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Abstract

The modern digital world is increasingly becoming multi-
modal. Although multimodal learning has recently revolu-
tionized the state-of-the-art performance in multimodal tasks,
relatively little is known about the robustness of multimodal
learning in an adversarial setting. In this paper, we intro-
duce a comprehensive measurement of the adversarial robust-
ness of multimodal learning by focusing on the fusion of in-
put modalities in multimodal models, via a framework called
MUROAN (MUltimodal RObustness ANalyzer). We first
present a unified view of multimodal models in MUROAN
and identify the fusion mechanism of multimodal models
as a key vulnerability. We then introduce a new type of
multimodal adversarial attacks called decoupling attack in
MUROAN that aims to compromise multimodal models by
decoupling their fused modalities. We leverage the decou-
pling attack of MUROAN to measure several state-of-the-art
multimodal models and find that the multimodal fusion mech-
anism in all these models is vulnerable to decoupling attacks.
We especially demonstrate that, in the worst case, the decou-
pling attack of MUROAN achieves an attack success rate of
100% by decoupling just 1.16% of the input space. Finally,
we show that traditional adversarial training is insufficient to
improve the robustness of multimodal models with respect
to decoupling attacks. We hope our findings encourage re-
searchers to pursue improving the robustness of multimodal
learning.

Introduction

Multimodal learning has been gradually gaining focus of the
research community over the past few years. The approaches
for multimodal learning have come a long way from simple
models re-purposed for multimodal tasks, to deep learning-
based models that are specifically designed for multimodal
tasks (referred to as Deep Multimodal Models or DMMs
throughout this paper). For example, recent advances in this
field have led to several state-of-the-art DMMSs, such as
VILBERT (Lu et al. 2019), VisualBERT (Li et al. 2019),
MMBT (Kiela et al. 2019), and Pythia (Jiang et al. 2018),
while also engendering the collection of several multimodal
datasets, such as Hateful Memes (Kiela et al. 2020), Visual
Question Answering (VQA) (Goyal et al. 2017), and Vi-
sual Commonsense Reasoning (VCR) (Zellers et al. 2019).
Due to the success of these DMMs on standard benchmarks,
there have been many encouraging attempts to adopt them

to real-world and safety-critical scenarios, such as assistance
to blind people (Gurari et al. 2018), hate-speech moderation
on social media (Kiela et al. 2020), as well as emerging do-
mains, such as Google MUM search (goo 2021). However,
in spite of the recent advances, the robustness of DMMs re-
mains poorly understood.

A significant difference between DMMs and their uni-
modal counterparts is the fusion mechanism in DMM:s. This
fusion mechanism fuses multiple input modalities to learn
their joint representation, which is then processed by sev-
eral fully connected layers to predict classification scores
depending on the nature of the corresponding downstream
tasks. Different DMMs (Lu et al. 2019; Kiela et al. 2019;
Li et al. 2019; Jiang et al. 2018) employ different strate-
gies to learn strong fusion embeddings of their input modal-
ities. This fusion mechanism presents new challenges to-
wards studying the adversarial robustness of these models.

Recently, several unimodal adversarial attacks for deep
unimodal models have been formulated to study their robust-
ness. For example, unimodal adversarial images (Szegedy
et al. 2013; Madry et al. 2017; Papernot et al. 2016; Wicker,
Huang, and Kwiatkowska 2018; Carlini and Wagner 2017,
Wang et al. 2020) and unimodal adversarial text (Alzantot
et al. 2018; Li et al. 2018; Jin et al. 2019; Alzantot et al.
2018; Ren et al. 2019) have been widely studied, which
have exposed numerous vulnerabilities in the deep unimodal
models. However, these attacks cannot be directly employed
to study the robustness of their deep multimodal counter-
parts. First, since these attacks can only be applied to single
modalities, they do not affect the fusion mechanism that is
fundamental to DMMSs. Second, since DMMSs combine sev-
eral different types of modalities (e.g. image, text, speech,
etc.), a single unimodal attack cannot be used for all those
modalities. We note that formulating comprehensive meth-
ods to study the robustness of DMMs is of utmost impor-
tance to adopting them in real-world systems, such as VQA.

To address these challenges, in this work, we first high-
light how multimodal adversarial attacks based on decou-
pling the input modalities in DMMSs can easily compro-
mise these models. Then, we introduce a framework called
MUROAN to study the robustness of DMMs based on de-
coupling of modalities, thereby revealing vulnerabilities in
the fusion mechanism of existing DMMs. MUROAN uses a
unified view of DMMs to expose its key vulnerability. Then,



Multimodal Decoupling
via MUROAN

Figure 1: By decoupling the input modalities through re-
moval of a few datapoints in the image via MUROAN frame-
work, the multimodal model predicts a wrong answer class:
Nothing, indicating that decoupling attack can easily com-
promise multimodal models.

we introduce a new type of adversarial attacks called de-
coupling attack in MUROAN, wherein the objective of its
attack algorithm is to decouple the input modalities of mul-
timodal models to induce a misclassification. As depicted
in Figure 1, a decoupling of the image and text modalities
through occlusion of a few datapoints in the image induces
a misclassification. In addition, we leverage the MUROAN
framework to measure several state-of-the-art DMMs. We
find that the seemingly straightforward decoupling attack
of MUROAN is in fact highly effective in compromising
DMMs.
Our contributions in this work are as follows.

* We present a unified view of DMMs to explore their vul-
nerabilities, and identify the fusion mechanism of these
models as a critical component for their robustness anal-
ysis.

* We propose a novel framework called MUROAN that
consists of the unified view to exploit the fusion mech-
anism and a decoupling attack algorithm for compre-
hensively studying the adversarial robustness of DMMs.
MUROAN directly focuses on the fusion mechanism of
DMMs by decoupling the input modalities that are fused
together.

* We use MUROAN for a comprehensive robustness anal-
ysis of state-of-the-art DMMs under several dataset and

model settings. Our experiments show that, in the worst
case, the decoupling attack in MUROAN can achieve an
attack success rate of 100% after decoupling of 1.16% of
input modalities of DMMs, while the unimodal adversar-
ial attacks overestimate the robustness of DMMs.

We are open-sourcing our code to encourage research in
training DMMs robust to decoupling attacks: http://github.
com/Security AndPrivacyResearch/mda.

Background

In the following, we give an overview of the field of mul-
timodal learning as well as the state-of-the-art unimodal
adversarial attacks used for the robustness analysis of uni-
modal models.

Multimodal Learning

The renewed interest in multimodal learning can be at-
tributed to more powerful models (Devlin et al. 2018;
Vaswani et al. 2017) that can learn strong fusion of in-
put modalities and the availability of several multimodal
datasets (Goyal et al. 2017; Zellers et al. 2019; Kiela et al.
2020). These models and datasets have resulted in DMMs
achieving impressive results on standard benchmarks. Much
of the DMMs that have achieved impressive performances
can be categorized under the following categories.

Traditional Fusion-based Models. Several DMMs have
attempted to address how to effectively combine multimodal
information (Baltrusaitis, Ahuja, and Morency 2018; Bruni,
Tran, and Baroni 2014; Lazaridou, Pham, and Baroni 2015).
Feature concatenation is one of the most preferred fusion
techniques in these models, while some of the models use
other feature fusion techniques such as element-wise prod-
uct. Since these models showed impressive performances on
several multimodal benchmarks, they are considered strong
baselines for many multimodal tasks.

Transformer-based Fusion Models. Recently, the BERT
model (Devlin et al. 2018), a type of transformer (Vaswani
et al. 2017), has been shown to achieve state-of-the-art per-
formance (Kiela et al. 2019; Li et al. 2019; Su et al. 2019)
on multimodal benchmarks, by learning the interaction be-
tween the input modalities via self-attention over many dif-
ferent layers. For example the MMBT (Kiela et al. 2019)
model fuses image embeddings in the form of pooled fil-
ter maps from a ResNet model and word tokens as two
segments of BERT (Devlin et al. 2018). Similarly, the VL-
BERT (Suet al. 2019) model fuses regions of interest (ROIs)
of an image with word tokens as two segments of BERT. As
shown by these works, the transformer based DMMs out-
perform their unimodal counterparts in multimodal tasks by
quite a large margin.

Unimodal Adversarial Attacks

The discovery of unimodal adversarial attacks has engen-
dered active research in the safety and robustness of uni-
modal deep learning models. In this section, we discuss im-
portant unimodal adversarial attacks on images and text.
Unimodal Adversarial Image. A large body of adversar-
ial attacks have been introduced in recent times that mainly
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focus towards robustness analysis of computer vision mod-
els. For example, several works, such as fast-gradient at-
tacks (Goodfellow, Shlens, and Szegedy 2014; Liu et al.
2016), optimization-based methods (Szegedy et al. 2013;
Carlini and Wagner 2017), and other such methods (Pa-
pernot et al. 2016; Nguyen, Yosinski, and Clune 2015),
have been proposed successfully. Recently, ensemble based
attacks (Croce and Hein 2020) have been show to more
deeply reveal vulnerabilities in unimodal models. Further-
more, alarmingly critical real-world attacks such as adver-
sarial patches (Brown et al. 2017) have been introduced re-
cently, which cast serious questions on the safety of these
vision models.

Unimodal Adversarial Text. Recently, some works have
focused on unimodal adversarial text to study robustness of
Natural Language Processing (NLP) models. While earlier
works (Li et al. 2018; Gao et al. 2018; Eger et al. 2019) ef-
fectively employed character level perturbations to perform
adversarial attacks, more recent works have found word re-
placement strategies (Jin et al. 2019; Alzantot et al. 2018;
Ren et al. 2019) to be largely effective in compromising
these models. Recent works (Iyyer et al. 2018; Zhao, Dua,
and Singh 2017; Ribeiro, Singh, and Guestrin 2018) have
also demonstrated how sentences can be merely reconfig-
ured to pose serious adversarial threats.

Recently, some studies have emerged that discuss adver-
sarial attacks on DMMs (Tian and Xu 2021; Li et al. 2020).
However, these studies do not focus on exploring the vulner-
abilities of the fusion mechanism to adversarial attacks. In
this work, we specifically focus on comprehensively study-
ing the adversarial robustness of DMMs via a type of mul-
timodal adversarial attack called decoupling attack, that fo-
cuses on decoupling the input modalities of a DMM to com-
promise the fusion mechanism of these DMMs.

Decoupling Input Modalities

Our primary objective in this section is to demonstrate
how easily decoupling of input modalities can compromise
DMMs. To this end, we performed a preliminary experiment
for comparing the effect of decoupling attacks on DMMs
against traditional unimodal adversarial attacks.

We randomly selected 100 samples from the VQA
dataset (Antol et al. 2015) and the pretrained Pythia
DMM (Jiang et al. 2018) to conduct our preliminary study.
Several previous unimodal attacks (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017; Kurakin, Goodfellow, and
Bengio 2016; Moosavi-Dezfooli, Fawzi, and Frossard 2016;
Papernot et al. 2016; Xie et al. 2019; Dong et al. 2018) have
revealed the nature of different vulnerabilities in traditional
unimodal model. In this experiment, we use the state-of-the-
art attack called PGD attack (Madry et al. 2017) as the tra-
ditional, unimodal adversarial attacks. Next, we manually
studied the 100 samples and occluded datapoints that we
considered as participating in the fusion mechanism. Our ob-
jective from this step was to manually decouple the DMMs
to study whether decoupling could be considered as an ef-
fective means to create adversarial attacks that can be com-
parable against strong and popular unimodal attacks in terms
of their effectiveness in fooling the DMM.

We found that just manual decoupling was able to effec-
tively fool 50% of the samples considered in the experiment.
But more importantly, we found that on average, manual de-
coupling only affected 7.25% of the datapoints in the im-
age of each sample. On the other hand, we found that al-
though the PGD attack was quite effective in compromis-
ing the DMM with close to 100% success rate, 96.47% of
the datapoints on average were affected by PGD. What this
experiment shows is that unimodal adversarial attacks are
not able to identify the optimum datapoints to perturb. Thus,
unimodal attacks are not sufficiently suitable for studying
robustness of DMMs. Furthermore, since unimodal attacks
do not seem to take the fusion mechanism into considera-
tion, they do not reveal the vulnerabilities specific to DMMs.
In the sections that follow, we show how MUROAN de-
coupling attack algorithm can optimally find the exact data-
points involved in fusion, so that the adversarial robustness
through decoupling can be studied.

Robustness Analysis

In this section, we discuss our approach for the robustness
analysis of DMMs via MUROAN framework. In this re-
gard, we first discuss a unified view of DMMs to explore
the vulnerabilities of the fusion mechanism of DMMs, and
then introduce our algorithm to decouple the fused modali-
ties of DMMs. The overview of our approach is depicted in
Figure 2.

Unified View of Deep Multimodal Models

We considera DMM D : X — Y to be a function that maps
a domain X to a co-domain Y. An input is a set of vec-
tors of different modalities = {z} ...z}, 23...22,, ...}
(Figure 2, Step (a)). We consider Y to be the set of pos-
sible classes for a multimodal input z € X. The output
of the DMM for a multimodal input z is considered to be
D(z) = vy, for some y € Y. We denote the confidence of
the DMM for a multimodal classification probability on in-
put z and class y as D, (x). Lastly, we denote the cardinality
of a set as | - |, which represents the number of elements in
the set.

Although DMMs have several different architectural con-
figurations, we need a unified view (or representation) of
them for a uniform vulnerability analysis of all these dif-
ferent multimodal architectures. To achieve this, we unify
these different architectural approaches into a single view,
in which we consider a DMM as a generator of the fu-
sion embedding of multiple input modalities (Figure 2, Step
(b)), followed by several fully connected layers that are
specific for downstream tasks. In other words, we break
down a DMM into two functions: the first generates a la-
tent representation (i.e., the fusion embedding) of the mul-
timodal inputs and the second performs classification based
on the fusion embedding. We consider the fusion embed-
ding of a multimodal input x as Z(x) = z, where z is
the d-dimensional fusion embedding vector. Next, we con-
sider y = M (z) to represent classification based on the fu-
sion embedding from fully connected layers that are specific
to downstream tasks. Therefore, the original DMM is bro-
ken down into two functions, represented as M (Z(x)). We
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Figure 2: Overview of our approach.

further discuss this process for two typical DMM architec-
tures: traditional architectures and transformer-based archi-
tectures.

Traditional Multimodal Architectures. Traditional
DMM architectures are composed of separate neural net-
works that are specific to each input modality, whose out-
puts are combined using fusion techniques such as element-
wise multiplication, addition or concatenation. For example,
the Pythia (Jiang et al. 2018) architecture is composed of a
convolutional neural network that learns the embedding of
the image modality, and a recurrent network that learns the
embedding of the text modality, which are then combined
using element-wise multiplication. This combination repre-
sents the fusion embedding.

Transformer-based Multimodal Architectures. These
architectures use the transformer (Vaswani et al. 2017) for
learning a strong fusion embedding of the input modalities.
The input modalities are first converted into embeddings,
which are then combined using the transformer, which per-
forms several self-attentions across many layers. The first
token embedding then constitutes the fusion embedding,
which is subsequently processed by fully connected layers
for classification.

MUROAN Framework

We note that the traditional methods of adversarial attacks
are not suitable for DMMs for two specific reasons. First,
most key methods of crafting adversarial attacks use either
the [, or [ norm. Optimization with respect to these kinds
of manipulations induces a perturbation in all (or almost
all) of the datapoints of an input modality by a small value
+e. This is not suitable in case of multimodal inputs be-
cause different modalities have different compositions, and
not all modalities support this type of manipulation. For ex-
ample, image-based inputs are continuous and thus suitable
for such manipulations, but text-based inputs are discrete,
thus not suitable for such manipulations. Furthermore, for
DMMs, such adversarial manipulations are not suitable for
robustness analysis processes since the core weaknesses of
these models should be examined in the fusion mechanism
of these models, which is not achieved by these manipula-
tions. Since we are interested in studying the effect of de-
coupling fused modalities, we employ /g-norm optimization

attack algorithm, wherein an [p-norm attack optimizes for
the number of changes made to the inputs for a successful
decoupling attack.

Removal of salient datapoints from inputs has been shown
to be an important factor for considering the robustness and
safety of a decision model (Mathias et al. 2013; Wicker and
Kwiatkowska 2019; Noh et al. 2018). However, the key dif-
ference between the traditional unimdoal domains and the
multimodal domain is that such datapoints are in fact parts
of separate modalities that are coupled together by the mul-
timodal fusion mechanism. Thus, it is imperative to study
the cases, in which some parts of the input modalities are
removed, so as to render this fusion as unsuccessful.

For a multimodal input x, we consider coupled datapoints
as some x’ C z. Our objective is to find the minimum subset
via the following optimization.

argmin(|z| - [+']) > D(2) # D) (D)
z'Cx
However, it is impractical to solve the optimization in
Equation 1, due to a large number of such datapoints in the
multimodal input space. Thus, to solve this optimization, we
use the notion of the fusion embedding to compute a salient
points set first, S, (Figure 2, Step (c)). Such sets of critical or
salient points have been previously utilized to inspect deep
learning-based models (Qi et al. 2017). We use the salient
datapoints set to study the weaknesses of DMMs, by defin-
ing it as follows.

Syt =A{x; € x| Z(x/x;) # Z(x)} ()
In Equation 2, the salient datapoints set contains those
datapoints that affect the fusion embedding upon removal
(where z/z; denotes removal of a datapoint). For example
in the transformer-based DMMs, a datapoint z; € S7 if
Vi # j,z; > z; due to the transformer pooling layer. Next,
we find the set of coupled datapoints (Figure 2, Step (d))
from the salient datapoints set, by computing permutations
of all datapoints of a maximum size equal to the size of the
salient datapoints set (denoted by || in Equation 3).
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Algorithm 1: MUROAN Decoupling Attack Algo-
rithm
Input: x, y, D, O, f, maxitr
Output: z’
1 Initialization: 2’ < x
2 while f(D, x, z’, y) or maxitr do
3 S < GetSalientSet(D, =)

4 C? <+ GetCoupledSet(Sy)
5 for x; € C¥ do

6 if D(z') # y then

7 break

8 end

9 ' —a fx;

10 if D(2’) # yand f(D,x,2',y) # True then
1 T

12 end

13 end

14 end

15 return z’

Now that we have computed the coupled datapoints set,
we propose the MUROAN Decoupling Attack Algorithm
(Algorithm 1) to iteratively refine the decoupling attack.
In our algorithm, first the salient datapoints set is com-
puted based on the process described in Equation 2. Then,
the GetCoupledSet procedure is called, which performs two
functions. First, the coupled datapoints are computed as de-
scribed in Equation 3. Then, they are ordered based on the
size of the datapoints, so as to satisfy Equation 1. We en-
code the termination of our algorithm as a boolean function
f, to support multiple adversarial requirements. For exam-
ple, adversarial requirements for crafting untargeted attacks
(D(x") # y) or targeted attacks (D(z’) = y') can be sup-
ported (Figure 2, Step (e)). Lastly, we propose the following
theorem to use our decoupling attack algorithm as a robust-
ness verification technique to find adversarial examples in
DMMs if one exists.

Theorem 1. For a multimodal model D that satisfies our
unified view and a given multimodal input x, the MUROAN
decoupling attack algorithm will find the optimum adversar-
ial example that satisfies Equation 1.

Proof. If an adversarial example exists for input z, it can be
found by an exhaustive search of the input space. The Get-
CoupledSet function returns all possible permutations of the
coupled datapoints and the f function and maxitr can be
set such that the algorithm does not terminate until a satis-
factory adversarial permutation is found. Furthermore, since
the permutations in the coupled datapoints set are ordered,
thus, a permutation that is found by our algorithm to be ad-
versarial is minimal.

Experiments

In our evaluation, we use MUROAN to analyze the robust-
ness of state-of-the-art DMMs trained on popular multi-
modal datasets to show how decoupling attack can easily
compromise these models, thereby enabling us to under-

stand their robustness. We also consider some unimodal ad-
versarial attack baselines in our evaluation only to show how
easily decoupling attack can compromise DMMs. Our ob-
jective is not to make a direct comparison of our approach
against these existing attacks, but to highlight how decou-
pling of input modalities can be easily used to attack the fu-
sion mechanism of DMMs. Our findings highlight the need
for rigorous safety analysis of DMMs against decoupling
attacks, and lay down important groundwork for their de-
ployment in real-world applications. We first summarize the
DMMs, datasets, and unimodal adversarial baselines that are
used in our experiments.

Deep Multimodal Models

* Pythia. The Pythia (Jiang et al. 2018) is a state-of-the-art
model in the VQA challenge task. This models is com-
posed of a convolutional network to compute an image
embedding and a recurrent network to compute a sen-
tence embedding, which are fused using element-wise
multiplication.

* Late Fusion. We consider the late-fusion architecture
based DMM in (Antol et al. 2015) as a strong baseline
model. In this model, image embeddings from a convo-
lutional neural network and text embeddings from a re-
current network are fused using element-wise sum, and
then the fusion embedding is processed through multiple
classification layers to generate a probability score.

* MMBT. The MMBT model (Kiela et al. 2019) is a
state-of-the-art DMM that utilizes the BERT (Devlin
et al. 2018) to learn multimodal embeddings by the
implicit alignment of image and text features with the
self-attention mechanism of transformers (Vaswani et al.
2017), for a wide range of visual-linguistic tasks. The
query vector of this model, which is treated as the fu-
sion embedding, is processed through a classifier head
for downstream tasks.

Multimodal Datasets

¢ Hateful Memes. The Hateful Memes (Kiela et al. 2020)
dataset consists of image and text pairs pertaining to hate-
ful memes, a recent phenomenon that poses a serious
threat societal threat in today’s day and age. The ob-
jective is classification into two categories: “hateful” or
“non-hateful”.

e Visual Question Answering (VQA). The VQA
dataset (Antol et al. 2015) consists of images with
multiple associate natural language questions. Each
image and question pair expects a list of answers. The
objective is to predict the best answer from the list of
answers for each image-question pair.

Unimodal Adversarial Baselines

* CW Attack. We use the Carlini and Wagner (Carlini and
Wagner 2017) attack algorithm as baseline for unimodal
adversarial images for image-based modality.

¢ Genetic Attack. We use the Genetic Attack (Alzantot
et al. 2018) algorithm (referred to as “Genetic” in this
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Figure 3: Three samples depict three types of minimum cou-
pled datapoints in the VQA and Hateful Memes dataset. In
sample (a), the minimum coupled datapoints are in the im-
age only (indicated by red circles), and it is enough to only
make changes to a those datapoints to decouple the sam-
ple. In sample (b), the minimum coupled datapoints are in
the text only (indicated by red font), it is enough to make
changes to the text only to decouple the sample. In sample
(c), the coupled datapoints consist of both image and text,
therefore both need to be changed to decouple this sample.

paper) as baseline for unimodal adversarial text for text-
based modality.

Other Implementation Details

We have implemented our attack using the PyTorch (Paszke
et al. 2019) library. For the VQA dataset we used 1000 sam-
ples and for Hateful Memes dataset, we used 250 samples
to conduct our experiments. We used pretrained models (pre
2021) published by the original authors for all the DMMs
that we have evaluated in our experiments. In the MUROAN
decoupling attack algorithm, we used a maximum iteration
limit of 500 epochs, post which we report the attack as un-
successful. We ran our experiments on a single NVIDIA
V100 GPU enabled eight core machine.

Robustness Analysis

In this section, we used our framework to analyze the robust-
ness of state-of-the-art DMMs under various attack condi-
tions to show that the robustness of these DMMs are largely
overestimated.

We studied the percentage of points changed by
MUROAN decoupling attack algorithm in comparison with
the CW attack for a successful misclassification. We used
the same cutoff of 500 epochs for both the algorithms in all
the tests, post which we reported a failure. We have depicted
the results of this experiment in Figure 4.

Figure 4 depicts the CDF of the average percentage of
datapoints changed in both the attacks under consideration.
We found that the unimodal adversarial images (i.e., the
CW attack) vastly overestimated the robustness of all the
three DMMs. For the Pythia-VQA, it was observed that the
CW attack changed 93.99% of the input datapoints, whereas
MUROAN decoupling attack algorithm changed 1.16% of
input datapoints. This difference of a large margin showed
that the baseline unimodal adversarial images vastly over-
estimated the robustness of models for the VQA task. This
finding may have important implications on using VQA in
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Figure 4: CDF of percentage of datapoints changed.

real-world applications, such as visual question answering
for the blind (Gurari et al. 2018). Next, we discuss another
important application domain, namely Hateful Memes. For
the Late Fusion- Hateful Memes model, it was again ob-
served that the CW attack changed 99.86% of datapoints,
whereas MUROAN decoupling attack algorithm changed an
average of 16.93% of input datapoints, a significant differ-
ence. For the MMBT-Hateful Memes model, it was observed
that the CW attack changed 94.92% of datapoints, whereas
MUROAN decoupling attack algorithm changed an average
of 5.73% of input datapoints. In both cases, the unimodal ad-
versarial images overestimated the robustness of the DMMs
trained for the Hateful Memes task.

Next, we compared the Attack Success Rate (ASR) of
MUROAN decoupling attack algorithm with respect to the
unimodal adversarial images and text baselines, namely
the CW (Carlini and Wagner 2017) attack and the Ge-
netic (Alzantot et al. 2018) attack respectively. The results
of this experiment have been depicted in Table 2. We first



Model-Dataset Average Points Changed - MUROAN | Average Points Changed - CW
Pythia-VQA 1.16 % 93.99%
Late Fusion-Hateful Memes 16.93% 99.86%
MMBT-Hateful Memes 5.73% 94.92%

Table 1: Comparison of Average Percentage Points Affected by MUROAN and CW attack.

Model-Dataset ASR-MUROAN | ASR-CW | ASR-Genetic | ASR-CW+Genetic
Pythia-VQA 100 % 79.77% 49.30% 86.45%
Late Fusion-Hateful Memes 97.25% 59.11% 0% 59.11%
MMBT-Hateful Memes 83.33% 47.19% 0% 47.19%

Table 2: Comparison of Attack Success Rate (ASR).

discuss the impact of the unimodal adversarial images on the
DMMs. In all the three DMMs, we found that the unimodal
adversarial images could affect these DMMs. However,
they vastly overestimated their robustness in all three cases,
when we compared the ASRs of MUROAN decoupling at-
tack algorithm. For the Pythia-VQA model, the CW attack
achieved an ASR of 79.77%, although the ASR achieved
by MUROAN decoupling attack algorithm was 100%. For
the two DMMs for hateful memes (i.e., Late Fusion-Hateful
Memes and MMBT-Hateful Memes), a similar observation
was made, although the CW attack achieved significantly
lower ASR for both DMMs. Next, we took a closer look at
the impact of the unimodal adversarial text (i.e., Genetic at-
tack) on the DMMs, in comparison with MUROAN. For the
Pythia-VQA, it was observed that the Genetic attack has lit-
tle effect when compared to MUROAN decoupling attack
algorithm, and even to the CW attack, wherein both these
attacks outperformed the unimodal adversarial text baseline
by a large margin. In case of the hateful memes DMMs (i.e.,
Late Fusion-Hateful Memes and MMBT-Hateful Memes)
this margin was found to be even larger. It was observed that
the unimodal adversarial text had no significant effect on the
DMMs for hateful memes.

Thus, we observed that the safety and robustness of these
DMMs need to be deeply examined, specifically from the
perspective of decoupling attacks. In this regard, our exper-
iments indicate that our attack exposes the vulnerabilities
in the fusion mechanism of DMMs, and the robustness of
this mechanism needs significant improvement, especially if
DMMs are to be deployed in real-world systems.

Qualitative Analysis of MUROAN

In this section, we provide a qualitative analysis of the de-
coupled samples that our the MUROAN decoupling attack
algorithm generated. Upon observation of such samples in
the two baseline datasets (i.e., VQA and Hateful Memes),
we discuss certain aspects of the nature of decoupling per-
taining to our observations. In Figure 3 !, we depict three
samples from our robustness analysis experiments. Figure 3
(a) is from the VQA dataset, and Figures 3 (b) and (c) are

"Note: samples (b) and (c) are from the Hateful Memes
dataset (Kiela et al. 2020), which some readers may find distress-
ing.

from the Hateful Memes dataset. These three samples rep-
resent the three levels of decoupling we observed in our ex-
periments. In Figure 3 (a), the minimum coupled datapoints
were found in the image only, therefore it is sufficient to de-
couple just the single image modality. In the VQA dataset,
since questions are asked about certain parts of an image,
this observation is intuitive since it should be sufficient to
only affect the relevant parts of the image. In Figure 3 (b),
the minimum coupled datapoints were only found in the
text modality, since intuitively we cannot see why this sam-
ple could be a hateful meme from the image alone. In Fig-
ure 3 (c), the minimum coupled datapoints consist of both
the image and the text modalities. In this case, both the in-
put modalities need to be affected for decoupling this fu-
sion. Therefore, we note that vulnerabilities in the DMMs
are of a very different nature when compared to their uni-
modal counterparts.

Adpversarial Training

Our experiments in Section 15 raise an important ques-
tion: how can we defend against decoupling attacks? We
performed a preliminary experiment to see if adversarial
training (Goodfellow, Shlens, and Szegedy 2014), a popu-
lar technique to improve adversarial robustness, can be used
to reduce the attack success rate. We performed adversar-
ial training using the MMBT model for the hateful memes
classification. We generated 247 adversarial examples via
MUROAN framework and trained the model on these sam-
ples combined with the original dataset from scratch. We
observed that the adversarial trained DMM was still vulner-
able to newly crafted decoupled samples, despite the model
achieving near 100% accuracy classifying adversarial exam-
ples included in the training set. These results demonstrate
the difficulty in defending against decoupling attacks using
traditional adversarial training. We hope these results inspire
further work in increasing the robustness of DMMs.

Discussion

In this section, we discuss some limitations, potential nega-
tive societal impacts, and some future directions of our work.

In this work, we have focused on DMMs that mainly op-
erate on image and text modalities as inputs. We chose this
type of DMMs since it could represent different composi-
tions of inputs (i.e., a continuous input and a discrete input).



Our approach however can be generalized to incorporate any
other types of DMMs, considering compositions of other in-
puts including speech and video modalities.

Our major research objective is to improve the robustness
of DMMs by showing their vulnerabilities to decoupling at-
tacks, so that adversarial attacks on real-world multimodal
systems can be mitigated. A potential negative societal im-
pact of our work is that it might be used to craft adversarial
attacks against DMMs. As future work, we will investigate
potential techniques to improve the robustness of DMMs.
We hope our findings encourage more researchers to pursue
improving the robustness of DMMs.

Conclusion

In conclusion, we have studied the robustness of DMMs
against multimodal decoupling attacks that are aimed at
compromising the fusion mechanism of DMMs. We have
introduced a new framework called MUROAN for studying
the robustness of DMMSs, which consists of a unified view
of the DMMs that exposes the fusion embedding, and an al-
gorithm for decoupling the input modalities. Our experiment
regarding adversarial training shows that it does not improve
the robustness against our decoupling attacks. MUROAN
paves the way for studying the robustness of DMMs via de-
coupling input modalities in the future.
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Appendix
Additional Qualitative Results
In this section, we provide additional qualitative examples of
our attack against the MMBT-Hateful Memes model and the
Pythia-VQA model in Figure 5 and Figure 6, respectively.
In Section 15, we discussed a few samples from MUROAN
from the Hateful Memes dataset. We further discuss more
samples from the VQA dataset in addition to some samples
from the Hateful Memes dataset in this section.

who knew that this
country is full of
white trash

Non-hateful

islam is a religion of
peace stop criticizing
my religion

Non-hateful

told girlfriend that
mom is deaf so speak
loud and slow told
mom that girlfriend is
retarded

Non-hateful

Figure 5: Additional Samples from the Hateful Memes
dataset.

Wh.at Ob).ect 1? Original Answer: Stop sign
deplc_ted in this Adverarial answer: House
picture?

what sports team is | Original Answer: Red sox
mentioned? Adverarial answer: Yes

what are the eolor of | Original Answer: Red and

N blue
?
the lines on the court? Adverarial answer: Red

Figure 6: Additional Samples from the VQA dataset.

Figure 5 depicts three samples from the MMBT-Hateful
Memes baseline. The first sample depicts the case where
only the text is needed to be manipulated to decouple the in-
put modalities in a sample. The second example depicts the
case where only a part of the image needs to be manipulated
to decouple the modalities in a sample. The third example
depicts the case where both image and the text need to be
manipulated to decouple the modalities in a sample.

Figure 6 depicts three samples from the Pythia-VQA
baseline. In this case, the objective is to fool the DMM so
as to output a wrong answer (as opposed to a wrong label
in the Hateful Memes case). We observed a similar trend in
case of VQA as well, as noted in Section 15. In some cases
(such as the first sample and the second sample in Figure 6),
it was sufficient to only manipulate one of the input modal-
ities to decouple the input modalities in a sample. In some
cases though, both modalities had to be manipulated for de-
coupling them (such as the third sample in Figure 6).

Quantitative Robustness Analysis of DMMs

We have discussed in Section 15 about how our attack can be
used to study the robustness of several DMMs. In this sec-

tion, we use our attack to study and compare the robustness
of two baseline DMMs, Late Fusion and MMBT, discussed
in our paper.
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(a) Late Fusion Model
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Figure 7: CDF of robustness of Late Fusion model and
MMBT against MUROAN decoupling attack algorithm.

In this experiment, our objective is to compare the two
DMMs that are trained for the same task to determine which
DMM is more robust against our attack. In this way, we can
use MUROAN to additionally compare DMMs in terms of
their robustness. We study and compare the robustness of
the two DMMs both trained on the Hateful Memes dataset
based on the robustness metric 1 (Yu et al. 2019). Model
robustness is defined as follows.

1
llsnfﬂiDKL(P(x),P(x +9))
E€se

() = @)

Equation 4 uses the Kullback-Leibler divergence loss
(Dkr) (Kullback 1997) to depict the divergence between
the probability distributions of the original samples and the
adversarial samples generated by MUROAN decoupling at-
tack algorithm. In other words, the Dy is higher for a
model, for which the adversarial samples are further from
the original distribution, indicating stronger robustness. In
this experiment, we compared the robustness of the MMBT
model to the Late Fusion model, where both DMMs were
trained on the same Hateful Memes dataset. The distribution
of the robustness the two DMMs as calculated by Equation 4
based on our attack is depicted in Figures 7a and 7b, respec-
tively. We found that the MMBT model is significantly more
robust than the Late Fusion model, as can be observed from
the Figure 7. The mean robustness of the MMBT model was



found to be 1y = 0.65 and the mean robustness of the Late
Fusion model was found to be v = 0.003. The higher ro-
bustness of the MMBT model could be attributed to the way
the fusion is achieved in this DMM, using the more sophisti-
cated self-attention mechanism of the transformer (Vaswani
et al. 2017), while the Late Fusion model uses the element-
wise addition. Thus, the robustness metric in this experiment
could also indicate the strength of the fusion mechanism. In
this way, the robustness of the state-of-the-art DMMs can be
quantitatively measured using MUROAN.
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