
58

Optimized Cross-Path Attacks via Adversarial
Reconnaissance
YUDI HUANG∗, Pennsylvania State University, USA
YILEI LIN∗,Meta, USA

TING HE, Pennsylvania State University, USA

While softwarization and virtualization technologies make modern communication networks appear easier

to manage, they also introduce highly complex interactions within the networks that can cause unexpected

security threats. In this work, we study a particular security threat due to the sharing of links between

high-security paths and low-security paths, which enables a new type of DoS attacks, called cross-path attacks,

that indirectly attack a set of targeted high-security paths (target paths) by congesting the shared links through

a set of attacker-controlled low-security paths (attack paths). While the feasibility of such attacks has been

recently demonstrated in the context of SDN, their potential performance impact has not been characterized.

To this end, we develop an approach for designing an optimized cross-path attack under a constrained total

attack rate, consisting of (i) novel reconnaissance algorithms that can provide consistent estimates of the

locations and parameters of the shared links via network tomography, and (ii) efficient optimization methods

to design the optimal allocation of attack rate over the attack paths to maximally degrade the performance

of the target paths. The proposed attack has achieved a significantly larger performance impact than its non-

optimized counterparts in extensive evaluations based on multiple network settings, signaling the importance

of addressing such intelligent attacks in network design.

CCS Concepts: • Networks→ Network measurement; Network security; Network management.

Additional KeyWords and Phrases: Denial-of-service attack, topology inference, queueing analysis, adversarial

reconnaissance, attack modeling.

ACM Reference Format:
Yudi Huang, Yilei Lin, and Ting He. 2023. Optimized Cross-Path Attacks via Adversarial Reconnaissance. Proc.
ACM Meas. Anal. Comput. Syst. 7, 3, Article 58 (December 2023), 30 pages. https://doi.org/10.1145/3626789

1 INTRODUCTION
The trend of network softwarization and virtualization has fundamentally altered the way we

build network systems. While the logically centralized control plane provides convenient ways

to manage the network resources through various abstractions, such abstractions also hide the

complex interactions within the network, which can cause unexpected security threats. In this

work, we focus on a particular security threat due to the sharing of links between high-security

paths and low-security paths, which enables a new type of denial-of-service (DoS) attacks called
cross-path attacks.

∗
Both authors contributed equally to this research.

Authors’ addresses: Yudi Huang, Pennsylvania State University, University Park, Pennsylvania, USA, yxh5389@psu.edu; Yilei

Lin, Meta, Santa Clara, California, USA, yileilin1997@gmail.com; Ting He, tinghe@psu.edu, Pennsylvania State University,

University Park, Pennsylvania, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2023/12-ART58 $15.00

https://doi.org/10.1145/3626789

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

https://doi.org/10.1145/3626789
https://doi.org/10.1145/3626789

58:2 Yudi Huang, Yilei Lin, and Ting He

Intuitively, cross-path attacks are indirect DoS attacks, where instead of directly attacking the

paths of interest (target paths), the attacker sends attack traffic on some other paths (attack paths)
sharing resources (e.g., link bandwidth) with the target paths, so as to degrade the performance of

the target paths by consuming the shared resources. Such attacks are of interest when the target

paths are difficult to attack directly, but share network resources with some low-security paths

that are more susceptible to attacks.

One scenario for cross-path attacks is in the context of a Software Defined Network (SDN) [9],
where the target paths are control-plane paths connecting switches to the controller and the attack

paths are data-plane paths originating from attacker-controlled hosts that share links with some

of the control-plane paths. Instead of directly triggering a flood of control messages to attack the

control-plane paths as in earlier attacks [45], a cross-path attack only floods selected paths in

the data plane, which makes it both stealthier and more resilient to state-of-the-art control plane

defenses such as FloodGuard [47], FloodDefender [44], and SPHINX [14]. Another scenario for

cross-path attacks is in the context of network slicing [51], which is a technology in 5G networks

that allows the network provider to set up multiple virtual networks over a shared infrastructure.

To improve resource utilization and support elasticity, different slices may share network and

computing resources [51]. Meanwhile, slices created for different applications can follow different

security standards [27, 28], and some slices may even be managed by less trusted third parties [2].

These practices create opportunities for an attacker to attack paths in a high-security slice (target

paths) by consuming resources shared with some paths the attacker can access in a low-security slice

(attack paths), while remaining stealthy to intrusion detection systems in the high-security slice.

Despite the demonstration of feasibility in [9], there is little quantitative understanding about

cross-path attacks. In this work, we will address this gap by designing an optimized attack strategy

that can achieve the maximum impact with a constrained total attack rate. At a high level, our

strategy works by (i) inferring the locations and parameters of network elements shared between

the target paths and the attack paths, and then (ii) optimally allocating the total attack rate over

the attack paths to maximize the performance degradation of the target paths. By analyzing the

optimal attack strategy, we not only quantify the maximum damage due to cross-path attacks as a

function of the attack rate, but also shed light on possible defenses.

1.1 Related Work
As a newly identified attack, cross-path attack has not been extensively studied previously. Therefore,

we will provide background by reviewing some relevant security problems and solution techniques.

Security vulnerabilities in SDN: As the architectures and protocols of SDN are designed to

facilitate performance and programmability, there are many security vulnerabilities, mainly due to

the interdependency between the controller and the switches. In particular, the switch→controller

dependency that arises due to the need for the data plane to obtain instructions from the control

plane can create a communication bottleneck, which has been exploited in active attacks [45],

adversarial reconnaissance [4], and joint reconnaissance and attack [9, 50]. The cross-path attack in

this context [9] is a reconnaissance-based attack that exploits the switch→controller dependency

to infer which attacker-controlled data-plane paths share links with at least one control-plane

path, in order to identify the data-plane paths that can be used to launch a cross-path attack on

the control plane. The reconnaissance strategy in [9] only infers whether there exists at least

one shared link between a data-plane path and the targeted control-plane paths, and thus can

only support a non-optimized cross-path attack. In contrast, we will provide a way to design an

optimized cross-path attack through fine-grained reconnaissance based on network tomography.

Security vulnerabilities in network slicing: Network slicing introduces both content-level
threats such as unauthorized access, compromise of functions/devices, and side-channels across

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:3

slices [12, 34], and performance-level threats due to malicious abuse of resource quotas [12, 43]. The

cross-path attack in this context belongs to performance-level threats. While cross-path attack

under network slicing can be defended by detecting the attack through the cooperation of its control

plane [32] or completely isolating different slices [41], both approaches have severe limitations:

the former will fail if the attack slice’s control plane is compromised, and the latter will cause poor

resource utilization. In this regard, our work helps to strike a balance between resource utilization

and security in network slicing by quantifying the maximum impact of cross-path attacks.

Network interdiction: Traditional network interdiction refers to a problem where an inter-

dictor tries to reduce the throughput of network users by removing selected links under a budget

constraint [36]. A variation of this problem, recently proposed in [17], is conceptually similar to

cross-path attack in that instead of removing links, the interdictor tries to reduce the available

capacities of links traversed by target paths by injecting flows on selected paths. Despite the

conceptual similarity, [17] addressed a fundamentally different problem of optimizing the (possibly

multi-path) routing of injected traffic in a clairvoyant setting where the network topology and the

links traversed by each target path are known to the interdictor, and the routing of injected traffic

is controllable, which generally requires the cooperation of the network. In contrast, cross-path

attack is based on a much weaker threat model where the attacker is an outsider of the network

without internal support or information. Therefore, how to learn the internal information required

for effective attack design is a critical question in cross-path attack, which is the focus of this work.

Network tomography: The optimal design of cross-path attacks requires the attacker to infer

the network elements shared between two sets of paths from end-to-end measurements, which

is similar to the problem addressed by network topology tomography/inference [21]. With few

exceptions (e.g., [29, 49]), topology inference algorithms generally require active probing on all

the paths; see [31] and references therein. This can be used to generate carefully crafted probes,

such as “packet strings” [33] or “packet sandwiches” [10], which produce correlated measurements

that can reveal the existence and parameters of the links shared by different paths. Our problem

is different in that the attacker can only probe a subset of paths (i.e., the attack paths) but wants

to infer the elements they share with the other paths (i.e., the target paths).

1.2 Summary of Contributions
Our goal is to understand the strategy and impact of the optimal cross-path attack under a con-

strained total rate, with the following contributions:

1) We develop novel inference algorithms that can consistently estimate the locations and

parameters of the links shared between attack paths and target paths via active probing on the

attack paths and passive monitoring on the target paths.

2) Under the assumption that each shared link can be modeled as an M/M/1, M/D/1, or G/G/1

queue, we derive the optimal attack design that can maximally degrade the performance of the

target paths under a bounded total attack rate.

3) We evaluate the proposed algorithms by high-fidelity packet-level simulations under various

settings, which show that (i) our inference algorithms can estimate the (topological) locations

of shared links with good accuracy but not their detailed parameters, but (ii) our attack strategy

designed based on these estimates can still cause substantially more performance degradation than

some intuitive ways of launching cross-path attacks, which signals the importance of considering

such intelligent attack strategies in the design of defenses.

Roadmap. We formulate our problem in Section 2, present the algorithms to infer the locations

and parameters of shared links in Section 3, and present the corresponding attack design in Section 4.

We then evaluate our solutions in Section 5 and conclude the paper in Section 6. All the proofs
are provided in Appendix A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:4 Yudi Huang, Yilei Lin, and Ting He

2 PROBLEM FORMULATION
2.1 Network and Threat Model
Consider two sets of paths in a network, referred to as the attack paths 𝑃𝐴 := {𝑠𝐴𝑖 → 𝑡𝐴𝑖 }𝑁𝐴

𝑖=1
and

the target paths 𝑃𝐵 := {𝑠𝐵𝑖 → 𝑡𝐵𝑖 }𝑁𝐵

𝑖=1
, where 𝑠 → 𝑡 denotes the routing path from source 𝑠 to

destination 𝑡 and 𝑁𝐴/𝑁𝐵 the number of paths in 𝑃𝐴/𝑃𝐵 . Suppose that an attacker is interested in

attacking the target paths in 𝑃𝐵 , but can only passively monitor the end-to-end performance (e.g.,

delays) on these paths. Meanwhile, the attacker can actively send packets on the attack paths in

𝑃𝐴. We will focus on the important special case of 𝑠𝐴𝑖 ≡ 𝑠𝐴 (𝑖 = 1, . . . , 𝑁𝐴), as it represents a most

easily-deployable attack with only one active malicious node (i.e., 𝑠𝐴). Let𝑇𝐴 := {𝑡𝐴𝑖 |𝑖 = 1, · · · , 𝑁𝐴}
denote the set of destinations of the attack paths. We note that the multi-source case, where the

attacker controls multiple active malicious nodes, is not a trivial extension of the single-source

case. We leave the study of the multi-source case to future work.

The two sets of paths may share some network elements. For clarity, we will model all the shared

elements as “shared links”, which can represent any shared resources (e.g., communication links,

network functions, and other services). Here, “shared” means shared by attack traffic and target

traffic without isolation.While traffic isolation technologies exist, applying themwill lower resource

utilization and hence the revenue of the network provider [40, 51]. In this regard, our work aims at

quantifying the risk due to lack of isolation to inform a proper tradeoff. We model such link sharing

by a (logical) routing topology 𝐺 = (𝑉 , 𝐸), which is a graph formed by all the paths in 𝑃𝐴 ∪ 𝑃𝐵 .
According to [33, 42],𝑉 is a set of vertices representing sources, destinations, and branching/joining

points between paths, and 𝐸 is a set of edges representing the connections between the vertices,

where a sequence of consecutive links without branching/joining points is represented by a single

edge. We assume that the attacker does not have access to the control plane, i.e., he does not

know the ground truth of𝐺 . Instead, the attacker can infer information about𝐺 from end-to-end

measurements on 𝑃𝐴 and 𝑃𝐵 . We will use “link” to refer to a communication link in the underlying

network and “edge” to refer to a point-to-point connection in the routing topology. Similarly, we

will use “node” to refer to a physical node in the underlying network and “vertex” to refer to a logical

node in the routing topology. As commonly assumed in the literature [33, 42], we assume that during

the inference and attack, there is a fixed and unique routing path from each node to every other node.

Remark: While there may be other paths carrying co-existing flows in the network, it suffices

to focus on the target and the attack paths for the purpose of modeling the cross-path attack.

The impact of co-existing flows will be captured as background traffic on the links traversed by

𝑃𝐴 ∪ 𝑃𝐵 . Our threat model depicts a pure cross-path attack where the attacker can only actively

send packets on the attack paths and thus can only attack the target paths through “cross-path”

influence. In some scenarios such as the cross-path attack between the data plane and the control

plane in SDN [9], it is possible for the attacker to generate packets on the target paths (e.g., by

triggering “packet-in” messages). However, to evade existing defenses against direct attacks, such

attacker-triggered traffic on the target paths must resemble the normal traffic on these paths, which

is usually insufficient to cause notable performance degradation. Intuitively, the ability to passively

monitor the performance of the target paths is the minimum requirement for designing a nontrivial

cross-path attack. We thus adopt this threat model to maximize the applicability of our result.

We assume the following capabilities of the attacker. First, the attacker can observe packets on

each target path 𝑠𝐵𝑖 → 𝑡𝐵𝑖 as soon as they are transmitted, even if 𝑠𝐵𝑖 differs from 𝑠𝐴. For example,

the attacker may intersect target traffic at locations (𝑠𝐵𝑖)𝑁𝐵

𝑖=1
(i.e., 𝑠𝐵𝑖 denotes the starting point of

intersection for a path of interest). Instead of directly attacking target traffic at these points of

intersection, the attacker only uses them to passively monitor the target traffic to launch a stealthier

attack. Second, the attacker can measure the end-to-end one-way delays of packets on both the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:5

DU
RU

DU
RU

DU
RU

DU
RU

5G
control plane

UPF
CU

slice A

5G transport network

slice B

target path attack path

sA

tA1

tA2

tA3

sB

tB

UPF
CU

(a) physical network

sA sB

tBtA1 tA2 tA3

shared
linksb2

b1

(b) routing topology G

Fig. 1. Cross-path attack in the context of network slicing.

attack paths 𝑃𝐴 and the target paths 𝑃𝐵 . Third, the attacker will not be exposed by sending traffic

on the attack paths. For example, the attacker may control many edge devices, which connect to the

same ingress point 𝑠𝐴 or egress point 𝑡𝐴𝑖 (i.e., 𝑠𝐴 and 𝑡𝐴𝑖 may each represent a set of devices), and thus

the attack flows can evade detection by the network operator even if the aggregate flow rate is high.

2.2 Problem Statement
While the sharing of links makes the paths in 𝑃𝐵 vulnerable to cross-path attacks launched from the

paths in 𝑃𝐴, the impact of such attacks greatly depends on the attack strategy. To understand the

maximum impact of cross-path attacks, we develop an intelligent attack strategy by combining fine-

grained adversarial reconnaissance with optimized attack design, by solving the following problems:

1) Adversarial Reconnaissance.We investigate to what extent the attacker can learn about the

shared links based on active probing on 𝑃𝐴 and passive monitoring on 𝑃𝐵 .

2) Optimized Attack Design. Based on the inferred information, we investigate the optimal

allocation of attack traffic over the attack paths to maximize the performance degradation (e.g.,

increase in average delay) inflicted on the target paths.

Remark: Our threat model requires the attacker to monitor end-to-end performance on the target

paths. While this is arguably the minimum information needed for any nontrivial attack design, it

does impose limitations on which paths can be set as the target. For example, in the context of SDN

[9], only the control-plane paths for switches traversed by attacker-controlled data-plane paths can

be the target paths. In the context of network slicing, the target paths can be the backhaul paths to

cells containing attacker-controlled user equipments (UEs), which are likely to share the same paths

with other UEs in the same cell and can thus be used as their proxies in collecting measurements.

Instead of directly launching attacks from these attacker-controlled UEs, a cross-path attack only

uses them to passively collect measurements so as to launch an effective attack from elsewhere in

the network, and is thus stealthier.

2.3 Illustrative Example
Example in network slicing: Consider the scenario in Fig. 1 (a), where the attacker controls a malicious

node 𝑠𝐴 that can send traffic on a set of paths 𝑠𝐴 → 𝑡𝐴𝑖 (𝑖 = 1, 2, 3) in slice 𝐴 but wants to attack

another path 𝑠𝐵 → 𝑡𝐵 in slice 𝐵. The attack paths share the following network elements with the

target path: 𝑠𝐴 → 𝑡𝐴1 only shares the source-side central unit (CU) and user plane function (UPF);

𝑠𝐴 → 𝑡𝐴2 also shares backhaul links between the cell sites and the destination-side CU and UPF;

𝑠𝐴 → 𝑡𝐴3 further shares midhaul links and the destination-side radio unit (RU) and distributed unit

(DU). These relationships can be modeled by the routing topology in Fig. 1 (b).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:6 Yudi Huang, Yilei Lin, and Ting He

b3
tB1

sA sB

tA1 tA3

b2

b1

sA

sB (controller)

tA1

tA2 tA3

tB1
tB2

tB3 tB4

(a) physical network (b) routing topology G

tB3 tB4tA2tB2

target path attack path

shared
links

Fig. 2. Cross-path attack in the context of SDN.

Example in SDN: Consider the scenario in Fig. 2 (a), where the attacker wants to attack the control

paths between the controller 𝑠𝐵 and the switches 𝑡𝐵𝑖 (𝑖 = 1, . . . , 4) by sending traffic on the data

paths 𝑠𝐴 → 𝑡𝐴𝑖 (𝑖 = 1, 2, 3). Assume shortest path routing for both data and control paths (assuming

that 𝑡𝐵2 connects to the controller via 𝑡𝐵1 and 𝑠𝐴 connects to 𝑡𝐴3 via 𝑡𝐵2). Each data path shares

some links with the control paths: 𝑠𝐴 → 𝑡𝐴1 shares a link with 𝑠𝐵 → 𝑡𝐵2, 𝑠𝐴 → 𝑡𝐴2 shares a link

with 𝑠𝐵 → 𝑡𝐵1 and 𝑠𝐵 → 𝑡𝐵2, and 𝑠𝐴 → 𝑡𝐴3 shares a link with 𝑠𝐵 → 𝑡𝐵2. Meanwhile, due to the

separate processing of data and control packets within a switch, the shared nodes (i.e., switches)

will not cause performance correlation between data and control paths and can thus be ignored.

These relationships can be modeled by the routing topology in Fig. 2 (b), where we have inserted

zero-delay edges (𝑏1, 𝑡𝐵1), (𝑏2, 𝑡𝐵2), and (𝑏3, 𝑡𝐵3) to make each source/destination have degree one.

While it is relatively easy to identify which attack paths share at least one link with the target

paths (e.g., by measuring the target path delays with/without traffic on each attack path as in

[9]), different attack paths can influence the target paths to different extents. Given the routing

topology𝐺 , one can intuitively identify the most useful attack path, e.g., 𝑠𝐴 → 𝑡𝐴3 in Fig. 1, but the

attacker cannot directly observe such internal information. Therefore, when the attacker has access

to multiple attack paths but only resources to generate a limited amount of traffic, it is unclear how

he can attack most effectively. Below, we will show that the attacker can actually infer sufficient

information about the routing topology to design the optimal attack that causes the maximum

performance degradation to the target paths, by only passively monitoring the target paths.

3 ADVERSARIAL RECONNAISSANCE
We will show that under mild assumptions, the attacker can consistently infer both the locations

and the parameters of the links shared between the attack paths and the target paths.

3.1 Preliminaries
The problem of inferring the relationship between paths from end-to-end measurements belongs

to a branch of network tomography focusing on topology inference, for which many algorithms

have been proposed (see Section 1.1). However, these algorithms typically require active probing

on all the paths and hence are not applicable to our problem. Nevertheless, there are some results

we can leverage, as summarized below.

The foundation of topology inference is using end-to-end measurements to infer the “lengths”

of links defined by certain additive performance metrics. As a concrete example, we will adopt a

canonical metric that can be inferred from delay measurements, but our reconnaissance algorithm

can work with any additive metric for which the so-called “category weight” (see Definition 1) can

be inferred from end-to-end measurements.

The metric we adopt is called utilization-based metric [16, 33], which is a classical additive metric

used in topology inference. Let 𝛾𝑒 denote the probability that a packet traversing link 𝑒 does not

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:7

experience any queueing delay. The utilization-based metric for link 𝑒 is defined as 𝑢𝑒 := −𝑙𝑜𝑔𝛾𝑒 ,
which is additive across independent links. By comparing the end-to-end delay of a packet with

the minimum delay on the measured path, we can infer whether the packet incurs any queueing

delay and hence estimate the utilization-based metric for the path. It was shown in [30] that with

simultaneous measurements from multiple paths (obtained via multicast or back-to-back unicast),

we can uniquely identify the utilization-based metric
1
at a certain granularity as follows.

Definition 1. Given a set 𝐶 of paths, we define the following:

(1) the cast weight 𝜙𝐶 is the sum of metrics for all the links traversed by any of the paths in 𝐶;

(2) a category Γ𝐶′
𝐶

for𝐶′ ⊆ 𝐶 and𝐶′ ≠ ∅ is the set of links traversed by every path in𝐶′ but none

of the paths in 𝐶 \𝐶′;
(3) the category weight for a category Γ𝐶′

𝐶
, denoted by𝑤 𝐶′

𝐶
, is the sum of the metrics for all the

links in Γ𝐶′
𝐶
.

For example, consider the set of paths 𝐶 := {𝑠𝐴 → 𝑡𝐴1, 𝑠𝐴 → 𝑡𝐴2, 𝑠𝐴 → 𝑡𝐴3, 𝑠𝐵 → 𝑡𝐵} in
Fig. 1 (b). The cast weight 𝜙𝑠𝐴→𝑡𝐴1

, 𝑠𝐴→𝑡𝐴2,𝑠𝐴→𝑡𝐴3
is the sum metric for all the blue and green links.

Category Γ 𝑠𝐴→𝑡𝐴1
,𝑠𝐴→𝑡𝐴2

,𝑠𝐴→𝑡𝐴3

𝑠𝐴→𝑡𝐴1
,𝑠𝐴→𝑡𝐴2

,𝑠𝐴→𝑡𝐴3
,𝑠𝐵→𝑡𝐵

only contains link (𝑠𝐴, 𝑏1), and category Γ𝑠𝐴→𝑡𝐴1
,𝑠𝐴→𝑡𝐴2

,𝑠𝐴→𝑡𝐴3
,𝑠𝐵→𝑡𝐵

𝑠𝐴→𝑡𝐴1
,𝑠𝐴→𝑡𝐴2

,𝑠𝐴→𝑡𝐴3
,𝑠𝐵→𝑡𝐵

only contains link (𝑏1, 𝑏2).
Let C := 2

𝐶 \ {∅} denote all the nonempty subsets of 𝐶 and 𝑈𝐶′ (𝐶
′ ∈ C) denote a Bernoulli

variable that equals 1 if and only if a multicast probe on 𝐶′ does not incur any queueing delay.

Under the assumption that different links have independent queue states as in [16, 30, 33] (which

holds approximately under heavy independent cross-traffic), we have

− log(Pr{𝑈𝐶′=1}) = − log(
∏

𝑒∈⋃𝑝∈𝐶′ 𝑝

𝛾𝑒) =
∑︁

𝑒∈⋃𝑝∈𝐶′ 𝑝

𝑢𝑒 =: 𝜙𝐶′ . (1)

This, together with Definition 1, implies the following relationship between the cast weights and

the category weights: ∑︁
𝐶1∈C:𝐶1∩𝐶2≠∅

𝑤 𝐶
1

𝐶

= 𝜙𝐶2
, ∀𝐶2 ∈ C. (2)

Using (approximated) multicast on 𝐶 , we can infer all the cast weights in (𝜙𝐶′)𝐶′∈C , which can

then be used to uniquely identify the category weights as shown below.

Theorem 3.1 (Theorem III.1 in [30]). Given the cast weights (𝜙𝐶′)𝐶′∈C , all the category weights

(𝑤 𝐶′
𝐶
)𝐶′∈C are uniquely determined by (2).

Below, we will show how to use this existing result to detect the links shared between the target

paths and the attack paths.

3.2 Shared Weight Inference
Category weights provide valuable information about the relationship between paths. Specifically,

if 𝑤 𝐶′
𝐶

> 0, then we know that Γ𝐶′
𝐶

≠ ∅, i.e., there is at least one link shared by the paths in 𝐶′

but not those in 𝐶 \ 𝐶′. Moreover, under the assumption that every link has a non-zero metric

(i.e., non-zero queueing probability), 𝑤 𝐶′
𝐶

= 0 implies that Γ𝐶′
𝐶

= ∅. However, applying this idea

directly to the paths in 𝑃𝐴 ∪ 𝑃𝐵 will require active probing on all the paths. Nevertheless, with

active probing only on 𝑃𝐴, we can still infer the relationship between each target path 𝑝 ∈ 𝑃𝐵 and

1
The empirical evaluations in [30] were based on loss-based metric defined as 𝑢′𝑒 B − log𝛾 ′𝑒 , where 𝛾 ′𝑒 denotes the no-loss

probability at link 𝑒 , but the theoretical result in Theorem III.1 in [30] held for any additive metric for which the cast weights

can be estimated from end-to-end measurements.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:8 Yudi Huang, Yilei Lin, and Ting He

all the attack paths in 𝑃𝐴, which turns out to be sufficient for the design of the optimal cross-path

attack as explained in Section 4. The idea is to mimic a multicast on 𝑃𝐴 ∪ {𝑝} by monitoring path 𝑝

and sending a multicast probe (or back-to-back unicast probes) on 𝑃𝐴 when a packet is transmitted

on 𝑝 . Because these packets are sent very close to each other, they will observe similar queue states

at shared links [33], thus mimicking a multicast on 𝑃𝐴 ∪ {𝑝}.
Using such mimicked multicast, one may try to apply existing topology inference algorithms.

However, most of such algorithms are heuristics without guaranteed accuracy, and the existing

algorithms with performance guarantee all address scenarios different from ours. For example, [33]

requires all the paths to share a single source, [37, 42] require all the sources to share the same

set of destinations, and [7] requires the ability to probe the path between any pair of boundary

vertices (in our case, these are the endpoints of all the paths in 𝑃𝐴 ∪ {𝑝}). These differences make

the existing algorithms inapplicable to our problem. Below, we will show an algorithm that can

infer the shared links between the attack paths in 𝑃𝐴 and a given target path 𝑝 with guaranteed

accuracy, which is then repeated for each 𝑝 ∈ 𝑃𝐵 . To our knowledge, this is the first algorithm
that can infer the routing topology formed by a set of single-source paths and another path with

arbitrary source and destination by only measuring these paths.

3.2.1 Algorithm. Under the assumptions in Section 2.1, the paths in 𝑃𝐴 form a (logical) routing

tree T with the source 𝑠𝐴 as root and the destinations in 𝑇𝐴 as leaves. Since the attacker can send

active probes on 𝑃𝐴, he can infer T using existing topology inference algorithms such as Rooted

Neighbor Joining (RNJ) [33]. Without loss of generality, we assume that T is a binary tree, as

non-binary trees can be represented as binary trees by inserting zero-weight edges. Our focus is

thus on inferring the relationship between T and a given target path 𝑝 := 𝑠𝐵 → 𝑡𝐵 . We model

this relationship by a vector𝑾 := (𝑊𝑒)𝑒∈T , where𝑊𝑒 denotes the sum metric of the links shared

between edge 𝑒 ∈ T and the target path (𝑊𝑒 := 0 if they do not share any link). We will refer to𝑊𝑒

as the shared weight on 𝑒 for simplicity.

We define a few notations for the ease of presentation. Given a binary tree T , 𝑠T denotes the

root, 𝑏T denotes the first branching point from the root, 𝛿𝑙T is the set of leaves located in the left

subtree of T , and 𝛿𝑟T is the set of leaves in the right subtree of T . If T only has one leaf 𝑡 , then

𝛿𝑙T = 𝛿𝑟T = {𝑡}. We denote the shared weight on a subpath 𝑣1 → 𝑣2 in T by𝑊𝑣1→𝑣2 :=
∑
𝑒∈𝑣1→𝑣2𝑊𝑒 .

The overall algorithm is given in Alg. 1, which prepares the routing tree T formed by the attack

paths and then invokes Alg. 2. Alg. 2 is a recursive algorithm. Given a binary tree T ′ (initially
T ′ = T), each recursion estimates the shared weight on the stem of T ′, i.e., edge (𝑠T′ , 𝑏T′). To this
end, the attacker mimics tri-cast by sending two back-to-back probes from 𝑠𝐴 to two destinations

𝜏1, 𝜏2 from different subtrees of T ′ whenever observing a packet on the target path 𝑠𝐵 → 𝑡𝐵 (lines 1–

2). The measured delays are used to estimate a subset of the category weights, stored in variables 𝜌𝑙 ,

𝜌𝑟 , and 𝜌𝑠 as in line 3. If we measure the category weights by the utilization-based metric, then the

category weights can be inferred by first using the measured delays to estimate the no-queueing

probability on each subset of 𝐶 B {𝑠𝐴 → 𝜏1, 𝑠𝐴 → 𝜏2, 𝑠𝐵 → 𝑡𝐵} and compute the cast weights

(𝜙𝐶′)𝐶′⊆𝐶 , which are then plugged into (2) to solve for the category weights. We can adopt other

metrics by modifying the implementation of line 3, as long as the corresponding category weights

can be inferred from end-to-end measurements. The shared weight on edge (𝑠T′ , 𝑏T′) is estimated

as 𝜌𝑠 minus the shared weight on 𝑠𝐴 → 𝑠T′ , which has been estimated in previous recursions

(line 4). The recursion is then repeated for each subtree of T ′. The recursion stops when either (i)

T ′ has no subtree (line 5), or there is no overlap between the target path and either subtree (line 8).

2
For simplicity, here we assume that the attacker can observe packets on the target path as soon as they are transmitted,

and 𝑠𝐴, 𝑠𝐵 have similar distances to the shared links. This assumption will be relaxed by aligning the measurements via

correlation maximization as discussed in Appendix B.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:9

Algorithm 1: Shared_Weight_Inference

input :𝑠𝐴, 𝑇𝐴 := {𝑡𝐴𝑖 }𝑖=1,· · · ,𝑁𝐴
, 𝑠𝐵 , 𝑡𝐵

output : shared weight vector𝑾
1 T ← ⋃

𝑖=1,· · · ,𝑁𝐴
(𝑠𝐴 → 𝑡𝐴𝑖); // inferred by RNJ

2 𝑾 ← 0;
3 𝑾 ← Recursive_Inference(T , 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵,𝑾);

Algorithm 2: Recursive_Inference
input :T ′, 𝑠𝐴, 𝑇𝐴, 𝑠𝐵 , 𝑡𝐵 , previously inferred𝑾
output :updated shared weight vector𝑾

1 randomly pick 𝜏1 from 𝛿𝑙T′ and 𝜏2 from 𝛿𝑟T′ ;

2 send probes on 𝑠𝐴 → 𝜏1, 𝑠𝐴 → 𝜏2 concurrently
2
with packets monitored on 𝑠𝐵 → 𝑡𝐵 ;

3 use the measured delays to infer the category weights: 𝜌𝑙 ← 𝑤 𝑠𝐴→𝜏
1
,𝑠𝐵→𝑡𝐵

𝑠𝐴→𝜏
1
,𝑠𝐴→𝜏

2
,𝑠𝐵→𝑡𝐵

,

𝜌𝑟 ← 𝑤 𝑠𝐴→𝜏
2
,𝑠𝐵→𝑡𝐵

𝑠𝐴→𝜏
1
,𝑠𝐴→𝜏

2
,𝑠𝐵→𝑡𝐵

, 𝜌𝑠 ← 𝑤 𝑠𝐴→𝜏
1
,𝑠𝐴→𝜏

2
,𝑠𝐵→𝑡𝐵

𝑠𝐴→𝜏
1
,𝑠𝐴→𝜏

2
,𝑠𝐵→𝑡𝐵

;

4 𝑊(𝑠T′ ,𝑏T′) ← 𝜌𝑠 −𝑊𝑠𝐴→𝑠T′ ;

5 if 𝛿𝑙T′ = 𝛿𝑟T′ then
6 return;

7 if 𝜌𝑠 ≠ 0 then
8 if 𝜌𝑙 = 𝜌𝑟 = 0 then
9 return;

10 if 𝜌𝑙 > 0 then
11 T ′ ← ⋃

𝑡𝐴𝑖 ∈𝛿𝑙T′ (𝑏T′ → 𝑡𝐴𝑖);
12 𝑾 ← Recursive_Inference(T ′, 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵,𝑾);

13 if 𝜌𝑟 > 0 then
14 T ′ ← ⋃

𝑡𝐴𝑖 ∈𝛿𝑟T′ (𝑏T′ → 𝑡𝐴𝑖);
15 𝑾 ← Recursive_Inference(T ′, 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵,𝑾);

16 else
17 T ′ ← ⋃

𝑡𝐴𝑖 ∈𝛿𝑙T′ (𝑏T′ → 𝑡𝐴𝑖);
18 𝑾 ← Recursive_Inference(T ′, 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵,𝑾);

19 T ′ ← ⋃
𝑡𝐴𝑖 ∈𝛿𝑟T′ (𝑏T′ → 𝑡𝐴𝑖);

20 𝑾 ← Recursive_Inference(T ′, 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵,𝑾);

3.2.2 Illustrative Example. Fig. 3 illustrates the steps of Alg. 2. On the left is the ground truth

topology containing the attack paths from 𝑠𝐴 to destinations 𝑡𝐴1, 𝑡𝐴2, 𝑡𝐴3 and a target path 𝑠𝐵 → 𝑡𝐵 ,

where the shared links are marked in green. Alg. 2 infers the locations and weights of these shared

links in 4 steps. In each step, we mark the tree T ′ in red and label nodes 𝑠T′ and 𝑏T′ (if any). In
step 1, we mimic tri-cast probes on 𝑠𝐴 → 𝑡𝐴1, 𝑠𝐴 → 𝑡𝐴2 (or 𝑡𝐴3), and 𝑠𝐵 → 𝑡𝐵 . The results should

show that 𝜌𝑠 = 0, indicating that 𝑠𝐵 → 𝑡𝐵 has no overlap with 𝑠𝐴 → 𝑏T′ . Then we search both

subtrees. In the left subtree (step 2), we mimic bi-cast on 𝑠𝐴 → 𝑡𝐴1 and 𝑠𝐵 → 𝑡𝐵 to find out the

shared weight between 𝑠𝐵 → 𝑡𝐵 and 𝑠T′ → 𝑡𝐴1. In the right subtree (steps 3–4), we first mimic

tri-cast on 𝑠𝐴 → 𝑡𝐴2, 𝑠𝐴 → 𝑡𝐴3, and 𝑠𝐵 → 𝑡𝐵 to find out the shared weight on 𝑠T′ → 𝑏T′ (step 3),

and then since 𝜌𝑙 > 0, we will search the left subtree (step 4) to obtain all the shared weights.

3.2.3 Correctness. Alg. 1 gives consistent estimates of the shared weights in the following sense.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:10 Yudi Huang, Yilei Lin, and Ting He

sAsB

tB

tA1

tA2 tA3

sA → tA1

sA → tA2

sB → tB

sA → tA1

sA → tA1

sB → tB

tA1

tA2 tA3

sA

sT’

tA1

tA2 tA3

sA

bT’

(sT’)

sA → tA2

sA → tA2

sB → tB

tA1

tA2 tA3

sA

sT’

bT’ tA1

tA2 tA3

sA

sT’

sA → tA2

sA → tA3

sB → tB

Ground truth

Step 1: Step 2:

Step 3: Step 4:

b1

b2

Fig. 3. Illustration for Alg. 2 (shared links are marked in green).
Theorem 3.2. If all the shared links have non-zero metrics and the category weights are accurately

inferred in line 3 of Alg. 2, then Alg. 1 will accurately infer the shared weight vector𝑾 .

As the number of probes increases, the estimated path-level statistics (i.e., no-queueing probabil-

ities) will converge to their true values, so will the estimated category weights by Theorem 3.1.

Thus, Alg. 1 provides consistent estimates of the shared weights.

3.2.4 Complexity. Each recursion of Alg. 2 takes 𝑂 (1) time (excluding probing time) as it only

estimates a constant number of cast/category weights. For the number of recursions, the worst

case is when all the non-zero shared weights are associated with the last edges to the destinations

in T , in which case Alg. 2 needs to perform a recursion for each edge. As a tree with 𝑁𝐴 leaves

(𝑁𝐴: #attack paths) and no degree-2 vertices (implied by RNJ [33]) has at most 2𝑁𝐴 − 2 edges, the
complexity of Alg. 2 is 𝑂 (𝑁𝐴). The overall complexity of Alg. 1 is 𝑂 (𝑁 2

𝐴
log𝑁𝐴), dominated by the

complexity of RNJ [33].

3.3 Parameter Inference
For simplicity, we will refer to the shared portion between each edge 𝑒 ∈ T and the target path as a

shared link (although it can correspond to a sequence of links in the underlying network). Although

the shared weight vector𝑾 provides both the locations and the metrics of the shared links, this

information is not sufficient for optimal attack design. Specifically, by Alg. 2, each𝑊𝑒 is inferred

under a probing rate that is only twice of the traffic rate on the target path, which is generally

not enough to cause congestion. To design an effective attack, the attacker needs to predict the

impact of higher attack rates on the shared links. Our idea for addressing this challenge is to model

each shared link (detected by𝑊𝑒 > 0) as a queue with unknown parameters, and conduct further

probing experiments with varying rates to infer these parameters.

Algorithm 3: Parameter_Inference

input :T ,𝑾 , 𝑠𝐴, 𝑇𝐴, 𝑠𝐵 , 𝑡𝐵
output :parameters 𝝃 := (𝜉𝑒)𝑒∈T of shared links

1 𝝃 ← 0;
2 𝝃 ← 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑈𝑝𝑑𝑎𝑡𝑒 (T ,𝑾 , 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵, 𝝃);

3.3.1 Algorithm. Let 𝜉𝑒 denote the unknown parameter (or parameter vector) of the shared link

on edge 𝑒 ∈ T . We infer 𝝃 := (𝜉𝑒)𝑒∈T through a recursive procedure similar to Alg. 1–2, as shown

in Alg. 3–4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:11

Algorithm 4: Parameter_Update

input :T ′,𝑾 , 𝑠𝐴 , 𝑇𝐴 ,𝑠𝐵 ,𝑡𝐵 , previous 𝝃
output :updated 𝝃

1 if𝑊(𝑠T′ ,𝑏T′) > 0 then
2 if 𝛿𝑙T′ ≠ 𝛿𝑟T′ then
3 randomly choose a destination 𝜏∗ from the subtree of T ′ not sharing any link with 𝑠𝐵 → 𝑡𝐵 ;

4 else
5 set 𝜏∗ to the only destination in T ′;
6 vary the probing rate on path 𝑠𝐴 → 𝜏∗ among

¯𝜆𝑘 (𝑘 = 1, . . . , 𝐾) and measure the corresponding

average delay𝜓𝑘 of path 𝑠𝐵 → 𝑡𝐵 ;

7 𝜉 (𝑠T′ ,𝑏T′) ← argmin𝜉 (𝑠T′ ,𝑏T′)

𝐾∑
𝑘=1

(
𝜓𝑘 − 𝐷𝜏∗ (𝝃 ; ¯𝜆𝑘)

)
2

;

8 if 𝛿𝑙T′ = 𝛿𝑟T′ then
9 return

10 if 𝜏∗ ∈ 𝛿𝑙T′ then
11 T ′ ← ⋃

𝜏∈𝛿𝑟T′ (𝑏T′ → 𝜏);
12 if 𝜏∗ ∈ 𝛿𝑟T′ then
13 T ′ ← ⋃

𝜏∈𝛿𝑙T′ (𝑏T′ → 𝜏);
14 𝝃 ← 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑈𝑝𝑑𝑎𝑡𝑒 (T ′,𝑾 , 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵, 𝝃);
15 else
16 if 𝛿𝑙T′ = 𝛿𝑟T′ then
17 return

18 T ′ ← ⋃
𝜏∈𝛿𝑙T′ (𝑏T′ → 𝜏);

19 𝝃 ← 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑈𝑝𝑑𝑎𝑡𝑒 (T ′,𝑾 , 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵, 𝝃);
20 T ′ ← ⋃

𝜏∈𝛿𝑟T′ (𝑏T′ → 𝜏);
21 𝝃 ← 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑈𝑝𝑑𝑎𝑡𝑒 (T ′,𝑾 , 𝑠𝐴,𝑇𝐴, 𝑠𝐵, 𝑡𝐵, 𝝃);

Specifically, given a binary tree T ′ (initially T ′ = T), each recursion of Alg. 4 estimates the

parameter of the shared link on the stem of T ′, if any. If the shared link exists (i.e.,𝑊(𝑠T′ ,𝑏T′) > 0),

then either the left or the right subtree does not share any link with the target path as explained

in the proof of Theorem 3.2 (e.g., if the stem (𝑏T′ , 𝑏𝑙T′) of the left subtree has𝑊(𝑏T′ ,𝑏𝑙T′) = 0, then

the left subtree contains no shared link). Therefore, we can pick a destination 𝜏∗ from the subtree

without any shared link (line 3). We then conduct a number of probing experiments on 𝑠𝐴 → 𝜏∗

with varying rates, while measuring the average delay of the target path (line 6). Under probing

rate
¯𝜆𝑘 , the true average delay of 𝑠𝐵 → 𝑡𝐵 is given by

𝐷𝜏∗ (𝝃 ; ¯𝜆𝑘) := 𝑐𝜏∗ +
∑︁

𝑒∈𝑠𝐴→𝜏∗:𝑊𝑒>0

𝑑 (𝜉𝑒 ; ¯𝜆𝑘), (3)

where 𝑐𝜏∗ denotes the average queueing and transmission delay on the links of 𝑠𝐵 → 𝑡𝐵 that are

not shared with 𝑠𝐴 → 𝜏∗ plus the propagation delay on 𝑠𝐵 → 𝑡𝐵 , and 𝑑 (𝜉𝑒 ; ¯𝜆𝑘) denotes the average
queueing and transmission delay of the shared link on edge 𝑒 , which is a function of the link

parameter 𝜉𝑒 and the probing rate
¯𝜆𝑘 . Using (3) and the measured average delays, we can estimate

the parameter for (𝑠T′ , 𝑏T′) through least square fitting (line 7). The process is then repeated for

other edges of T ′ through recursions. Note that the selection of 𝜏∗ and the top-down approach

ensure that the parameters of other shared links on 𝑠𝐴 → 𝜏∗ would have been estimated, leaving

𝜉 (𝑠T′ ,𝑏T′) (and possibly 𝑐𝜏∗) as the only unknown parameter to estimate in line 7.

3.3.2 Queueing Models. As concrete examples, we consider the following queueing models (
¯𝜆

denotes probing rate):

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:12 Yudi Huang, Yilei Lin, and Ting He

• M/M/1: If each shared link is modeled as an M/M/1 queue with residual capacity 𝑟𝑒 − ¯𝜆, its

average delay equals [20]

𝑑 (𝑟𝑒 ; ¯𝜆) =
1

𝑟𝑒 − ¯𝜆
, (4)

where 𝑟𝑒 is the residual capacity before probing, which is the unknown parameter to infer.

• M/D/1: If each shared link is modeled as an M/D/1 queue, the average delay depends on two

unknown parameters [20]

𝑑 (𝜆𝑒 , 𝜇𝑒 ; ¯𝜆) =
2𝜇𝑒 − 𝜆𝑒 − ¯𝜆

2𝜇𝑒 (𝜇𝑒 − 𝜆𝑒 − ¯𝜆)
, (5)

where 𝜆𝑒 is the background arrival rate (excluding probing traffic) and 𝜇𝑒 is the service rate.

• G/G/1: In general, we can model the shared link as a G/G/1 queue. By Kingman’s formula [20],

the average delay (including service time) can be approximated by

𝑑 (𝜆𝑒 , 𝜇𝑒 , 𝜎𝑎𝑒 , 𝜎𝑠𝑒 ; ¯𝜆) ≈
1

2𝜇𝑒

𝜆𝑒 + ¯𝜆

𝜇𝑒 − 𝜆𝑒 − ¯𝜆

(
𝜎2𝑎𝑒 (𝜆𝑒 + ¯𝜆)2 + 𝜎2𝑠𝑒𝜇2𝑒

)
+ 1

𝜇𝑒
, (6)

which requires four unknown parameters: the background arrival rate 𝜆𝑒 , the service rate 𝜇𝑒 , the

variance of the interarrival time 𝜎2𝑎𝑒 , and the variance of the service time 𝜎2𝑠𝑒 . Note that treating

𝜎2𝑎𝑒 as a constant is an approximation as it generally depends on the probing traffic.

Discussion: It is known that the delay in traversing an IP network can bemodeled as a deterministic

propagation delay (incorporated into 𝑐𝜏∗) plus random delays to traverse a series of single-server

FIFO queues [6]. The main restrictive assumptions here are that the background traffic is Poisson

(for M/M/1 and M/D/1), and packet sizes are exponentially distributed (for M/M/1) or constant

(for M/D/1). While these assumptions are not satisfied exactly in practice, studies have shown that

when multiplexing a large number of independent flows as in the case of heavy background traffic,

the packet arrivals tend to a Poisson process, and the queue length distribution tends to that of a

M/D/1 queue [8]. In our evaluations (see Section 5.2), we will stress-test our algorithms derived

from these queueing models in a realistic setting which does not follow these models exactly.

3.3.3 Correctness. Alg. 3 provides consistent estimates of the parameters of the shared links in the

following sense.

Theorem 3.3. Given an accurate estimate of the shared weight vector𝑾 , if all the shared links have

non-zero metrics, and the estimated average delay𝜓𝑘 in line 6 of Alg. 4 is accurate and consistent

with the model in (3), then Alg. 3 will accurately estimate the parameters of all the shared links as

long as (i) 𝐾 > 2 under the M/M/1 or M/D/1 model, and (ii) 𝐾 > 4 under the G/G/1 model.

3.3.4 Complexity. The number of recursions of Alg. 4 is𝑂 (𝑁𝐴) (𝑁𝐴: #attack paths) as T has𝑂 (𝑁𝐴)
edges, i.e., the parameter estimation (lines 2–7) is repeated for 𝑂 (𝑁𝐴) times. For 𝐾 = 𝑂 (1), solving
the least square fitting problem (line 7) takes 𝑂 (1) time as it fits an 𝑂 (1)-variable function at 𝑂 (1)
points. Thus, excluding the measurement time (which is independent of 𝑁𝐴), the complexity of

Alg. 3 is 𝑂 (𝑁𝐴).

4 OPTIMIZED ATTACK DESIGN
Given the locations and parameters of the shared links, the attacker can use this information to de-

sign optimized attacks. To quantify the potential impact of such attacks, we investigate attack strate-

gies that can cause the maximum performance degradation on the target paths at a bounded cost.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:13

4.1 Attacker’s Optimization
As a concrete example, we consider the attacker’s objective as maximally increasing the total

average delay of the target paths. Our approach is extensible to other objectives, as demonstrated

in Section 4.3.

Specifically, let𝑊𝑖𝑒 denote the shared weight between target path 𝑠𝐵𝑖 → 𝑡𝐵𝑖 and edge 𝑒 ∈ T
(recall T denotes the routing tree formed by attack paths) and 𝜉𝑖𝑒 the corresponding queueing

parameter (if𝑊𝑖𝑒 > 0), both inferred as in Section 3. Let ℎ𝑒𝑘 ∈ {0, 1} indicate whether attack path

𝑠𝐴 → 𝑡𝐴𝑘 traverses edge 𝑒 , 𝛽𝑖 > 0 denote the importance of target path 𝑠𝐵𝑖 → 𝑡𝐵𝑖 , and 𝑟𝑒 denote

the minimum residual capacity of links from 𝑠𝐴 to 𝑒 (excluding 𝑒) before attack. Given a total attack

rate 𝜆, the attacker wants to find the rate allocation 𝝀̄ := (¯𝜆𝑘)𝑁𝐴

𝑘=1
that maximizes the weighted sum

average delay of all the target paths, i.e.,

max 𝑓 (𝝀̄) :=
𝑁𝐵∑︁
𝑖=1

𝛽𝑖

∑︁
𝑒∈T:𝑊𝑖𝑒>0

𝑑 (𝜉𝑖𝑒 ;
𝑁𝐴∑︁
𝑘=1

ℎ𝑒𝑘
¯𝜆𝑘) (7a)

s.t.

𝑁𝐴∑︁
𝑘=1

¯𝜆𝑘 ≤ 𝜆, (7b)

𝑁𝐴∑︁
𝑘=1

ℎ𝑒𝑘
¯𝜆𝑘 ≤ 𝑟𝑒 , ∀𝑒 ∈ T , (7c)

¯𝜆𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑁𝐴, (7d)

where 𝑑 (𝜉𝑖𝑒 ; ¯𝜆) represents the average queueing and transmission delay of the link shared between

edge 𝑒 ∈ T and target path 𝑠𝐵𝑖 → 𝑡𝐵𝑖 .

Remark: First, (7a) excludes both the propagation delays and the queueing and transmission

delays at links on the target paths that are not shared with any attack path, because these delays

are not affected by the attack traffic and thus only contribute a constant shift.Moreover, the attacker
does not need to know the exact locations of the shared links and their relationships. To explain

this, let 𝑒𝑖 denote the link shared between edge 𝑒 ∈ T and path 𝑠𝐵𝑖 → 𝑡𝐵𝑖 . We observe that: (i) 𝑒𝑖

will experience the same load

∑𝑁𝐴

𝑘=1
ℎ𝑒𝑘

¯𝜆𝑘 from attack traffic regardless of its exact location on 𝑒 ,

and (ii) even if 𝑒𝑖 and 𝑒 𝑗 for 𝑖 ≠ 𝑗 have some overlap (i.e., sharing links in the underlying network),

the load imposed by 𝑠𝐵𝑗 → 𝑡𝐵𝑗 on 𝑒𝑖 is part of the background traffic that has been incorporated

into the parameter 𝜉𝑖𝑒 and vice versa.

4.2 Attack Design
We now derive explicit solutions to (7) under each of the queueingmodels considered in Section 3.3.2.

When the attacker can destabilize the queue at some shared link, i.e., ∃𝑖 ∈ {1, . . . , 𝑁𝐵} and 𝑒 ∈ T
with𝑊𝑖𝑒 > 0 such that

∑𝑁𝐴

𝑘=1
ℎ𝑒𝑘

¯𝜆𝑘 ≥ 𝑟𝑖𝑒 for some 𝝀̄ satisfying (7b)–(7d) (𝑟𝑖𝑒 : residual capacity of

the shared link 𝑒𝑖 excluding attack traffic), then the attacker should simply allocate sufficient traffic

to the attack paths traversing 𝑒 to congest the shared link 𝑒𝑖 and drive the average delay of path

𝑠𝐵𝑖 → 𝑡𝐵𝑖 (and hence (7a)) to infinity. Thus, below we will focus on the nontrivial case when

max

s.t. (7b)–(7d)

𝑁𝐴∑︁
𝑘=1

ℎ𝑒𝑘
¯𝜆𝑘 < min

𝑖∈{1,...,𝑁𝐵 }:𝑊𝑖𝑒>0
𝑟𝑖𝑒 , ∀𝑒 ∈ T . (8)

We will show that in this case, the optimal attack strategy is similar under all the considered

queueing models.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:14 Yudi Huang, Yilei Lin, and Ting He

4.2.1 Attack under M/M/1. When modeling each shared link as an M/M/1 queue, plugging (4) into

(7a) yields

𝑓M/M/1 (𝝀̄) :=
𝑁𝐵∑︁
𝑖=1

𝛽𝑖

∑︁
𝑒∈T:𝑊𝑖𝑒>0

1

𝑟𝑖𝑒 −
∑𝑁𝐴

𝑘=1
ℎ𝑒𝑘

¯𝜆𝑘
, (9)

which has the following property:

Lemma 4.1. Under (8), 𝑓M/M/1 (𝝀̄) is convex in the feasible region of (7).

The convexity of the objective function implies the following property of the optimal solution:

Theorem 4.2. Under (8), the solution 𝝀̄∗ that maximizes 𝑓M/M/1 (𝝀̄) s.t. (7b)–(7d) must achieve “=”

for 𝑁𝐴 of the constraints.

Corollary 4.3. Under 𝜆 ≤ min𝑒∈T 𝑟𝑒 and (8), the solution 𝝀̄∗ that maximizes 𝑓M/M/1 (𝝀̄) s.t. (7b)–(7d)
must satisfy

¯𝜆∗
𝑘
= 𝜆 for some 𝑘 ∈ {1, . . . , 𝑁𝐴} and ¯𝜆∗

𝑘 ′ = 0 for all 𝑘 ′ ∈ {1, . . . , 𝑁𝐴} \ {𝑘}.
For a resource-constrained attacker that faces the case in Corollary 4.3, our analysis shows that

the optimal attack strategy is to enumerate all the 𝑁𝐴 candidate solutions, each allocating all the

attack rate onto a single attack path, and pick the solution maximizing 𝑓M/M/1 (𝝀̄).

4.2.2 Attack under M/D/1. When modeling each shared link as an M/D/1 queue, plugging (5) into

(7a) yields

𝑓M/D/1 (𝝀̄) :=
𝑁𝐵∑︁
𝑖=1

𝛽𝑖

∑︁
𝑒∈T:𝑊𝑖𝑒>0

2𝜇𝑖𝑒 − 𝜆𝑖𝑒 −
∑𝑁𝐴

𝑘=1
ℎ𝑒𝑘

¯𝜆𝑘

2𝜇𝑖𝑒 (𝜇𝑖𝑒 − 𝜆𝑖𝑒 −
∑𝑁𝐴

𝑘=1
ℎ𝑒𝑘

¯𝜆𝑘)
, (10)

where 𝜇𝑖𝑒 and 𝜆𝑖𝑒 are the service/arrival rate at the link shared between 𝑠𝐵𝑖 → 𝑡𝐵𝑖 and 𝑒 ∈ T before

attack. This objective function has a property similar to 𝑓M/M/1:

Lemma 4.4. Under (8) (where 𝑟𝑖𝑒 := 𝜇𝑖𝑒 − 𝜆𝑖𝑒), 𝑓M/D/1 (𝝀̄) is convex in the feasible region of (7).

The same argument as in the proofs of Theorem 4.2 and Corollary 4.3 leads to a similar attack

design under M/D/1:

Theorem 4.5. Under (8), the solution 𝝀̄∗ that maximizes 𝑓M/D/1 (𝝀̄) s.t. (7b)–(7d) must achieve “=”

for 𝑁𝐴 of the constraints. Furthermore, if 𝜆 ≤ min𝑒∈T 𝑟𝑒 , then 𝝀̄∗ must satisfy
¯𝜆∗
𝑘
= 𝜆 for some

𝑘 ∈ {1, . . . , 𝑁𝐴} and ¯𝜆∗
𝑘 ′ = 0 for all 𝑘 ′ ∈ {1, . . . , 𝑁𝐴} \ {𝑘}.

4.2.3 Attack under G/G/1. When each shared link is modeled as a G/G/1 queue, plugging (6) into

(7a) yields

𝑓G/G/1 (𝝀̄) :=
𝑁𝐵∑︁
𝑖=1

𝛽𝑖

∑︁
𝑒∈T:𝑊𝑖𝑒>0

𝜆𝑖𝑒 +
∑𝑁𝐴

𝑘=1
ℎ𝑒𝑘

¯𝜆𝑘

2𝜇𝑖𝑒 (𝜇𝑖𝑒 − 𝜆𝑖𝑒 −
∑𝑁𝐴

𝑘=1
ℎ𝑒𝑘

¯𝜆𝑘)
·
(
𝜎2𝑎𝑖𝑒

(
𝜆𝑖𝑒 +

𝑁𝐴∑︁
𝑘=1

ℎ𝑒𝑘
¯𝜆𝑘

)
2 + 𝜎2𝑠𝑖𝑒𝜇2𝑖𝑒

)
, (11)

where we have omitted the average service time (i.e., transmission delay) 1/𝜇𝑖𝑒 as it does not depend
on the attack traffic. This function is again convex as stated below:

Lemma 4.6. Under (8), 𝑓G/G/1 (𝝀̄) is convex in the feasible region of (7).

By the same argument as in Theorem 4.2 and Corollary 4.3, Lemma 4.6 implies the following

attack design under G/G/1:

Theorem 4.7. Under (8), the solution 𝝀̄∗ that maximizes 𝑓G/G/1 (𝝀̄) s.t. (7b)–(7d) must achieve “=”

for 𝑁𝐴 of the constraints. Furthermore, if 𝜆 ≤ min𝑒∈T 𝑟𝑒 , then 𝝀̄∗ must satisfy
¯𝜆∗
𝑘
= 𝜆 for some

𝑘 ∈ {1, . . . , 𝑁𝐴} and ¯𝜆∗
𝑘 ′ = 0 for all 𝑘 ′ ∈ {1, . . . , 𝑁𝐴} \ {𝑘}.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:15

Remark: The above analysis shows that the optimal strategy for a resource-constrained attacker is

to focus all the attack traffic on a single attack path, selected based on the locations and parameters

of the shared links learned through the reconnaissance techniques presented in Section 3.

4.3 Other Attack Objectives
If the total attack rate violates (8), i.e., the attacker can destabilize the queue for at least one shared

link, an objective that can differentiate the different ways of destabilizing queues is needed. As a

concrete example, if the attacker wants to cause the worst congestion on any of the shared links,

he can maximize the following objective function:

max

𝑒∈T:∃𝑊𝑖𝑒>0

(
𝑁𝐴∑︁
𝑘=1

ℎ𝑒𝑘
¯𝜆𝑘 − min

𝑖∈{1,...,𝑁𝐵 }:𝑊𝑖𝑒>0
𝑟𝑖𝑒

)
, (12)

subject to constraints (7b)–(7d), which will maximize the maximum excess load on a shared link.

Maximizing (12) s.t. (7b)–(7d) is a maximization of a piece-wise linear convex function under linear

constraints, for which the optimal solution must be achieved at an extreme point of the feasible

region [23]. In our context, this will be a vertex of the polytope defined by (7b)–(7d), where “=”

is achieved for 𝑁𝐴 of the constraints. In the special case of 𝜆 ≤ min𝑒∈T 𝑟𝑒 , (7c) is redundant, and
thus the optimal attack must allocate all the attack traffic onto a single path as in the case of

optimizing the objective (7a). Note that the new objective (12) is invariant to the queueing model.

The above result together with the results of Section 4.2 suggests the efficacy of the generic attack

strategy that focuses resources on an attack path selected based on the information learned through

reconnaissance. When the objectives in (7a) and (12) are both applicable, (7a) is usually a more

meaningful objective for the attacker as it represents the end-to-end performance impact across

all the target paths. Nevertheless, these are just concrete examples of the attacker’s objectives to

illustrate the impact of adversarial reconnaissance. What objective is most suitable will depend

on the application scenario and is left to future work.

5 PERFORMANCE EVALUATION
In this study, we evaluate the performance of our algorithms under two types of networks using
NS3 [22], a widely-used discrete-event network simulator. First, we conduct simulations in the

context of an IP-based backbone network (Section 5.1). Then, we validate our results by repeating

the experiments in the context of a 5G Integrated Access and Backhaul (IAB) network (Section 5.2),

leveraging the 5G-LENA module [35] for the radio access network (RAN).

5.1 NS3-based Simulation of Backbone Network
5.1.1 Simulation Setup. We simulate an IP-based backbone network based on GtsCe (GTS Central

Europe) from the Internet Topology Zoo [26], which is a network with 149 nodes and 193 links.

Following [19], we set the link capacities and delays using the dataset from [18], in which all link

capacities are treated as 1 Gbps. In Appendix B.4, we additionally study a case with higher link

capacities, which yields similar results. We generate attack paths by randomly picking a source 𝑠𝐴

and 𝑁𝐴 destinations {𝑡𝐴𝑖 }𝑁𝐴

𝑖=1
from the network and computing the shortest paths (in hop count).

We generate target paths {𝑠𝐵 → 𝑡𝐵𝑖 }𝑁𝐵

𝑖=1
similarly, while ensuring that each target path shares at

least one link with the attack paths. Here each node in GtsCe represents a point of presence (PoP)

so that multiple source/destination hosts can attach to the same node (through ‘other links’ outside

the simulated network). Fig. 4 shows an example topology formed by the generated paths.

To evaluate the robustness of our approach, we have examined its performance under two types

of background traffic. In the experiments presented here, we generate background traffic by a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:16 Yudi Huang, Yilei Lin, and Ting He

a) full topology b) routing tree

𝑆஺ 𝑆஻ PoP 𝑡஺௜𝑡஻௜ other link
unused backbone link
routed backbone link

1

23 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

2526

27

28

29

30

31 32

33

3435

3637

38

39

40

41

42

43 44

Fig. 4. Sample topology in the simulation of backbone network (𝑁𝐴 = 𝑁𝐵 = 10), with shared links highlighted
as thick lines.

recently proposed methodology from [5], wherein the background traffic rate for each link is pe-

riodically sampled from a log-normal distribution characterized by parameters (𝜇, 𝜎). In this study,

we regenerate the rate every 0.5 ms and set 𝜎 as 1. Following [25], each background packet has a

size randomly selected from 50, 576 and 1460 bytes with probabilities 0.4, 0.2 and 0.4, respectively.

The 𝜇-parameter of background traffic is designed to achieve a total utilization that is randomly

distributed in [10%, 50%] prior to attack. In Appendix B.2, we provide additional simulation results

under background traffic generated according to ON-OFF processes as in Section 5.2. Here, we set

𝑁𝐴 = 𝑁𝐵 = 10, while in Appendix B.3, we additionally study the case of 𝑁𝐴 = 20. All the additional

studies yield qualitatively similar results.

We configure each link to have a FIFO queue with a large buffer to guarantee no packet loss

during the simulation. We set the rate on each target path to 50Mbps with a constant packet size of

1000 bytes. The packet size on each attack path is 50 bytes for shared link detection and 1000 bytes

for parameter inference and attack. We set the importance of target paths to 𝛽𝑖 = 1 for 𝑖 = 1, . . . , 𝑁𝐵 .

All our results are based on 20 Monte Carlo runs.

In shared weight inference (Alg. 1), we consider a packet as not incurring queueing on a path if

its end-to-end delay is smaller than the mean of the 10 smallest delays on this path plus 0.1 ms. We

detect a shared link exists between a target path 𝑠𝐵 → 𝑡𝐵𝑖 and an edge 𝑒 ∈ T if the inferred value of

𝑊𝑖𝑒 exceeds 0.005. To reduce correlation across measurements, we maintain a spacing of at least 2

ms between consecutive measurements. Since the distances from 𝑠𝐴 and 𝑠𝐵 to the shared links may

be different, we find an offset 𝜅 by correlation maximization to identify measurements forming a

mimicked multicast, as detailed in Appendix B.1. In parameter inference, we vary the probing rate

among 𝐾 = 20 values evenly distributed between 0 and 80% of the minimum residual capacity at

shared links, and solve the least square fitting problem (line 7 in Alg. 4) by the trust-region-reflective

least squares algorithm [11].

5.1.2 Results on Reconnaissance. Fig. 5 (a) shows the accuracy in detecting shared links, measured

by the fraction of errors in inferring whether𝑊𝑖𝑒 is non-zero for all 𝑖 = 1, . . . , 𝑁𝐵 and 𝑒 ∈ T . In
addition, we also evaluate the number of false alarms (detected shared links that do not exist)

and the number of misses (shared links that are not detected) averaged over all the target paths.

Each measurement here corresponds to a mimicked tri-cast. The results show that our algorithms

(Alg. 1–2) can detect the majority of the shared links with some errors (around 20% error if we

collect 5× 104 measurements for each tri-cast for both calibration and detection). Among the errors,

there are more false alarms than misses.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:17

0 1 2 3 4 5

number of measurements 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

0

1

2

3

4

n
u
m

b
e

r
o

f
lin

k
s

relative error

number of misses

number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000

number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

MM1:r

MD1:

MD1:

GG1:

GG1:

(b) Performance in inferring shared link parameters

Fig. 5. Performance of reconnaissance in backbone network simulation (𝑁𝐴 = 𝑁𝐵 = 10).

0 0.2 0.4 0.6 0.8

attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ili
ty

optimal

MM1

MD1

GG1

max share

random

evenly

(a) Probability of congesting at least one shared link

0.1 0.3 0.5 0.7 0.8

 (Gbps)

0

100

200

300

400

av
er

ag
e

de
la

ys
 (

m
s)

optimal

MM1

MD1

GG1

max share

random

evenly

no attack

(b) Average delay over all the target paths

Fig. 6. Performance of attack design in backbone network simulation (𝑁𝐴 = 𝑁𝐵 = 10).

Fig. 5 (b) shows the accuracy of inferring the parameters of the shared links, measured by the

relative error ∥ ˆ𝝃 − 𝝃 ∗∥1/∥𝝃 ∗∥1 (ˆ𝝃 : estimate, 𝝃 ∗: ground truth). Although the queues at the links

do not exactly follow any of the assumed queueing models, we can still compare the estimated

parameters with the best-fitting parameters based on per-link measurements. The results show that:

(i) although the real queueing behavior does not exactly fit any of the assumed queueing models,

the inference results based on these models are reasonable, (ii) while the link capacities (‘𝜇’) and the

residual capacities (‘𝑟 ’) can be inferred with good accuracy (< 10% of error), there is notable error

in estimating the background traffic loads (‘𝜆’), and (iii) G/G/1-based estimation performs slightly

worse due to the difficulty of jointly estimating more parameters. There are two other parameters

(variance of interarrival/service time) under G/G/1, for which the trend is similar. Although the

inference process involves active probing, each probing experiment only lasts for a short period

(e.g., 0.8 seconds for 5000 measurements, each corresponding to a packet on a target path).

5.1.3 Results on Attack Design. Since the original design of cross-path attack [9] only ensures to

use some attack paths that share at least one link with the target paths, we compare the proposed

attack design with the following intuitive rate allocation strategies over such attack paths
3
:

(1) ‘Evenly’: A natural strategy is to evenly split the total attack rate 𝜆 among all the attack paths

that share at least one link with the target paths.

(2) ‘Random’: Given that the optimal strategy is usually to focus on one path (see Section 4.2),

the attacker may also allocate all the rate to a randomly selected attack path.

(3) ‘Max share’: The attacker chooses the attack path traversing the maximum number of shared

tree links, i.e., 𝑡∗
𝐴
= max𝑡𝐴𝑘 ∈𝑇𝐴 {

∑
𝑒∈T ℎ𝑒𝑘 I(

∑𝑁𝐵

𝑖=1
𝑊𝑖,𝑒 > 0)} (I(·): indicator function).

3
The set of attack paths sharing at least one link with the target paths can be inferred by a simple reconnaissance method

proposed in [9]. Here, we use the true set for a conservative comparison.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:18 Yudi Huang, Yilei Lin, and Ting He

The results presented in Fig. 6 show that despite containing notable error, the information

obtained by our reconnaissance algorithms is still useful for attack design. Here, ‘optimal’ de-

notes the optimal attack designed based on the true locations/parameters of the shared links, and

‘MM1’/‘MD1’/‘GG1’ denotes the proposed attack design based on the parameters inferred from

10,000 measurements under the model of M/M/1 or M/D/1 or G/G/1. Fig. 6 (a) shows the probability

that the attack can congest (i.e., destabilize) at least one shared link. The results show that: (i)

the proposed reconnaissance-based optimized attack design (‘MM1’, ‘MD1’, ‘GG1’) can achieve

near-optimal impact despite the notable estimation errors, (ii) the non-optimized attack strategies

based on [9] (‘random’, ‘even’) are much less effective, and (iii) knowing the locations of shared links

(‘max share’) helps but is not enough. A closer examination shows that the estimated parameters

can reveal which attack paths traverse the weakest shared link (the one with the minimum residual

capacity), even if the estimated parameters are inaccurate. In Fig. 6 (b), we evaluate the impact of

attacks on the delays of the target paths, computed over 10,000 measurements. As the objective

of delay maximization is only meaningful at attack rates that are within the stability region, we

combine multiple attack designs as follows: when 𝜆 ≤ min𝑒∈T 𝑟𝑒 which satisfies the condition of

Corollary 4.3, the attacker will send all the attack traffic on the attack path predicted to maximize

the delay increase over all the target paths; when 𝜆 > min𝑒∈T 𝑟𝑒 , the attacker will maximize the

maximum excess load (12) as in Section 4.3. We observe that (i) the proposed attack designs produce

near-optimal delay increase regardless of the assumed queueing model, and (ii) there is a wide

variation among the impacts of different cross-path attacks, where the carefully-designed attacks

can generate a substantially higher performance impact than the straightforward attacks. These

observations signal the importance of considering intelligent attack models in security analysis.

5.2 NS3-based Simulation of Integrated Access and Backhaul (IAB) Network
5.2.1 Simulation Setup. To test the generalizability of our observations, we repeat our experiments

in the scenario of an IAB network with multiple slices. IAB network is a form of backhaul for 5G

[3], where base stations (BS) are implemented as IAB nodes, among which only a subset of nodes

(called IAB donors) are connected to the 5G core through fiber. An IAB node has both a DU and a

mobile termination function. Thus, it can function not only as a traditional BS for UEs, but also as a

relay for other IAB nodes through millimeter wave. In the process of downlink transmission, parent

IAB nodes relay traffic to their child IAB nodes, and the process is reversed for uplink transmission.

We simulate the IAB-UE links by 5G-LENA [35], which is a pluggable module in NS3 for simulating

5G RAN, and the rest of the links by point-to-point links
4
.

Following [3], we consider an IAB network with 19 BSs in a hexagonal topology with one IAB

donor at the center as illustrated in Fig. 7 (a). The network is shared by a slice 𝐴 containing attack

paths, a slice 𝐵 containing target paths, and other slices treated as background traffic. We focus on

downlink communication, where packets enter the IAB network through the IAB donor (node 2)

and are then routed towards their destination UEs along a routing tree rooted at the donor. The

links in the routing tree are highlighted as thick lines in Fig. 7 (a) and also depicted in Fig. 7 (b).

We assume that there is at least one UE in slice 𝐴 in each cell, and the UEs in slice 𝐵 are randomly

distributed among the cells. According to [3], we assign each slice a separate Bandwidth Part (BWP)

for the IAB-UE links. We set the numerology in 5G-LENA to 5.

Following [3, 38], we set the capacity of IAB-IAB links to 2 Gbps, IAB-UE links to 0.5 Gbps, and

fiber links to 100 Gbps. We limit the total flow rate to each cell in slice 𝐴 to 1 Gbps. We set the

flow rate for each UE in slice 𝐵 to 0.1 Gbps to represent emerging applications like panoramic

4
Although the IAB-IAB links are supposed to be through millimeter wave [3], this feature is not officially supported in

NS3 to our knowledge, and hence we mimic them by point-to-point links with lower capacities than the fiber links.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:19

a) full topology b) routing tree

𝑆஺ 𝑆஻ base station 𝑡஺௜𝑡஻௜ IAB-UE link Fiber link

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

394041

42

43444546

47

48

unused IAB-IAB link
routed IAB-IAB link

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

394041

42

43

44
45 46

47

48

49 50

Fig. 7. Sample topology in the simulation of IAB network (𝑁𝐴 = 19, 𝑁𝐵 = 10), with shared links highlighted
as thick lines.

0 500 1000 1500 2000

number of measurements

0

0.05

0.1

0.15

0.2

0.25

0.3

re
la

ti
v
e

 e
rr

o
r

0

0.5

1

1.5

2

2.5

3

n
u
m

b
e
r

o
f
lin

k
s

relative error

number of misses

number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000

number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o

r

MM1:r

MD1:

MD1:

GG1:

GG1:

(b) Performance in inferring shared link parameters

Fig. 8. Performance of reconnaissance in IAB network simulation (𝑁𝐴 = 19, 𝑁𝐵 = 10).

video streaming [1, 13]. Following [24, 39], we independently generate background traffic on each

IAB-IAB link according to an ON-OFF process. The duration of each ON period follows the Pareto

distribution with shape parameter set to 2.04 and scale parameter 𝜁ON set to the average length of

13 packets. The duration of each OFF period follows the same distribution with a different scale

parameter 𝜁OFF, tuned to yield a link utilization randomly drawn from [15%, 35%]. To detect no

queueing events for shared weight inference, we measure the delays during light traffic and set a

threshold based on the 3𝜎 rule. The rest of the setup is the same as that in Section 5.1. In the sequel,

we will present our results in the case of 𝑁𝐵 = 10. More results are given in Appendix C.

5.2.2 Results on Reconnaissance. First, we evaluate the accuracy of shared link detection as in

Fig. 5 (a). The error in shared link detection is shown in Fig. 8 (a). The results show similar

observations as Fig. 5 (a): the proposed algorithms (Alg. 1–2) can detect the shared links with good

accuracy (< 5% error), and the errors are mostly due to false alarms.

In Fig. 8 (b), we evaluate the accuracy of parameter inference under each of the queueing models

as in Fig. 5 (b). Similar to Fig. 5 (b), we observe that (i) the residual capacity (‘𝑟 ’) and the capacity

(‘𝜇’) can be estimated more accurately than the load (‘𝜆’), and (ii) G/G/1-based estimation performs

slightly worse. The main difference from Fig. 5 (b) is that the errors become larger. This is because

the delays in the IAB network are affected by not only queueing in the backhaul but also MAC

scheduling at the IAB-UE links. We also notice that the proposed parameter estimation method can

help detect false alarms in shared link detection, as detailed in Appendix D.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:20 Yudi Huang, Yilei Lin, and Ting He

0 0.5 1 1.5

attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ili
ty

optimal

MM1

MD1

GG1

max share

random

evenly

(a) Probability of congesting at least one shared link

0.2 0.4 0.6 0.8 1 1.2 1.4

attack rates (Gbps)

0

10

20

30

40

50

60

70

av
er

ag
e

de
la

ys
 (

m
s)

optimal

MM1

MD1

GG1

max share

random

evenly

no attack

(b) Average delay over all the target paths

Fig. 9. Performance of attack design in IAB network simulation (𝑁𝐴 = 19, 𝑁𝐵 = 10).

5.2.3 Results on Attack Design. We evaluate our attack design in comparison with the same

benchmarks as in Section 5.1.3. The results, presented in Fig. 9, show similar observations as Fig. 6:

(i) the attacks designed based on the results of our reconnaissance algorithms (‘MM1’, ‘MD1’,

‘GG1’) perform close to the optimal in terms of both the probability of congestion and the delay

increase, and (ii) the proposed optimized attacks generate a higher performance impact than the

straightforward attacks according to [9], especially under a limited total attack rate. Compared to

Fig. 6, the gap between the optimized attacks and the baselines is smaller in Fig. 9. This is because

on the average more links are shared between the attack paths and the target paths in the IAB

network due to the single ingress point (the IAB donor), as shown in Fig. 7, making it easier to

impact the target paths by launching attack on randomly selected attack paths.

6 CONCLUDING DISCUSSION
We studied a newly identified stealthy DoS attack called cross-path attack, with focus on quantifying

the maximum impact of such attacks through optimized attack design. To this end, we developed

a novel extension to network topology inference that allows the attacker to consistently estimate

the locations and parameters of the links shared between the attack paths and the target paths

by only passively monitoring the target paths, and provided an efficient method to compute the

optimal attack rate allocation based on the estimated information. Our optimized attack achieved a

much greater performance impact than its non-optimized counterparts in high-fidelity simulations.

Besides quantifying the maximum impact of cross-path attacks, our work also sheds light on

possible defenses. The root cause of such attacks is the sharing of network resources across flows of

different levels of security. Although completely isolating flows (e.g., by assigning each flow a fixed

share of bandwidth) can prevent cross-path attacks, it also sacrifices the benefits of resource shar-

ing such as throughput elasticity and higher resource utilization. Meanwhile, allowing unlimited

resource sharing will make the network vulnerable to malicious abuses of the shared resources as

demonstrated in our work. Intuitively, an effective network design should strike a balance between

the benefit of elastic resource allocation and the risk of abused elasticity. Determining the right

balance will depend on a variety of factors, such as the capacity of the resource, the criticality of

the supported application, and the perceived level of threat, which may vary over time. Due to

the inherent ambiguity between attack traffic maliciously consuming resources and normal bursty

traffic genuinely in need of more resources, the network will face an inevitable tradeoff between

performance and security, the detailed investigation of which is left to future work.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under awards CNS-2106294 and

CNS-1946022.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:21

REFERENCES
[1] 2017. Preparing for a Cloud AR/VR Future. Huawei public white paper. https://www-file.huawei.com/-/media/

corporate/pdf/x-lab/cloud_vr_ar_white_paper_en.pdf.

[2] 3GPP. 2016. Feasibility study on new services and markets technology enablers for network operation; Stage 1. TR

22.864. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3016

[3] 3GPP. 2018. NR; Study on integrated access and backhaul. TR 38.874. https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?specificationId=3232

[4] Stefan Achleitner, Thomas La Porta, Trent Jaeger, and Patrick McDaniel. 2017. Adversarial Network Forensics in

Software Defined Networking. In ACM Symposium on SDN Research (SOSR). ACM.

[5] Mohammed Alasmar, Richard Clegg, Nickolay Zakhleniuk, and George Parisis. 2021. Internet traffic volumes are

not Gaussian—They are log-normal: An 18-year longitudinal study with implications for modelling and prediction.

IEEE/ACM Transactions on Networking 29, 3 (2021), 1266–1279.

[6] F. Baccelli, B. Kauffmann, and D. Veitch. 2009. Inverse problems in queueing theory and Internet probing. Queueing
Systems 63 (2009), 59â€“107.

[7] Gregory Berkolaiko, Nick Duffield, Mahmood Ettehad, and Kyriakos Manousakis. 2018. Graph reconstruction from

path correlation data. Inverse Problems 35, 1 (November 2018), 015001.

[8] Jin Cao, William S. Cleveland, Dong Lin, and Don X. Sun. 2001. On the Nonstationarity of Internet Traffic. SIGMETRICS
Performance Evaluation Review 29, 1 (June 2001), 102–112.

[9] Jiahao Cao, Qi Li, Renjie Xie, Kun Sun, Guofei Gu, Mingwei Xu, and Yuan Yang. 2019. The CrossPath Attack: Disrupting

the SDN Control Channel via Shared Links. In USENIX Security.
[10] M. Coates, R. Castro, M. Gadhiok, R. King, Y. Tsang, and R. Nowak. 2002. Maximum Likelihood Network Topology

Identification from Edge-based Unicast Measurements. In ACM SIGMETRICS.
[11] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. 2009. Introduction to Derivative-Free Optimization. Society

for Industrial and Applied Mathematics.

[12] Vitor A Cunha, Eduardo da Silva, Marcio B de Carvalho, Daniel Corujo, Joao P Barraca, Diogo Gomes, Lisandro Z

Granville, and Rui L Aguiar. 2019. Network slicing security: Challenges and directions. Internet Technology Letters 2, 5
(2019), e125.

[13] Luca De Cicco, Saverio Mascolo, Vittorio Palmisano, and Giuseppe Ribezzo. 2019. Reducing the network bandwidth

requirements for 360
◦
immersive video streaming. Internet Technology Letters 2, 4 (2019), e118.

[14] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015. SPHINX: Detecting Security Attacks in

Software-Defined Networks. In Network and Distributed System Security Symposium. https://doi.org/10.14722/ndss.

2015.23064

[15] William F Donoghue. 2014. Distributions and Fourier transforms. Academic Press.

[16] Nick G Duffield, Joseph Horowitz, and F Lo Prestis. 2001. Adaptive multicast topology inference. In Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No. 01CH37213), Vol. 3. IEEE, 1636–1645.

[17] Xinzhe Fu and Eytan Modiano. 2019. Network Interdiction Using Adversarial Traffic Flows. In IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications. 1765–1773. https://doi.org/10.1109/INFOCOM.2019.8737475

[18] Steven Gay, Pierre Schaus, and Stefano Vissicchio. 2017. Repetita: Repeatable experiments for performance evaluation

of traffic-engineering algorithms. arXiv preprint arXiv:1710.08665 (2017).
[19] Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and Mark Handley. 2018. On low-latency-capable topologies, and

their impact on the design of intra-domain routing. In SIGCOMM. 88–102.

[20] Peter Harrison and Naresh M. Patel. 1992. Performance Modelling of Communication Networks and Computer Architec-
tures. Addison–Wesley.

[21] Ting He, Liang Ma, Ananthram Swami, and Don Towsley. 2021. Network Tomography: Identifiability, Measurement
Design, and Network State Inference. Cambridge University Press.

[22] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph Kopena. 2008. Network simulations

with the ns-3 simulator. SIGCOMM demonstration 14, 14 (2008), 527.

[23] Karla Leigh Hoffman. 1981. A METHOD FOR GLOBALLY MINIMIZING CONCAVE FUNCTIONS OVER CONVEX

SETS. Mathematical Programming 20 (1981), 22–32.

[24] Hao Jiang and Constantinos Dovrolis. 2005. Why is the internet traffic bursty in short time scales?. In SIGMETRICS.
241–252.

[25] Wolfgang John and Sven Tafvelin. 2007. Analysis of internet backbone traffic and header anomalies observed. In

Proceedings of the 7th ACM SIGCOMM conference on Internet measurement. 111–116.
[26] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. 2011. The internet topology

zoo. IEEE Journal on Selected Areas in Communications 29, 9 (2011), 1765–1775.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

https://www-file.huawei.com/-/media/corporate/pdf/x-lab/cloud_vr_ar_white_paper_en.pdf.
https://www-file.huawei.com/-/media/corporate/pdf/x-lab/cloud_vr_ar_white_paper_en.pdf.
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3016
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3232
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3232
https://doi.org/10.14722/ndss.2015.23064
https://doi.org/10.14722/ndss.2015.23064
https://doi.org/10.1109/INFOCOM.2019.8737475

58:22 Yudi Huang, Yilei Lin, and Ting He

[27] Zbigniew Kotulski, Tomasz Wojciech Nowak, Mariusz Sepczuk, Marcin Tunia, Rafal Artych, Krzysztof Bocianiak,

Tomasz Osko, and Jean-Philippe Wary. 2018. Towards constructive approach to end-to-end slice isolation in 5G

networks. EURASIP Journal on Information Security 2018, 1 (2018), 1–23.

[28] Xin Li, Mohammed Samaka, H Anthony Chan, Deval Bhamare, Lav Gupta, Chengcheng Guo, and Raj Jain. 2017.

Network slicing for 5G: Challenges and opportunities. IEEE Internet Computing 21, 5 (2017), 20–27.

[29] Yilei Lin, Ting He, and Guodong Pang. 2021. Queuing Network Topology Inference Using Passive Measurements.

[30] Y. Lin, T. He, S. Wang, K. Chan, and S. Pasteris. 2019. Multicast-Based Weight Inference in General Network Topologies.

In ICC 2019 - 2019 IEEE International Conference on Communications (ICC). 1–6. https://doi.org/10.1109/ICC.2019.8761099
[31] Yilei Lin, Ting He, Shiqiang Wang, Kevin Chan, and Stephen Pasteris. 2020. Looking Glass of NFV: Inferring the

Structure and State of NFV Network From External Observations. IEEE/ACM Transactions on Networking 28, 4 (2020),

1477–1490. https://doi.org/10.1109/TNET.2020.2985908

[32] Qiang Liu, Tao Han, and Nirwan Ansari. 2020. Learning-assisted secure end-to-end network slicing for cyber-physical

systems. IEEE Network 34, 3 (2020), 37–43.

[33] J. Ni, H. Xie, S. Tatikonda, and Y. R. Yang. 2010. Efficient and Dynamic Routing Topology Inference From End-to-End

Measurements. IEEE/ACM Transactions on Networking 18, 1 (2010), 123–135. https://doi.org/10.1109/TNET.2009.2022538
[34] Ruxandra F Olimid and Gianfranco Nencioni. 2020. 5G network slicing: a security overview. IEEE Access 8 (2020),

99999–100009.

[35] Natale Patriciello, Sandra Lagen, Biljana Bojovic, and Lorenza Giupponi. 2019. An E2E simulator for 5G NR networks.

Simulation Modelling Practice and Theory 96 (2019), 101933.

[36] Cynthia A. Phillips. 1993. The Network Inhibition Problem. In Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing (STOC). 776–785.

[37] M. Rabbat, M. Coates, and R. Nowak. 2006. Multiple Source Internet Tomography. IEEE Journal on Selected Areas in
Communications 24, 12 (December 2006), 2221–2234.

[38] Henrik Ronkainen, Jonas Edstam, Anders Ericsson, and Christer Östberg. 2020. Integrated access and backhaul – a new

type of wireless backhaul in 5G. Ericsson Technology Review. https://www.ericsson.com/4ac691/assets/local/reports-

papers/ericsson-technology-review/docs/2020/introducing-integrated-access-and-backhaul.pdf

[39] Matthew Roughan and Charles Kalmanek. 2003. Pragmatic modeling of broadband access traffic. Computer Communi-
cations 26, 8 (2003), 804–816.

[40] Josep Xavier Salvat, Lanfranco Zanzi, Andres Garcia-Saavedra, Vincenzo Sciancalepore, and Xavier Costa-Perez. 2018.

Overbooking Network Slices through Yield-Driven End-to-End Orchestration. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies (Heraklion, Greece) (CoNEXT ’18). Association for

Computing Machinery, New York, NY, USA, 353–365. https://doi.org/10.1145/3281411.3281435

[41] Danish Sattar and Ashraf Matrawy. 2019. Towards secure slicing: Using slice isolation to mitigate DDoS attacks on 5G

core network slices. In 2019 IEEE Conference on Communications and Network Security (CNS). IEEE, 82–90.
[42] Pegah Sattari, Maciej Kurant, Animashree Anandkumar, Athina Markopoulou, and Michael G. Rabbat. 2014. Active

Learning of Multiple Source Multiple Destination Topologies. IEEE Transactions on Signal Processing 62, 8 (2014),

1926–1937. https://doi.org/10.1109/TSP.2014.2304431

[43] NGMN 5G security group. 2016. 5G security recommendations Package 2: Network Slicing. NGMN Alliance. https:

//ngmn.org/wp-content/uploads/Publications/2016/160429_NGMN_5G_Security_Network_Slicing_v1_0.pdf

[44] Gao Shang, Peng Zhe, Xiao Bin, Hu Aiqun, and Ren Kui. 2017. FloodDefender: Protecting data and control plane

resources under SDN-aimed DoS attacks. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. 1–9.
https://doi.org/10.1109/INFOCOM.2017.8057009

[45] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. 2013. AVANT-GUARD: Scalable and vigilant switch flow management

in software-defined networks. In ACM CCS.
[46] Kyu-Seek Sohn, Seung Yeob Nam, and Dan Keun Sung. 2006. A distributed LSP scheme to reduce spare bandwidth

demand in MPLS networks. IEEE transactions on communications 54, 7 (2006), 1277–1288.
[47] Haopei Wang, Lei Xu, and Guofei Gu. 2015. FloodGuard: A DoS Attack Prevention Extension in Software-Defined

Networks. In 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 239–250. https:

//doi.org/10.1109/DSN.2015.27

[48] Xiaowei Yang. 2002. Designing traffic profiles for bursty internet traffic. In Global Telecommunications Conference,
2002. GLOBECOM’02. IEEE, Vol. 3. IEEE, 2149–2154.

[49] H. Yao, S. Jaggi, and M. Chen. 2012. Passive Network Tomography for Erroneous Networks: A Network Coding

Approach. IEEE Transactions on Information Theory 58, 9 (September 2012), 5922–5940.

[50] Mingli Yu, Tian Xie, Ting He, Patrick McDaniel, and Quinn K. Burke. 2021. Flow Table Security in SDN: Adversarial

Reconnaissance and Intelligent Attacks. IEEE/ACM Transactions on Networking 29, 6 (2021), 2793–2806. https:

//doi.org/10.1109/TNET.2021.3099717

[51] Shunliang Zhang. 2019. An overview of network slicing for 5G. IEEE Wireless Communications 26, 3 (2019), 111–117.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

https://doi.org/10.1109/ICC.2019.8761099
https://doi.org/10.1109/TNET.2020.2985908
https://doi.org/10.1109/TNET.2009.2022538
https://www.ericsson.com/4ac691/assets/local/reports-papers/ericsson-technology-review/docs/2020/introducing-integrated-access-and-backhaul.pdf
https://www.ericsson.com/4ac691/assets/local/reports-papers/ericsson-technology-review/docs/2020/introducing-integrated-access-and-backhaul.pdf
https://doi.org/10.1145/3281411.3281435
https://doi.org/10.1109/TSP.2014.2304431
https://ngmn.org/wp-content/uploads/Publications/2016/160429_NGMN_5G_Security_Network_Slicing_v1_0.pdf
https://ngmn.org/wp-content/uploads/Publications/2016/160429_NGMN_5G_Security_Network_Slicing_v1_0.pdf
https://doi.org/10.1109/INFOCOM.2017.8057009
https://doi.org/10.1109/DSN.2015.27
https://doi.org/10.1109/DSN.2015.27
https://doi.org/10.1109/TNET.2021.3099717
https://doi.org/10.1109/TNET.2021.3099717

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:23

A PROOFS OF THEOREMS
Proof of Theorem 3.2. First, we prove that given accurate estimates of the category weights,

the shared weight on the stem of each tree considered by Alg. 2 will be accurately inferred. Since

𝑠𝐴 → 𝜏1 and 𝑠𝐴 → 𝜏2 branches at 𝑏T′ , 𝜌𝑠 is the shared weight on 𝑠𝐴 → 𝑏T′ . Moreover, as Alg. 2

works in a top-down manner, the shared weights on edges above 𝑠T′ must have been inferred before

considering T ′. Thus, 𝜌𝑠 −𝑊𝑠𝐴→𝑠T′ (line 4) must be the true shared weight on edge (𝑠T′ , 𝑏T′).
Moreover, we prove that every edge with non-zero shared weight will be the stem of a tree

considered by Alg. 2. After inferring the shared weight on the stem of T ′, Alg. 2 will perform

recursion for both subtrees of T ′ to consider the remaining edges except for two cases. The first

case is when 𝛿𝑙T′ = 𝛿𝑟T′ (line 5), in which case T ′ has no other edge. The second case is when

𝜌𝑠 ≠ 0 and 𝜌𝑙 = 0 (or 𝜌𝑟 = 0), in which case we can skip the left (or right) subtree of T ′ as all its
edges have zero shared weight. To see this, suppose that 𝜌𝑠 ≠ 0 and 𝜌𝑙 = 0, but ∃ edge 𝑒 in the left

subtree of T ′ with𝑊𝑒 ≠ 0. Let 𝑒′ be the stem of the left subtree. Suppose that 𝑠𝐵 → 𝑡𝐵 intersects

with 𝑠𝐴 → 𝑏T′ at node 𝑣1 (which exists because 𝜌𝑠 ≠ 0), and intersects with 𝑒 at node 𝑣2 (which

exists because𝑊𝑒 ≠ 0). Then there exist two routing paths between 𝑣1 and 𝑣2, one follows T and

traverses 𝑒′, and the other follows 𝑠𝐵 → 𝑡𝐵 without traversing 𝑒′ (as 𝜌𝑙 = 0), which contradicts

with the unique route assumption in Section 2.1. Similar argument holds for 𝜌𝑠 ≠ 0 and 𝜌𝑟 = 0. □

Proof of Theorem 3.3. First, we argue that all the shared inks will be considered in parameter

estimation. As the given weight vector𝑾 is accurate and all the shared links have non-zero metrics,

every edge 𝑒 containing a shared link will have𝑊𝑒 > 0, and thus will be considered in the parameter

estimation when 𝑒 is the stem of the tree T ′ under consideration. As the recursion examines the

edges of T in a top-down manner, it remains to show that when𝑊(𝑠T′ ,𝑏T′) > 0, we can safely skip

one of the subtrees of T ′ as long as 𝛿𝑙T′ ≠ 𝛿𝑟T′ (otherwise T ′ only has one edge, i.e., the stem).

This is because conditioned on𝑊(𝑠T′ ,𝑏T′) > 0, 𝑠𝐵 → 𝑡𝐵 cannot intersect with both of the subtrees of

T ′, or there will be a contradiction with the unique route assumption in Section 2.1.

Next, we argue that the parameter for each shared link considered in lines 2–7 of Alg. 4 will

be estimated accurately. We start by considering the top-most shared link, assumed to reside on

an edge 𝑒 ∈ T . Our selection of the probing destination 𝜏∗ ensures that it is the only shared link

between 𝑠𝐵 → 𝑡𝐵 and 𝑠𝐴 → 𝜏∗, for which the objective of the least square fitting in line 7 is reduced

to

∑𝐾
𝑘=1

(
𝜓𝑘 − 𝑐𝜏∗ − 𝑑 (𝜉𝑒 ; ¯𝜆𝑘)

)
2

. Let (𝑐∗
𝜏∗ , 𝜉

∗
𝑒) denote the ground truth parameters. By our assumption,

(𝑐∗
𝜏∗ , 𝜉

∗
𝑒) achieves a zero fitting error. Suppose that the estimated parameters (𝑐𝜏∗ , ˆ𝜉𝑒) ≠ (𝑐∗𝜏∗ , 𝜉∗𝑒).

Then (𝑐𝜏∗ , ˆ𝜉𝑒) must also achieve a zero fitting error, i.e.,

𝑐𝜏∗ + 𝑑 (ˆ𝜉𝑒 ; ¯𝜆𝑘) = 𝑐∗𝜏∗ + 𝑑 (𝜉∗𝑒 ; ¯𝜆𝑘), 𝑘 = 1, . . . , 𝐾 . (13)

Under M/M/1, plugging (4) into (13) implies that
¯𝜆𝑘 (𝑘 = 1, . . . , 𝐾) must all satisfy

𝑐𝜏∗ +
1

𝑟𝑒 − ¯𝜆
= 𝑐∗𝜏∗ +

1

𝑟 ∗𝑒 − ¯𝜆
. (14)

For 𝐾 > 2, this leads to a contradiction as (14) is a quadratic equation in
¯𝜆 with at most two distinct

solutions. Similarly, under M/D/1, plugging (5) into (13) gives a quadratic equation of
¯𝜆 with at

most two distinct solutions, contradicting with 𝐾 > 2; under G/G/1, plugging (6) into (13) gives

a quartic equation of
¯𝜆 with at most four distinct solutions, contradicting with 𝐾 > 4. The same

argument applies to every other shared link, as our selection of the probing destination ensures

that when estimating 𝜉𝑒 , all the other shared links between the target path and the probing path

are above 𝑒 , whose parameters should already be accurately inferred by induction. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:24 Yudi Huang, Yilei Lin, and Ting He

Proof of Lemma 4.1. As 𝑓M/M/1 is a non-negative linear combination of functions of the form

𝑔1 (𝝀̄) := 1

𝑝−∑𝑁𝐴
𝑖=1

𝑞𝑖 ¯𝜆𝑖
, where 𝑝 −

𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆𝑖 > 0, it suffices to prove that 𝑔1 (𝝀̄) is convex.

To this end, it suffices to show that for any 𝝀̄ 𝑗 (𝑗 = 1, 2) satisfying 𝑝−
𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆 𝑗𝑖 > 0,𝑔1 (𝝀̄1)+𝑔1 (𝝀̄2) ≥

2𝑔1 (𝝀̄1+𝝀̄2

2
), since a continuous function that is midpoint convex must be convex [15]. The proof

completes by (⇔ means equivalence):

1

𝑝 −
𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆1𝑖

+ 1

𝑝 −
𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆2𝑖

≥ 2

𝑝 −
𝑁𝐴∑
𝑖=1

𝑞𝑖
¯𝜆1𝑖+ ¯𝜆2𝑖

2

⇔ (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆1𝑖) (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖

¯𝜆1𝑖 + ¯𝜆2𝑖

2

)

+ (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆2𝑖) (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖

¯𝜆1𝑖 + ¯𝜆2𝑖

2

) ≥ 2(
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆1𝑖) (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆2𝑖)

⇔ (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆1𝑖)2 + (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆2𝑖)2 ≥ 2(
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆1𝑖) (
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆2𝑖)

⇔
(
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆1𝑖 −
𝑁𝐴∑︁
𝑖=1

𝑞𝑖 ¯𝜆2𝑖

)2
≥ 0. (15)

□

Proof of Theorem 4.2. By Lemma 4.1, the attacker’s optimization is a maximization of a convex

function over a polytope defined by (7b)–(7d), for which the optimal solution must be achieved at

an extreme point of the feasible region [23]. In our context, this will be a vertex of the polytope,

which achieves “=” for 𝑁𝐴 of the constraints in (7b)–(7d). □

Proof of Corollary 4.3. Under 𝜆 ≤ min𝑒∈T 𝑟𝑒 , the constraint in (7c) can be ignored. The

remaining constraints define a polytope with only 𝑁𝐴 non-zero vertices, each in the form of

¯𝜆∗
𝑘
= 𝜆 and

¯𝜆∗
𝑘 ′ = 0 for all 𝑘 ′ ∈ {1, . . . , 𝑁𝐴} \ {𝑘}. The optimal solution must be one of them by

Theorem 4.2. □

Proof of Lemma 4.4. As 𝑓M/D/1 is a non-negative linear combination of functions of the form

𝑔2 (𝝀̄) :=
2𝜇 − 𝜆 −

𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆𝑖

2𝜇 (𝜇 − 𝜆 −
𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆𝑖)
, (16)

where 𝜇 − 𝜆 −
𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆𝑖 > 0, it suffices to prove that 𝑔2 (𝝀̄) is convex. To this end, note that

𝑔2 (𝝀̄) =
1

2𝜇
+ 1

2(𝜇 − 𝜆 −
𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆𝑖)
=

1

2𝜇
+ 1

2

𝑔1 (𝝀̄), (17)

where 𝑔1 (𝝀̄) is defined as in the proof of Lemma 4.1 with 𝑝 := 𝜇 − 𝜆. Since 𝑔1 (𝝀̄) is convex, 𝑔2 (𝝀̄) is
convex. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:25

Proof of Lemma 4.6. Function 𝑓G/G/1 is a non-negative linear combination of functions of the

form

𝑔3 (𝝀̄) :=
𝜃

𝑡 − 𝜃 (𝜃
2 + 𝑠) (18)

with 𝜃 := 𝑝 +
𝑁𝐴∑
𝑖=1

𝑞𝑖 ¯𝜆𝑖 , where 𝜃 ≥ 0, 𝑡 − 𝜃 > 0, and 𝑠 > 0. Thus, it suffices to prove that 𝑔3 (𝝀̄) is
convex.

To this end, note that

𝜕𝑔3

𝜕𝜃
=
3𝜃 2 (𝑡 − 𝜃) + 𝜃 3
(𝑡 − 𝜃)2 + 𝑠𝑡

(𝑡 − 𝜃)2 > 0, (19)

𝜕2𝑔3

𝜕𝜃 2
=

6𝑡𝜃

(𝑡 − 𝜃)2 +
2𝜃 3

(𝑡 − 𝜃)3 +
2𝑠𝑡

(𝑡 − 𝜃)3 > 0, (20)

i.e., 𝑔3 is an increasing convex function of 𝜃 . Since 𝜃 is a linear function of 𝝀̄, 𝑔3 is a convex function
of 𝝀̄. □

B SUPPLEMENTARY EVALUATION RESULTS FOR BACKBONE NETWORK
B.1 Measurement Calibration in NS3 Simulation of Backbone Network
As discussed in Section 5.1.1, during shared weight inference, we need to estimate an offset 𝜅

between measurements on a pair of probed attack paths (𝑝𝐴1, 𝑝𝐴2) and measurements on a target

path 𝑝𝐵 to mimic tri-cast, as the delays from 𝑠𝐴 and 𝑠𝐵 to the links shared by all these paths (if any)

may be different. We use the following heuristic to estimate 𝜅.

We send a flow on each probed attack path to collect a sequence of end-to-end delay measure-

ments. We also collect end-to-end delays on the target path in the meanwhile. For the target path,

we directly transform the delay measurements into a binary sequence of queueing indicators using

the threshold given in Section 5.1.1, denoted as {𝑞𝑡
𝐵
}𝑇𝑡=1, where 𝑞𝑡𝐵 = 1 if the 𝑡-th measurement is

detected to experience queueing and 𝑞𝑡
𝐵
= 0 otherwise. Since 𝑝𝐴1, 𝑝𝐴2 share the same source 𝑠𝐴, we

combine the delay measurements on 𝑝𝐴1, 𝑝𝐴2 by adding the delays of the 𝑖-th packets from both

paths, and then transform the combined delay measurements into a binary sequence {𝑞𝑡
𝐴
}𝑇𝑡=1 as for

{𝑞𝑡
𝐵
}𝑇𝑡=1. To find 𝜅 so that the 𝑖-th packet on 𝑝𝐵 and the (𝑖 + 𝜅)-th packet pair on (𝑝𝐴1, 𝑝𝐴2) traverse

the shared links (if any) at approximately the same time, we maximize the correlation between

{𝑞𝑡
𝐵
}𝑇𝑡=1 and {𝑞𝑡𝐴}

𝑇
𝑡=1 by solving

𝜅∗ = argmax

1−𝑇 ≤𝜅≤𝑇−1

1

min(𝑇,𝑇 − 𝜅) −max(1, 1 − 𝜅) + 1

min(𝑇,𝑇−𝜅)∑︁
𝑖=max(1,1−𝜅)

𝑞𝑖𝐵𝑞
𝑖+𝜅
𝐴 . (21)

We then identify the 𝑖-th packet on 𝑝𝐵 and the (𝑖 + 𝜅∗)-th packet pair on (𝑝𝐴1, 𝑝𝐴2) as a mimicked

tri-cast.

B.2 NS3 Simulation of Backbone Network under an Alternative Background Traffic
Model

In Section 5.1, we showed the results in the scenario where the background traffic follows log-

normal distribution. In this section, we validate our algorithms under background traffic generated

according to ON-OFF process [24, 46, 48]. More specifically, the duration of each ON period is

sampled from a Pareto distribution with the shape parameter as 2.04 and the scale parameter

as the average length of 13 packets. The duration of each OFF period is sampled from the same

distribution with a different scale parameter, configured to result in the same utilization of each

link as the values used in Section 5.1 for log-normally distributed background traffic. The results

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:26 Yudi Huang, Yilei Lin, and Ting He

0 1 2 3 4 5

number of measurements 10
4

0

0.2

0.4

0.6

0.8

re
la

ti
v
e
 e

rr
o
r

0

1

2

3

4

5

n
u
m

b
e

r
o

f
lin

k
s

relative error

number of misses

number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000

number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

MM1:r

MD1:

MD1:

GG1:

GG1:

(b) Performance in inferring shared link parameters

Fig. 10. Performance of reconnaissance in backbone network simulation under ON-OFF background traffic
(𝑁𝐴 = 𝑁𝐵 = 10).

0 0.2 0.4 0.6 0.8

attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ili
ty

optimal

MM1

MD1

GG1

max share

random

evenly

(a) Probability of congesting at least one shared link

0.1 0.3 0.5 0.7 0.8

 (Gbps)

0

100

200

300

400

500

av
er

ag
e

de
la

ys
 (

m
s)

optimal

MM1

MD1

GG1

max share

random

evenly

no attack

(b) Average delay over all the target paths

Fig. 11. Performance of attack design in backbone network simulation under ON-OFF background traffic
(𝑁𝐴 = 𝑁𝐵 = 10).

for reconnaissance are shown in Fig. 10 as the counterpart of Fig. 5, while the results for attack

design are given in Fig. 11 as the counterpart of Fig. 6. We observe that the results under ON-OFF

background traffic are similar to those in Section 5.1, which confirms the robustness of the proposed

methods under different background traffic patterns.

B.3 Evaluation Results for NS3 Simulation of Backbone Network with 𝑁𝐴 = 20

In Section 5.1, we evaluate our algorithms with 𝑁𝐴 = 10. A larger 𝑁𝐴 will result in fewer links

on each edge in the routing tree T , which makes it harder for Alg. 1 to accurately detect the

shared links. To test its impact, we evaluate our algorithms with 𝑁𝐴 = 20 in the same scenario as

in Section 5. The results are given in Fig. 12-13, as the counterparts of Fig. 5-6. We observe that

(i) the performance of reconnaissance slightly degraded, but (ii) the attack design still achieved

significantly better performance than the baselines (i.e., “max share”, “random”, and “evenly”). This

result demonstrates the robustness of our methods to the number of attack paths. We have also

verified that the performance of our methods is not sensitive to the number of target paths.

B.4 Evaluation Results for NS3 Simulation of Backbone Network with 50 Gbps Link
Capacity

Building on Section 5.1.1, where the link capacity is normalized to 1 Gbps, this section validates

those results under increased link capacities. Specifically, we repeat the NS3 simulation for the

backbone network GtsCe with a link capacity of 50 Gbps. To accommodate this, the rate for

background traffic is regenerated every 0.05 ms, compared to the previous 0.5 ms in Section 5.1.1.

Moreover, the flow rate on the target paths has been adjusted from 50 Mbps to 2500 Mbps, and the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:27

0 1 2 3 4 5

number of measurements 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

0

1

2

3

4

n
u
m

b
e

r
o

f
lin

k
s

relative error

number of misses

number of false alarms

(a) Performance in detecting shared links

2000 4000 6000 8000 10000

number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

MM1:r

MD1:

MD1:

GG1:

GG1:

(b) Performance in inferring shared link parameters

Fig. 12. Performance of reconnaissance in backbone network simulation (𝑁𝐴 = 20, 𝑁𝐵 = 10).

0 0.2 0.4 0.6 0.8

attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ili
ty

optimal

MM1

MD1

GG1

max share

random

evenly

(a) Probability of congesting at least one shared link

0.1 0.3 0.5 0.7 0.8

 (Gbps)

0

100

200

300

400

av
er

ag
e

de
la

ys
 (

m
s)

optimal

MM1

MD1

GG1

max share

random

evenly

no attack

(b) Average delay over all the target paths

Fig. 13. Performance of attack design in backbone network simulation (𝑁𝐴 = 20, 𝑁𝐵 = 10).

0 1 2 3 4 5

number of measurements 10
4

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

0

1

2

3

4

n
u
m

b
e

r
o

f
lin

k
s

relative error

number of misses

number of false alarms

(a) Performance in detecting shared links

0 2000 4000 6000 8000 10000

number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o

r

MM1:r

MD1:

MD1:

GG1:

GG1:

(b) Performance in inferring shared link parameters

Fig. 14. Performance of reconnaissance in backbone network simulation (𝑁𝐴 = 𝑁𝐵 = 10).

background traffic rates have been increased by 50 times too, while all other settings remain the

same as Section 5.1.1. Results from a single Monte Carlo run are presented below.

The reconnaissance results as the counterpart of Fig. 5 are given in Fig. 14, in which we observe

similar trends as in Fig. 5. We then assess the rate at which each attack method induces congestion

on at least one shared link, as a counterpart to Fig. 6 (a). For this specific Monte Carlo run, the

benchmarks “optimal” and “max share”, and all the proposed methods (i.e., “MM1”/“MD1”/“GG1”)

begin to induce congestion when the total attack rate exceeds 48.7% of the link capacity. At this rate,

“random” starts exhibiting a non-zero (0.3) probability of causing congestion. Moreover, “random”

only reaches a 0.5 congestion probability even when the attack rate surpasses 70% of the link

capacity. In contrast, “evenly” fails to induce congestion even when the attack rate reaches 80% of

the link capacity.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:28 Yudi Huang, Yilei Lin, and Ting He

5 15 25 35 40

 (Gbps)

0

2

4

6

8

10

12

14

a
v
e

ra
g

e
 d

e
la

y
s
 (

m
s
)

optimal

MM1

MD1

GG1

max share

random

evenly

no attack

Fig. 15. Average delay over all the target paths (𝑁𝐴 = 𝑁𝐵 = 10)).

0 500 1000 1500 2000

number of measurements

0

0.05

0.1

0.15

0.2

0.25

0.3

re
la

ti
v
e

 e
rr

o
r

0

0.5

1

1.5

2

2.5

3

n
u
m

b
e
r

o
f
lin

k
s

relative error

number of misses

number of false alarms

(a) 𝑁𝐵 = 5

0 500 1000 1500 2000

number of measurements

0

0.05

0.1

0.15

0.2

0.25

0.3

re
la

ti
v
e

 e
rr

o
r

0

0.5

1

1.5

2

2.5

3

n
u
m

b
e
r

o
f
lin

k
s

relative error

number of misses

number of false alarms

(b) 𝑁𝐵 = 10

Fig. 16. Performance in detecting shared links in IAB network simulation.

As the counterpart of Fig. 6 (b), we analyze the average delay induced by various attack designs

in Fig. 15, computed over 30, 000 packets on the target paths. We observe that “max share” and

all the proposed methods (i.e., “MM1”/“MD1”/“GG1”) achieve the same performance as “optimal”

since they all correctly identify the attack path traversing the weakest shared link
5
. Notably, the

proposed methods markedly outperform the non-optimized benchmarks “random” and “evenly”.

These findings, which are consistent with Fig. 6 (b), underscore the efficacy of our proposed methods.

C SUPPLEMENTARY EVALUATION RESULTS FOR INTEGRATED ACCESS AND
BACKHAUL (IAB) NETWORK

In this section, we will present the supplementary experimental results for Section 5.2 in the case

of 𝑁𝐵 = 5. The previously presented results under 𝑁𝐵 = 10 are also shown here for comparison.

C.1 Results on Reconnaissance
In Fig. 16, we present the performance of shared link detection for different numbers of target

paths. We observe that the results are insensitive to the number of target paths 𝑁𝐵 . Next, we show

the results of parameter estimation for the detected shared links, as given in Fig. 17. Again, the

observations under different values of 𝑁𝐵 are qualitatively similar.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

Optimized Cross-Path Attacks via Adversarial Reconnaissance 58:29

2000 4000 6000 8000 10000

number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

MM1:r
e

MD1:

MD1:

GG1:

GG1:

(a) 𝑁𝐵 = 5

2000 4000 6000 8000 10000

number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e
 e

rr
o
r

MM1:r

MD1:

MD1:

GG1:

GG1:

(b) 𝑁𝐵 = 10

Fig. 17. Performance in inferring parameters of shared links in IAB network simulation.

0 0.5 1 1.5

attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ili
ty

optimal

MM1

MD1

GG1

random

even

(a) 𝑁𝐵 = 5

0 0.5 1 1.5

attack rates (Gbps)

0

0.2

0.4

0.6

0.8

1

co
ng

es
tio

n
pr

ob
ab

ili
ty

optimal

MM1

MD1

GG1

random

even

(b) 𝑁𝐵 = 10

Fig. 18. Probability that the attack can destabilize the queue for at least one shared link in IAB network
simulation.

0.4 0.6 0.8 1 1.2 1.4 1.6

attack rates (Gbps)

0

10

20

30

40

50

60

av
er

ag
e

de
la

ys
 (

m
s)

optimal

MM1

MD1

GG1

random

evenly

no attack

(a) average delays

0.4 0.6 0.8 1 1.2 1.4 1.6

attack rates (Gbps)

0

20

40

60

80

100

m
ax

im
um

 d
el

ay
s

(m
s)

optimal

MM1

MD1

GG1

random

evenly

(b) maximum delays

Fig. 19. Delay increase under different 𝜆 in IAB network simulation (𝑁𝐵 = 5).

C.2 Results on Attack Design
We first evaluate the probability that the proposed design with objective (12) can destabilize at least

one queue, as shown in Fig. 18. As before, the results for 𝑁𝐵 = 5 and 𝑁𝐵 = 10 show the same trend.

Finally, we compare the delays of target paths under various attack designs in Fig. 19-20, where

Fig. 19 (a) and Fig. 20 (a) show the overall average delay (averaged over all the target paths),

while Fig. 19 (b) and Fig. 20 (b) show the maximum average delay (maximized over all the target

paths). Similar to the results discussed in Section 5.2.3, we observe that the proposed attack designs

generate higher impacts than the benchmarks, regardless of the number of target paths and the

5
The absolute delays in Fig. 15 are smaller than those in Fig. 6 (b) due to the increased link capacity.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

58:30 Yudi Huang, Yilei Lin, and Ting He

0.2 0.4 0.6 0.8 1 1.2 1.4

attack rates (Gbps)

0

10

20

30

40

50

60

70

av
er

ag
e

de
la

ys
 (

m
s)

optimal

MM1

MD1

GG1

max share

random

evenly

no attack

(a) average delays

0.2 0.4 0.6 0.8 1 1.2 1.4

attack rates (Gbps)

0

20

40

60

80

100

m
ax

im
um

 d
el

ay
s

(m
s)

optimal

MM1

MD1

GG1

random

evenly

(b) maximum delays

Fig. 20. Delay increase under different 𝜆 in IAB network simulation (𝑁𝐵 = 10).

performance metric (either the average delay over all the target paths or the average delay of the

worst-performing target path).

D DISCUSSION ON DETECTING FALSE ALARMS THROUGH PARAMETER
ESTIMATION

In this section, we will discuss an observation that the proposed parameter estimation method

(Alg. 3–4) can help detect the false alarms in shared link detection (based on Alg. 1–2).

In the case of a false alarm, the “shared link” under consideration does not actually exist, and thus

varying probing rate (line 6 in Alg. 4) will not impact the average delay of the target path under

consideration as expected. This will manifest as an abnormally large estimated link capacity, which

can then be used to detect that this “shared link” does not exist. To see the reason, let us consider

the example in Fig. 7. If Alg. 1 falsely detects (2, 6) to be a shared link for the target path 2→ 43 and

Alg. 4 tries to estimate its capacity by varying probing rate on the path 2→ 25, then the best-fitting

capacity will be infinity as the average delay on 2 → 43 will not increase with the probing rate

on 2→ 25. Even if the probing path and the target path have shared links, false alarms may still

be detected. For example, suppose that link (5, 18) in Fig. 7 is falsely detected as a shared link for

the target path 2→ 46, and 2→ 37 is selected as the probing path for estimating its parameters,

then the delay increase on 2→ 46 caused by the probing on 2→ 37 will be captured by the delay

increase on the truly shared links (2, 14) and (14, 5) (if they are detected), still making the best-fitting

capacity of link (5, 18) infinity. This observation together with the fact that there are fewer misses

than false alarms (see Fig. 8 (a)) allows our solution to detect the shared links with high accuracy.

Received February 2023; revised October 2023; accepted October 2023

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Summary of Contributions

	2 Problem Formulation
	2.1 Network and Threat Model
	2.2 Problem Statement
	2.3 Illustrative Example

	3 Adversarial Reconnaissance
	3.1 Preliminaries
	3.2 Shared Weight Inference
	3.3 Parameter Inference

	4 Optimized Attack Design
	4.1 Attacker's Optimization
	4.2 Attack Design
	4.3 Other Attack Objectives

	5 Performance Evaluation
	5.1 NS3-based Simulation of Backbone Network
	5.2 NS3-based Simulation of Integrated Access and Backhaul (IAB) Network

	6 Concluding Discussion
	Acknowledgments
	References
	A Proofs of Theorems
	B Supplementary Evaluation Results for Backbone Network
	B.1 Measurement Calibration in NS3 Simulation of Backbone Network
	B.2 NS3 Simulation of Backbone Network under an Alternative Background Traffic Model
	B.3 Evaluation Results for NS3 Simulation of Backbone Network with NA=20
	B.4 Evaluation Results for NS3 Simulation of Backbone Network with 50 Gbps Link Capacity

	C Supplementary Evaluation Results for Integrated Access and Backhaul (IAB) Network
	C.1 Results on Reconnaissance
	C.2 Results on Attack Design

	D Discussion on detecting false alarms through parameter estimation

