ 2Eνπ

[
(δθ

t − δ0t )
2∥∇θf((s, a); θt)∥22

]
+

2Eνπ

[(
|δ0t |∥∇θf((s, a); θt) − ∇θf̂((s, a); θt))∥2

)2] (53)

We obtain the inequality because (A+B)2 ≤ 2A2 + 2B2. We first upper bound
Eνπ

[
(δθ

t − δ0t )2∥∇θf((s, a); θt)∥22
]
in Eq. (53). Since ∥(s, a)∥2 ≤ 1, we have

∥∇θf((s, a); θt)∥2 ≤ 1. Then by definition, we have the following first inequality,

Eνπ

[(
δθ
t − δ0t

)2∥∥∥∇θf((s, a); θt)
∥∥∥
2

2

]

≤Eνπ

[(
f
(
(s, a); θt

)
− f̂

(
(s, a); θt

)
− γ

(
f
(
(s′, a′); θt

)

− f̂
(
(s′, a′); θt)

)))2]

≤Eνπ

[(∣∣∣f
(
(s, a); θt

)
− f̂

(
(s, a); θt

)∣∣∣ +
∣∣∣f

(
(s′, a′); θt

)

− f̂
(
(s′, a′); θt

)∣∣∣
)2]
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≤ 2Eνπ

[(
f
(
(s, a); θt

)
− f̂

(
(s, a); θt

))2]
+ 2Eνπ

[(
f
(
(s′, a′); θt

)
− f̂

(
(s′, a′); θt

))2]

≤ 4Eνπ

[(
f
(
(s, a); θt

)
− f̂

(
(s, a); θt

))2]
≤ 16c1Υ 3

√
m

(54)

We obtain the second inequality by |γ| ≤ 1, then obtain the third inequality by the
fact that (A+B)2 ≤ 2A2+2B2. We reach the final step by inserting Lemma 14.
We then proceed to upper bound Eνπ

[
|δ0t |∥∇θf((s, a); θt) − ∇θf̂((s, a); θt))∥2

]
.

From Hölder’s inequality, we have,

Eνπ

[(
|δ0t |∥∇θf((s, a); θt) − ∇θf̂((s, a); θt))∥2

)2]

≤Eνπ

[
(δ0t )

2
]
Eνπ

[
∥∇θf((s, a); θt) − ∇θf̂((s, a); θt))∥22

]

(55)

We first derive an upper bound for first term in Eq. (55), starting from its
definition,

Eνπ

[
(δ0t )

2
]

= Eνπ

[[
f̂
(
(s′, a′); θt

)
− γf̂

(
(s, a); θt

)
− rs,a

]2]

≤ 3Eνπ

[(
f̂
(
(s′, a′); θt

))2] + 3Eνπ

[(
γf̂

(
(s, a); θt

))2]

+ 3Eνπ

[
r2s,a

]

≤ 6Eνπ

[(
f̂
(
(s, a); θt

))2] + 3r2max

= 6Eνπ

[(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

)
+ f̂

(
(s, a); θπ∗

)

− Qπ +Qπ

)2] + 3r2max

≤ 18Eνπ

[(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))2] + 18Eνπ

[(
f̂
(
(s, a); θπ∗

)
− Qπ

)2] + 18Eνπ

[(
Qπ

)2] + 3r2max

≤ 72Υ 2 + 18Eνπ

[(
f̂
(
(s, a); θπ∗

)
− Qπ

)2]

+ 21(1 − γ)−2r2max (56)

We obtain the first and the third inequality by the fact that (A + B + C)2 ≤
3A2+3B2+3C2. Recall rmax is the boundary for reward function r, which leads
to the second inequality. We obtain the last inequality in Eq. (56) following the
fact that |f̂((s, a); θt)−f̂((s, a); θπ∗)| ≤ ∥θt−θπ∗∥ ≤ 2Υ and Qπ ≤ (1−γ)−1rmax.
Since F̄Υ,m ⊂ FΥ,m, by Lemma 13, we have,

Eνπ

[(
f̂
(
(s, a); θπ∗

)
− Qπ

)2]
≤

Υ 2
(
1 +

√
2 log(1/δ)

)2

m
(57)
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Combine Eq. (56) and Eq. (57), we have with probability of 1 − δ,

Eνπ

[
(δ0t )

2
]

≤ 72Υ 2(1 +
log(1/δ)

m
) + 21(1 − γ)−2r2max (58)

Lastly we have

Eνπ

[
∥∇θf((s, a); θt) − ∇θf̂((s, a); θt))∥22

]

= Eνπ

[( 1
m

m∑

v=1

(
1{[θ]⊤v (s, a) > 0} − 1{[Θinit]⊤v (s, a)

> 0})2(bv)2∥(s, a)∥22
)]

≤Eνπ

[ 1
m

m∑

v=1

(
1{|[Θinit]⊤v (s, a)| ≤ ∥[θ]v − [Θinit]v∥2}

)]

≤ c1Υ√
m

(59)

We obtain the first inequality by following Eq. (50) and the fact that |bv| ≤ 1
and ∥(s, a)∥2 ≤ 1. Then for the rest, we follow the similar argument in Eq. (52).
To finish the proof, we plug Eq. (54), Eq. (58) and Eq. (59) back to Eq. (53),

∥ḡt − ĝt∥22

≤ 2
(16c1Υ 3

√
m

+
(
72Υ 2(1 +

log(1/δ)
m

) + 21(1 − γ)−2r2max

)

c1Υ√
m

)

=
176c1Υ 3

√
m

+
144c1Υ 3 log(1/δ)

m3/2
+

42c1Υ r2max

(1 − γ)−2
√
m

Then we have,

∥ḡt − ĝt∥2

≤

√
176c1Υ 3

√
m

+
144c1Υ 3 log(1/δ)

m3/2
+

42c1Υ r2max

(1 − γ)−2
√
m

≤

√
176c1Υ 3

√
m

+

√
144c1Υ 3 log(1/δ)

m3/2
+

√
42c1Υ r2max

(1 − γ)−2
√
m

= O
(
Υ 3/2m−1/4

(
1 + (m log

1
δ
)−1/2

)
+ Υ 1/2rmaxm

−1/4
)

Next, we provide the following lemma to characterize the variance of gt.

Lemma 16 (Variance of the Stochastic Update Vector) [31]. There exists a con-
stant ξ2g = O(Υ 2) independent of t. Such that for any t ≤ T , it holds that

Eνπ [∥gt(θt) − ḡt(θt)∥22] ≤ ξ2g
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A detailed proof can be found in [31]. Now we provide the proof for Lemma 2.

Proof.
∥∥θt+1 − θπ∗

∥∥2

2

=
∥∥ΠD(θt − ηgt(θt)) − ΠD(θπ∗ − ηĝt(θπ∗))

∥∥2

2

≤
∥∥(θt − θπ∗) − η

(
gt(θt) − ĝt(θπ∗)

)∥∥2

2

=
∥∥θt − θπ∗

∥∥2

2
− 2η

(
gt(θt) − ĝt(θπ∗)

)⊤(
θt − θπ∗

)

+ η2
∥∥gt(θt) − ĝt(θπ∗)

∥∥2

2
(60)

The inequality holds due to the definition of ΠD. We first upper bound
∥∥gt(θt)−

ĝt(θπ∗)
∥∥2

2
in Eq. (60),

∥∥gt(θt) − ĝt(θπ∗)
∥∥2

2

=
∥∥gt(θt) − ḡt(θt) + ḡt(θt) − ĝt(θt) + ĝt(θt) − ĝt(θπ∗)

∥∥2

2

≤ 3
(∥∥gt(θt) − ḡt(θt)

∥∥2

2
+

∥∥ḡt(θt) − ĝt(θt)
∥∥2

2
+

∥∥ĝt(θt) − ĝt(θπ∗)
∥∥2

2

)
(61)

The inequality holds due to fact that (A+B +C)2 ≤ 3A2 + 3B2 + 3C2. Two of
the terms on the right hand side of Eq. (61) are characterized in Lemma 15 and
Lemma 16. We therefore characterize the remaining term,

∥∥ĝt(θt) − ĝt(θπ∗)
∥∥2

2

=Eνπ

[(
δ0t (θt) − δ0t (θπ∗)

)2∥∥∇θf̂
(
(s, a); θt

)∥∥2

2

]

≤Eνπ

[((
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))
− γ

(
f̂
(
(s′, a′);

θt
)

− f̂
(
(s′, a′); θπ∗

)))2]

≤Eνπ

[(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))2]
+ 2γEνπ

[(
f̂
(
(s′, a′); θt

)
− f̂

(
(s′, a′); θπ∗

))(
f̂
(
(s, a); θt

)

− f̂
(
(s, a); θπ∗

))]

+ γ2Eνπ

[(
f̂
(
(s′, a′); θt

)
− f̂

(
(s′, a′); θπ∗

))2]
(62)

We obtain the first inequality by the fact that ∥∇θf̂((s, a); θt)∥2 ≤ 1. Then we
use the fact that (s, a) and (s′, a′) have the same marginal distribution as well
as γ < 1 for the second inequality. Follow the Cauchy-Schwarz inequality and
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the fact that (s, a) and (s′, a′) have the same marginal distribution, we have

Eνπ

[(
f̂
(
(s′, a′); θt

)
− f̂

(
(s′, a′); θπ∗

))(
f̂
(
(s, a); θt

)

− f̂
(
(s, a); θπ∗

))]

≤Eνπ

[(
f̂
(
(s′, a′); θt

)
− f̂

(
(s′, a′); θπ∗

))]
Eνπ

[(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))]

=Eνπ

[(
f̂
(
(s′, a′); θt

)
− f̂

(
(s′, a′); θπ∗

))2]
(63)

We plug Eq. (63) back to Eq. (62),
∥∥ĝt(θt) − ĝt(θπ∗)

∥∥2

2

≤ (1 + γ)2Eνπ

[(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))2]
. (64)

Next, we upper bound
(
gt(θt) − ĝt(θπ∗)

)⊤(
θt − θπ∗

)
. We have,

(
gt(θt) − ĝt(θπ∗)

)⊤(
θt − θπ∗

)

=
(
gt(θt) − ḡt(θt))

)⊤(
θt − θπ∗

)
+

(
ḡt(θt) − ĝt(θt)

)⊤

(
θt − θπ∗

)
+

(
ĝt(θt) − ĝt(θπ∗)

)⊤(
θt − θπ∗

)
(65)

One term on the right hand side of Eq. (65) are characterized by Lemma 16. We
continue to characterize the remaining terms. First, by Hölder’s inequality, we
have

(
ḡt(θt) − ĝt(θt)

)⊤(
θt − θπ∗

)

≥ −
∥∥ḡt(θt) − ĝt(θt)

∥∥
2

∥∥θt − θπ∗
∥∥
2

≥ − 2Υ∥ḡt(θt) − ĝt(θt)
∥∥
2

(66)

We obtain the second inequality since
∥∥θt − θπ∗

∥∥
2

≤ 2Υ by definition. For the
last term,

(
ĝt(θt) − ĝt(θπ∗)

)⊤(
θt − θπ∗

)

=Eνπ

[((
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))
− γ

(
f̂
(
(s′, a′); θt

)

− f̂
(
(s′, a′); θπ∗

)))(
∇θf̂

(
(s, a); θt

))⊤(
θt − θπ∗

)]

=Eνπ

[((
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))
− γ

(
f̂
(
(s′, a′); θt

)

− f̂
(
(s′, a′); θπ∗

)))(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))]
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≥Eνπ

[((
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

)))2]

− γEνπ

[((
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

)))2]

=(1 − γ)Eνπ

[(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))2]
, (67)

where the inequality follows from Eq. (63). Combine Eqs. (60), (61), (64), (65),
(66) and (67), we have,

∥∥θt+1 − θπ∗
∥∥2

2

≤
∥∥θt − θπ∗

∥∥2

2
−

(
2η(1 − γ) − 3η2(1 + γ)2

)

Eνπ

[(
f̂
(
(s, a); θt

)
− f̂

(
(s, a); θπ∗

))2]

+ 3η2∥ḡt − ĝt∥22 + 4ηΥ∥ḡt − ĝt∥2 + 4Υη|ξg|
+ 3η2ξ2g (68)

We then bound the error terms by rearrange Eq. (68). First, we have, with
probability of 1 − δ,

Eνπ

[(
f
(
(s, a); θt

)
− f̂
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(s, a); θπ∗

))2]

=Eνπ

[(
f
(
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)
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(
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)
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(
(s, a); θt

)

− f̂
(
(s, a); θπ∗

))2]

≤ 2Eνπ

[(
f
(
(s, a); θt

)
− f̂

(
(s, a); θt

))2
+

(
f̂
(
(s, a); θt

)

− f̂
(
(s, a); θπ∗

))2]

≤
(
η(1 − γ) − 1.5η2(1 + γ)2

)−1
(∥∥θt − θπ∗

∥∥2

2

− ∥θt+1 − θπ∗
∥∥2

2
+ 4Υη|ξg|+ 3η2ξ2g

)
+ ϵg (69)

where

ϵg = O(Υ 3m−1/2 log(1/δ) + Υ 5/2m−1/4
√

log(1/δ)

+ Υ r2maxm
−1/4)

We obtain the first inequality by the fact that (A+B)2 ≤ 2A2 + 2B2. Then by
Eq. (68), Lemma 14 and Lemma 15, we reach the final inequality. By telescoping
Eq. (69) for t = to T , we have, with probability of 1 − δ,
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≤ 1
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Set η = min{1/
√
T , (1 − γ)/3(1 + γ)2}, which implies that T−1/2(2η(1 − γ) −

3η2(1 + γ)2)−1 ≤ 1/(1 − γ)2, then we have, with probability of 1 − δ,
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√

log(1/δ)

+ Υ r2maxm
−1/4 + Υ 2T−1/2 + Υ )

We obtain the second inequality by the fact that ∥Θinit − θπ∗∥2 ≤ Υ . Then by
definition we replace Q̃ωk and Q̃πk

E Additional Related Work

E.1 Global Optimality of Policy Search Methods

A major challenge of existing RL research is the lack of theoretical justifica-
tion, such as sample complexity analysis, mainly because the objective function
of policy search in RL is often nonconvex. It is challenging to determine if a
policy search approach is guaranteed to reach the global optimal. Besides, the
RL architecture components are usually parameterized by neural networks in
practice. Its nonlinearity and complex nature render the analysis significantly
difficult [62].

The theoretical understanding of policy gradient methods is also under ten-
tative study. Work on this topic has been done mostly in tabular and linear
parametrization settings for different variants of policy gradient. For example,
[11] and [44] establish a non-asymptotic convergence guarantee for natural pol-
icy gradient (NPG, [22]) and trusted region policy optimization (TRPO, [42]),
respectively. [35] show converge rate for softmax parametrization, while [1] ana-
lyze multiple variants of policy gradient. On the other side of the spectrum,
[31,51] prove the global convergence and optimality of various policy gradient
algorithms with over-parameterized neural networks. Furthermore, [62] apply the
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global optimality analysis to variance-constrained actor-critic risk-averse con-
trol with cumulative average rewards, and proposed a corresponding variance-
constrained actor-critic (VARAC) algorithm. However, the analysis procedure
is complicated due to the risk constraints on cumulative rewards, and the
algorithm’s experimental performance remains unverified. Therefore, it remains
interesting if there can be simplified global optimality analysis with verifiable
experimental studies for risk-averse policy search methods.

E.2 Over-Parameterized Neural Networks in RL

Overparameterization, a technique of deploying more parameters than neces-
sary, improves the performance of neural networks [59]. The learning ability and
generalization of over-parameterized neural networks have been studied exten-
sively [2,5,15]. Integration with over-parameterized neural networks can be found
in multiple RL topics. One line of work is to prove the global optimality of RL
algorithms in a non-linear approximation setting [31,51,62]. They use ReLU acti-
vation over-parameterized neural networks with policy gradient methods such as
NPG and PPO. Our work also belongs to this category. Other works include [19],
which also deploy a two-layered ReLU activation over-parameterized neural net-
work on mean-field multi-agent reinforcement learning problem. Regularization
with over-parameterized neural networks is also investigated recently [25,41].
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