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While softwarization and virtualization technologies make modern communication networks appear easier
to manage, they also introduce highly complex interactions within the networks that can cause unexpected
security threats. In this work, we study a particular security threat due to the sharing of links between
high-security paths and low-security paths, which enables a new type of DoS attacks, called cross-path attacks,
that indirectly attack a set of targeted high-security paths (target paths) by congesting the shared links through
a set of attacker-controlled low-security paths (attack paths). While the feasibility of such attacks has been
recently demonstrated in the context of SDN, their potential performance impact has not been characterized.
To this end, we develop an approach for designing an optimized cross-path attack under a constrained total
attack rate, consisting of (i) novel reconnaissance algorithms that can provide consistent estimates of the
locations and parameters of the shared links via network tomography, and (ii) efficient optimization methods
to design the optimal allocation of attack rate over the attack paths to maximally degrade the performance
of the target paths. The proposed attack has achieved a significantly larger performance impact than its non-
optimized counterparts in extensive evaluations based on multiple network settings, signaling the importance
of addressing such intelligent attacks in network design.
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1 INTRODUCTION

The trend of network softwarization and virtualization has fundamentally altered the way we
build network systems. While the logically centralized control plane provides convenient ways
to manage the network resources through various abstractions, such abstractions also hide the
complex interactions within the network, which can cause unexpected security threats. In this
work, we focus on a particular security threat due to the sharing of links between high-security
paths and low-security paths, which enables a new type of denial-of-service (DoS) attacks called
cross-path attacks.
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Intuitively, cross-path attacks are indirect DoS attacks, where instead of directly attacking the
paths of interest (target paths), the attacker sends attack traffic on some other paths (attack paths)
sharing resources (e.g., link bandwidth) with the target paths, so as to degrade the performance of
the target paths by consuming the shared resources. Such attacks are of interest when the target
paths are difficult to attack directly, but share network resources with some low-security paths
that are more susceptible to attacks.

One scenario for cross-path attacks is in the context of a Software Defined Network (SDN) [9],
where the target paths are control-plane paths connecting switches to the controller and the attack
paths are data-plane paths originating from attacker-controlled hosts that share links with some
of the control-plane paths. Instead of directly triggering a flood of control messages to attack the
control-plane paths as in earlier attacks [45], a cross-path attack only floods selected paths in
the data plane, which makes it both stealthier and more resilient to state-of-the-art control plane
defenses such as FloodGuard [47], FloodDefender [44], and SPHINX [14]. Another scenario for
cross-path attacks is in the context of network slicing [51], which is a technology in 5G networks
that allows the network provider to set up multiple virtual networks over a shared infrastructure.
To improve resource utilization and support elasticity, different slices may share network and
computing resources [51]. Meanwhile, slices created for different applications can follow different
security standards [27, 28], and some slices may even be managed by less trusted third parties [2].
These practices create opportunities for an attacker to attack paths in a high-security slice (target
paths) by consuming resources shared with some paths the attacker can access in a low-security slice
(attack paths), while remaining stealthy to intrusion detection systems in the high-security slice.

Despite the demonstration of feasibility in [9], there is little quantitative understanding about
cross-path attacks. In this work, we will address this gap by designing an optimized attack strategy
that can achieve the maximum impact with a constrained total attack rate. At a high level, our
strategy works by (i) inferring the locations and parameters of network elements shared between
the target paths and the attack paths, and then (ii) optimally allocating the total attack rate over
the attack paths to maximize the performance degradation of the target paths. By analyzing the
optimal attack strategy, we not only quantify the maximum damage due to cross-path attacks as a
function of the attack rate, but also shed light on possible defenses.

1.1 Related Work

As anewly identified attack, cross-path attack has not been extensively studied previously. Therefore,
we will provide background by reviewing some relevant security problems and solution techniques.

Security vulnerabilities in SDN: As the architectures and protocols of SDN are designed to
facilitate performance and programmability, there are many security vulnerabilities, mainly due to
the interdependency between the controller and the switches. In particular, the switch—controller
dependency that arises due to the need for the data plane to obtain instructions from the control
plane can create a communication bottleneck, which has been exploited in active attacks [45],
adversarial reconnaissance [4], and joint reconnaissance and attack [9, 50]. The cross-path attack in
this context [9] is a reconnaissance-based attack that exploits the switch—controller dependency
to infer which attacker-controlled data-plane paths share links with at least one control-plane
path, in order to identify the data-plane paths that can be used to launch a cross-path attack on
the control plane. The reconnaissance strategy in [9] only infers whether there exists at least
one shared link between a data-plane path and the targeted control-plane paths, and thus can
only support a non-optimized cross-path attack. In contrast, we will provide a way to design an
optimized cross-path attack through fine-grained reconnaissance based on network tomography.

Security vulnerabilities in network slicing: Network slicing introduces both content-level
threats such as unauthorized access, compromise of functions/devices, and side-channels across
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slices [12, 34], and performance-level threats due to malicious abuse of resource quotas [12, 43]. The
cross-path attack in this context belongs to performance-level threats. While cross-path attack
under network slicing can be defended by detecting the attack through the cooperation of its control
plane [32] or completely isolating different slices [41], both approaches have severe limitations:
the former will fail if the attack slice’s control plane is compromised, and the latter will cause poor
resource utilization. In this regard, our work helps to strike a balance between resource utilization
and security in network slicing by quantifying the maximum impact of cross-path attacks.

Network interdiction: Traditional network interdiction refers to a problem where an inter-
dictor tries to reduce the throughput of network users by removing selected links under a budget
constraint [36]. A variation of this problem, recently proposed in [17], is conceptually similar to
cross-path attack in that instead of removing links, the interdictor tries to reduce the available
capacities of links traversed by target paths by injecting flows on selected paths. Despite the
conceptual similarity, [17] addressed a fundamentally different problem of optimizing the (possibly
multi-path) routing of injected traffic in a clairvoyant setting where the network topology and the
links traversed by each target path are known to the interdictor, and the routing of injected traffic
is controllable, which generally requires the cooperation of the network. In contrast, cross-path
attack is based on a much weaker threat model where the attacker is an outsider of the network
without internal support or information. Therefore, how to learn the internal information required
for effective attack design is a critical question in cross-path attack, which is the focus of this work.

Network tomography: The optimal design of cross-path attacks requires the attacker to infer
the network elements shared between two sets of paths from end-to-end measurements, which
is similar to the problem addressed by network topology tomography/inference [21]. With few
exceptions (e.g., [29, 49]), topology inference algorithms generally require active probing on all
the paths; see [31] and references therein. This can be used to generate carefully crafted probes,
such as “packet strings” [33] or “packet sandwiches” [10], which produce correlated measurements
that can reveal the existence and parameters of the links shared by different paths. Our problem
is different in that the attacker can only probe a subset of paths (i.e., the attack paths) but wants
to infer the elements they share with the other paths (i.e., the target paths).

1.2 Summary of Contributions

Our goal is to understand the strategy and impact of the optimal cross-path attack under a con-
strained total rate, with the following contributions:

1) We develop novel inference algorithms that can consistently estimate the locations and
parameters of the links shared between attack paths and target paths via active probing on the
attack paths and passive monitoring on the target paths.

2) Under the assumption that each shared link can be modeled as an M/M/1, M/D/1, or G/G/1
queue, we derive the optimal attack design that can maximally degrade the performance of the
target paths under a bounded total attack rate.

3) We evaluate the proposed algorithms by high-fidelity packet-level simulations under various
settings, which show that (i) our inference algorithms can estimate the (topological) locations
of shared links with good accuracy but not their detailed parameters, but (ii) our attack strategy
designed based on these estimates can still cause substantially more performance degradation than
some intuitive ways of launching cross-path attacks, which signals the importance of considering
such intelligent attack strategies in the design of defenses.

Roadmap. We formulate our problem in Section 2, present the algorithms to infer the locations
and parameters of shared links in Section 3, and present the corresponding attack design in Section 4.
We then evaluate our solutions in Section 5 and conclude the paper in Section 6. All the proofs
are provided in Appendix A.
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2 PROBLEM FORMULATION
2.1 Network and Threat Model

Consider two sets of paths in a network, referred to as the attack paths Pa := {sa; — ta; ﬁ‘} and
the target paths Pg := {sp; — tBi}fi’i, where s — t denotes the routing path from source s to
destination t and N4/Np the number of paths in P4/Pp. Suppose that an attacker is interested in
attacking the target paths in Pp, but can only passively monitor the end-to-end performance (e.g.,
delays) on these paths. Meanwhile, the attacker can actively send packets on the attack paths in
P4. We will focus on the important special case of s4; = sa (i = 1,..., Na), as it represents a most
easily-deployable attack with only one active malicious node (i.e., s4). Let Ta := {ta;]i = 1,--- , Na}
denote the set of destinations of the attack paths. We note that the multi-source case, where the
attacker controls multiple active malicious nodes, is not a trivial extension of the single-source
case. We leave the study of the multi-source case to future work.

The two sets of paths may share some network elements. For clarity, we will model all the shared
elements as “shared links”, which can represent any shared resources (e.g., communication links,
network functions, and other services). Here, “shared” means shared by attack traffic and target
traffic without isolation. While traffic isolation technologies exist, applying them will lower resource
utilization and hence the revenue of the network provider [40, 51]. In this regard, our work aims at
quantifying the risk due to lack of isolation to inform a proper tradeoff. We model such link sharing
by a (logical) routing topology G = (V, E), which is a graph formed by all the paths in P4 U Pg.
According to [33, 42], V is a set of vertices representing sources, destinations, and branching/joining
points between paths, and E is a set of edges representing the connections between the vertices,
where a sequence of consecutive links without branching/joining points is represented by a single
edge. We assume that the attacker does not have access to the control plane, i.e., he does not
know the ground truth of G. Instead, the attacker can infer information about G from end-to-end
measurements on P4 and Pg. We will use “link” to refer to a communication link in the underlying
network and “edge” to refer to a point-to-point connection in the routing topology. Similarly, we
will use “node” to refer to a physical node in the underlying network and “vertex” to refer to a logical
node in the routing topology. As commonly assumed in the literature [33, 42], we assume that during
the inference and attack, there is a fixed and unique routing path from each node to every other node.

Remark: While there may be other paths carrying co-existing flows in the network, it suffices
to focus on the target and the attack paths for the purpose of modeling the cross-path attack.
The impact of co-existing flows will be captured as background traffic on the links traversed by
P4 U Pg. Our threat model depicts a pure cross-path attack where the attacker can only actively
send packets on the attack paths and thus can only attack the target paths through “cross-path”
influence. In some scenarios such as the cross-path attack between the data plane and the control
plane in SDN [9], it is possible for the attacker to generate packets on the target paths (e.g., by
triggering “packet-in” messages). However, to evade existing defenses against direct attacks, such
attacker-triggered traffic on the target paths must resemble the normal traffic on these paths, which
is usually insufficient to cause notable performance degradation. Intuitively, the ability to passively
monitor the performance of the target paths is the minimum requirement for designing a nontrivial
cross-path attack. We thus adopt this threat model to maximize the applicability of our result.

We assume the following capabilities of the attacker. First, the attacker can observe packets on
each target path sg; — fp; as soon as they are transmitted, even if sp; differs from s4. For example,
the attacker may intersect target traffic at locations (sBi)f\g (i.e., sp; denotes the starting point of
intersection for a path of interest). Instead of directly attacking target traffic at these points of
intersection, the attacker only uses them to passively monitor the target traffic to launch a stealthier
attack. Second, the attacker can measure the end-to-end one-way delays of packets on both the
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Fig. 1. Cross-path attack in the context of network slicing.

attack paths P4 and the target paths Pg. Third, the attacker will not be exposed by sending traffic
on the attack paths. For example, the attacker may control many edge devices, which connect to the
same ingress point s4 or egress point ¢4; (i.e., s4 and t4; may each represent a set of devices), and thus
the attack flows can evade detection by the network operator even if the aggregate flow rate is high.

2.2 Problem Statement

While the sharing of links makes the paths in Pg vulnerable to cross-path attacks launched from the
paths in Py4, the impact of such attacks greatly depends on the attack strategy. To understand the
maximum impact of cross-path attacks, we develop an intelligent attack strategy by combining fine-
grained adversarial reconnaissance with optimized attack design, by solving the following problems:

1) Adversarial Reconnaissance. We investigate to what extent the attacker can learn about the
shared links based on active probing on P4 and passive monitoring on Pg.

2) Optimized Attack Design. Based on the inferred information, we investigate the optimal
allocation of attack traffic over the attack paths to maximize the performance degradation (e.g.,
increase in average delay) inflicted on the target paths.

Remark: Our threat model requires the attacker to monitor end-to-end performance on the target
paths. While this is arguably the minimum information needed for any nontrivial attack design, it
does impose limitations on which paths can be set as the target. For example, in the context of SDN
[9], only the control-plane paths for switches traversed by attacker-controlled data-plane paths can
be the target paths. In the context of network slicing, the target paths can be the backhaul paths to
cells containing attacker-controlled user equipments (UEs), which are likely to share the same paths
with other UEs in the same cell and can thus be used as their proxies in collecting measurements.
Instead of directly launching attacks from these attacker-controlled UEs, a cross-path attack only
uses them to passively collect measurements so as to launch an effective attack from elsewhere in
the network, and is thus stealthier.

2.3 Illustrative Example

Example in network slicing: Consider the scenario in Fig. 1 (a), where the attacker controls a malicious
node s4 that can send traffic on a set of paths sq4 — t4; (i = 1,2, 3) in slice A but wants to attack
another path sg — tp in slice B. The attack paths share the following network elements with the
target path: s4 — t4; only shares the source-side central unit (CU) and user plane function (UPF);
sa — tao also shares backhaul links between the cell sites and the destination-side CU and UPF;
sa — tas further shares midhaul links and the destination-side radio unit (RU) and distributed unit
(DU). These relationships can be modeled by the routing topology in Fig. 1 (b).
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Fig. 2. Cross-path attack in the context of SDN.

Example in SDN: Consider the scenario in Fig. 2 (a), where the attacker wants to attack the control
paths between the controller s and the switches tg; (i = 1,...,4) by sending traffic on the data
paths sq4 — ta; (i = 1, 2,3). Assume shortest path routing for both data and control paths (assuming
that tg, connects to the controller via tg; and sy connects to tu3 via tp;). Each data path shares
some links with the control paths: s4 — t4; shares a link with sg — g2, s4 — ta» shares a link
with sg — tg; and sg — Igy, and s4 — ta3 shares a link with sg — tg,. Meanwhile, due to the
separate processing of data and control packets within a switch, the shared nodes (i.e., switches)
will not cause performance correlation between data and control paths and can thus be ignored.
These relationships can be modeled by the routing topology in Fig. 2 (b), where we have inserted
zero-delay edges (by, tg1), (b2, tB2), and (bs, t3) to make each source/destination have degree one.

While it is relatively easy to identify which attack paths share at least one link with the target
paths (e.g., by measuring the target path delays with/without traffic on each attack path as in
[9]), different attack paths can influence the target paths to different extents. Given the routing
topology G, one can intuitively identify the most useful attack path, e.g., sA — t43 in Fig. 1, but the
attacker cannot directly observe such internal information. Therefore, when the attacker has access
to multiple attack paths but only resources to generate a limited amount of traffic, it is unclear how
he can attack most effectively. Below, we will show that the attacker can actually infer sufficient
information about the routing topology to design the optimal attack that causes the maximum
performance degradation to the target paths, by only passively monitoring the target paths.

3 ADVERSARIAL RECONNAISSANCE

We will show that under mild assumptions, the attacker can consistently infer both the locations
and the parameters of the links shared between the attack paths and the target paths.

3.1 Preliminaries

The problem of inferring the relationship between paths from end-to-end measurements belongs
to a branch of network tomography focusing on topology inference, for which many algorithms
have been proposed (see Section 1.1). However, these algorithms typically require active probing
on all the paths and hence are not applicable to our problem. Nevertheless, there are some results
we can leverage, as summarized below.

The foundation of topology inference is using end-to-end measurements to infer the “lengths
of links defined by certain additive performance metrics. As a concrete example, we will adopt a
canonical metric that can be inferred from delay measurements, but our reconnaissance algorithm
can work with any additive metric for which the so-called “category weight” (see Definition 1) can
be inferred from end-to-end measurements.

The metric we adopt is called utilization-based metric [16, 33], which is a classical additive metric
used in topology inference. Let y. denote the probability that a packet traversing link e does not

»
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experience any queueing delay. The utilization-based metric for link e is defined as u, := —logye,
which is additive across independent links. By comparing the end-to-end delay of a packet with
the minimum delay on the measured path, we can infer whether the packet incurs any queueing
delay and hence estimate the utilization-based metric for the path. It was shown in [30] that with
simultaneous measurements from multiple paths (obtained via multicast or back-to-back unicast),
we can uniquely identify the utilization-based metric! at a certain granularity as follows.

Definition 1. Given a set C of paths, we define the following:
(1) the cast weight ¢¢ is the sum of metrics for all the links traversed by any of the paths in C;
(2) a category 1"%' for C" € Cand C’" # 0 is the set of links traversed by every path in C’ but none
of the paths in C \ C’;
(3) the category weight for a category I‘%, , denoted by wer, is the sum of the metrics for all the

links in T'¢r .
C

For example, consider the set of paths C := {s4 — ta1, sS4 — taz, Sa — tas, S — tg}in
Fig. 1 (b). The cast weight ¢, 1., sa—tapsa—tas 1S the sum metric for all the blue and green links.

Category I’ sy—tarsa—tazsa—tas  only contains link (sg4, b1), and category T'sa—tarsa—tazsa—tassg—ts
SA*)!AI,SAHtAz,SAHtA:i,SBHl’B SAA)tAl’SAHIAZ'SA*}tA:i‘SBHtB
only contains link (b4, by).

Let C := 2€ \ {0} denote all the nonempty subsets of C and Urs (C’ € C) denote a Bernoulli
variable that equals 1 if and only if a multicast probe on C’ does not incur any queueing delay.
Under the assumption that different links have independent queue states as in [16, 30, 33] (which
holds approximately under heavy independent cross-traffic), we have

~log(Pr{Uc=1}) = ~log([ [ ve) = D tte = g (1)

e€Upecr p e€Upecr P

This, together with Definition 1, implies the following relationship between the cast weights and
the category weights:

we, = de,, YC, € C. @)
C1eC:C1NCy£0 ¢

Using (approximated) multicast on C, we can infer all the cast weights in (#¢/)c’ec, which can
then be used to uniquely identify the category weights as shown below.

Theorem 3.1 (Theorem I1I.1 in [30]). Given the cast weights (¢c’)c e, all the category weights
(w¢ )crec are uniquely determined by (2).
C

Below, we will show how to use this existing result to detect the links shared between the target
paths and the attack paths.

3.2 Shared Weight Inference

Category weights provide valuable information about the relationship between paths. Specifically,
if wee > 0, then we know that Ter # 0, i.e., there is at least one link shared by the paths in C’

C C

but not those in C \ C’. Moreover, under the assumption that every link has a non-zero metric
(i-e., non-zero queueing probability), we = = 0 implies that I‘cr = (. However, applying this idea
directly to the paths in P4 U Pg will requlre active probing on all the paths. Nevertheless, with
active probing only on P4, we can still infer the relationship between each target path p € Pg and
The empirical evaluations in [30] were based on loss-based metric defined as u,, := — log y., where y.. denotes the no-loss

probability at link e, but the theoretical result in Theorem IIL.1 in [30] held for any additive metric for which the cast weights
can be estimated from end-to-end measurements.
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all the attack paths in P4, which turns out to be sufficient for the design of the optimal cross-path
attack as explained in Section 4. The idea is to mimic a multicast on P4 U {p} by monitoring path p
and sending a multicast probe (or back-to-back unicast probes) on P4 when a packet is transmitted
on p. Because these packets are sent very close to each other, they will observe similar queue states
at shared links [33], thus mimicking a multicast on P4 U {p}.

Using such mimicked multicast, one may try to apply existing topology inference algorithms.
However, most of such algorithms are heuristics without guaranteed accuracy, and the existing
algorithms with performance guarantee all address scenarios different from ours. For example, [33]
requires all the paths to share a single source, [37, 42] require all the sources to share the same
set of destinations, and [7] requires the ability to probe the path between any pair of boundary
vertices (in our case, these are the endpoints of all the paths in P4 U {p}). These differences make
the existing algorithms inapplicable to our problem. Below, we will show an algorithm that can
infer the shared links between the attack paths in P4 and a given target path p with guaranteed
accuracy, which is then repeated for each p € Pp. To our knowledge, this is the first algorithm
that can infer the routing topology formed by a set of single-source paths and another path with
arbitrary source and destination by only measuring these paths.

3.2.1 Algorithm. Under the assumptions in Section 2.1, the paths in P4 form a (logical) routing
tree 7 with the source s4 as root and the destinations in T4 as leaves. Since the attacker can send
active probes on P4, he can infer 7~ using existing topology inference algorithms such as Rooted
Neighbor Joining (RN]J) [33]. Without loss of generality, we assume that 7 is a binary tree, as
non-binary trees can be represented as binary trees by inserting zero-weight edges. Our focus is
thus on inferring the relationship between 7~ and a given target path p := sg — tg. We model
this relationship by a vector W := (W,).c7, where W, denotes the sum metric of the links shared
between edge e € 7 and the target path (W, := 0 if they do not share any link). We will refer to W,
as the shared weight on e for simplicity.

We define a few notations for the ease of presentation. Given a binary tree 7, s5- denotes the
root, by denotes the first branching point from the root, §;7 is the set of leaves located in the left
subtree of 7, and 6§, is the set of leaves in the right subtree of 7. If 7~ only has one leaf ¢, then
617 = 67 = {t}. We denote the shared weight on a subpath v; — v, in 7 by Wy, 0, := Xocy g, We-

The overall algorithm is given in Alg. 1, which prepares the routing tree 7 formed by the attack
paths and then invokes Alg. 2. Alg. 2 is a recursive algorithm. Given a binary tree 7 (initially
T’ = T), each recursion estimates the shared weight on the stem of 77, i.e., edge (sg7, bg~). To this
end, the attacker mimics tri-cast by sending two back-to-back probes from s4 to two destinations
71, 7o from different subtrees of 7’ whenever observing a packet on the target path sg — ¢ (lines 1-
2). The measured delays are used to estimate a subset of the category weights, stored in variables py,
pr, and ps as in line 3. If we measure the category weights by the utilization-based metric, then the
category weights can be inferred by first using the measured delays to estimate the no-queueing
probability on each subset of C := {sq — 71,54 — 73,55 — g} and compute the cast weights
(dcr)crce, which are then plugged into (2) to solve for the category weights. We can adopt other
metrics by modifying the implementation of line 3, as long as the corresponding category weights
can be inferred from end-to-end measurements. The shared weight on edge (sg7, bs~) is estimated
as ps minus the shared weight on s4 — sg, which has been estimated in previous recursions
(line 4). The recursion is then repeated for each subtree of 7. The recursion stops when either (i)
7 has no subtree (line 5), or there is no overlap between the target path and either subtree (line 8).

2For simplicity, here we assume that the attacker can observe packets on the target path as soon as they are transmitted,

and s4, sp have similar distances to the shared links. This assumption will be relaxed by aligning the measurements via
correlation maximization as discussed in Appendix B.1.
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Algorithm 1: Shared_Weight_Inference

input :sa, Ty = {tai}i=1,-- N4> SB, 1B
output:shared weight vector W

1T — Uizt Ny (54 = tai);

2 W« 0;

3 W « Recursive_Inference(7, s, Ta, s, tg, W);

// inferred by RNJ

Algorithm 2: Recursive_Inference

input :77,sa, Ty, sB, tg, previously inferred W
output:updated shared weight vector W
1 randomly pick 7; from ;9 and 7, from §,77;

2 send probes on s4 — 71, s4 — T3 concurrently? with packets monitored on sg — t5;

3 use the measured delays to infer the category weights: p; «— w

,Dr “— w sA—T2,SB—1B s le — Wsy—11.54—12.SBIB
SA—T1.SA—T2.SBoIR SA—T1.SA—T2.SBIR

4 M/(Srr/,brr/) — Ps — VVsA—mrp;
5 if §;77 = 8,7+ then

6 ‘ return;

7 if p; # 0 then

8 if p; = p, =0 then

9 return;

10 if p; > 0 then

11 T Uryes, (b — tai);
12

13 if p, > 0 then

14 T — Utyes, (b7 — tai);

15

16 else

17 T’ UtAie(SW (b — tai);

18 W « Recursive_Inference(7, sa, Ta, s, tg, W);
19 T’ UtAie(SrT/ (b — tai);

20 W « Recursive_Inference(7, s, Ta, s, tg, W);

W « Recursive_Inference(7, s, Ta, s, tg, W);

W « Recursive_Inference(7, sa, Ta, s, tg, W);

SA—T],SB—IB 5
SADT1.SA—T2.SBIB

3.2.2  lllustrative Example. Fig. 3 illustrates the steps of Alg. 2. On the left is the ground truth
topology containing the attack paths from s4 to destinations t41, t42, t4a3 and a target path sg — 1,
where the shared links are marked in green. Alg. 2 infers the locations and weights of these shared
links in 4 steps. In each step, we mark the tree 7 in red and label nodes sy~ and by~ (if any). In
step 1, we mimic tri-cast probes on sq4 — ta1, sS4 — taz (Or ta3), and sg — tp. The results should
show that ps; = 0, indicating that sg — tp has no overlap with s4 — bg~. Then we search both
subtrees. In the left subtree (step 2), we mimic bi-cast on s4 — t4; and sg — tp to find out the
shared weight between sg — tp and sqv — ta;. In the right subtree (steps 3-4), we first mimic
tri-cast on s4 — ta2, SA — tas, and sg — tp to find out the shared weight on s — by (step 3),
and then since p; > 0, we will search the left subtree (step 4) to obtain all the shared weights.

3.2.3 Correctness. Alg. 1 gives consistent estimates of the shared weights in the following sense.
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Sa > ta
Sg Sa Sh > ta

the tg tas

Ground truth

th
Fig. 3. lllustration for Alg. 2 (shared links are marked in green).

Theorem 3.2. If all the shared links have non-zero metrics and the category weights are accurately

inferred in line 3 of Alg. 2, then Alg. 1 will accurately infer the shared weight vector W.

As the number of probes increases, the estimated path-level statistics (i.e., no-queueing probabil-
ities) will converge to their true values, so will the estimated category weights by Theorem 3.1.
Thus, Alg. 1 provides consistent estimates of the shared weights.

3.24 Complexity. Each recursion of Alg. 2 takes O(1) time (excluding probing time) as it only
estimates a constant number of cast/category weights. For the number of recursions, the worst
case is when all the non-zero shared weights are associated with the last edges to the destinations
in 77, in which case Alg. 2 needs to perform a recursion for each edge. As a tree with Ny leaves
(N4: #attack paths) and no degree-2 vertices (implied by RNJ [33]) has at most 2N4 — 2 edges, the
complexity of Alg. 2 is O(N,). The overall complexity of Alg. 1is O(N? log N,), dominated by the
complexity of RNJ [33].

3.3 Parameter Inference

For simplicity, we will refer to the shared portion between each edge e € 7 and the target path as a
shared link (although it can correspond to a sequence of links in the underlying network). Although
the shared weight vector W provides both the locations and the metrics of the shared links, this
information is not sufficient for optimal attack design. Specifically, by Alg. 2, each W, is inferred
under a probing rate that is only twice of the traffic rate on the target path, which is generally
not enough to cause congestion. To design an effective attack, the attacker needs to predict the
impact of higher attack rates on the shared links. Our idea for addressing this challenge is to model
each shared link (detected by W, > 0) as a queue with unknown parameters, and conduct further
probing experiments with varying rates to infer these parameters.

Algorithm 3: Parameter_Inference

input :7,W,sx, Ta, s, tB

output:parameters £ := (&) cq of shared links
1 &0
2 & « Parameter_Update(T,W,sa, T4, s, ts, £);

3.3.1 Algorithm. Let &, denote the unknown parameter (or parameter vector) of the shared link
on edge e € 7. We infer & := (&,)ees through a recursive procedure similar to Alg. 1-2, as shown
in Alg. 3-4.
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Algorithm 4: Parameter_Update

input : 77, W, s4, Ta,sB,tB, previous &€
output:updated &

1 if W(S’T’»b’r’) > 0 then

2 if 8;+ # 6,97 then

3 ‘ randomly choose a destination 7* from the subtree of 7 not sharing any link with sg — tp;
4 else

5 ‘ set 7* to the only destination in 77

6 vary the probing rate on path s, — r* among A (k = 1,...,K) and measure the corresponding

average delay ¢y of path sg — tp;

K _
| Sy Targming ) X (¥ = D (&:40)) "

8 if 64+ = 6,97 then

9 ‘ return

10 if 7* € §;5- then

w || T e Uesy (b > 0

12 if 7* € §,4- then

5 || T Uresy b > 0

14 & «— Parameter_Update(T',W,su, T4, s, tB, £);
15 else

16 if 697 = 6,97 then

17 ‘ return

1 | T Uresy, (by — 1)
19 & «— Parameter_Update(T',W,sa, Ta, s, tB, €);
20 | T« Ures,y (by = 1);
21 & «— Parameter_Update(T',W,sa, Ta, s, tB, €);

Specifically, given a binary tree 7 (initially 7 = 77), each recursion of Alg. 4 estimates the
parameter of the shared link on the stem of 77, if any. If the shared link exists (i.e., Wisyr.bg) > 0),
then either the left or the right subtree does not share any link with the target path as explained
in the proof of Theorem 3.2 (e.g., if the stem (b, by7~) of the left subtree has W, p,,,) = 0, then
the left subtree contains no shared link). Therefore, we can pick a destination 7* from the subtree
without any shared link (line 3). We then conduct a number of probing experiments on s4 — *
with varying rates, while measuring the average delay of the target path (line 6). Under probing
rate Ay, the true average delay of sz — tp is given by

De(fidi) =eot ) dEik), 3)
eespy—T:We>0

where ¢+ denotes the average queueing and transmission delay on the links of sg — tp that are
not shared with s4 — 7* plus the propagation delay on sg — tg, and d(&,; Ax) denotes the average
queueing and transmission delay of the shared link on edge e, which is a function of the link
parameter £, and the probing rate Ax. Using (3) and the measured average delays, we can estimate
the parameter for (s77, by-) through least square fitting (line 7). The process is then repeated for
other edges of 7" through recursions. Note that the selection of 7* and the top-down approach
ensure that the parameters of other shared links on s4 — 7" would have been estimated, leaving
&(sy+,bs+) (and possibly c;+) as the only unknown parameter to estimate in line 7.

3.3.2 Queueing Models. As concrete examples, we consider the following queueing models (1
denotes probing rate):
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e M/M/1: If each shared link is modeled as an M/M/1 queue with residual capacity r, — 4, its
average delay equals [20]

d(reid) = — =, (4)

Te

where r, is the residual capacity before probing, which is the unknown parameter to infer.
o M/D/1:If each shared link is modeled as an M/D/1 queue, the average delay depends on two
unknown parameters [20]

2pe — Ae — A
2pte(pe = Ae = Z)’

where A, is the background arrival rate (excluding probing traffic) and y, is the service rate.
e G/G/1: In general, we can model the shared link as a G/G/1 queue. By Kingman’s formula [20],
the average delay (including service time) can be approximated by

d(Aes pes A) = ®)

- 1 Ae+4 - 1
Al s O i) = o (o P 4 oo ©)
which requires four unknown parameters: the background arrival rate A, the service rate i, the
variance of the interarrival time 0Z,, and the variance of the service time ¢2,. Note that treating
02, as a constant is an approximation as it generally depends on the probing traffic.

Discussion: It is known that the delay in traversing an IP network can be modeled as a deterministic
propagation delay (incorporated into c,+) plus random delays to traverse a series of single-server
FIFO queues [6]. The main restrictive assumptions here are that the background traffic is Poisson
(for M/M/1 and M/D/1), and packet sizes are exponentially distributed (for M/M/1) or constant
(for M/D/1). While these assumptions are not satisfied exactly in practice, studies have shown that
when multiplexing a large number of independent flows as in the case of heavy background traffic,
the packet arrivals tend to a Poisson process, and the queue length distribution tends to that of a
M/D/1 queue [8]. In our evaluations (see Section 5.2), we will stress-test our algorithms derived
from these queueing models in a realistic setting which does not follow these models exactly.

3.3.3 Correctness. Alg. 3 provides consistent estimates of the parameters of the shared links in the
following sense.

Theorem 3.3. Given an accurate estimate of the shared weight vector W, if all the shared links have
non-zero metrics, and the estimated average delay i/ in line 6 of Alg. 4 is accurate and consistent
with the model in (3), then Alg. 3 will accurately estimate the parameters of all the shared links as
long as (i) K > 2 under the M/M/1 or M/D/1 model, and (ii) K > 4 under the G/G/1 model.

3.3.4 Complexity. The number of recursions of Alg. 4is O(N,) (Na: #attack paths) as 7 has O(Na)
edges, i.e., the parameter estimation (lines 2-7) is repeated for O(N,4) times. For K = O(1), solving
the least square fitting problem (line 7) takes O(1) time as it fits an O(1)-variable function at O(1)
points. Thus, excluding the measurement time (which is independent of N,), the complexity of
Alg. 31is O(Ny).

4 OPTIMIZED ATTACK DESIGN

Given the locations and parameters of the shared links, the attacker can use this information to de-
sign optimized attacks. To quantify the potential impact of such attacks, we investigate attack strate-
gies that can cause the maximum performance degradation on the target paths at a bounded cost.
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4.1 Attacker’s Optimization

As a concrete example, we consider the attacker’s objective as maximally increasing the total
average delay of the target paths. Our approach is extensible to other objectives, as demonstrated
in Section 4.3.

Specifically, let W;, denote the shared weight between target path sg; — tp; and edge e € T
(recall 7~ denotes the routing tree formed by attack paths) and &, the corresponding queueing
parameter (if W, > 0), both inferred as in Section 3. Let k. € {0, 1} indicate whether attack path
s4 — lai traverses edge e, f5; > 0 denote the importance of target path sg; — tp;, and 7, denote
the minimum residual capacity of links from s4 to e (excluding e) before attack. Given a total attack
rate A, the attacker wants to find the rate allocation A := (/Tk)i\g‘l that maximizes the weighted sum
average delay of all the target paths, i.e.,

N Na
maxf(A) =3 B > d(Eies Y herk) (7a)
k=1

i=1 ecT:Wie>0

s.t. Z e < A, (7b)

k=1

Na
Z hekik <7, VeeT, (7¢)
k=1

>0 k=1...,Na, (7d)

where d(&.; 1) represents the average queueing and transmission delay of the link shared between
edge e € 7 and target path sg; — t;.

Remark: First, (7a) excludes both the propagation delays and the queueing and transmission
delays at links on the target paths that are not shared with any attack path, because these delays
are not affected by the attack traffic and thus only contribute a constant shift. Moreover, the attacker
does not need to know the exact locations of the shared links and their relationships. To explain
this, let e; denote the link shared between edge e € 7 and path sg; — ;. We observe that: (i) ¢;
will experience the same load ijfl her A from attack traffic regardless of its exact location on e,
and (ii) even if e; and e; for i # j have some overlap (i.e., sharing links in the underlying network),
the load imposed by sg; — tg; on ¢; is part of the background traffic that has been incorporated
into the parameter &;, and vice versa.

4.2 Attack Design

We now derive explicit solutions to (7) under each of the queueing models considered in Section 3.3.2.
When the attacker can destabilize the queue at some shared link, i.e., 3i € {1,...,Ng} and e € T
with W;, > 0 such that Zg:f‘l herAx > rie for some A satisfying (7b)—(7d) (ri: residual capacity of
the shared link e; excluding attack traffic), then the attacker should simply allocate sufficient traffic
to the attack paths traversing e to congest the shared link e; and drive the average delay of path
sgi — tp; (and hence (7a)) to infinity. Thus, below we will focus on the nontrivial case when

Na
max herhie < min Ties Ve € T . (8)
s.t. (7b)—(7d)kz::‘ ¢ i€{1,...Np}:Wie>0

We will show that in this case, the optimal attack strategy is similar under all the considered
queueing models.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 58. Publication date: December 2023.



58:14 Yudi Huang, Yilei Lin, and Ting He

4.2.1 Attack under M/M/1. When modeling each shared link as an M/M/1 queue, plugging (4) into
(7a) yields

Np
Sfuni (A) 1=Zﬂi Z m, %)
k=1""¢

=1 eeT:W;>0 Tie ~
which has the following property:
Lemma 4.1. Under (8), fiym/1(A) is convex in the feasible region of (7).
The convexity of the objective function implies the following property of the optimal solution:

Theorem 4.2. Under (8), the solution A* that maximizes fyy1(A) s.t. (7b)—(7d) must achieve “=>
for N, of the constraints.

Corollary 4.3. Under A < mine7 7. and (8), the solution A* that maximizes fyya1 (4) s.t. (7b)-(7d)
must satisfy Ay = A for some k € {1,...,Na} and A}, =0 forall k" € {1,...,Na}\ {k}.

For a resource-constrained attacker that faces the case in Corollary 4.3, our analysis shows that
the optimal attack strategy is to enumerate all the N4 candidate solutions, each allocating all the
attack rate onto a single attack path, and pick the solution maximizing fym1(4).

4.2.2  Attack under M/D/1. When modeling each shared link as an M/D/1 queue, plugging (5) into
(7a) yields

2 ie_/lie_ZNf he /T
=Y S ot 2 (10)

N,
i=1 e€T:W;e>0 2pie (pie = Aie = Zk:Al hex k)

where p;. and A;, are the service/arrival rate at the link shared between sg; — tp; and e € 7 before
attack. This objective function has a property similar to fyym1:

Lemma 4.4. Under (8) (where ;e := f1;e — Aie), fuyn/1(A) is convex in the feasible region of (7).

The same argument as in the proofs of Theorem 4.2 and Corollary 4.3 leads to a similar attack
design under M/D/1:

Theorem 4.5. Under (8), the solution A* that maximizes fyyp/1(A) s.t. (7b)-(7d) must achieve “=”
for N of the constraints. Furthermore, if 1 < mingcy ., then A* must satisfy /1* = A for some
ke{1,...,Ny}and A}, =0 forallk’ € {1,...,Na}\ {k}.

4.2.3 Attack under G/G/1. When each shared link is modeled as a G/G/1 queue, plugging (6) into
(7a) yields

N _

f 2 _ Np ‘ Aie"‘zkfl ekAk 2 1 X h i 2 2 2

G/G/l( )'_Zﬂl Z 5 : Gaie( l€+Z ek k) +O—sie/lie > (11)
k=1

S e so2hie(ie = Aie = T2 heki)

where we have omitted the average service time (i.e., transmission delay) 1/ ;. as it does not depend
on the attack traffic. This function is again convex as stated below:

Lemma 4.6. Under (8), fi;//1(A) is convex in the feasible region of (7).

By the same argument as in Theorem 4.2 and Corollary 4.3, Lemma 4.6 implies the following
attack design under G/G/1:

Theorem 4.7. Under (8), the solution A* that maximizes f&;//1(A) s.t. (7b)—(7d) must achieve “="
for N4 of the constraints. Furthermore, if A < min,cq 7, then A* must satisfy /1;; = A for some

ke{l,...,Nayand ¥, =0forall k" € {1,...,Na} \ {k}.
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Remark: The above analysis shows that the optimal strategy for a resource-constrained attacker is
to focus all the attack traffic on a single attack path, selected based on the locations and parameters
of the shared links learned through the reconnaissance techniques presented in Section 3.

4.3 Other Attack Objectives

If the total attack rate violates (8), i.e., the attacker can destabilize the queue for at least one shared
link, an objective that can differentiate the different ways of destabilizing queues is needed. As a
concrete example, if the attacker wants to cause the worst congestion on any of the shared links,
he can maximize the following objective function:

Na
max Z her Ak — min Yie | (12)
e€T:AW;e>0 = i€{1,...Np}:W;e>0

subject to constraints (7b)—(7d), which will maximize the maximum excess load on a shared link.
Maximizing (12) s.t. (7b)—(7d) is a maximization of a piece-wise linear convex function under linear
constraints, for which the optimal solution must be achieved at an extreme point of the feasible
region [23]. In our context, this will be a vertex of the polytope defined by (7b)-(7d), where “=”
is achieved for Ny of the constraints. In the special case of A < min.es 7, (7c) is redundant, and
thus the optimal attack must allocate all the attack traffic onto a single path as in the case of
optimizing the objective (7a). Note that the new objective (12) is invariant to the queueing model.
The above result together with the results of Section 4.2 suggests the efficacy of the generic attack
strategy that focuses resources on an attack path selected based on the information learned through
reconnaissance. When the objectives in (7a) and (12) are both applicable, (7a) is usually a more
meaningful objective for the attacker as it represents the end-to-end performance impact across
all the target paths. Nevertheless, these are just concrete examples of the attacker’s objectives to
illustrate the impact of adversarial reconnaissance. What objective is most suitable will depend
on the application scenario and is left to future work.

5 PERFORMANCE EVALUATION

In this study, we evaluate the performance of our algorithms under two types of networks using
NS3 [22], a widely-used discrete-event network simulator. First, we conduct simulations in the
context of an IP-based backbone network (Section 5.1). Then, we validate our results by repeating
the experiments in the context of a 5G Integrated Access and Backhaul (IAB) network (Section 5.2),
leveraging the 5G-LENA module [35] for the radio access network (RAN).

5.1 NS3-based Simulation of Backbone Network

5.1.1 Simulation Setup. We simulate an IP-based backbone network based on GtsCe (GTS Central
Europe) from the Internet Topology Zoo [26], which is a network with 149 nodes and 193 links.
Following [19], we set the link capacities and delays using the dataset from [18], in which all link
capacities are treated as 1 Gbps. In Appendix B.4, we additionally study a case with higher link
capacities, which yields similar results. We generate attack paths by randomly picking a source s4
and Ny destinations {tAi}f\g from the network and computing the shortest paths (in hop count).
We generate target paths {sg — 1p; f\g similarly, while ensuring that each target path shares at
least one link with the attack paths. Here each node in GtsCe represents a point of presence (PoP)
so that multiple source/destination hosts can attach to the same node (through ‘other links’ outside
the simulated network). Fig. 4 shows an example topology formed by the generated paths.

To evaluate the robustness of our approach, we have examined its performance under two types
of background traffic. In the experiments presented here, we generate background traffic by a
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Fig. 4. Sample topology in the simulation of backbone network (N4 = N = 10), with shared links highlighted
as thick lines.

recently proposed methodology from [5], wherein the background traffic rate for each link is pe-
riodically sampled from a log-normal distribution characterized by parameters (y, o). In this study,
we regenerate the rate every 0.5 ms and set o as 1. Following [25], each background packet has a
size randomly selected from 50, 576 and 1460 bytes with probabilities 0.4, 0.2 and 0.4, respectively.
The p-parameter of background traffic is designed to achieve a total utilization that is randomly
distributed in [10%, 50%] prior to attack. In Appendix B.2, we provide additional simulation results
under background traffic generated according to ON-OFF processes as in Section 5.2. Here, we set
N4 = Np = 10, while in Appendix B.3, we additionally study the case of Ny = 20. All the additional
studies yield qualitatively similar results.

We configure each link to have a FIFO queue with a large buffer to guarantee no packet loss
during the simulation. We set the rate on each target path to 50 Mbps with a constant packet size of
1000 bytes. The packet size on each attack path is 50 bytes for shared link detection and 1000 bytes
for parameter inference and attack. We set the importance of target paths to f; = 1 fori=1,..., Np.
All our results are based on 20 Monte Carlo runs.

In shared weight inference (Alg. 1), we consider a packet as not incurring queueing on a path if
its end-to-end delay is smaller than the mean of the 10 smallest delays on this path plus 0.1 ms. We
detect a shared link exists between a target path sg — tp; and an edge e € 7 if the inferred value of
W exceeds 0.005. To reduce correlation across measurements, we maintain a spacing of at least 2
ms between consecutive measurements. Since the distances from s4 and s to the shared links may
be different, we find an offset k by correlation maximization to identify measurements forming a
mimicked multicast, as detailed in Appendix B.1. In parameter inference, we vary the probing rate
among K = 20 values evenly distributed between 0 and 80% of the minimum residual capacity at
shared links, and solve the least square fitting problem (line 7 in Alg. 4) by the trust-region-reflective
least squares algorithm [11].

5.1.2  Results on Reconnaissance. Fig. 5 (a) shows the accuracy in detecting shared links, measured
by the fraction of errors in inferring whether W, is non-zero foralli = 1,...,Ngande € 7.1In
addition, we also evaluate the number of false alarms (detected shared links that do not exist)
and the number of misses (shared links that are not detected) averaged over all the target paths.
Each measurement here corresponds to a mimicked tri-cast. The results show that our algorithms
(Alg. 1-2) can detect the majority of the shared links with some errors (around 20% error if we
collect 5 x 10* measurements for each tri-cast for both calibration and detection). Among the errors,
there are more false alarms than misses.
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Fig. 5. Performance of reconnaissance in backbone network simulation (N4 = N = 10).
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Fig. 6. Performance of attack design in backbone network simulation (N4 = N = 10).

Fig. 5 (b) shows the accuracy of inferring the parameters of the shared links, measured by the
relative error ||& — £*||1/]|1 %]l (£: estimate, £*: ground truth). Although the queues at the links
do not exactly follow any of the assumed queueing models, we can still compare the estimated
parameters with the best-fitting parameters based on per-link measurements. The results show that:
(i) although the real queueing behavior does not exactly fit any of the assumed queueing models,
the inference results based on these models are reasonable, (ii) while the link capacities (‘") and the
residual capacities (‘r’) can be inferred with good accuracy (< 10% of error), there is notable error
in estimating the background traffic loads (‘1’), and (iii) G/G/1-based estimation performs slightly
worse due to the difficulty of jointly estimating more parameters. There are two other parameters
(variance of interarrival/service time) under G/G/1, for which the trend is similar. Although the
inference process involves active probing, each probing experiment only lasts for a short period
(e.g., 0.8 seconds for 5000 measurements, each corresponding to a packet on a target path).

5.1.3 Results on Attack Design. Since the original design of cross-path attack [9] only ensures to
use some attack paths that share at least one link with the target paths, we compare the proposed
attack design with the following intuitive rate allocation strategies over such attack paths®:
(1) ‘Evenly’: A natural strategy is to evenly split the total attack rate A among all the attack paths
that share at least one link with the target paths.
(2) ‘Random’: Given that the optimal strategy is usually to focus on one path (see Section 4.2),
the attacker may also allocate all the rate to a randomly selected attack path.
(3) ‘Max share’: The attacker chooses the attack path traversing the maximum number of shared
tree links, i.e., t} = max,, er, {Xeer hekﬂ(ng Wie > 0)} (I(+): indicator function).

3The set of attack paths sharing at least one link with the target paths can be inferred by a simple reconnaissance method
proposed in [9]. Here, we use the true set for a conservative comparison.
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The results presented in Fig. 6 show that despite containing notable error, the information
obtained by our reconnaissance algorithms is still useful for attack design. Here, ‘optimal’ de-
notes the optimal attack designed based on the true locations/parameters of the shared links, and
‘MM1’/*'MD1°/°GG1’ denotes the proposed attack design based on the parameters inferred from
10,000 measurements under the model of M/M/1 or M/D/1 or G/G/1. Fig. 6 (a) shows the probability
that the attack can congest (i.e., destabilize) at least one shared link. The results show that: (i)
the proposed reconnaissance-based optimized attack design (‘(MM1’, ‘MD1’, ‘GG1’) can achieve
near-optimal impact despite the notable estimation errors, (ii) the non-optimized attack strategies
based on [9] (‘random’, ‘even’) are much less effective, and (iii) knowing the locations of shared links
(‘max share’) helps but is not enough. A closer examination shows that the estimated parameters
can reveal which attack paths traverse the weakest shared link (the one with the minimum residual
capacity), even if the estimated parameters are inaccurate. In Fig. 6 (b), we evaluate the impact of
attacks on the delays of the target paths, computed over 10,000 measurements. As the objective
of delay maximization is only meaningful at attack rates that are within the stability region, we
combine multiple attack designs as follows: when A < min,c7 7, which satisfies the condition of
Corollary 4.3, the attacker will send all the attack traffic on the attack path predicted to maximize
the delay increase over all the target paths; when A > min.c7 7., the attacker will maximize the
maximum excess load (12) as in Section 4.3. We observe that (i) the proposed attack designs produce
near-optimal delay increase regardless of the assumed queueing model, and (ii) there is a wide
variation among the impacts of different cross-path attacks, where the carefully-designed attacks
can generate a substantially higher performance impact than the straightforward attacks. These
observations signal the importance of considering intelligent attack models in security analysis.

5.2 NS3-based Simulation of Integrated Access and Backhaul (IAB) Network

5.2.1 Simulation Setup. To test the generalizability of our observations, we repeat our experiments
in the scenario of an IAB network with multiple slices. IAB network is a form of backhaul for 5G
[3], where base stations (BS) are implemented as IAB nodes, among which only a subset of nodes
(called IAB donors) are connected to the 5G core through fiber. An IAB node has both a DU and a
mobile termination function. Thus, it can function not only as a traditional BS for UEs, but also as a
relay for other IAB nodes through millimeter wave. In the process of downlink transmission, parent
IAB nodes relay traffic to their child IAB nodes, and the process is reversed for uplink transmission.
We simulate the IAB-UE links by 5G-LENA [35], which is a pluggable module in NS3 for simulating
5G RAN, and the rest of the links by point-to-point links*.

Following [3], we consider an IAB network with 19 BSs in a hexagonal topology with one IAB
donor at the center as illustrated in Fig. 7 (a). The network is shared by a slice A containing attack
paths, a slice B containing target paths, and other slices treated as background traffic. We focus on
downlink communication, where packets enter the IAB network through the IAB donor (node 2)
and are then routed towards their destination UEs along a routing tree rooted at the donor. The
links in the routing tree are highlighted as thick lines in Fig. 7 (a) and also depicted in Fig. 7 (b).
We assume that there is at least one UE in slice A in each cell, and the UEs in slice B are randomly
distributed among the cells. According to [3], we assign each slice a separate Bandwidth Part (BWP)
for the IAB-UE links. We set the numerology in 5G-LENA to 5.

Following (3, 38], we set the capacity of IAB-IAB links to 2 Gbps, IAB-UE links to 0.5 Gbps, and
fiber links to 100 Gbps. We limit the total flow rate to each cell in slice A to 1 Gbps. We set the
flow rate for each UE in slice B to 0.1 Gbps to represent emerging applications like panoramic

4Although the IAB-IAB links are supposed to be through millimeter wave [3], this feature is not officially supported in
NS3 to our knowledge, and hence we mimic them by point-to-point links with lower capacities than the fiber links.
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Fig. 8. Performance of reconnaissance in IAB network simulation (N4 = 19, Ng = 10).

video streaming [1, 13]. Following [24, 39], we independently generate background traffic on each
IAB-IAB link according to an ON-OFF process. The duration of each ON period follows the Pareto
distribution with shape parameter set to 2.04 and scale parameter (o set to the average length of
13 packets. The duration of each OFF period follows the same distribution with a different scale
parameter {opr, tuned to yield a link utilization randomly drawn from [15%, 35%]. To detect no
queueing events for shared weight inference, we measure the delays during light traffic and set a
threshold based on the 30 rule. The rest of the setup is the same as that in Section 5.1. In the sequel,
we will present our results in the case of Ng = 10. More results are given in Appendix C.

5.2.2  Results on Reconnaissance. First, we evaluate the accuracy of shared link detection as in
Fig. 5 (a). The error in shared link detection is shown in Fig. 8 (a). The results show similar
observations as Fig. 5 (a): the proposed algorithms (Alg. 1-2) can detect the shared links with good
accuracy (< 5% error), and the errors are mostly due to false alarms.

In Fig. 8 (b), we evaluate the accuracy of parameter inference under each of the queueing models
as in Fig. 5 (b). Similar to Fig. 5 (b), we observe that (i) the residual capacity (‘r’) and the capacity
(‘1) can be estimated more accurately than the load (‘1), and (ii) G/G/1-based estimation performs
slightly worse. The main difference from Fig. 5 (b) is that the errors become larger. This is because
the delays in the IAB network are affected by not only queueing in the backhaul but also MAC
scheduling at the IAB-UE links. We also notice that the proposed parameter estimation method can
help detect false alarms in shared link detection, as detailed in Appendix D.
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Fig. 9. Performance of attack design in IAB network simulation (N4 = 19, Ng = 10).

5.2.3 Results on Attack Design. We evaluate our attack design in comparison with the same
benchmarks as in Section 5.1.3. The results, presented in Fig. 9, show similar observations as Fig. 6:
(i) the attacks designed based on the results of our reconnaissance algorithms (‘MM1’, ‘MD1’,
‘GG1’) perform close to the optimal in terms of both the probability of congestion and the delay
increase, and (ii) the proposed optimized attacks generate a higher performance impact than the
straightforward attacks according to [9], especially under a limited total attack rate. Compared to
Fig. 6, the gap between the optimized attacks and the baselines is smaller in Fig. 9. This is because
on the average more links are shared between the attack paths and the target paths in the IAB
network due to the single ingress point (the IAB donor), as shown in Fig. 7, making it easier to
impact the target paths by launching attack on randomly selected attack paths.

6 CONCLUDING DISCUSSION

We studied a newly identified stealthy DoS attack called cross-path attack, with focus on quantifying
the maximum impact of such attacks through optimized attack design. To this end, we developed
a novel extension to network topology inference that allows the attacker to consistently estimate
the locations and parameters of the links shared between the attack paths and the target paths
by only passively monitoring the target paths, and provided an efficient method to compute the
optimal attack rate allocation based on the estimated information. Our optimized attack achieved a
much greater performance impact than its non-optimized counterparts in high-fidelity simulations.
Besides quantifying the maximum impact of cross-path attacks, our work also sheds light on
possible defenses. The root cause of such attacks is the sharing of network resources across flows of
different levels of security. Although completely isolating flows (e.g., by assigning each flow a fixed
share of bandwidth) can prevent cross-path attacks, it also sacrifices the benefits of resource shar-
ing such as throughput elasticity and higher resource utilization. Meanwhile, allowing unlimited
resource sharing will make the network vulnerable to malicious abuses of the shared resources as
demonstrated in our work. Intuitively, an effective network design should strike a balance between
the benefit of elastic resource allocation and the risk of abused elasticity. Determining the right
balance will depend on a variety of factors, such as the capacity of the resource, the criticality of
the supported application, and the perceived level of threat, which may vary over time. Due to
the inherent ambiguity between attack traffic maliciously consuming resources and normal bursty
traffic genuinely in need of more resources, the network will face an inevitable tradeoff between
performance and security, the detailed investigation of which is left to future work.
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A  PROOFS OF THEOREMS

Proor oF THEOREM 3.2. First, we prove that given accurate estimates of the category weights,
the shared weight on the stem of each tree considered by Alg. 2 will be accurately inferred. Since
s4 — 11 and s4 — 1, branches at by, p; is the shared weight on sy — bg~. Moreover, as Alg. 2
works in a top-down manner, the shared weights on edges above sz~ must have been inferred before
considering 7. Thus, p; — Wy, s, (line 4) must be the true shared weight on edge (s7-, b7~).

Moreover, we prove that every edge with non-zero shared weight will be the stem of a tree
considered by Alg. 2. After inferring the shared weight on the stem of 77, Alg. 2 will perform
recursion for both subtrees of 7 to consider the remaining edges except for two cases. The first
case is when 8,7 = 8,4~ (line 5), in which case 7 has no other edge. The second case is when
ps # 0 and p; = 0 (or p, = 0), in which case we can skip the left (or right) subtree of 7 as all its
edges have zero shared weight. To see this, suppose that p; # 0 and p; = 0, but 3 edge e in the left
subtree of 77 with W, # 0. Let ¢’ be the stem of the left subtree. Suppose that sg — tp intersects
with s4 — by~ at node v; (which exists because ps # 0), and intersects with e at node v, (which
exists because W, # 0). Then there exist two routing paths between v; and v;, one follows 7~ and
traverses e’, and the other follows sg — tg without traversing e’ (as p; = 0), which contradicts
with the unique route assumption in Section 2.1. Similar argument holds for ps # 0 and p, =0. O

Proor oF THEOREM 3.3. First, we argue that all the shared inks will be considered in parameter
estimation. As the given weight vector W is accurate and all the shared links have non-zero metrics,
every edge e containing a shared link will have W, > 0, and thus will be considered in the parameter
estimation when e is the stem of the tree 7 under consideration. As the recursion examines the
edges of 7" in a top-down manner, it remains to show that when W, 5,,) > 0, we can safely skip
one of the subtrees of 7 as long as §jq# # 5, (otherwise 7 only has one edge, i.e., the stem).
This is because conditioned on W(s,, 5,,) > 0, sp — tp cannot intersect with both of the subtrees of
7', or there will be a contradiction with the unique route assumption in Section 2.1.

Next, we argue that the parameter for each shared link considered in lines 2-7 of Alg. 4 will
be estimated accurately. We start by considering the top-most shared link, assumed to reside on
an edge e € 7. Our selection of the probing destination 7* ensures that it is the only shared link
between sg — tp and s4 — 77, for which the objective of the least square fitting in line 7 is reduced
to Zlk(:l (Vi — coe —d (&g /ik))z. Let (7., £;) denote the ground truth parameters. By our assumption,
(ci., &) achieves a zero fitting error. Suppose that the estimated parameters (C;+, &) # (ci.. &).

Then (é,+, :fe) must also achieve a zero fitting error, i.e.,
b+ d(Eps i) = ¢ +d(E5 7)), k=1,...,K. (13)

Under M/M/1, plugging (4) into (13) implies that A (k = 1, ..., K) must all satisfy

1 1
b+ ——= =cC+ ——. (14)

fe— A re—A

For K > 2, this leads to a contradiction as (14) is a quadratic equation in A with at most two distinct
solutions. Similarly, under M/D/1, plugging (5) into (13) gives a quadratic equation of 1 with at
most two distinct solutions, contradicting with K > 2; under G/G/1, plugging (6) into (13) gives
a quartic equation of A with at most four distinct solutions, contradicting with K > 4. The same
argument applies to every other shared link, as our selection of the probing destination ensures
that when estimating &, all the other shared links between the target path and the probing path
are above e, whose parameters should already be accurately inferred by induction. O
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ProoF OF LEMMA 4.1. As fyym/1 1S a non-negative linear combination of functions of the form
_ Na  _ _
g1(A) = —<——, where p — Y, g;A; > 0, it suffices to prove that g; (1) is convex.
i=1

Na

P—2:4 qidi
- Na  _ - -
To this end, it suffices to show that for any A; (j = 1, 2) satisfying p— 3, qid;i > 0,91(A1)+g1(A2) >
i=1
291 ( ’1‘;’12 ), since a continuous function that is midpoint convex must be convex [15]. The proof
completes by (& means equivalence):

1 1 2
+ =

Na

N o N s Lo
p - Z:l Qi/lli P - Zl inZi p — Z qi 112 2i
= i= —
Na Na 5 -
T A i+ Ao;
< (; qilli)(; Qi%)
N & A+ A Na Na
7 1+ A - -
+ (; inZi)(; i~ > 2(; q,'/hi)(; qidai)
Na Ny N N
& O gk + (O qie)? 2 200" q:idi) () qilas)
= = i=1 i=1

N N 2
A _ A _
S (Z qitii — Z QiAZi) > 0. (15)
i1 =1

]

~

ProoF oF THEOREM 4.2. By Lemma 4.1, the attacker’s optimization is a maximization of a convex
function over a polytope defined by (7b)-(7d), for which the optimal solution must be achieved at
an extreme point of the feasible region [23]. In our context, this will be a vertex of the polytope,
which achieves “=” for N4 of the constraints in (7b)—(7d). O

ProoF oF COROLLARY 4.3. Under A < min,cq 7, the constraint in (7c) can be ignored. The
remaining constraints define a polytope with only N4 non-zero vertices, each in the form of
/iz = A and /T;:, =0 forall k¥’ € {1,...,Na} \ {k}. The optimal solution must be one of them by
Theorem 4.2. O

ProOF OF LEMMA 4.4. As fyp/1 is a non-negative linear combination of functions of the form
Na _
Zﬂ -A- ;1 ini
g2(A) == SR (16)
A —
2p(p—A— '21 qiki)
im

Na _ -
where y — A — 3 qiAd; > 0, it suffices to prove that g2(A) is convex. To this end, note that
i=1

1 1 1

() =+ =t o), (17)
2(p—A- ;1 qidi)

2u 2

where g; () is defined as in the proof of Lemma 4.1 with p := u — A. Since g; (A) is convex, g»(A) is
convex. O
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ProoF oF LEMMA 4.6. Function fg,g/1 is a non-negative linear combination of functions of the
form

gs(h) = (07 +9) (13

with 6 := p + %\ giAi, where § > 0,¢t — 6 > 0,and s > 0. Thus, it suffices to prove that g3(A) is
convex. =
To this end, note that
ags _ 360%(t — 0) + 6° LSt
a0 (t —0)? (t—0)2
g3 60 20° 2st

02 -0 -0 T u—ep "

i.e., g3 is an increasing convex function of 6. Since 0 is a linear function of A, g5 is a convex function
of A. O

>0, (19)

(20)

B SUPPLEMENTARY EVALUATION RESULTS FOR BACKBONE NETWORK
B.1 Measurement Calibration in NS3 Simulation of Backbone Network

As discussed in Section 5.1.1, during shared weight inference, we need to estimate an offset x
between measurements on a pair of probed attack paths (pai, pa2) and measurements on a target
path pp to mimic tri-cast, as the delays from s4 and sp to the links shared by all these paths (if any)
may be different. We use the following heuristic to estimate .

We send a flow on each probed attack path to collect a sequence of end-to-end delay measure-
ments. We also collect end-to-end delays on the target path in the meanwhile. For the target path,
we directly transform the delay measurements into a binary sequence of queueing indicators using
the threshold given in Section 5.1.1, denoted as {q} I, where q5 = 1if the t-th measurement is
detected to experience queueing and g = 0 otherwise. Since pai, paz share the same source s4, we
combine the delay measurements on pai, paz by adding the delays of the i-th packets from both
paths, and then transform the combined delay measurements into a binary sequence {g’,}_, as for
{g4}]_,. To find x so that the i-th packet on pp and the (i + )-th packet pair on (paj, paz) traverse

the shared links (if any) at approximately the same time, we maximize the correlation between
{a5 thl and {qg}tT:l by solving
min(T,T—x)

qpqa"- (21)

i=max(1,1-k)

¥ 1
o 1?;%,?:;%1 min(T,T — k) — max(1,1 —x) +1
We then identify the i-th packet on pp and the (i + k*)-th packet pair on (pa1, paz) as a mimicked
tri-cast.

B.2 NS3 Simulation of Backbone Network under an Alternative Background Traffic
Model

In Section 5.1, we showed the results in the scenario where the background traffic follows log-
normal distribution. In this section, we validate our algorithms under background traffic generated
according to ON-OFF process [24, 46, 48]. More specifically, the duration of each ON period is
sampled from a Pareto distribution with the shape parameter as 2.04 and the scale parameter
as the average length of 13 packets. The duration of each OFF period is sampled from the same
distribution with a different scale parameter, configured to result in the same utilization of each
link as the values used in Section 5.1 for log-normally distributed background traffic. The results
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Fig. 10. Performance of reconnaissance in backbone network simulation under ON-OFF background traffic
(N4 = N = 10).
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Fig. 11. Performance of attack design in backbone network simulation under ON-OFF background traffic
(N4 = N = 10).

for reconnaissance are shown in Fig. 10 as the counterpart of Fig. 5, while the results for attack
design are given in Fig. 11 as the counterpart of Fig. 6. We observe that the results under ON-OFF
background traffic are similar to those in Section 5.1, which confirms the robustness of the proposed
methods under different background traffic patterns.

B.3 Evaluation Results for NS3 Simulation of Backbone Network with Ny = 20

In Section 5.1, we evaluate our algorithms with Ny = 10. A larger N4 will result in fewer links
on each edge in the routing tree 7°, which makes it harder for Alg. 1 to accurately detect the
shared links. To test its impact, we evaluate our algorithms with N4 = 20 in the same scenario as
in Section 5. The results are given in Fig. 12-13, as the counterparts of Fig. 5-6. We observe that
(i) the performance of reconnaissance slightly degraded, but (ii) the attack design still achieved
significantly better performance than the baselines (i.e., “max share”, “random”, and “evenly”). This
result demonstrates the robustness of our methods to the number of attack paths. We have also
verified that the performance of our methods is not sensitive to the number of target paths.

B.4 Evaluation Results for NS3 Simulation of Backbone Network with 50 Gbps Link
Capacity

Building on Section 5.1.1, where the link capacity is normalized to 1 Gbps, this section validates

those results under increased link capacities. Specifically, we repeat the NS3 simulation for the

backbone network GtsCe with a link capacity of 50 Gbps. To accommodate this, the rate for

background traffic is regenerated every 0.05 ms, compared to the previous 0.5 ms in Section 5.1.1.

Moreover, the flow rate on the target paths has been adjusted from 50 Mbps to 2500 Mbps, and the
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Fig. 14. Performance of reconnaissance in backbone network simulation (N4 = Np = 10).

background traffic rates have been increased by 50 times too, while all other settings remain the
same as Section 5.1.1. Results from a single Monte Carlo run are presented below.

The reconnaissance results as the counterpart of Fig. 5 are given in Fig. 14, in which we observe
similar trends as in Fig. 5. We then assess the rate at which each attack method induces congestion
on at least one shared link, as a counterpart to Fig. 6 (a). For this specific Monte Carlo run, the
benchmarks “optimal” and “max share”, and all the proposed methods (i.e., “MM1”/“MD1”/“GG1”)
begin to induce congestion when the total attack rate exceeds 48.7% of the link capacity. At this rate,
“random” starts exhibiting a non-zero (0.3) probability of causing congestion. Moreover, “random”
only reaches a 0.5 congestion probability even when the attack rate surpasses 70% of the link
capacity. In contrast, “evenly” fails to induce congestion even when the attack rate reaches 80% of
the link capacity.
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Fig. 16. Performance in detecting shared links in IAB network simulation.

As the counterpart of Fig. 6 (b), we analyze the average delay induced by various attack designs
in Fig. 15, computed over 30, 000 packets on the target paths. We observe that “max share” and
all the proposed methods (i.e., “MM17/“MD1”/“GG1”) achieve the same performance as “optimal”
since they all correctly identify the attack path traversing the weakest shared link®. Notably, the
proposed methods markedly outperform the non-optimized benchmarks “random” and “evenly”.
These findings, which are consistent with Fig. 6 (b), underscore the efficacy of our proposed methods.

C SUPPLEMENTARY EVALUATION RESULTS FOR INTEGRATED ACCESS AND
BACKHAUL (IAB) NETWORK

In this section, we will present the supplementary experimental results for Section 5.2 in the case
of Np = 5. The previously presented results under Ny = 10 are also shown here for comparison.

C.1 Results on Reconnaissance

In Fig. 16, we present the performance of shared link detection for different numbers of target
paths. We observe that the results are insensitive to the number of target paths Np. Next, we show
the results of parameter estimation for the detected shared links, as given in Fig. 17. Again, the
observations under different values of Np are qualitatively similar.
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C.2 Results on Attack Design

We first evaluate the probability that the proposed design with objective (12) can destabilize at least
one queue, as shown in Fig. 18. As before, the results for Ng = 5 and N = 10 show the same trend.

Finally, we compare the delays of target paths under various attack designs in Fig. 19-20, where
Fig. 19 (a) and Fig. 20 (a) show the overall average delay (averaged over all the target paths),
while Fig. 19 (b) and Fig. 20 (b) show the maximum average delay (maximized over all the target
paths). Similar to the results discussed in Section 5.2.3, we observe that the proposed attack designs
generate higher impacts than the benchmarks, regardless of the number of target paths and the

The absolute delays in Fig. 15 are smaller than those in Fig. 6 (b) due to the increased link capacity.
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Fig. 20. Delay increase under different A in IAB network simulation (N = 10).

performance metric (either the average delay over all the target paths or the average delay of the
worst-performing target path).

D DISCUSSION ON DETECTING FALSE ALARMS THROUGH PARAMETER
ESTIMATION

In this section, we will discuss an observation that the proposed parameter estimation method
(Alg. 3-4) can help detect the false alarms in shared link detection (based on Alg. 1-2).

In the case of a false alarm, the “shared link” under consideration does not actually exist, and thus
varying probing rate (line 6 in Alg. 4) will not impact the average delay of the target path under
consideration as expected. This will manifest as an abnormally large estimated link capacity, which
can then be used to detect that this “shared link” does not exist. To see the reason, let us consider
the example in Fig. 7. If Alg. 1 falsely detects (2, 6) to be a shared link for the target path 2 — 43 and
Alg. 4 tries to estimate its capacity by varying probing rate on the path 2 — 25, then the best-fitting
capacity will be infinity as the average delay on 2 — 43 will not increase with the probing rate
on 2 — 25. Even if the probing path and the target path have shared links, false alarms may still
be detected. For example, suppose that link (5, 18) in Fig. 7 is falsely detected as a shared link for
the target path 2 — 46, and 2 — 37 is selected as the probing path for estimating its parameters,
then the delay increase on 2 — 46 caused by the probing on 2 — 37 will be captured by the delay
increase on the truly shared links (2, 14) and (14, 5) (if they are detected), still making the best-fitting
capacity of link (5, 18) infinity. This observation together with the fact that there are fewer misses
than false alarms (see Fig. 8 (a)) allows our solution to detect the shared links with high accuracy.
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