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Abstract

Bayesian optimization (BO) is a popular approach

for sample-efficient optimization of black-box ob-

jective functions. While BO has been success-

fully applied to a wide range of scientific appli-

cations, traditional approaches to single-objective

BO only seek to find a single best solution. This

can be a significant limitation in situations where

solutions may later turn out to be intractable.

For example, a designed molecule may turn out

to violate constraints that can only be reason-

ably evaluated after the optimization process has

concluded. To address this issue, we propose

Rank-Ordered Bayesian Optimization with Trust-

regions (ROBOT) which aims to find a portfolio

of high-performing solutions that are diverse ac-

cording to a user-specified diversity measure. We

evaluate ROBOT on several real-world applica-

tions and show that it can discover large sets of

high-performing diverse solutions while requiring

few additional function evaluations compared to

finding a single best solution.

1 INTRODUCTION

Bayesian optimization (BO) Jones et al. (1998); Shahriari

et al. (2015) is a general framework for optimizing black-

box functions argmin
x
∗ f(x∗) in a sample-efficient fash-

ion. BO has been successfully applied to hyperparameter

tuning Snoek et al. (2012b); Turner et al. (2021), A/B test-

ing Letham et al. (2019), chemical engineering Hernández-

Lobato et al. (2017), drug discovery Negoescu et al. (2011),

and more. For example, f may measure the antibiotic ac-

tivity of a molecule x, and we might therefore apply BO to

design a molecule with high antibiotic activity.

In many of these settings, however, the fact that BO tradi-

tionally seeks a single best optimizer x∗ may be a significant
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limitation. This “all-or-nothing” attribute of BO is particu-

larly undesirable for problems where the returned x
∗ may

indeed optimize some useful objective, but is later found

to be unsuitable for unforeseen reasons. For example, a

molecule x∗ may have strong in vitro antibiotic activity, but

may later be found unsafe or ineffective for use in humans

through clinical testing. Worse, incorporating constraints

like human safety directly into the optimization procedure

of unknown molecules seems intractably expensive at best

and unethical at worst.

In these settings where the risk of wasting the evaluation

budget in search of x∗ is high, practitioners benefit from

being given–in addition to the best single optimizer we

can find–a series of alternative solutions to the problem:

a set of “back up plans.” Formally, we might seek a set

S∗ = {x∗
1,x

∗
2, ...,x

∗
M} of solutions that are all of high ob-

jective value, but we may require that these solutions are

sufficiently diverse to ensure that this set of solutions is less

likely to later fail for unrelated reasons. The practitioner

may therefore provide us with a symmetric diversity mea-

sure δ(x,x′) that must exceed some threshold τ for all pairs

of solutions in the set S∗. For example, a biochemist may

require that molecules in S∗ have sufficiently low finger-

print similarity Brown et al. (2019). Solving this problem

efficiently equips practitioners with large sets of potential

solutions to their true problem, which can mitigate the risk

that a single optimizer fails to be useful. This diverse so-

lution search problem is challenging to cast under existing

BO frameworks. The diversity constraints δ(x∗
i ,x

∗
j ) ≥ τ

are challenging to view as traditional black-box constraints,

as the constraint functions for the jth point in S∗ depend on

the locations of the other points in S∗.

In this paper, we propose ROBOT, a method to solve the

above problem and find a diverse set of high scoring so-

lutions S∗ so that ∀x∗
i ,x

∗
j ∈ S∗, δ(x∗

i ,x
∗
j ) ≥ τ . Across

a variety of problem settings ranging from reinforcement

learning to molecule design, ROBOT is able to discover large

sets of diverse solutions S∗ with little loss in efficiency over

finding a single best solution.

Contributions

1. We introduce the problem setting of finding a set of

high-performing solutions under a user-defined diver-
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sity measure. While prior work outside the BO liter-

ature has considered a similar setting where diversity

is taken to be distance in input space (e.g. Vassiliades

et al. (2016); Mouret and Clune (2015)), this is the

first work we are aware of to consider arbitrary, user-

defined diversity measures like fingerprint similarity

for molecules.

2. We propose a local Bayesian optimization solution,

ROBOT, to this problem that extends to large sample

sizes, high dimensional inputs, and structured inputs.

3. We provide empirical results across challenging, high-

dimensional optimization tasks to show that our algo-

rithm can consistently produce large populations of

diverse, high-preforming solutions with virtually no

loss in efficiency compared to finding a single solution.

4. We additionally demonstrate results on structured drug

discovery tasks using the widely used fingerprint simi-

larity function as a diversity measure, demonstrating

the value of our approach to practitioners in the physi-

cal sciences.

5. We prove global consistency of ROBOT in subsec-

tion A.5.

6. We release an open-source implementation of ROBOT

using BoTorch (Balandat et al., 2020).

2 BACKGROUND AND RELATED

WORK

Bayesian optimization. Bayesian optimization (BO)

Močkus (1975); Snoek et al. (2012a) is an approach to

sample-efficient black-box optimization that utilizes a prob-

abilistic surrogate model–commonly a Gaussian process

(GP) Rasmussen (2003)–and an acquisition function that

leverages the surrogate to find the most promising candi-

dates to evaluate next. BO is a sequential optimization

algorithm that proceeds in iterations. In each iteration, a

surrogate model is trained on data collected from evaluating

the black-box objective function. The acquisition function,

defined given the surrogate model’s predictive posterior, is

then maximized to select one or more candidates to evaluate

next, trading off exploration and exploitation.

Parametric Gaussian process regressors (PPGPR).

Because we consider tasks with large function evaluation

budgets, we use an approximate GP surrogate model. Ap-

proximate GP models use inducing point methods in combi-

nation with variational inference to allow approximate GP

inference on large data sets Hensman et al. (2013); Titsias

(2009). In this work, we use the PPGPR approximate GP

model proposed by Jankowiak et al. (2020), which we found

provides substantial improvements in Bayesian optimiza-

tion performance on the molecule optimization tasks we

consider.

Constrained Bayesian optimization. While it may be

tempting to attempt to formulate our problem as a con-

strained BO problem Gardner et al. (2014); Hernández-

Lobato et al. (2016); Eriksson and Poloczek (2021), this is

challenging as the constraints depend on the set S∗ and are

therefore non-stationary. In particular, the ith point in S∗,

x
∗
i , must satisfy i−1 constraints that depend on x

∗
1, ...,x

∗
i−1

which are unknown in advance. One potential solution is to

acquire the points in S∗ sequentially. Specifically, uncon-

strained optimization can be used to obtain x
∗
1, the second

point can then be acquired subject to the single constraint

that d(x∗
1,x

∗
2) ≥ τ , and so on. As a baseline, we adapt the

work of Eriksson and Poloczek (2021) to utilize this strategy,

which we refer to as Sequential SCBO in section 4.

Multi-objective Bayesian optimization (MOBO).

There has been much work in developing new methods for

MOBO in recent years Hernández-Lobato et al. (2015);

Belakaria et al. (2019); Turchetta et al. (2019); Daulton

et al. (2021); Stanton et al. (2022). However, these methods

cannot be readily applied since our problem setting is

quite different. Diversity in our setting is not a second

objective since we do not try to maximize the diversity,

but instead we require that the diversity between pairs of

solutions exceed some threshold τ . For example, if two

molecules are sufficiently diverse, they can be expected to

have relatively unrelated chemical properties and further

increasing their diversity may not provide much value to the

practitioner. If one desires to simultaneously maximize the

diversity between solutions, this becomes a very different

multi-objective problem. Using existing MOBO methods

for even this different problem setting is itself non-trivial

because any diversity measure cannot be measured for a

single point in isolation and the Pareto frontier therefore

does not exist in the usual sense. This prevents the direct

application of methods such as that of Konakovic Lukovic

et al. (2020) which seek to maximize diversity along the

Pareto frontier.

Generative modeling for molecules. Many generative

modeling approaches have been proposed to generate popu-

lations novel molecules. This includes variational autoen-

coder models such as the Junction Tree Variational Auto

Encoder Jin et al. (2018) and the SELFIES-VAE Maus et al.

(2022). Populations of molecules generated by sampling

from these models can be evaluated for diversity and va-

lidity using methods such as Xie et al. (2021). However,

while these models can successfully generate diverse pop-

ulations of molecules, they are not designed to generate

molecules with any particular user specified characteristics.

Thus, when we desire a diverse population of molecules

which also each have some set of desirable traits, it becomes

necessary to use black box optimization tools on top of these

generative models.
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Bayesian optimization for molecular design. BO has

been utilized extensively in recent years for molecular de-

sign problems, both over fixed pre-defined lists of existing

molecules (Williams et al., 2015; Hernández-Lobato et al.,

2017; Graff et al., 2021) and by utilizing the continuous la-

tent spaces of variational autoencoders (Gómez-Bombarelli

et al., 2018; Eissman et al., 2018; Tripp et al., 2020; Gros-

nit et al., 2021; Siivola et al., 2021; Jin et al., 2018). In

latent space optimization, an encoder Φ(x) is used to map

molecules x to real-valued latent vectors z. BO is then ap-

plied in the continuous latent space, and candidate latent

vectors are decoded using the decoder Γ(z) to generate can-

didate molecules. Maus et al. (2022) introduce an extension

of TuRBO Eriksson et al. (2019) to the latent space optimiza-

tion setting where the surrogate model and VAE are trained

jointly using variational inference – in our molecular design

results in section 4 we will make this same adaptation for

our method.

Population generation algorithms. Although some gen-

eral frameworks have been proposed to extend Bayesian

optimization techniques to problems outside of optimization

Neiswanger et al. (2021), to the best of our knowledge, this

work is the first to consider the setting of finding multiple

solutions under user specified diversity constraints using

Bayesian optimization. We therefore compare to popula-

tion generation algorithms designed to generate populations

of solutions, some of which are designed for “quality di-

versity” Hansen (2016); Mouret and Clune (2015); Kent

and Branke (2020); Vassiliades et al. (2016); Mouret and

Maguire (2020); Gaier et al. (2018); Wessing and Preuss

(2017). Most relevant is the CVT-MAP-Elites algorithm

Vassiliades et al. (2016) which extends much of this work to

high-dimensional optimization tasks by avoiding construct-

ing exponential discretiziations as in e.g. Mouret and Clune

(2015); Kent and Branke (2020); Gaier et al. (2018). How-

ever, these algorithms measure diversity via distance in the

search space, and are not straightforward to adapt to user-

specified notions of diversity. In section 4 we show these

approaches can fail to find diverse solutions for many opti-

mization tasks when using semantically meaningful notions

of diversity.

Trust Region Bayesian Optimization (TuRBO) Tradi-

tional approaches to BO are generally limited to low-

dimensional problems with at most twenty tunable param-

eters Frazier (2018). Many methods tailored for high-

dimensional BO are only suitable for small evaluation bud-

gets and generally make strong assumptions on the underly-

ing black-box objective function Kandasamy et al. (2015);

Wang et al. (2016); Letham et al. (2020); Mutny and Krause

(2018).

Eriksson et al. (2019) proposed TuRBO-M which maintains

M local optimization runs, each with its own dataset Di

and surrogate model. Each local optimizer i proposes can-

didates from within a hyper-rectangular trust region Ti and

a batch of candidates is selected from across all local opti-

mizers in each iteration. Because acquisition is performed

globally across all trust regions, local optimizers with the

most promising evaluations of the objective receive a larger

fraction of the evaluation budget. Each trust region Ti is a

rectangular subset of the input space X centered at the best

point found by the ith local optimizer–the incumbent–x+
i

and has a side-length ℓi ∈ [ℓmin, ℓmax]. If a local optimizer

improves upon its own incumbent ρsucc times in a row, ℓi is

increased to min(2ℓi, ℓmax). Similarly, when a local opti-

mizer fails to make progress ρfail times in a row, the length

ℓi is reduced to ℓ/2. If ℓi < ℓmin, that local optimizer is

restarted. While TuRBO-M is not directly applicable to

our problem setting, we will also use multiple trust regions

with the same length adjustment dynamics. Additionally,

while TuRBO-M keeps a separate data history for each trust

region, other trust region methods such as MORBO Daulton

et al. (2021) allow data sharing such that trust regions can

be recentered on candidates from the data history of other

trust regions.

3 METHODS

We consider the task of finding a diverse set of M solutions

for some high-dimensional objective function f(·). For a

given input x, we can evaluate f(x) to obtain a (possibly

noisy) objective value y. To measure diversity, we use

a symmetric, user-supplied function δ(x1,x2) defined on

pairs of points in the search space X . Formally, we seek a

sequence S∗ := {x∗
1, . . . ,x

∗
M} so that:

x
∗
1 = argmax

x∈X
f(x) (1)

x
∗
i = argmax

x∈X
f(x) s.t. δ(x∗

i ,x
∗
j ) ≥ τ for j = 1, . . . , i− 1

Under this formalization of the problem setting, the optima

in S∗ are defined hierarchically. In particular, we explicitly

still wish to recover the best possible optimizer x∗
1 of the

original objective. This choice of formalization is deliber-

ate: our goal in this paper is to develop a method that still

optimizes the given objective function f(·) as a practitioner

may expect, but also produce alternative high quality solu-

tions that are meaningfully different to the optimum as a

by-product with as few additional evaluations as possible.

3.1 Rank-Ordered Bayesian Optimization with Trust

Regions (ROBOT)

In this section, we propose ROBOT - an algorithm which

extends Bayesian optimization to the problem setting above.

We demonstrate the global consistency of our approach

in subsection A.5. In order to find a set of M solutions,

ROBOT maintains M simultaneous local optimization runs

using M individual trust regions. As in prior work, trust
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regions are defined as rectangular regions of the input space,

e.g. Ti ⊆ X , with side lengths defined using standard

Euclidean distance. We note that it would be interesting to

explore the setting where trust region side lengths are instead

defined with respect to the diversity measure δ(·, ·); however,

the problem of even sampling candidate x locations from

within such a trust region becomes challenging in the general

setting.

Each local run i aims to find a single diverse solution x
∗
i ,

which together form the desired set S∗. In our problem

definition, the solution x
∗
i is only constrained with respect

to prior solutions, e.g. for j < i. Mirroring this, we as-

sign a hierarchical rank-ordering to the M trust regions,

T1, T2, ..., TM , so that the local optimization run Ti respon-

sible for finding x
∗
i is only constrained by local optimizers

Tj with j < i.

Acquiring candidates. Because the diversity constraints

are non-stationary, they must be handled in an online fashion

as we explore the input space. A natural way to accomplish

this is to enforce diversity with respect to all candidates

chosen by the optimization procedure. Mirroring the opti-

mization problem in Equation 1, in each iteration of opti-

mization we select candidates x̂i from each trust region Ti to

improve over its own incumbent (x+
i , y

+
i ) using a similarly

hierarchically-constrained acquisition function:

x̂1 = argmax
x∈T1

α(x; y+1 )

x̂i = argmax
x∈Ti

α(x; y+i ) s.t. δ(x, x̂j) ≥ τ ∀j < i (2)

Here, α may be a standard maximization acquisition func-

tion such as Expected Improvement (EI), and y+i refers to

the best objective value observed so far by the ith optimizer.

By asymmetrically constraining candidates, we select di-

verse sets of candidates. Furthermore, because high ranking

trust regions Ti are less constrained they are unimpeded by

lower-rank trust regions Tj where i < j. As a consequence

of this, the highest ranking trust region, T1, is never im-

peded by any other trust region. For an illustration of this,

see Figure 1. Since δ is an arbitrary user-defined black-box

function, the above optimization problem is challenging.

However, when the acquisition function maximization is

approximated via a discretization of the input space X–a rel-

atively common approach–the above optimization remains

straightforward. Nevertheless, a reliance on discretization

motivates the usage of a modified Thompson sampling pro-

cedure that we describe below.

Thompson Sampling Another approach to acquisition is

to use hierarchically constrained Thompson Sampling (TS).

To accomplish this, we select a candidate x̂i for each trust

region Ti one at a time, in rank-order. To select a candidate

x̂i from Ti, we sample r points Ci = {ci1, ci2, ..., cir} from

Ti. We then sample a realization f̂(cij) for each of these.

Denote by Pi the set of all candidate points which have

already been selected from each of the higher-ranking trust

regions T1, T2, ..., Ti−1. We select a batch of candidates

from among those points in Ci that are feasible with respect

to all points in Pi:

F̂ = {c | c ∈ Ci, ∀p ∈ Pi δ(c,p) ≥ τ}

If F̂ is empty, then no point in the discretization Ci of the

interior of Ti was feasible, and we select no candidate from

Ti in this round. Because our experiments are run mostly

on high dimensional settings where the trust regions are

separated by relatively large distances, we found this to be

an extremely rare occurrence empirically, happening only a

handful of times across all experiments.

Trust region modifications. In each iteration, ROBOT re-

centers the trust regions such that the current set S+
t af-

ter iteration t approximating S∗ is equivalent to the set of

all centers
{

x
+
1 , ...,x

+
M

}

. When trust regions select new

centers, all diversity constraints change, and since higher-

ranking trust regions are unconstrained by subordinate ones,

they may re-center on candidates that cause subordinate

trust region incumbents to violate these new constraints.

This would render some points in S+
t suddenly infeasi-

ble. To remedy this, in each step t, we greedily recon-

struct the feasible set S+
t using the full set of data points

Dt evaluated so far by all optimizers. In particular, we set

S+
t = {x

′(t)
1 , ...,x

′(t)
M }, where:

x
′(t)
1 = argmax

(x,y)∈Dt

y

x
′(t)
i = argmax

(x,y)∈Dt

y s.t. ∀j < i δ(x,x
′(t)
j ) ≥ τ (3)

We then re-center trust region Ti on x
′(t)
i . As a result, T1 is

always centered on the best-scoring point found by any trust

region, T2 is centered on the best remaining point which

is sufficiently diverse from the new center of T1, and so

on. In addition to recentering, we note that optimizer i is

only attempting to improve on its own current incumbent

objective value (subject to its own diversity constraints), and

not trying to improve over the globally best value observed

so far (e.g. y+1 ). Therefore, trust region successes and

failures as described in section 2 are defined with respect to

each trust region’s own incumbent.

Global surrogate model The recentering procedure de-

scribed above can recenter a trust region Ti on any data

point in the entire optimization history Dt, not merely its

own local optimization history. This makes the use of local

GP surrogate models for each trust region ill suited to the

task, as Ti may move to locations that were not acquired by

its own local surrogate. ROBOT therefore instead maintains

a single global surrogate model across all M trust regions.

The benefit of this is isolated in Figure 5.
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δ(x,
T1 candidates

T

T3 candidates

T

T2 candidates

x, x) = τ

Figure 1: Diagram of three rank-ordered subordinate trust regions, Green ≻ Blue ≻ Purple. (Left) Each trust region

generates b candidates. (Middle) Starting with T1, we discard candidates in subordinate trust regions that violate diversity

constraints with candidates in T1. (Right) We repeat this procedure with T2, removing infeasible candidates from T3.

4 EXPERIMENTS

We apply ROBOT to five high-dimensional BO tasks for

which finding a diverse set of solutions is desirable. We

additionally optimize diverse S&P 500 investment portfo-

lios in the appendix. Three of these tasks are continuous

problems that enable direct application of ROBOT as de-

scribed in section 3. The last three are structured molecule

optimization tasks.

Implementation details and hyperparameters. We im-

plement ROBOT leveraging BoTorch Balandat et al. (2020)

and GPyTorch Gardner et al. (2018), with code available at

https://github.com/nataliemaus/robot. All

trust region hyperparameters are set to the TuRBO defaults

as used in Eriksson et al. (2019). Particular choices of new

task-specific parameters, M , τ , and δ(·) are motivated in

the corresponding section for each task. Since we consider

large numbers of function evaluations for several tasks, we

use an approximate GP surrogate model. In particular, we

use a PPGPR for all tasks Jankowiak et al. (2020). The

number of random points used to initialize optimization is

kept consistent across all methods compared for each task

and is included in the x-axis of all plots. We use Thomp-

son sampling for all experiments. See subsection A.2 for

additional implementation details.

Extending ROBOT to the structured BO setting. To ex-

tend ROBOT to the structured setting for the molecule op-

timization tasks, we use the pre-trained SELFIES VAE

introduced by Maus et al. (2022) to map from the struc-

tured molecule space to a continuous search space where

Bayesian optimization can be directly applied. Additionally,

as in LOL-BO (Maus et al., 2022), we periodically train the

surrogate model jointly with the VAE end-to-end in order to

encourage the continuous latent space to be organized in a

way that is more amenable to optimization.

We refer to this extension of ROBOT as LOL-ROBOT.

Plots. For each task, we plot the objective value of the

current feasible set of M solutions obtained after a certain

number of function evaluations. All plots with M = 1 show

the objective value of the single best solution found, and are

included to highlight the loss in efficiency incurred by all

methods when seeking larger sets of solutions. For baselines

such as Standard BO, TuRBO, and TuRBO-M which are

designed to find a single solution rather than a diverse set,

we plot the mean objective value of the best M feasible

solutions found in the history of the run.

All plots are averaged over multiple runs and show stan-

dard errors. The expensive Guacamol experiments used

10 repetitions, while all others used 20. On many plots

we include runs of ROBOT-k—i.e., our method seeking k
solutions—for k > M . While one would in practice always

run ROBOT-M when seeking M solutions, these results

demonstrate the loss of efficiency of discovering M solu-

tions when seeking more. For plots where we show figures

with different M , we do not plot ROBOT-k for k < M .

Baselines. In all plots, we compare ROBOT against

TuRBO, TuRBO-M , and an alternative diverse optimization

algorithm involving sequential runs of constrained TuRBO

(see Sequential SCBO description below). Since these

algorithms are variants of TuRBO, each can be adapted to

the latent space BO setting using an analogous version of

LOL-BO.

We denote these latent space adaptations using notation:

LOL-BO, LOL-BO-M , and Sequential LOL-SCBO.

Applying end-to-end training to each baseline allows them

to be directly compared to LOL-ROBOT for the three molec-

ular tasks.

Note that when M = 1, TuRBO-M , and Sequential

SCBO are the same algorithm so we only plot TuRBO.

Although baselines such as Standard BO, TuRBO, and

TuRBO-M are designed to find a single solution rather than

M diverse solutions, we compare to them in plots with
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M > 1 by plotting the mean of the best M diverse solutions

found by the method along the way.

Sequential SCBO Baseline As discussed in section 2, we

can cast our problems as a constrained optimization problem

if the solutions in S∗ are generated sequentially–e.g., the

constraints for x∗
2 are well defined given a fixed x

∗
1. To

directly compare against this alternative, we run SCBOM
times in a row, where the ith run of SCBO has diversity

constraints against all solutions found from runs j < i.
We additionally make several modifications to improve the

efficiency of this algorithm. We start each sequential run

from the best point observed on any previous run which

meets the new set of constraints. Additionally, we maintain

the same surrogate model across sequential runs rather than

discard data.

4.1 Continuous BO Tasks

In this section, we consider two optimization tasks for which

finding a diverse set of solutions is useful–optimizing the

trajectory of a mars rover, and optimizing the policy used

by a lunar landing device.

4.1.1 Rover

The rover trajectory optimization task consists of finding

a 60 dimensional policy that allows a rover to move along

some trajectory while avoiding a set of obstacles Wang et al.

(2018). This optimization problem is useful as it allows us

to directly visualize the diverse paths found by optimization.

Diversity function δ and threshold τ A meaningful di-

versity measure is one that requires the resulting trajectories

to take distinct routes around the obstacles. To measure

the distance between two trajectories, we use the one-way-

distance (δOWD) metric from Su et al. (2020). The obstacles

used in the rover environment are squares of side length 0.05
and all four sides of each obstacle are 0.1 from the side of

some other obstacle (see Figure 2). Since our goal is to find

diverse trajectories which take different routes around the

obstacles, we therefore set τ = 0.15.

Results. Results on this task for M = 3 trajectories

are displayed in Figure 2. The leftmost figure depicts

convergence speed of the top trajectory optimized only.

ROBOT-M incurs no decrease in efficiency for finding the

best trajectory for M = 3, desite also finding (middle left)

three diverse trajectories of equivalent reward to the first. Al-

though Standard BO fails to find a good single solution (left-

most figure), it outperforms TuRBO when finding M > 1
solutions (middle left figure). Standard BO is less myopic,

and therefore finds a larger number of diverse trajectories

with positive reward. CVT-MAP-Elites performs worse

than all other baselines when we take the average of the top

three diverse solutions found (middle left figure). Likely,

this is due to the usage of input space distance as a diver-

sity measure, which does not necessarily correlate with the

more semantically meaningful diversity measure δ. Trajec-

tories found by multiple runs of TuRBO and a single run of

ROBOT are depicted in the middle right and rightmost plots,

clearly demonstrating diversity.

4.1.2 Learning Robust Lunar Lander Policies

The lunar lander optimization task seeks a control policy

that enables an autonomous lander to land without crashing

on a randomly generated set of terrain environments. The

objective function is defined as the average reward of the

policy obtained on a set of environments. We optimize

the same controller as in (Eriksson et al., 2019). Although

TuRBO finds policies that land on the training environments,

we find that these policies sometimes crash when tested on

unseen environments.

Diversity function δ and threshold τ . Since there is no

obvious semantically meaningful measure of diversity be-

tween two policies for this task, we define δ to be the eu-

clidean distance between two policies. We choose τ = 0.6
since, for larger values of τ , the random set of 1024 poli-

cies used to initialize optimization often did not contain a

sufficient number of feasible policies to start from.

Results. To demonstrate the value of this notion of diver-

sity in this setting, we use ROBOT to find a diverse set of 20

policies S∗ and then construct a single robust policy which

simply takes the majority vote action of the diverse policies

x
∗
i at every step. For comparison, we generate twenty poli-

cies by running TuRBO sequentially twenty times (requiring

20× as many evaluations). In Figure 3 (right), we plot a

histogram of rewards obtained by each of these strategies

on 200 unseen environments. Without diversity constraints,

the policies obtained by TuRBO occasionally achieve catas-

trophically low rewards. However, the ensembled 20 diverse

policies never fail to land across this larger set of environ-

ments.

To demonstrate optimization efficiency, we plot function

evaluations versus mean objective value found in Figure 3.

We show results for optimizing a set of M = 1 and 20
feasible policies. Despite distributing its evaluation budget

to find twenty diverse solutions, ROBOT incurs only a 3×
slowdown. Although CVT-MAP-Elites converges faster,

ROBOT eventually obtains a higher mean objective value.

This task is particularly well suited for CVT-MAP-Elites

as it uses input space diversity measures. This task is one of

the least successful for ROBOT, as discovering 20 policies

requires roughly 6× as many evaluations, where as most

tasks in this section require significantly fewer additional

evaluations. Nevertheless, this is still better than linear

slowdown.
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J. Močkus. On bayesian methods for seeking the extremum.

In Optimization Techniques IFIP Technical Conference:

Novosibirsk, July 1–7, 1974, pages 400–404. Springer,

1975.

J.-B. Mouret and J. Clune. Illuminating search spaces by

mapping elites, 2015.

J.-B. Mouret and G. Maguire. Quality diversity for multi-

task optimization. In Proceedings of the 2020 Genetic

and Evolutionary Computation Conference. ACM, jun

2020.

M. Mutny and A. Krause. Efficient high dimensional

Bayesian optimization with additivity and quadrature

Fourier features. In Advances in Neural Information

Processing Systems 31, pages 9019–9030, 2018.

D. M. Negoescu, P. I. Frazier, and W. B. Powell. The

knowledge-gradient algorithm for sequencing experi-

ments in drug discovery. INFORMS Journal on Com-

puting, 23(3):346–363, 2011.

W. Neiswanger, K. A. Wang, and S. Ermon. Bayesian

algorithm execution: Estimating computable proper-

ties of black-box functions using mutual information.

In M. Meila and T. Zhang, editors, Proceedings of

the 38th International Conference on Machine Learn-

ing, volume 139 of Proceedings of Machine Learn-

ing Research, pages 8005–8015. PMLR, 18–24 Jul

2021. URL https://proceedings.mlr.press/

v139/neiswanger21a.html.

C. E. Rasmussen. Gaussian processes in machine learning.

In Summer School on Machine Learning, pages 63–71.

Springer, 2003.

R. G. Regis and C. A. Shoemaker. A stochastic radial basis

function method for the global optimization of expensive

functions. INFORMS Journal on Computing, 19(4):497–

509, 2007.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and

N. De Freitas. Taking the human out of the loop: A

review of Bayesian optimization. Proceedings of the

IEEE, 104(1):148–175, 2015.

E. Siivola, A. Paleyes, J. González, and A. Vehtari. Good

practices for Bayesian optimization of high dimensional

structured spaces. Applied AI Letters, 2(2):e24, 2021.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian

optimization of machine learning algorithms, 2012a. URL

https://arxiv.org/abs/1206.2944.

J. Snoek, H. Larochelle, and R. P. Adams. Practical

Bayesian optimization of machine learning algorithms.

Advances in neural information processing systems, 25,

2012b.

S. Stanton, W. Maddox, N. Gruver, P. Maffettone, E. De-

laney, P. Greenside, and A. G. Wilson. Accelerating

bayesian optimization for biological sequence design with

denoising autoencoders, 2022.

H. Su, S. Liu, B. Zheng, X. Zhou, and K. Zheng. A survey of

trajectory distance measures and performance evaluation.

The VLDB Journal, 29:13–32, 2020.

M. Titsias. Variational learning of inducing variables in

sparse gaussian processes. In Artificial intelligence and

statistics, pages 567–574. PMLR, 2009.

A. Tripp, E. A. Daxberger, and J. M. Hernández-Lobato.

Sample-efficient optimization in the latent space of deep

generative models via weighted retraining. In Advances

in Neural Information Processing Systems 33, 2020.

M. Turchetta, A. Krause, and S. Trimpe. Robust model-free

reinforcement learning with multi-objective bayesian op-

timization, 2019. URL https://arxiv.org/abs/

1910.13399.

R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen,

Z. Xu, and I. Guyon. Bayesian optimization is superior

to random search for machine learning hyperparameter

tuning: Analysis of the black-box optimization challenge

2020. In NeurIPS 2020 Competition and Demonstration

Track, pages 3–26, 2021.



Discovering Many Diverse Solutions with Bayesian Optimization

V. Vassiliades, K. Chatzilygeroudis, and J.-B. Mouret. Us-

ing centroidal voronoi tessellations to scale up the multi-

dimensional archive of phenotypic elites algorithm, 2016.

Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. De Fre-

itas. Bayesian optimization in a billion dimensions via

random embeddings. J. Artif. Int. Res., 55(1):361–387,

Jan. 2016.

Z. Wang, C. Gehring, P. Kohli, and S. Jegelka. Batched

large-scale Bayesian optimization in high-dimensional

spaces. In International Conference on Artificial Intelli-

gence and Statistics, volume 84, pages 745–754, 2018.

S. Wessing and M. Preuss. The true destination of ego is

multi-local optimization, 2017. URL https://arxiv.

org/abs/1704.05724.

K. Williams, E. Bilsland, A. Sparkes, W. Aubrey, M. Young,

L. N. Soldatova, K. De Grave, J. Ramon, M. de Clare,

W. Sirawaraporn, S. G. Oliver, and R. D. King. Cheaper

faster drug development validated by the repositioning

of drugs against neglected tropical diseases. Journal of

the Royal Society, Interface / the Royal Society, 12(104):

20141289, Mar. 2015.

Y. Xie, Z. Xu, J. Ma, and Q. Mei. How much space has

been explored? measuring the chemical space covered by

databases and machine-generated molecules, 2021. URL

https://arxiv.org/abs/2112.12542.



Natalie Maus, Kaiwen Wu, David Eriksson, Jacob Gardner

Discovering Many Diverse Solutions with Bayesian Optimization
Supplementary Materials

A APPENDIX

A.1 ROBOT Initialization Details

ROBOT is initialized with a small set of quasi-random data. The M trust regions are initialized one at a time (in rank-order).

Each trust region is centered on the highest-scoring point in the initial data which is sufficiently diverse from the centers of

all higher-ranking trust regions. See Table 1 for the number of initialization data points used for each task. All baseline

methods use the same number of initialization data points for each task.

Table 1: Number of random initialization data points used to initialize all methods for each task in section 4

TASK NUMBER OF POINTS

Rover 1024
Lunar Lander 1024
Stock Portfolio Diversification 1024
Molecule Tasks 10,000

A.2 Additional Implementation Details

In this section, we provide additional implementation details for ROBOT and baseline methods.

A.2.1 Surrogate Model

As discussed in section 4, we use a PPGPR Jankowiak et al. (2020) surrogate model. To maintain fair comparison, we use

the same surrogate model with the same configuration for ROBOT and all baseline Bayesian optimization methods. We use a

PPGPR with a constant mean and standard RBF kernel. Due to the high dimensionality of our chosen tasks, use a deep

kernel (several fully connected layers between the search space and the GP kernel). In particular, we use two fully connected

layers with 32 nodes each. We update the parameters of the PPGPR during optimization by training it on collected data

using the Adam optimizer with a learning rate of 0.001. The PPGPR is initially trained on a small set of initialization data

for 20 epochs. For the number of initialization data points used for each task, see Table 1. On each step of optimization, the

model is updated on the newly collected data for 2 epochs. This is kept consistent across all Bayesian optimization methods.

A.2.2 Details for Non-BO Methods

For the CVT-Map-Elits method, we use all default hyper-parameters from Vassiliades et al. (2016) with the “Number of

Niches" parameter set equal to M (the number of diverse solutions we want to find). For the Graph GA method we use the

implementation provided by Brown et al. (2019) which returns a population of molecules by default. We use the default

hyper-parameters from Jensen (2019). For random sampling, we select query points in the search space uniformly at random,

and check to make sure that we never select the same point twice.

A.3 Additional Experiments

In this section, we provide some additional experimental results, including analysis for ROBOT on the two additional

optimization tasks mentioned in section 4.
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about the underlying objective. Furthermore, assumption three is a fairly common setting in Bayesian optimization. The

primary non-trivial assumption needed in the Theorem below is assumption 2. This assumption requires a certain degree

of smoothness from the objective function and the diversity constraint near points in S∗. In particular, we assume points

in an epsilon ball centered at x∗
1, B(x∗

1, ǫ), have higher objective value than points outside the ball. Furthermore, points

in B(x∗
2, ǫ) have higher objective value than other points in the input domain X that are feasible with respect to points in

B(x∗
1, ǫ). Note that assumption 2 is also implied under assumption 1 if both f(·) and δ(·) are continuous and δ(x∗

1,x
∗
2) > τ .

We start by showing the result for M = 2:

Theorem 1 (M=2). Suppose that ROBOT with default parameters is used under the following assumptions:

1. S∗ = {x∗
1,x

∗
2} exists and is non-empty. In particular, for each i, x∗

i is the unique optimizer to the optimization problem

described in section 3 by Equation 1.

2. There exists an ǫ > 0 such that:

(a) For any w1 ∈ B(x∗
1, ǫ) ∩ X we have f(w1) > f(x) for all x ∈ X \B(x∗

1, ǫ).

(b) For any w1 ∈ B(x∗
1, ǫ) ∩ X ,w2 ∈ B(x∗

2, ǫ) ∩ X we have δ(w1,w2) ≥ τ .

(c) For any w1 ∈ B(x∗
1, ǫ) ∩ X ,w2 ∈ B(x∗

2, ǫ) ∩ X we have f(w2) > f(x) for all x ∈ X \ B(x∗
2, ǫ) s.t.

δ(x,w1) ≥ τ .

3. The objective f is bounded and the input domain X is a compact hypercube.

4. ROBOT generates new initial points when a trust region restarts. These initial points are chosen such that for any

δ > 0 and x ∈ X there exists ν(x, δ) > 0 such that the probability that at least one point ends up in a ball centered at

x with radius δ is at least ν(x, δ).

5. ROBOT considers any sampled point an improvement only if it improves the current best solution by at least some

constant γ > 0.

Then, ROBOT converges to the unique global minimizing set S∗.

Proof. We start by observing that each trust region will collect only a finite number of samples before restarting due to

conditions (3) and (5) as well as the fact that we similarly to SCBO use a finite success and failure tolerance. This means that

each trust region in ROBOT will restart infinitely often with a fresh trust region and hence there is an infinite subsequence of

initial points that satisfy (4). Now, denote the infinite sequence of initial points collected by ROBOT by {x̂(t)}t≥1 where t is

the iteration number. We will construct a new sequence {x̂1(t)}t≥1 as follows:

x̂1(t) :=











x̂(1) if t = 1

x̂(t) if f(x̂(t)) > f(x̂1(t− 1))

x̂1(t− 1) otherwise

It now follows directly from the arguments made by Regis and Shoemaker (2007) in Theorem 1 and assumption (2) that

x̂1(t) → x
∗
1 almost surely. Next, assumptions (2) and (4) allows us to find a point ẑ1 ∈ {x̂1(t)}t≥1 that is arbitrarily

close to x
∗
1 that is both better than any point outside B(x∗

1, ǫ) and also satisfies the diversity constraint w.r.t. any point

ẑ2 ∈ B(x∗
2, ǫ) ∩ X . We can then construct the following subsequence

x̂2(t) :=



















x̂(1) if t = 1

x̂(t) if δ(x̂(t), ẑ1) ≥ τ and δ(x̂2(t− 1), ẑ1) < τ,

x̂(t) if f(x̂(t)) > f(x̂2(t− 1)) and δ(x̂(t), ẑ1) ≥ τ and δ(x̂2(t− 1), ẑ1) ≥ τ,

x̂2(t− 1) otherwise

Following the same argument as before we have that x̂2(t)→ x
∗
2 almost surely.

We can extend these ideas to cover any finite M by extending these assumptions.

Corollary 1.1. Assume 3-5 from Theorem 1 are satisfied. In addition, we also assume that the following is true:

1. S∗ = {x∗
1, . . . ,x

∗
M} and is non-empty, where M > 2 is finite.



2. There exists an ǫ > 0 such that:

(a) For any w1 ∈ B(x∗
1, ǫ) ∩ X we have f(w1) > f(x) for all x ∈ X \B(x∗

1, ǫ).

(b) The following holds for j = 2, . . . ,M : For any w1 ∈ B(x∗
1, ǫ) ∩ X , . . . ,wj ∈ B(x∗

j , ǫ) ∩ X we have

mini∈{1,...,j−1} δ(wi,wj) ≥ τ .

(c) The following holds for j = 2, . . . ,M : For any w1 ∈ B(x∗
i , ǫ) ∩ X , . . . ,wj ∈ B(x∗

j , ǫ) ∩ X we have f(wj) >
f(x) for all x ∈ X \B(x∗

j , ǫ) s.t. mini∈{1,...,j−1} δ(x,wi) ≥ τ .

Then ROBOT converges to the unique set S∗.

A.6 Limitations and Assumptions of ROBOT

Similar to any Bayesian optimization method, ROBOT assumes that the probabilistic surrogate model can obtain a good fit

to the black box function. Additionally, ROBOT assumes that the diversity function δ is cheap to compute relative to the

black box function.

A.6.1 Selection of τ

ROBOT assumes that the diversity constraints are mild enough and M is small enough that finding M diverse points in the

search space is possible. We suggest choosing a τ value which represents the most relaxed constraint possible that still

enforces enough diversity to be meaningful to the practitioner. We assume that the practitioner can evaluate the diversity

function to determine what values indicate sufficient diversity for their particular application.

A.7 Extending TuRBO to ROBOT

In this section, we describe the modifications necessary to modify an implementation of TuRBO into an implementation

of ROBOT. Note that a full BoTorch implementation of ROBOT is also available, as linked to in the experimental results

section of the main text. We give a pseudocode algorithm for ROBOT (1). Lines of the algorithm in blue show the parts

of ROBOT that differ from TuRBO-M . We provide additional clarification on the differences highlighted between ROBOT

and TuRBO-M here. Both methods use M hyper-rectangular trust regions and dynamically update the length and center of

each trust region using the dynamics of Eriksson et al. (2019). However, ROBOT performs acquisition to find a set of M
diverse solutions according to a diversity function δ and threshold τ , with each trust region responsible for one solution,

while TuRBO-M finds a single solution from across the trust regions. Accordingly, TuRBO-M allocates budget related

to the strength of each trust region’s incumbent, and some trust regions may see very few allocations if they start in poor

regions of the search space.

In contrast, ROBOT selects the same number of candidates from each trust region on each step of optimization, maintains a

rank-ordering of the M trust regions and re-centers the M trust regions in rank-order on best diverse set of points from the

entire shared data history S+
t = {x

′(t)
1 , ...,x

′(t)
M }. TuRBO-M re-centers each trust region on the best candidate queried by

that individual trust region. Finally, ROBOT discards candidates from lower-ranking trust regions if they are not sufficiently

diverse from the candidates from higher-ranking trust regions while TuRBO-M does not discard candidates.
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Algorithm 1 ROBOT Algorithm

Inputs: f, D0, M, δ, τ

1: for i = 1, ...,M do

2: Initialize trust region T
i

3: end for

4: for Every time step t do

5: Update surrogate model on Dt

6: S+
t = {x

′(t)
1 , ...,x

′(t)
M }, where:

x
′(t)
1 = argmax

(x,y)∈Dt

y

x
′(t)
i = argmax

(x,y)∈Dt

y s.t. ∀j < i δ(x,x
′(t)
j ) ≥ τ (4)

7: Set center of trust region Ti to x
′(t)
i

8: for i = 1, ...,M do

9: Select candidate xi from T
i

using acquisition function

10: end for

11: for i = 1, ...,M do

12: if δ(xi, xj) < τ for any j < i then

13: Discard xi

14: else

15: yi = f(xi)
16: Update length of T

i
based on yi

17: end if

18: end for

19: Dt+1v ← Dt ∪ (x,y)
20: end for


