arXiv:2201.11872v2 [cs.LG] 22 Feb 2023

Local Latent Space Bayesian Optimization over
Structured Inputs

Natalie T. Maus Haydn T. Jones
Department of Computer and Information Science Los Alamos National Laboratory
University of Pennsylvania Los Alamos, NM
Philadelphia, PA hjones@lanl.gov

nmaus@seas.upenn.edu

Juston S. Moore Matt J. Kusner
Los Alamos National Laboratory Centre for Artificial Intelligence,
Los Alamos, NM University College London
juston@lanl.gov London, UK

m.kusner@ucl.ac.uk

John Bradshaw Jacob R. Gardner
Department of Chemical Engineering, Department of Computer and Information Science
Massachusetts Institute of Technology University of Pennsylvania
Cambridge, MA Philadelphia, PA
jbrad@mit.edu jacobrg@seas.upenn.edu
Abstract

Bayesian optimization over the latent spaces of deep autoencoder models (DAEs)
has recently emerged as a promising new approach for optimizing challenging
black-box functions over structured, discrete, hard-to-enumerate search spaces
(e.g., molecules). Here the DAE dramatically simplifies the search space by map-
ping inputs into a continuous latent space where familiar Bayesian optimization
tools can be more readily applied. Despite this simplification, the latent space
typically remains high-dimensional. Thus, even with a well-suited latent space,
these approaches do not necessarily provide a complete solution, but may rather
shift the structured optimization problem to a high-dimensional one. In this paper,
we propose LOL-B0, which adapts the notion of trust regions explored in recent
work on high-dimensional Bayesian optimization to the structured setting. By refor-
mulating the encoder to function as both an encoder for the DAE globally and as a
deep kernel for the surrogate model within a trust region, we better align the notion
of local optimization in the latent space with local optimization in the input space.
LOL-BO achieves as much as 20 times improvement over state-of-the-art latent
space Bayesian optimization methods across six real-world benchmarks, demon-
strating that improvement in optimization strategies is as important as developing
better DAE models.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1 Introduction

Many challenges across the physical sciences and engineering require the optimization of structured
objects. For example, in the drug design setting, it is common to seek a molecule that maximizes
some property, e.g., binding affinity for a target protein [17], or similarity to a known drug molecule
under some metric [3]. These structured optimization problems are particularly challenging, as the
objective function is now typically over a large combinatorial space of discrete objects.

These challenging optimization problems have motivated a large amount of very recent interest
in methods that perform Bayesian optimization (BO) over latent spaces. Using drug design as a
running example, a deep auto-encoder (DAE) is first trained on a large set of unsupervised molecules.
Bayesian optimization is then run as normal in the continuous latent space of the autoencoder to
produce candidate latent codes. These candidate latent codes are then decoded back to molecules, and
the objective function is evaluated. Bayesian optimization then proceeds as normal, with the surrogate
model trained on a dataset of latent codes and their resulting objective values after decoding.

Rapid progress has been made in this emerging topic. In large part, this has been to improve the
DAE model. The early work of Kusner et al. [28] and Jin et al. [21] investigated domain specific
autoencoder architectures that much more reliably produced valid molecules. The latest work
of Tripp et al. [43] and Grosnit et al. [14] investigate methods to inject supervised signal from
objective function evaluations into the latent space, enabling better surrogate modeling. However, the
optimization component of latent space Bayesian optimization remains under-explored: indeed, it
is common practice to directly apply standard Bayesian optimization with expected improvement
once a latent space has been constructed (all of the above cited methods do this). We conjecture that,
despite the ability of a deep encoder to dramatically simplify a structured input space, optimization
remains challenging due to the high-dimensionality of the extracted latent space.

In this paper, we propose to jointly co-design the latent space model and a local Bayesian optimization
strategy. Concretely, we make the following contributions:

1. We develop local latent Bayesian optimization, LOL-BO, for the structured optimization
setting, addressing the inherent mismatch between the notion of a trust region in the latent
space and a trust region in the original structured input space.

2. We derive a semisupervised DAE model that better satisfies the implicit assumptions of
trust region methods by performing joint variational inference over the DAE and sparse GP
surrogate model (this model is similar in spirit to Kingma et al. [25], Eissman et al. [6]).

3. We propose a deep autoencoder architecture using transformer layers over the recently
proposed SELFIES representation for molecules [27]. We find that the SELFIES string
representation provides significant improvements to optimization performance.

4. We show the potential of co-adapting latent space modeling with local Bayesian optimization
in an empirical evaluation of LOL-BO against top-performing baselines, achieving up to 22 x
improvements in objective value on commonly used benchmark tasks over prior latent space
BO approaches.

2 Background

In black-box optimization, we seek to find the minimizer of a function, arg min, ¢ » f(x). Commonly,
f(x) is assumed to be expensive to evaluate and unknown (i.e., a “black box”). It is therefore desirable
to use fewer function evaluations to achieve a given objective value.

Most classically, this problem has been considered in the setting where the search space X is
continuous (e.g., X C R). However, many applications across the natural sciences and engineering
require optimizing over discrete and structured input spaces. De novo molecule design using machine
learning has received particular attention, where X is a search space of small organic molecules and
f(x) is some desirable property to optimize [31].

Bayesian optimization [37, 30, 41] is a framework for solving these black-box optimization
problems, most commonly when & is a continuous, real-valued search space. A surrogate model
is trained on a set of inputs and corresponding objective values D, = [x;,y;]_;. This surrogate

model is used to suggest candidate inputs X to query next. The candidates are then labeled, added
to the dataset, and the process repeats. Gaussian process models f(x) ~ GP(m(x), k(x,x’)) are
commonly used as surrogate models, as access to calibrated predictive (co-)variances enables search
strategies that trade off exploration and exploitation.

Deep autoencoder models. A deep autoencoder model consists of an encoder ® : X — Z that
maps from a structured and discrete space (e.g., the space of molecules) X" to a continuous, real-valued
latent space Z, and a decoder that does the reverse I'(+) : Z — X. A variational autoencoder [24]
uses a probabilistic form of these two functions, a variational posterior ®(Z | X) and a likelihood
I'(X | Z). The parameters g, Or of ® and T are trained by maximizing the evidence lower bound
(ELBO):

Lyae = ELBO(0s, 0r) = Eg(zx)[log I'(X | Z)] — KL(®(Z | X) || p(Z))

Commonly, the (amortized) variational posterior ®(Z | X) and the prior p(Z) are chosen to be
Gaussian, which leads to a convenient analytic expression for the KL divergence. Note that, with
respect to specific optimization tasks we might want to perform over the structured space X, the
ELBO as defined above is unsupervised.

Latent space Bayesian optimization. Latent space Bayesian optimization seeks to leverage the
representation learning capabilities of deep autoencoders models (DAEs) to reduce a discrete, struc-
tured search space X to a continuous one Z [43, 5, 12, 14, 6, 22]. Because the ELBO above is
unsupervised with respect to an optimization task, a large set of unlabeled inputs D,, C X is first used
to train the DAE. A Gaussian process prior is again placed over the objective function, but here as a
function of the latent codes, f(z) ~ GP(m(z), k(z,2z)). To train the GP initially, we collect a small
set of n inputs Dy C X', n < |D,,| with known labels y,. The inputs are passed through the encoder
to obtain latent representations Z = [z;]?"_,, and the surrogate model is fit to the dataset [(z;, ¥;)] .
Standard BO strategies may then be applied using this surrogate model to select a candidate latent
vector z, which is then decoded back to an input X and evaluated.

3 Methods

Recent latent space Bayesian optimization (LS-BO) approaches have focused on improving the
architecture of the VAE used to compress the search space [28, 21], and on reorganizing the subsequent
latent space so that it is more amenable to BO [43, 14, 6]. However, it is commonplace to apply
standard BO with expected improvement once the latent space has been constructed, despite the
fact that this latent space often remains high-dimensional [21], on the order of tens or hundreds of
dimensions. In this paper, we explore whether lessons learned in the high-dimensional BO setting
can be adapted to improve optimization in high-dimensional latent spaces.

3.1 Local Bayesian optimization — Fixed latent space

One approach to adapting high-dimensional BO strategies is to apply them in the extracted latent
space Z. Because Z is a synthetic latent space, it’s unlikely that the objective function decomposes
additively over this space without explicitly encouraging this [23, 9, 47]. Likewise, Z is already a
compression of the much larger X, so methods that exploit low-dimensional substructure may not be
effective [48, 32,7, 11].

Local Bayesian optimization is a strategy that avoids over-exploration in these search spaces without
simplifying assumptions about the objective. Commonly this is done by restricting the search in each
iteration to a small region. For example, Eriksson et al. [8] proposes TuRBO-M, an optimization
algorithm which maintains M local optimization runs, each of which is limited to search within its
own hyper-rectangular trust region. Each trust region is centered at the current best input found by a
given run. Since Eriksson et al. [8] found that TURBO-1 is competitive or even better than TuRBO-m
where m > 1 on most tasks, in this paper we focus only on TuRBO-1. Following Eriksson et al. [8],
we will henceforth use TURBO as short-hand for TuURBO-1.

Adapting trust regions to LS-BO is straightforward. Suppose we have a VAE with encoder ®(-)
and decoder I'(-) trained on an unsupervised dataset D,, of structured inputs, and a supervised set
Z of latent codes corresponding to labeled inputs D, and their objective values y. Denote by z the
incumbent latent code corresponding to the input X with best observed objective value g so far.

The trust region is an axis aligned hyper-rectangular subset of the latent space 7; C Z, centered at the
incumbent latent vector z. It has a base side length L, with the actual side length for each dimension

rescaled according to its lengthscale \; in the GP’s ARD covariance function, L; = W
j=1"
Candidate latent vectors to evaluate next are restricted to be selected from 7;. Following Nelder and
Mead [33], Eriksson et al. [8], the base trust region length is halved after ¢, iterations where no
progress is made and doubled after 7, iterations in a row where progress is made. When a new

incumbent 2’ is found with gj’ < {§j, the trust region is recentered at z’.

3.2 Local Bayesian optimization — Adaptive latent space

By defining “locality” in terms of a small rectangular region centered at the incumbent, trust region
methods implicitly assume smoothness, that points close to the center have highly correlated objective
values with it. In the standard BO setting with GP surrogates, this assumption matches that made by
the GP, as many covariance functions measure covariance as a function of distance.

However, the latent space Z of a DAE is only trained so that a latent vector z = ®(x) reconstructs
the original input when passed through the decoder, I'(z) ~ x. Therefore, it is possible that small
changes to the current incumbent latent vector z may result in large changes to the corresponding
input X, violating the assumptions of both the GP surrogate model and the trust region method.

Adapting the latent space to the GP prior. We propose to solve this mismatch by performing
inference jointly over both the Gaussian process surrogate defined over the latent space p(f | Z)
and the Bayesian VAE model p(X,Z) = p(X | Z)p(Z), while assuming in the prior conditional
independence between f and X given Z:

p(f,X,Z) = p(f | Z)I(X | Z)p(Z)

By performing inference over f and Z jointly in the above model end-to-end, we encourage the latent
space to organize in a way that matches the assumptions of the GP prior p(f | Z).

Relation to prior work. Learning the VAE and supervised model jointly in a semisupervised
fashion is related to prior work on semisupervised VAE modelling as first proposed in Kingma et al.
[25]. This was adapted for BO in Eissman et al. [6], who use an auxiliary supervised neural network
to inject supervision before fitting the GP. Here we consider joint variational inference over the VAE
and a sparse GP, directly encouraging the latent space to satisfy the assumptions of the GP prior. In
the global BO setting, Siivola et al. [40] finds semisupervised adaptation of VAEs to not be critical;
however, in the local setting, we experimentally find this results in significant improvement due to
the assumptions underlying trust region methods.

Sparse GP augmentation. Following Hensman et al. [15], the above prior p(f | Z) can be
augmented with a global set of learned inducing variables u representing latent function values at a
set of inducing locations V, p(f | Z) — p(f | u,Z, V)p(u | V). This results in the following full
joint density over the latent function f, structured inputs X, latent representation Z, objective values
¥, and inducing variables u (ommitting dependencies on inducing locations V for compactness):

p(y, X, f,u,Z) = p(y [£)p(f | u,Z)p(0)['(X | Z)p(Z))]

ELBO derivation. Our goal is to derive an evidence lower bound (ELBO) for the above model to
perform variational inference over both the inducing variables u and VAE latent variables Z. The
log evidence p(y, X) for this model is log p(y, X) = log [p(y, X, £, u, Z)dfdudZ. To aid in lower
bounding the log evidence, we introduce a variational distribution ¢(u, Z) = ¢(u)®(Z | X). This is
a factored joint variational distribution over the inducing values u as in [15, 42] and over the latent
space of the encoder Z.

_ q() O(Z] X)
logp(y, X) = log/p(y,X,f,u, Z)dfq(u) du<I>(Z X) dZ
1 1
= logEé(Z\X) |:@(Z|X)Eq(u) |:q(u) /p<an7fau7 Z)df:|:| (2)

Because the joint distribution p(y, X, f, u, Z) factors as in Equation 1, we can further rewrite the
integral of the joint distribution over f as:

Plugging this expected value form of the joint distribution integral into Equation 2 and repeatedly
applying Jensen’s inequality, we derive an evidence lower bound

log p(y, X) > Ep(¢ju,z)q(u)a(zx) logp(y |)] + Egzx) [log ['(X | Z)]
—KL(®(Z | X)[|p(Z)) — KL(g(u) || p(u)) 3)

The ELBO in practice. Rephrasing Equation 3 in terms of the standard SVGP (sparse variational
GP; 15) and VAE ELBOs, we see that:

Lioint = Egz1x) [Lsver(Ogp, 005y, Z)] + Lyae (s, Or; X)

The ELBO can be estimated as follows. Select a minibatch of inputs (e.g., molecules) X, some of
which have known labels y, and some of which are unlabeled. Pass the minibatch X through the
encoder ® and generate latent codes Z. For latent codes Z, corresponding to labeled inputs, compute
Lsvap on the supervised dataset (Zy, yy). For all latent codes Z, pass through the decoder and add the
standard VAE loss. Because the variational posteriors ®(Z | X) and g(u) support reparameterization,
computing derivatives of the ELBO with respect to 84, 01, 0gp is straightforward. Because the
encoder parameters 6 are updated through the SVGP loss, ® can be viewed as simultaneously acting
as an encoder for the VAE and as a (stochastic) deep kernel [52, 51] for the GP model.

Recentering Under this joint model, local BO can still be applied using the same setup and
hyperparameters discussed in subsection 3.1. However, when using the above loss, the VAE—-and
therefore the latent space—is now modified after each iteration of BO. Therefore, the center of the
trust region z and latent codes of inputs within or near the trust region may change. To remedy this,
we pass observed data X back through the updated encoder to determine the new location of the
corresponding latent points Z before selecting candidates, and update the trust region accordingly.

Computational considerations. Updating the full encoder ®(-) can be significantly more expen-
sive than training the surrogate model only. A practical extension to the above idealized process is
to only train in a joint fashion periodically. Thus, the variational GP parameters fgp are updated in
each iteration of optimization, but not necessarily 6g, Or.

We propose to tie updates to 63, O to the sequential successes and failures already tracked by the
trust region method. If the optimization procedure is making rapid progress, updating fg, 6 may
be an unnecessary expense. Therefore, we update the full set of parameters Og, O, Ogp after Treqain
successive failures. Experimentally we use Tyeqrain << Trail @S this allows for multiple joint model
updates for each time a trust region shrinks.

4 Related Work

Bayesian optimization for molecule discovery can be performed without DAEs over fixed lists of
molecules [50, 16, 13]. However, the need to pre-define the molecules that can be queried upfront
puts a limit to the chemical space such methods can consider: the largest virtual libraries are order of
~ 1019 in size [45], which is tiny compared to the space of all possible compounds [26].

Latent-space Bayesian optimization [12, 6, 43, 14, 40, 21] ties the optimization algorithm to a DAE
so that, in theory, it can generate any molecule. We broadly group many recent advancements in
this approach into two categories: (a) those that investigate new training losses to improve surrogate
learning of the objective [14, 43, 6, 5] and (b) those that develop new decoder architectures, for
instance improving the validity of the generated molecules by building in grammars or working
explicitly in the graph domain [28, 21, 38, 22, 4]. Decoder architectures have also been designed to
apply these ideas to different discrete domains such as neural network architectures [55] or Gaussian
process kernels [29].

Components of our method including the joint training procedure described in subsection 3.2 are
similar to Eissman et al. [6] which considers injecting semisupervision into the VAE via an auxiliary

neural network and Grosnit et al. [14] which does so using a triplet loss. In particular, the triplet loss
of Grosnit et al. [14] likely encourages similar latent space organization to the method described in
subsection 3.2 due to the use of distances in both the triplet loss and the GP covariance function.
However, these works use off-the-shelf global Bayesian optimization algorithms, such as expected
improvement, as the latent optimizer.

Alternative optimization algorithms have also been proposed for molecule discovery, such as those
based on genetic algorithms [20, 34], Markov chain Monte Carlo [53], or ideas from reinforcement
learning (RL) [36, 54, 56]. Segler et al. [39] use the cross entropy method to guide the generation of
complete SMILES strings from an autoregressive recurrent neural network. You et al. [54] train a
policy to build molecules up from atoms and bonds using an RL algorithm. While such methods are
often able to find molecules with better property scores than early LS-BO approaches, these methods
frequently neglect sample efficiency, impeding their use on practical problems.

5 Experiments

Penalized LogP —o— T-LBO (Grosuit et . 2021) Expressions
600 =¥ LOL-BO (SELFIES) =S e
9<¥ | -® LOLBOQTVAE)

B 500 #l v - Standard LS-BO 14 0 smlimd LS BO 5T
g y vy © W-LBO (Tripp et al,, 2020) _}WLB: (Tripp et N (2’02
a YH +u+: Bostin Datasct (4.52) fg 12 a1, U0 (Grosuitiets] 12021)
2 400 £
% TH - e 1.0
@, . 0000 E
2 300 3 I3 B os
g 1 o 2
= : o 06

200 H *g) -
g 'J oo)
@ T o & & 04
% 100 , B s o
g .0" ;
m ! o L i, 02

0= c-0 0—0—=C s
o I T TTI5552 5
Po.5.9.8.2.2 80 o gy 00
[100 200 300 400 500 LR B 2 B) 100 200 300 400 500
Number of Steps o 100 200 00 400 500 Number of Steps

Figure 1: Optimization results for the log P and arithmetic expressions tasks. We compare to recent
competitive latent BO methods [14, 43] using the same DAE (LOL-BO (JTVAE)) and the new
SELFIES VAE (LOL-BO (SELFIES)).

We apply LOL-BO to six high-dimensional, structured BO tasks over molecules [18, 19] and arith-
metic expressions. We additionally investigate the impact of various components of our method
in subsection 5.4 and subsection 5.4. log P and Expressions (subsection 5.1) are tasks that are
typically evaluated in low budget settings. The Guacamol benchmarks (subsection 5.2) afford
larger function evaluation budgets, and the protein docking task (subsection 5.3) is both low budget
and the oracle is expensive. Error bars in all plots show standard error over runs. We implement
LOL-BO leveraging BoTorch [2] and GPyTorch [10]'. Code and model weights are available at
https://github.com/nataliemaus/lolbo.

Datasets All methods have access to the same amount of supervised and unsupervised data for
each task. To initialize all molecular optimization tasks, we generate labels for a random subset of
10, 000 molecules from the standardized unlabeled dataset of 1.27M molecules from the Guacamol
benchmark software [3]. For the expressions task, we use the same labeled dataset of 40, 000
expressions from [14] to initialize all methods. Furthermore, wherever different VAEs are used
for a given task, we use the same unsupervised dataset to train the VAEs so that the amount of
unsupervised data also remains consistent. In particular, all molecular VAEs are pre-trained on the
same aforementioned dataset of 1.27M molecules from Brown et al. [3].

Deep autoencoder models. A variety of VAE models have been used for the benchmarks tasks we
consider below. For Expressions, we follow recent work [28, 14, 43, 35] in using a GrammarVAE
model [28]. For the remaining de novo molecule design tasks, we consider two models.

'BoTorch and GPyTorch are released under the MIT license

Junction Tree VAE (JTVAE). Molecules are commonly represented initially using the Simplified
Molecular-Input Line-Entry System (SMILES) [49] string representation. SMILES representations
are well-known to be brittle, in that single character mutations can easily result in strings that no
longer encode a valid molecule. The JTVAE model Jin et al. [21] addresses the problem of generating
valid strings by using a molecular graph structure to build each molecule out of valid sub-components
so that the generated molecules are almost always valid. As a result, the JTVAE has been widely
used as a VAE model for latent space optimization due to its much higher rate of decoding to valid
molecules [14, 43, 5, 35]. We follow prior work, using a latent dimensionality of 56.

SELFIES VAE The SELFIES string representation for molecules is a recently proposed alternative
to the SMILES string representation [27]. Notably, nearly every permutation of SELFIES tokens
encodes a valid molecule. As a result, purely sequence based models using the SELFIES representa-
tion are capable of generating valid molecules at a rate competitive with the JT-VAE while avoiding
expensive computation involving graph structures.

In our molecule design experiments below, we therefore evaluate a VAE architecture based on the
SELFIES string representation in addition to the commonly used JTVAE. We train a VAE model with
6 transformer encoder and transformer decoder layers and a latent space dimensionality of 256 [46].
We use our SELFIES VAE for all molecular optimization tasks below. We also use the JTVAE model
to enable direct comparison to prior work.

Hyperparameters. For the trust region dynamics, all hyperparameters including the initial base
and minimum trust region lengths Lini¢, Limin, and success and failure thresholds 7gycc, T are set to the
TuRBO defaults as used in Eriksson et al. [8]. Our method introduces only one new hyperparameter,
Tretrain, Which we set to 10 in all experiments.

5.1 log P and Expressions

In this section, we consider two tasks commonly used in the latent space BO literature—optimizing the
penalised water-octanol partition coefficient (log P) over molecules, and generating single variable
arithmetic expressions (e.g., x X sin(x x x)) [14, 43, 5, 35, 28, 1]. Because of the small evaluation
budget typically considered for these benchmarks, we use a batch size of 1.

Baselines. For these tasks, we compare to standard latent space BO, as well as a variety of recent
prior work in this area. We compare to LS-BO with weighted retraining (W-LBO) as described in
Tripp et al. [43] and LS-BO with triplet loss retraining (T-LB0) from Grosnit et al. [14]. A number of
techniques outside of the BO literature consider this task as well. These papers report final objective
values > 30, but do not consider sample efficiency. For example, GEGL [1], which we do compare
to in subsection 5.2, uses more than 500 evaluations per iteration. See Ahn et al. [1] for an evaluation
on log P.

Results. In Figure 1, we plot the cumulative best objective value for the penalized log P and
expressions tasks, averaged over three runs. For log P, LOL-BO using the SELFIES transformer
VAE achieves an average log P score of 545.17 after 500 iterations. Using a JTVAE, which is more
directly comparable to prior work, we still achieve an average score of 123.54-higher than previous
state-of-the-art scores using latent space BO of 26.11 [14]. For the expressions task, LOL-B0 achieves
a final regret of 0.079 on average, versus 0.194 achieved by T-LBO.

Molecule quality. While molecules found using LOL-BO for the log P task are “valid” according
to software commonly used to compute these scores, the molecules produced by this search clearly
abandon any notion of reality. A number of methods have been proposed to evaluate molecule quality
[3], and indeed even some recent work in LS-BO has explored encouraging higher quality solutions
[35]. However, our primary goal in this paper is to develop stronger optimization routines in this
space, and indeed the baselines we consider also treat log P as an unconstrained optimization problem.
Therefore, this result should be taken primarily as evidence that the log P objective can be exploited
by a sufficiently strong optimizer, rather than as evidence of novel interesting molecules.

Zaleplon MPO Perindopril MPO Ranolazine MPO

0.80 0.35 1.00
0.75 Y Y- = gV T P 0.80 P o o
y=v-Y 095 V=V Y=Y V=V =¥ =
v =
r f‘ e
g 0.70 o 075 -
2 g /’ g 050
=] o @
B = B
g 06s 5 070 f £
L+ 8 >3
@ @ v @ 0gs
3 0.60 3 v 2
-] I -]
055 0.30
0.50 0.75
20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 80000 100000 120000
Total Function Evaluations Total Function Evaluations Total Function Evaluations
=¥ LOL-BO(SELFIES) :© ' LOL-BO(JTVAE) @ StandardLS-BO ~O- GEGL(Ahnetal,2020) == T-LBO (Grosnitetal,202]) == Graph GA (Jensen,2019) »*** Bestin Dataset

Figure 2: Optimization on three Guacamol benchmark tasks. We compare to T-LBO, the most compet-
itive latent space BO method from above, using the same DAE and SMILES representation (LOL-BO
(JTVAE)) as well as our proposed SELFIES transformer (LOL-BO (SELFIES)). We additionally
compare to two recent orthogonal methods for these tasks that do not use deep autoencoders or BO
(GraphGA, GEGL). GEGL uses a combination of SMILES representations and directly modifying
atomic graph structure, while GraphGA operates entirely on graph structures and only uses string
representations for saving and loading molecules.

Zaleplon MPO Perindopril MPO Ranolazine MPO
0.75 e e Gy Vo V=Y 0.80 '_pﬂ--H*- 095 ek e A0 e i) 2 S 4
‘J’ o Al le F=vH
g £ VYV
v
070 * 075 ,J VvV o5 7 vvv
o - yvevev \A A A A4 o " o
E vV E 0.70 v vV g 2
& 065 _— vV & f v [f v ¥
Az vV 085 V' o 0501100 0:0-0--0-0-0: |
| 9% ~ a0 ®
G o 7 065 vV ¢:0-0:-0:0-0:0:0:0 £
g O v % L el A andods 2 25 20 22 2t 2L iy
-4 Siee e e le ettt Q' 2 { @
o 00 0" 0=
o0 (1Y
055 - &
8! 055
0.50 §
PP PSP PP PP

20000 40000 60000 80000 20000 40000 60000 80000 20000 40000 60000 20000 100000 120000
Total Function Evaluations Total Function Evaluations Total Function Evaluations
=¥ LOL-BO (SELFIES) V- TuRBO (SELFIES) =¥ Standard LS-BO (SELFIES) =& LOL-BO(JTVAE) -®' TuRBO(JTVAE) - @ ' Standard LS-BO

Figure 3: We evaluate (1) the gain in optimization performance achieved in moving from global
BO to local (Standard LS-BO vs TuRBO), and (2) the gain in optimization performance achieved
adapting the latent space to be suitable for the trust region method (TuRBO vs LOL-B0O). Improving
the optimization algorithm results in significant improvements using either VAE.

5.2 Guacamol Benchmark Tasks

The Guacamol? benchmark suite [3] contains scoring oracles for a variety of molecule design tasks,
with scores ranging between 0 and 1. We select three tasks among the most challenging in terms of
the best objective value achieved: Perindopril MPO, Ranolazine MPQ, and Zaleplon MPO. The
goal of each of these tasks is to design a molecule with high fingerprint similarity to a known target
drug but that differs in a specified target way. The task definitions are discussed in Brown et al. [3].

Baselines. We compare to T-LBO, the most competitive Bayesian optimization method overall
from subsection 5.1. Additionally, a variety of techniques from beyond the BO literature using
reinforcement learning and genetic programming have been evaluated on these tasks. We compare to
GEGL and GraphGA, with GraphGA [20] among the top methods on the Guacamol leaderboard. We
also report the best score achieved over the ~1.27 million molecules in the full Guacamol dataset,
which serves as a performance cap for virtual screening (see section 4).

2Guacamol is released under the MIT license

Table 1: (Left.) Comparing SELFIES VAE and JTVAE on metrics computed over molecules in the
GuacaMol test dataset [3]. Decode stddev is the standard deviation in Perindopril MPO objective
value when decoding a fixed latent z 20 times, averaged over a subset of 3500 latent vectors from
the dataset. (Right.) Docking scores achieved by various methods after the four evaluation budgets
considered on the TDC leaderboard (lower is better). We compare to three BO baselines and a variety
of orthogonal approaches from the TDC leaderboard.

Method Best Score Found in Evaluation Budget

100 evals 500 evals 1000 evals 5000 evals

SELFIES VAE JTVAE

LOL-BO (SELFIES) —-131+03 -13.3+0.1 -13.84+05 —154+1.3
TuRBO (SELFIES) —-12.6+0.0 —127+0.3 —-129+04 —13.0+0.4

Reconstruction Acc. 0.913 0.767 LS-BO (SELFIES) —-12.6+0.0 —12.6+0.0 —12.6+0.0 —12.6 £ 0.0
Avg. Decode Time (s) 0.02 3.14 LOL-BO (JTVAE) —-126+0.0 —-127+0.1 —-12.8+0.2 —13.1+0.3
Decode Stddev 0.04 0.1 TuRBO (JTVAE) —-126+0.0 -126+00 —-12.7+0.3 —-12.7+0.3
Validity 1.0 1.0 LS-BO (JTVAE) —-126+0.0 -126+0.0 —12.6+0.0 —12.6 £ 0.0
GP Test NLL (Perindopril) 2156 1481 T-LBO —-126+0.0 -126+0.0 —12.6+0.0 —12.8+0.2
GP Test NLL(Zaleplon) -2.705 -1.781 Graph-GA —-11.8+1.1 —-125+0.7 -13.2+0.7 -16.5+0.3
GP Test NLL (Ranolazine) -2.127 -1.649 SMI-LSTM —-11.1+0.6 —11.44+0.6 —12.0+0.2 —14.5+0.5

MARS -9.1+£0.7 -9.84+0.3 —-11.1+0.1 —11.4+0.5

MolDQN —7.0+0.2 —7.6+0.2 —7.8+0.04 —10.0+0.2

GCPN -11.6+22 —-120+0.7 —-12.0+0.6 —12.3+1.0

Results. The results of optimization on these three benchmarks are shown in Figure 2. We again
report results for LOL-B0 with both a JTVAE and SELFIES VAE deep autoencoder. LOL-BO with a
SELFIES VAE optimizes significantly faster than other methods in the evaluation budget used here.

5.3 DRD3 Receptor Docking Affinity

The Therapeutics Data Commons (TDC) benchmark suite [17] contains oracles that evaluate the
binding propensity of a ligand (small molecule) to a target protein. These docking oracles incur
nontrivial computation cost, requiring on the order of minutes to evaluate, making them ideal
benchmark tasks for Bayesian optimization. In this paper, we focus on designing ligands that
bind to dopamine receptor D3 (DRD?3), as the TDC website maintains a leaderboard of results for
DRD3 3. We compare LOL-BO on the DRD3 docking task to the TDC leaderboard and three BO
methods—T-LB0, standard LS-BO, and fixed latent space TuURBO on this task.

Results of optimization are in Table 1 (right). LOL-BO achieves the best performance among the BO
baselines, with only TuURBO making significant progress on the task by 5000 evaluations. Compared
to the baselines from the TDC leaderboard, LOL-BO is significantly more sample efficient, achieving
results comparable to the best method with a factor of 10x fewer oracle calls.

5.4 Ablation studies

In this section, we evaluate the components of LOL-B0 described in subsection 3.2 beyond the direct
application of TuRBO in the latent space described in subsection 3.1. We run TuRBO on the three
Guacamol tasks considered in subsection 5.2 using a fixed latent space extracted by the pretrained
SELFIES VAE and JTVAE. To run TuRBO, we use the same experimental setup as for LOL-BO, but
®(-) and I'(+) are fixed at the start of optimization. We compare LS-BO, TuRBO, and LOL-BO on all
three tasks in Figure 3. The use of SVGP is controlled across methods.

LOL-BO outperforms TuRBO across all DAE models and tasks. While these results demonstrate the
impact of joint training, the excellent performance of TuRBO in a static, pre-trained latent space
highlights the value of high dimensional Bayesopt in this setting.

To further analyze whether the jointly trained latent space better-matches the distance based assump-
tions of the GP model, we include an additional analysis directly comparing scores of molecules
sampled from a local region around the top-scoring molecule in the latent space of the pretrained
SELFIES-VAE before optimization has begun and at the end of optimization (see subsection A.3).

Since LOL-BO achieves better performance with the SELFIES VAE than with the ITVAE, we evaluate
a series of metrics for both DAE models. In Table 1 left, we compare reconstruction error and validity,
as well as the standard deviation in Perindopril MPO score from decoding a fixed latent vector z 20
times, averaged over 3500 distinct z. We report supervised learning performance for a GP trained on
10, 000 molecules taken from the initial Guacamol dataset, using the pretrained latent spaces. Across

*https://tdcommons.ai/benchmark/docking_group/drd3/

standard metrics, the SELFIES VAE achieves excellent performance. Beyond these, the improvement
in objective variance for a single z is notable: because Guacamol objective values are in the range
[0, 1], a standard deviation of 0.1 represents significant additional noise. Thus, the DAE can be a
significant source of noise even for an otherwise deterministic objective function.

6 Conclusion

Designing latent spaces for Bayesian optimization is challenging because the VAE and the optimizer
often compete: too small of a latent space renders the VAE incapable of capturing the structure
present in the input space, while too large a latent space makes optimization challenging.

The empirical results we present here demonstrate the importance of viewing these latent spaces
as high-dimensional and tackling optimization with high-dimensional BO strategies, even though
these latent spaces are often significantly smaller than the input space. Furthermore, we show that
high-dimensional BO methods can be significantly improved when translating them to the latent
space setting, demonstrating the potential of further research at the intersection of these areas.

7 Acknowledgements

JRG and NM were supported by NSF award 1IS-2145644. JM and HJ were supported by the
Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL)
under project number 20210043DR.

References

[1] Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization with
genetic exploration, 2020.

2

—

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon
Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization.
In Advances in Neural Information Processing Systems 33, 2020. URL http://arxiv.org/abs/1910.
06403.

[3] Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):1096-1108,
Mar 2019. ISSN 1549-960X. doi: 10.1021/acs.jcim.8b00839. URL http://dx.doi.org/10.1021/
acs.jcim.8b00839.

[4

—_

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-Directed variational autoencoder
for structured data. In International Conference on Learning Representations 2018, 2018.

[5] Aryan Deshwal and Janardhan Rao Doppa. Combining latent space and structured kernels for Bayesian
optimization over combinatorial spaces. CoRR, abs/2111.01186, 2021. URL https://arxiv.org/abs/
2111.01186.

[6

—_

Stephan Eissman, Daniel Levy, Rui Shu, Stefan Bartzsch, and Stefano Ermon. Bayesian optimization and
attribute adjustment. In Proc. 34th Conference on Uncertainty in Artificial Intelligence, 2018.

[7] David Eriksson and Martin Jankowiak. High-dimensional Bayesian optimization with sparse axis-aligned
subspaces. arXiv preprint arXiv:2103.00349, 2021.

[8] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local Bayesian optimization. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/6c990b7aca7bc7058f5e98ea909e924b-Paper . pdf.

[9

—

Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and
exploiting additive structure for Bayesian optimization. In Artificial Intelligence and Statistics, pages
1311-1319. PMLR, 2017.

[10] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson. Gpy-
torch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. arXiv preprint
arXiv:1809.11165, 2018.

10

(11]

(12]

(13]

(14]

[15]

[16]

(7]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]
[27]

(28]

[29]

Roman Garnett, Michael A Osborne, and Philipp Hennig. Active learning of linear embeddings for
Gaussian processes. Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
2014.

Rafael Gémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Herndndez-Lobato, Benjamin
Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268-276, 2018.

David E Graff, Eugene I Shakhnovich, and Connor W Coley. Accelerating high-throughput virtual
screening through molecular pool-based active learning. Chemical science, 12(22):7866-7881, April 2021.

Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys Griffiths, Alexander Imani Cowen-
Rivers, Lin Yang, Lin Zhu, Wenlong Lyu, Zhitang Chen, Jun Wang, Jan Peters, and Haitham Bou-Ammar.
High-dimensional Bayesian optimisation with variational autoencoders and deep metric learning. CoRR,
abs/2106.03609, 2021. URL https://arxiv.org/abs/2106.03609.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, 2013.

José Miguel Hernandez-Lobato, James Requeima, Edward O Pyzer-Knapp, and Aldn Aspuru-Guzik.
Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical space. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70, pages 1470-1479. PMLR, 2017.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley, Cao
Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning datasets and tasks
for drug discovery and development. Proceedings of Neural Information Processing Systems, NeurlPS
Datasets and Benchmarks, 2021.

John J Irwin and Brian K Shoichet. Zinc- a free database of commercially available compounds for virtual
screening. Journal of chemical information and modeling, 45(1):177-182, 2005.

John J Irwin, Khanh G Tang, Jennifer Young, Chinzorig Dandarchuluun, Benjamin R Wong, Munkhzul
Khurelbaatar, Yurii S Moroz, John Mayfield, and Roger A Sayle. Zinc20—a free ultralarge-scale chemical
database for ligand discovery. Journal of chemical information and modeling, 60(12):6065-6073, 2020.

JH Jensen. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the
exploration of chemical space. chem sci 10 (12): 3567-3572, 2019.

Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International Conference on Machine Learning. PMLR, 2018.

Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization. In
International Conference on Machine Learning, pages 3183-3191. PMLR, 2019.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional Bayesian optimisation
and bandits via additive models. In International conference on machine learning, pages 295-304. PMLR,
2015.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing systems, pages
3581-3589, 2014.

Peter Kirkpatrick and Clare Ellis. Chemical space. Nature, 432(7019):823-823, December 2004.

Mario Krenn, Florian Hise, AkshatKumar Nigam, Pascal Friederich, and Aldn Aspuru-Guzik. SELFIES: a
robust representation of semantically constrained graphs with an example application in chemistry. CoRR,
abs/1905.13741, 2019. URL http://arxiv.org/abs/1905.13741.

Matt J Kusner, Brooks Paige, and José Miguel Herndndez-Lobato. Grammar variational autoencoder. In
International Conference on Machine Learning, pages 1945-1954. PMLR, 2017.

Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil Lawrence. Structured variationally auto-encoded
optimization. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 3267-3275,
Stockholmsmassan, Stockholm Sweden, 2018. PMLR.

11

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

Jonas Mockus. The Bayesian approach to global optimization. In System Modeling and Optimization,
pages 473-481. Springer, 1982.

Varnavas D Mouchlis, Antreas Afantitis, Angela Serra, Michele Fratello, Anastasios G Papadiamantis,
Vassilis Aidinis, Iseult Lynch, Dario Greco, and Georgia Melagraki. Advances in de novo drug design:
from conventional to machine learning methods. International journal of molecular sciences, 22(4):1676,
2021.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimization in
embedded subspaces. In International Conference on Machine Learning, pages 4752-4761. PMLR, 2019.

John A Nelder and Roger Mead. A simplex method for function minimization. The computer journal, 7
(4):308-313, 1965.

Akshatkumar Nigam, Pascal Friederich, Mario Krenn, and Alan Aspuru-Guzik. Augmenting genetic
algorithms with deep neural networks for exploring the chemical space. In International Conference on
Learning Representations, 2020.

Pascal Notin, José Miguel Herndndez-Lobato, and Yarin Gal. Improving black-box optimization in VAE
latent space using decoder uncertainty. Advances in Neural Information Processing Systems, 34, 2021.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design
through deep reinforcement learning. Journal of cheminformatics, 9(1):48, September 2017.

Michael A Osborne, Roman Garnett, and Stephen J Roberts. Gaussian processes for global optimization.
In 3rd international conference on learning and intelligent optimization (LION3), pages 1-15, 2009.

Bidisha Samanta, Abir De, Gourhari Jana, Pratim Kumar Chattaraj, Niloy Ganguly, and Manuel Gomez-
Rodriguez. NeVAE: A deep generative model for molecular graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33 of 01, pages 1110-1117, 2019.

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1):120-131, 2018.
doi: 10.1021/acscentsci.7b00512. URL https://doi.org/10.1021/acscentsci.7b00512. PMID:
29392184.

Eero Siivola, Andrei Paleyes, Javier Gonzdlez, and Aki Vehtari. Good practices for Bayesian optimization
of high dimensional structured spaces. Applied Al Letters, 2(2):e24, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial
intelligence and statistics, pages 567-574. PMLR, 2009.

Austin Tripp, Erik A. Daxberger, and José Miguel Herndndez-Lobato. Sample-efficient optimization in
the latent space of deep generative models via weighted retraining. In Advances in Neural Information
Processing Systems 33, 2020.

Fabio Urbina, Filippa Lentzos, Cédric Invernizzi, and Sean Ekins. Dual use of artificial-intelligence-
powered drug discovery. Nature machine intelligence, 4:189-191, 2020.

Niek van Hilten, Florent Chevillard, and Peter Kolb. Virtual compound libraries in Computer-Assisted
drug discovery. Journal of chemical information and modeling, 59(2):644—651, February 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998-6008, 2017.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale Bayesian optimiza-
tion in high-dimensional spaces. In International Conference on Artificial Intelligence and Statistics, pages
745-754. PMLR, 2018.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian optimization
in a billion dimensions via random embeddings. Journal of Artificial Intelligence Research, 55:361-387,
2016.

David Weininger. SMILES, a chemical language and information system. 1. introduction to methodology
and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):31-36, 1988. doi:
10.1021/ci000572005. URL https://pubs.acs.org/doi/abs/10.1021/ci00057a005.

12

[50]

[51]

(52]

(53]

[54]

[55]

[56]

Kevin Williams, Elizabeth Bilsland, Andrew Sparkes, Wayne Aubrey, Michael Young, Larisa N Soldatova,
Kurt De Grave, Jan Ramon, Michaela de Clare, Worachart Sirawaraporn, Stephen G Oliver, and Ross D
King. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical
diseases. Journal of the Royal Society, Interface / the Royal Society, 12(104):20141289, March 2015.

Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing. Stochastic variational deep kernel
learning. Advances in Neural Information Processing Systems, 29:2586-2594, 2016.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning. In
Artificial intelligence and statistics, pages 370-378. PMLR, 2016.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. MARS: Markov
molecular sampling for multi-objective drug discovery. In International Conference on Learning Represen-
tations, 2021.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for Goal-Directed molecular graph generation. In S Bengio, H Wallach, H Larochelle, K Grauman,
N Cesa-Bianchi, and R Garnett, editors, Advances in Neural Information Processing Systems 31, pages
6410-6421. Curran Associates, Inc., 2018.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-VAE: A variational
autoencoder for directed acyclic graphs. In Advances in Neural Information Processing Systems 32, pages
1588-1600. Curran Associates, Inc., 2019.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules via
deep reinforcement learning. Scientific reports, 9(1):10752, July 2019.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] (see subsection A.7)
(c) Did you discuss any potential negative societal impacts of your work? [Yes] (see subsection A.7)
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A |
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] (See section 5 where we will
provide a link to a github repository with our code)

(b) Did you specity all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] (See section 5)

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] (See section 5)

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] (See subsection A.4)
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] (See section 5)
(b) Did you mention the license of the assets? [Yes] (See subsection A.5)

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] (See
section 5 where we will provide a link to a github repository with our code)

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-
tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A |

14

A Appendix

A.1 Additional implementation details

As the data collected by LOL-BO grows, it becomes increasingly computationally expensive to update the models
in and end-to-end fashion on all of the data. Thus, instead of updating on all data, we only update end-to-end
on a subset of the data consisting of the most recently collected batch of data points, plus the top-k scoring
points from the remaining data. For the experiments in subsection 5.1 and subsection 5.3 where we have a small
evaluation budget, we use £ = 10. For the experiments in subsection 5.2 with a larger total evaluation budget,
we use k = 1000.

A.2 JTVAE vs. SELFIES VAE additional analysis

In Figure 4, we provide histograms to visualize a few of the statistics summarized in Table 1 in the main text 1.

0.6 1.0
JTVAE JTVAE
B (Mean =0.01) WS (Mean=3.415)
02 SELFIES VAE 08 SELFIES VAE
(Mean = 0.002) (Mean = 0.02s)
0.4
B B
] g 06
o o
g3 =)
g g
= B 04
0.2
o1 02
0.0 _A— 0.0
0.00 0.01 0.02 0.03 0 5 10 15 20
Variance in Decoded Objective Batch Decode Time (s)

Figure 4: (Left) Histogram of variance in Perindopril MPO objective value across 20 molecules
decoded from a single a latent code z. (Right) Time taken to decode a batch of points.

A.3 Additional ablation analysis

In this section, we analyze whether the jointly trained latent space matches the distance based assumptions of the
GP model. On the Ranolazine MPO task, we first encode the best molecule * (score=0.9382) from a single run
of LOL-BO to get the latent codes z},,. and 2, from both the pretrained VAE before optimization has begun
and at the end of optimization. We then analyze the average score of molecules decoded from latent vectors
sampled uniformly from an L-hypercube centered at both 2}, and z;,.. By L = 5, latent codes in the joint
VAE near z},,;,,, still achieve an average score of 0.9106, while for vectors near zy,. in the pretrained model the

average score has dropped to only 0.3382 Figure 5.

In this section, we additionally analyze whether the jointly trained VAE is better able to reconstruct the highest-
scoring molecules found by the optimizer. Empirically, the optimizer consistently produces higher-scoring
molecules than any found in the entire initial unsupervised dataset used to train the initial VAE (see Best in
Dataset comparison in Figure 2). This raises the question of whether these high-scoring molecules found by the
optimizer may often be out-of-sample for the initial VAE. To investigate this, we took the top 128 highest-scoring
molecules found by LOL-BO on the Ranolazine MPO task and computed the reconstruction accuracy of the initial
VAE on these molecules. We repeated this experiment with the final VAE obtained at the end of the optimization
run. We found that the average reconstruction accuracy of the initial VAE was 0.01 while the average accuracy
of the final VAE was 0.89. The extremely low reconstruction accuracy of the initial VAE indicates that many of
the high-scoring molecules found by the optimizer are indeed out-of-sample. It would therefore be very difficult
to find these high-scoring molecules by simply searching in the latent space of the initial VAE. In contrast,
finding these high-scoring molecules by searching in the latent space of the final VAE would likely be much
easier. Therefore, this result provides further motivation for our procedure of jointly updating the VAE during
optimization, so that as the optimization proceeds, the VAE is made to adapt so that it can better construct the
types of moleucles we are interested in, even if they are unlike any molecules in the initial unsupervised dataset.

15

0.9
0.8
0.7

06 == |nitial VAE (Before Optimization)
O 5 = Final VAE (End of Optimization)

0.4
0.3
0.2

Mean Score of Local Points

2 4 6 8 10
L

Figure 5: Comparing the latent spaces of the SELFIES-VAE before and after running LOL-BO to
optimize Ranolaize MPO. Plot shows mean Ranolaize MPO score of 100 decoded latent points
randomly selected from within a hypercube of length L centered on the top scoring molecule found
during optimization.

A4 Compute

The SELFIES VAE was trained using a single server with eight Quadro RTX 8000 GPUs. All optimization
experiments were run on a single RTX A5000 GPU. We used an internal cluster for compute.

A.5 Software licensing

All major software packages used (ie BoTorch, GPyTorch, Guacamol) are released under MIT license.

A.6 Run-time considerations

LOL-BO scales to large evaluation settings readily via minibatch training of the ELBO in Equation 4 due to the
variational GP approximation used (Hensman et al., 2013). TuRBO scales similarly by using the same variational
GP approximation. Although we’ve shown that LOL-BO significantly improves performance over TuRBO (see
Figure 5), it is important to consider the additional time complexity of LOL-BO. In particular, updating the VAE
jointly can add significant time complexity, particularly with very deep transformers. However, this cost is
generally manageable since relatively little VAE updating is required with the small amount of data acquired at
each step (compared to the initial training on the large unsupervised dataset).

When the evaluation budget is small (Section 5.1), or the objective function expensive (Section 5.3), LOL-BO
incurs as little as a 1.01 x slowdown over running TuRBO. However, larger evaluation budgets require retraining
the encoder on growing amounts of data. Thus, in Section 5.2, we do incur as much as a 5x slowdown in the
worst case. However, the total running time in Section 5.2 is still typically on the order of half a day, and we
believe the improved outer-loop optimization performance makes the additional time complexity worthwhile.
Finally, the added cost of jointly updating the VAE is negligible compared to the cost of certain oracle calls
typical in molecule design. For instance, in Section 5.3 the docking oracle takes minutes to evaluate per
molecule, leading to run-times of up to a few days, and even this would be considered cheap compared to wet-lab
experiments. To see specific wall-clock times for all methods, see 2. The wall clock times given for W-LBO
[43] were obtained with our modifications to parallelize the W-LLBO code-base.

A.7 Potential limitations and future work

This work focuses on molecular optimization tasks centered around drug development. While the development
of new drugs has the potential to help many people, it is also important to consider the dual use nature of such
methods. In particular, Al technologies for drug discovery have the potential to be misused for the de novo
design of biochemical weapons [44]. It is also important to consider the potential for negative societal impact if
any new drugs discovered are not property tested before being administered. While we hope that our work can
eventually speed-up the drug development process by providing useful candidate molecules, it is essential that

16

Table 2: Wall clock runtimes for all methods on all tasks.

Method Avg. Wall Clock Runtime (hours)

Penalized Log P (Sec. 5.1) Expressions (Sec. 5.1) GuacaMol (Sec. 5.2) Docking (Sec. 5.3)
LOL-BO (SELFIES) 3.0 NA 15.4 118.4
TuRBO (SELFIES) 2.8 NA 4.2 104.3
LS-BO (SELFIES) 2.8 NA 4.1 103.8
LOL-BO (JTVAE) 8.9 NA 49.1 132.7
TuRBO (JTVAE) 7.5 NA 15.8 116.9
LS-BO (JTVAE) 7.5 NA 15.6 117.5
LOL-BO (Grammar VAE) NA 0.83 NA NA
TuRBO (Grammar VAE) NA 0.78 NA NA
LS-BO (Grammar VAE) NA 0.78 NA NA
T-LBO 30.0 1.5 107.2 138.0
W-LBO 10.0 5.0 NA NA
GEGL NA NA 1.3 NA
Graph-GA NA NA 0.17 NA

experts remain heavily involved and that FDA guidelines for drug development and approval are strictly adhered
to.

Additionally, the oracles and tasks we use here, even ones with the potential to design candidate drug molecules
like protein docking, are completely oblivious to critical aspects like human safety and efficacy, stability,
manufacturing cost, and so on. These computational approaches to molecule design should therefore be
considered first pass screening procedures, not procedures to design final end products.

In order to optimize the Guacamol molecular optimization tasks, LOL-BO requires tens of thousands of function
evaluations Figure 2. While the fairly cheap Guacamol oracles have made it reasonable to do this many
evaluations, there are many molecule design applications where each function evaluation is much more expensive.
In particular, tens of thousands of function evaluations is likely not efficient enough for many applications that
would be run in vitro with actual wet-lab experiments.

Another potential limitation of LOL-BO is that is is designed to find a single best optima for a given task. However,
in the molecular space in particular, it is often desirable to find multiple good optima since a single solution
might fail for unknown reasons downstream. In future work, we plan to explore methods that can be used to
extend Bayesian optimization to obtain a set of diverse solutions rather than a single solution.

17

