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Abstract
Transformer models have achieved remarkable
results in various natural language tasks, but they
are often prohibitively large, requiring massive
memories and computational resources. To re-
duce the size and complexity of these models,
we propose LoSparse (Low-Rank and Sparse ap-
proximation), a novel model compression tech-
nique that approximates a weight matrix by the
sum of a low-rank matrix and a sparse matrix.
Our method combines the advantages of both low-
rank approximations and pruning, while avoid-
ing their limitations. Low-rank approximation
compresses the coherent and expressive parts in
neurons, while pruning removes the incoherent
and non-expressive parts in neurons. Pruning
enhances the diversity of low-rank approxima-
tions, and low-rank approximation prevents prun-
ing from losing too many expressive neurons. We
evaluate our method on natural language under-
standing, question answering, and natural lan-
guage generation tasks. We show that it signif-
icantly outperforms existing compression meth-
ods. Our code is publicly available at https:
//github.com/yxli2123/LoSparse

1. Introduction
Large transformer models have exhibited superior perfor-
mance in various natural language tasks, such as natural
language understanding, question answering, and natural
language generation (Devlin et al., 2018; Liu et al., 2019;
He et al., 2020; Radford et al., 2019; Brown et al., 2020).
However, these models contain billions of parameters. For
example, T5 (Radford et al., 2019) consists of up to 11 bil-
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lion parameters, and GPT-3 (Brown et al., 2020) comprises
up to 175 billion parameters. Their extreme sizes bring
challenges in deploying the models to practical applications
due to memory and computational requirements.

To circumvent aforementioned challenges, model compres-
sion methods are widely applied to reduce model size at
only a small expense of model performance. One com-
mon compression technique is pruning (Zhu & Gupta, 2017;
Louizos et al., 2017), which removes parameters according
to their importance scores (Han et al., 2015; Molchanov
et al., 2016; Zhang et al., 2022). Pruning methods can be di-
vided into two categories: structured and unstructured prun-
ing. In structured pruning (McCarley et al., 2019; Fan et al.,
2019; Lagunas et al., 2021), weight matrices are pruned
neuron/column-wise. This enables us to store pruned mod-
els by directly deleting neurons/columns in memory. As for
unstructured pruning (Han et al., 2015; Sanh et al., 2020),
however, weight matrices are pruned entry-wise, which
makes it challenging to store and manipulate. For this rea-
son, we focus on structured pruning. One popular structured
pruning method is iterative pruning (ITP), which conducts
training and pruning simultaneously. That is, after parame-
ters are updated every iteration, it evaluates the importance
score of each neuron. Neurons that have low importance
scores are considered non-expressive and should be pruned.
Beside the ITP, Movement pruning (Sanh et al., 2020) and
CoFi (Xia et al., 2022) are also popular pruning methods.

Unfortunately, pruning is not necessarily effective. It will
inevitably remove expressive neurons given a high sparsity
level. Liang et al. (2021) found heavy pruning hurts the
performance severely, although light pruning can enhance
the generalization of pre-trained language models. As an
example, Figure 1 illustrates this phenomenon. Ideally (Fig-
ure 1b), most of the neurons should be redundant and have
low importance scores so that we can remove these neurons
without hurting the performance too much. However, in re-
ality (Figure 1a), even if a significant portion of neurons are
non-expressive, the majority of neurons are still expressive
and are likely to be pruned if the sparsity level is high.

Another popular compression technique is low-rank approx-
imation (Hsu et al., 2022a; Hajimolahoseini et al.; Tahaei
et al., 2021), which is designed to compress the expressive
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Figure 1. Histogram of neuron importance scores. (a) The practical
neuron importance scores of a linear layer when pruning BART-
large on XSum. (d) The ideal histogram of the neuron importance
scores where most of the neuron should be redundant, otherwise
pruning is not the best choice.

neurons. It approximates a weight matrix by a low-rank ma-
trix that is computed by singular value thresholding. Such
a low-rank approximation is particularly effective to com-
press coherent parts in neurons. For example, the majority
of neuron weights often share one coherent subspace that
can be well approximated by singular vectors of top singular
values. The low-rank approximation is inherently capable
of extracting the common bases of this coherent subspace.

Matrices in transformer models, however, are often high-
rank. It can hurt the model performance when merely ap-
plying the low-rank approximation to compress these ma-
trices. This is because the diversity of neurons has been
ignored. Although low-rank approximation extracts the
common bases shared by neuron weights, it cannot accu-
rately approximate their incoherent parts, which can be ex-
pressive and crucial to the model performance. We explain
the reason more in Section 3.1.

To overcome the drawbacks of both pruning and low-rank
approximations, we propose LoSparse (Low-Rank and
Sparse approximation), which approximates a weight matrix
by the sum of a low-rank matrix and a sparse matrix. Such a
composite approximation decouples the coherent parts from
incoherent parts of neurons. It inherits the benefits of both
low-rank and sparse approximation: the low-rank approxi-
mation aims to compress expressive bases of the coherent
subspace shared by neurons while the sparse approximation
focuses on removing non-expressive information in inco-
herent parts of neurons. In that sense, the low-rank approx-
imation prevents the pruning from excessively removing
expressive neurons while sparse approximation enhances
the diversity of low-rank approximation.

We draw inspiration from multi-task learning (Jalali et al.,
2010), where linear models are used for multi-task regres-
sion. In out settings, every linear layer in transformer mod-
els can be naturally viewed as a linear multi-task model that
learns different latent features. In that case, low-rank ap-
proximations are designed to store shared features across all
coherent parts of neurons, and sparse approximations aim to

learn distinct features from incoherent parts of neurons. Be-
sides, previous work (Yu et al., 2017; Hawkins et al., 2021)
applied a similar method to Convolutional Neural Networks
(CNN), but we will discuss the limitation of their methods
on CNN-based models in Section 5.

We conduct extensive experiments on natural language un-
derstanding, question answering, and natural language gen-
eration tasks to demonstrate the effectiveness and efficiency
of LoSparse. On the natural language understanding tasks in
GLUE (Wang et al., 2019), our method significantly outper-
forms existing pruning methods. For example, on the MNLI
dataset, LoSparse achieves more than 2.0% higher accuracy
than existing baseline methods. On the question answering
tasks in SQuADv1.1 (Rajpurkar et al., 2016b), our method
surpasses other pruning methods by 3.3 points in F1 score
under the extreme low remaining ratio 1. On the natural
language generation tasks in XSum (Narayan et al., 2018),
our method exceeds the current methods by 2.99 points in
Rouge-1 score. Moreover, our method is orthogonal to the
current knowledge distillation methods, and could be readily
integrated with them to improve the performance.

2. Background
We briefly review the transformer language models and
pruning methods.

2.1. Transformer Models

A typical transformer architecture comprises several sequen-
tial layers, where each layer contains two sub-layers: a
multi-head self-attention (MHA) and a fully connected feed
forward network (FFN). Given the input X ∈ Rn×d, MHA
computes the attention in parallel h heads:

MHA(X) = Concat(head1, ..., headh)Wo,

headi = Softmax(XWqi(XWki
)T /

√
dh)XWvi

,

where Wqi ,Wki ,Wvi ∈ Rd×dh are query, key, and value
projection matrices, Wo ∈ Rd×d is an output projection
matrix, and dh is typically set as d/h. FFN comprises
two linear transformations and an activation: FFN(X) =
σ(XWf1 + b1)Wf2 + b2, where Wf1 ∈ Rd×dm , Wf2 ∈
Rdm×d, and σ(·) is the activate function. A residual connec-
tion is used and followed by a layer normalization.

Generally, we denote all the matrix multiplication in a trans-
former model as

y = Wx, (1)

where W ∈ Rd1×d2 denotes any weight matrix in the model.

We further denote the parameter set consisting of all train-
able weight matrix by W = {Wm}Mm=1. Unless specified

1The proportion of retained parameters.
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otherwise, we use W to represent any weight matrix and
W (0) is its pre-trained value. We use i, j to index the entry
of matrices and denote wij as ij-th entry of W , Wi∗ as the
i-th row of W , and W∗i as the i-th column of W .

2.2. Importance Scores for Pruning

Pruning methods zero out redundant parameters according
to their importance estimation. Parameters with high impor-
tance scores are retrained for fine-tuning while the others
with low importance are zeroed out. Popular importance
metrics include magnitude (Han et al., 2015), sensitivity
(Sanh et al., 2020; Molchanov et al., 2019) and uncertainty
(Zhang et al., 2022). Sensitivity of parameters is essen-
tially designed to approximate the change of training loss L
when a parameter is zeroed out. If the removal of a param-
eter causes a large variation on the loss, then the model is
sensitive to this parameter and we should retain it. Specifi-
cally, for a weight wij , its sensitivity score is defined by the
gradient-weight product:

I(wij) =
∣∣wij · ∇wijL

∣∣ . (2)

Note that the calculation of I(t) is conditioned on the sam-
pled mini-batch at the t-th iteration. It can induce high
uncertainty due to stochastic sampling. To reduce the vari-
ability in (2), Zhang et al. (2022) propose to smooth I by:

I
(t)
(wij) = βI

(t−1)
(wij) + (1− β)|w(t)

ij ∇wij
L(t)| (3)

using exponential moving of average.

2.3. Structured Pruning

As mentioned in Section 1, there are two types of pruning
methods: unstructured and structured pruning. Sensitivity
in (2), however, targets on unstructured pruning. We extend
it to structured pruning and introduce neuron importance
scores. For a linear projection represented as a weight matrix
W ∈ Rd1×d2 , we define the importance score of its i-th
neuron W∗i as

Γ(W∗i) =
1

d1

d1∑
j=1

I(wji). (4)

We further define Γ(W ) = [Γ(W∗1), ...,Γ(W∗d2
)]⊤ ∈

Rd2 .

3. Method
We propose a compression method for transformer models.
Specifically, we approximate a weight matrix by the sum
of a low-rank matrix and a sparse matrix (as illustrated by
Figure 2). The combination of these two approximations
makes our compression method more efficient and stable.

X

Y

U

V
SW ≈

X

Y

Figure 2. Illustration of one linear projection in a transformer neu-
ral network. We use UV + S, a low-rank approximation plus a
sparse matrix, to approximate the weight matrix W . UV and S
indicate the coherent and incoherent parts of neurons in W respec-
tively. We conduct the forward pass of two terms in parallel.

3.1. Approximation by Low-rank and Sparse Matrices

Given a weight matrix W ∈ Rd1×d2 , a structured-pruned
sparse matrix S ∈ Rd1×d2 is commonly applied to approxi-
mate W for compression (Han et al., 2015; Lagunas et al.,
2021). The sparse matrix approximation, however, results in
poor performance especially when the remaining ratio is low
(See experiments in Section 4). Therefore, we introduce a
low-rank matrix to improve the approximation. Specifically,
the weight matrix can be represented as

W = UV + S, (5)

where the product of U ∈ Rd1×r and V ∈ Rr×d2 represents
the low-rank matrix of rank r.

Why low-rank matrices? First, they can approximate the
coherent parts of neurons effectively, even if the rank is
small. As shown in Figure 3, we observe that the spectrum
of weight matrices in language models drops rapidly at the
beginning. This indicates neurons in a weight matrix share
a common subspace, which can be viewed as the coherent
parts of these neurons. In addition, the common subspace
can be recovered by the singular vectors of top singular
values. Therefore, the coherent parts of neurons can be well
approximated by the low-rank matrix computed by singular
value thresholding.
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Figure 3. Singular values in language models. (a) Singular values
of weight matrices of the 10th decoder layer in BART-large; (b)
Singular values of weight matrices of the 14th encoder layer in
DeBERTaV3-large.
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Second, the decoupling of low-rank and sparse matrices
makes it easy to prune. The heavy-tailed spectrum in Fig-
ure 3 indicates each neuron W∗i spans their individual sub-
spaces, which can represent the incoherent parts of these
neurons. Since these subspaces are not shared, the incoher-
ent parts cannot be captured by the low-rank approximation.
Fortunately, the low-rank matrix is able to decouple the
coherent parts from the incoherent parts of neurons. This
enables us to approximate the remaining incoherent parts
by adding a new matrix S and then prune it to remove the
non-expressive incoherent parts. As an example, Figure 4
demonstrates that most of the incoherent parts have low im-
portance scores after decoupling, motivating us to remove
these redundant parameters.
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Figure 4. Neuron importance scores of selected linear projections
when compressing DeBERTaV3-base on SST-2 with ITP (blue)
and LoSparse (orange). It shows LoSparse successfully separates
incoherent parts of neurons and make it easy to prune the non-
expressive components.

3.2. Algorithm

We then present our proposed algorithm. Given a pre-trained
weight matrix W (0), we first initialize the low-rank matrix
of rank r based on the singular value decomposition (SVD)
of W (0). Specifically, we choose

U (0) = [
√
σ1u1;

√
σ2u2; ...;

√
σrur], (6)

V (0) = [
√
σ1v1;

√
σ2v2; ...;

√
σrvr]

⊤, (7)

where u1, u2, ..., ur ∈ Rd1 are left-singular vectors and
v1, v2, ..., vr ∈ Rd2 are right-singular vectors, with respect
to the top r singular values σ1 ≥ σ2 ≥ ... ≥ σr in the SVD
of W (0). Then, we initialize S(0) by

S(0) = W (0) − U (0)V (0). (8)

Notably, we replace the forward pass involving W (e.g. Y =
XW ) with (9) to improve computational efficiency:

Y = (XU)V +XS.

We apply such a decomposition to every weight matrix
of the model and denote S = {Sm}Mm=1 as the set of all
sparse matrices. After the initialization, we conduct the

iterative structured pruning for S. Specifically, at t-th itera-
tion, we first take a stochastic gradient decent step to update
U (t), V (t), and S(t). In particular, for S(t),

S̃(t) = S(t) − α∇S(t)L.

Then we evaluate the neuron importance scores of S(t)

based on (4). Given the importance scores, S̃(t) is pruned
following:

S(t+1) = T (S̃(t),Γ(S(t))) (9)

with the i-th column of T (S̃(t),Γ(S(t))) defined as

T (S̃(t),Γ(S(t)))∗i =

{
S̃
(t)
∗i if Γ(S(t)

∗i ) in top pt%,
0 o.w.

Here we retain S̃
(t)
∗i only if its importance score is in top pt%

among all neurons in S(t). pt is the percentage of remaining
neurons at t-th iteration. We gradually decay pt following a
cubic schedule:

pt =


1 0 ≤ t < ti,

pT + (1− pT )
(
1− t−ti−tf

T−ti−tf

)3

ti ≤ t < T − tf ,

pT o.w.

where T is the total training steps. ti is the number of initial
warm-up steps. tf is the number of final fine-tuning steps.
Finally, we summarize our algorithm in Algorithm 1.

Algorithm 1 LoSparse

1: Input: Pre-trained weights W(0); total training itera-
tions T ; the rank r; learning rate α.

2: for all W (0) ∈ W(0) do
3: Compute the SVD of W (0);
4: Initialize U (0) and V (0) by (6) and (7);
5: Initialize S(0) = W (0) − U (0)V (0);
6: Replace W (0) by U (0)V (0) + S(0);
7: end for
8: for t = 1, ..., T do
9: Compute the gradient ∇L;

10: Compute I(t) for each parameter in S(t) by (2);
11: Compute I

(t)
for each parameter in S(t) by (3);

12: Compute Γ(S
(t)
∗i ) for each S

(t)
∗i in S(t) by (4);

13: Update S(t+1) = T
(
S(t) − α∇S(t)L,Γ(S(t))

)
;

14: Update U (t+1) = U (t) − α∇U(t)L;
15: Update V (t+1) = V (t) − α∇V (t)L;
16: end for
17: Output: the compressed model.

4. Experiments
We evaluate our method on natural language understanding
(NLU), question answering (QA), and natural language gen-
eration (NLG) tasks. We apply LoSparse for compressing
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Table 1. Results of pruned DeBERTaV3-base models on GLUE development set. Here Ratio is the proportion of total remaining weights.
Results with N.A. indicate the model does not converge. The best results on each dataset are shown in bold.

Ratio Method MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B
m / mm Acc Acc Acc / F1 Acc / F1 Acc Mcc P/S Corr

100% DeBERTaV3base 90.5 / 90.6 82.0 94.0 89.5 / 93.3 92.4 / 89.8 95.3 69.2 91.6 / 91.1

20%
Movement N.A 61.2 86.0 79.2 / 85.0 N.A. 89.4 N.A. 84.3 / 84.3
ITP 82.8 / 82.5 N.A. 87.8 82.0 / 87.0 90.0 / 86.4 90.8 49.0 87.4 / 87.0
LoSparse 84.5 / 83.8 68.0 88.6 85.0 / 89.4 90.6 / 87.2 91.7 50.0 88.8 / 88.5

15%
Movement N.A. 59.0 N.A 78.5 / 84.3 N.A. 89.0 N.A. 83.9 / 83.9
ITP 81.7 / 81.3 N.A. 85.4 80.5 / 86.3 89.1 / 85.2 89.3 45.8 86.8 / 86.3
LoSparse 83.3 / 82.9 66.9 87.6 83.6 / 88.0 90.3 / 87.0 90.4 46.8 87.7 / 87.3

10%
Movement N.A. N.A. N.A 77.0 / 83.4 N.A. 88.0 N.A. N.A.
ITP 79.7 / 79.6 N.A. 82.3 78.5 / 84.3 88.3 / 84.4 88.3 38.0 86.3 / 86.0
LoSparse 81.7 / 81.8 66.0 86.1 82.3 / 87.4 89.5 / 86.0 89.2 40.0 87.2 / 87.0

DeBERTaV3-base (He et al., 2021), BERT-base (Devlin
et al., 2018), and BART-large models (Lewis et al., 2020).

Implementation Details. Following the prior work
(Louizos et al., 2017; Sanh et al., 2020; Zhang et al., 2022),
we compress all the backbone weight matrices, except Lay-
erNorm and final prediction head. Our implementation
is based on publicly available Huggingface Transformers
code-base (Paszke et al., 2019). All the experiments are
conducted on NVIDIA V100 GPUs.

Baselines. We compare LoSparse with the following base-
line methods:

• Full fine-tuning is the most common approach for
adapting pre-trained model to down-stream tasks. The
model is initialized with pre-trained weights and all
model parameters are updated through a stochastic gra-
dient decent.

• Movement pruning is an effective pruning method
(Sanh et al., 2020). It multiplies a trainable mask to
each neuron during the the training. When the mask is
smaller than a threshold, the corresponding neuron is
pruned.

• Iterative pruning (ITP) removes neurons directly when
their importance scores are lower than a hard threshold
at each iteration (Molchanov et al., 2019).

4.1. Natural Language Understanding

Models and Datasets. We evaluate the performance
of LoSparse when pruning DeBERTaV3-base models on
the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019). GLUE includes two single-
sentence classification tasks: SST-2 (Socher et al., 2013) and
CoLA (Warstadt et al., 2019), and three similarity and para-
phrase tasks: MRPC (Dolan & Brockett, 2005), STS-B (Cer
et al., 2017), and QQP. There are also four natural language
inference tasks in GLUE: MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016a), RTE (Dagan et al., 2007;

Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), and WNLI (Levesque et al., 2012). Following
previous works, we exclude WNLI in the experiments.

Implementation Details. We select the learning rates from
{1 × 10−5, 3 × 10−5, 5 × 10−5, 8 × 10−5, 9 × 10−5, 1 ×
10−4}. We select the proportion of the parameters of all
low-rank matrices over all pre-trained parameters from
{1%, 2%, 3%, 5%}. We discuss the influence of different
proportion later in Section 4.4. More implementation details,
such as the training epochs and batch sizes, are presented in
the Appendix B.

Table 2. Results of pruned BERT-base models on some of GLUE
development sets. Here Ratio is the proportion of total remaining
weights. Results with N.A. indicate the model does not converge.
The best results on each dataset are shown in bold.

Ratio Method MNLI RTE QNLI
m / mm Acc Acc

100% Bertbase 84.5 / 84.6 70.5 91.3

20%
Movement 77.0 / 76.9 N.A. 84.7
ITP 80.1 / 79.8 64.4 86.5
LoSparse 80.4 / 80.3 65.2 86.9

15%
Movement 76.1 / 76.5 N.A. 83.9
ITP 79.1 / 79.0 63.2 85.0
LoSparse 79.4 / 79.2 64.3 85.9

10%
Movement 73.6 / 74.1 N.A. 82.2
ITP 77.7 / 78.3 61.8 83.9
LoSparse 78.3 / 77.8 63.0 84.8

Main Results. We compare our method with the baseline
methods under different remaining ratios. The results are
shown in Table 1. We see that LoSparse achieves better or
on par performance compared with existing approaches on
all the datasets of GLUE under all remaining ratios. For ex-
ample, when the remaining ratio is 10%, LoSparse achieves
81.7% accuracy on MNLI-m dataset, which surpasses the
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Table 3. Results with DeBERTaV3-base and BERT-base on SQuAD v1.1. Here Ratio is the proportion of remaining weights. The best
results on each dataset are shown in bold.

Ratio 5% 10% 20% 30% 40% 50%

DeBERTaV3base 87.7 / 93.5
- ITP 65.2 / 76.1 70.9 / 80.3 75.0 / 83.9 78.2 / 86.2 80.5 / 87.5 81.5 / 89.6
- LoSparse 69.3 / 79.1 72.9 / 82.8 76.8 / 85.8 80.2 / 88.0 82.1 / 89.4 82.3 / 90.3

BERTbase 80.9 / 88.2
- Movement N.A. 51.4 / 64.6 63.3 / 74.5 68.8 / 79.0 73.0 / 82.4 76.2 / 84.1
- ITP 54.0 / 67.3 62.5 / 74.2 66.8 / 78.0 72.3 / 82.4 74.5 / 84.2 76.0 / 85.1
- LoSparse 57.6 / 70.6 65.2 / 76.8 69.7 / 80.4 73.0 / 82.9 74.6 / 84.2 75.8 / 85.1

best-performing baseline (ITP) by 2%. In addition to the
superior performance, our method is more stable than the
baselines (e.g. ITP and Movement). This is because each
weight matrix in LoSparse at least maintains a low-rank
matrix S and always updates it along training horizon. It
prevents the dramatic variation of weight matrices from
nonzero to zero. By contrast, weight matrices are possibly
pruned to zero by other iterative pruning methods. The ex-
pressive parts in these weight matrices can alternate between
being pruned and updated and finally leads to divergence.

Table 2 summarizes the results of pruning BERT-base on
MNLI, RTE, and QNLI. Similar to Table 1, our methods
outperforms all baselines under all sparsity level for all
three datasets. For example, when the remaining ratio is
20%, LoSparse achieves 65.2% accuracy on RTE dataset,
while ITP only achieves 64.4% accuracy. We remark that
LoSparse is even more effective under high sparsity level.
For instance, given the 10% remaining ratio, LoSparse out-
performs ITP by 0.6% on MNLI-m dataset (78.3 v.s. 77.7),
1.2% on RTE (63.0 v.s. 61.8), and 0.9% on QNLI (84.8
v.s. 83.9).

4.2. Question Answering

Models and Datasets. We evaluate the performance of
our method on the question-answering task (SQuADv1.1,
Rajpurkar et al. (2016a)). In the SQuADv1.1, question
answering is treated as a sequence labeling problem, where
we predict the probability of each token being the start and
end of the answer span. We compress DeBERTaV3-base
and BERT-base on the SQuADv1.1.

Implementation Details. We compress all the backbone
weight matrices in DeBERTaV3-base model and BERT-base
except layernorm and final classification head. We use learn-
ing rates from {1× 10−5, 3× 10−5, 5× 10−5, 8× 10−5}
and pick the learning rate that performs the best. We also
select the proportion of parameters of low-rank approxima-
tion from {1%, 2%, 3%, 5%}. We choose AdamW as the
optimizer and set the batch size as 16. Please refer to the

Appendix C for more details.

Main Results. We compare our method with the baseline
methods under different sparsity levels. The experimental
results are shown in Table 3. We can see that LoSparse
consistently surpasses baseline methods under all remaining
ratios in terms of the two evaluation metrics: exact match
(EM) and F1. Similar to our result in GLUE tasks, our
method is especially effective with low remaining ratios.
For example, LoSparse outperforms ITP by 3.0% in terms of
F1 if removing 95% of parameters. Even for high remaining
levels, our method still achieves considerable performance
gain. For example, LoSparse outperforms ITP by 1.9% in
terms of F1 if removing 60% of parameters.

Table 3 also summarizes pruning BERT-base with different
methods on SQuADv1.1. Our method achieves substantial
improvements compared to all baseline methods. For ex-
ample, our method outperforms the best baseline ITP by
2.6% on F1 given 10% remaining ratio. We remark that
ITP is also effective under low sparsity levels. For example,
ITP achieves the best result over LoSparse and movement
pruning given the remaining ratio as 50%. Our method,
however, still behaves on par with ITP with high remaining
ratios: both ITP and LoSparse achieve 84.2 on F1 under
40% remaining ratios.

4.3. Natural Language Generation

Models and Datasets. In natural language generation
(NLG) tasks, we compress BART-large model (Lewis et al.,
2020) to compare LoSparse with baseline methods. We eval-
uate the performance on the XSum (Narayan et al., 2018)
and CNN/DailyMail(Hermann et al., 2015) datasets.

Implementation Details. We apply our method to all
weight matrices of both encoder and decoder layers. We
report ROUGE 1/2/L scores, which are the metrics for sum-
marization tasks (Lin, 2004). Given a fixed total remain-
ing ratio, we try different allocations between the low-rank
matrices and the sparse matrices. The best allocation of
sparse matrices is 10%. We choose the learning rate from
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{6×10−6, 1×10−5, 2×10−5, 4×10−5, 6×10−5, 1×10−4}.
The training epochs and batch sizes are set to 12 and 32
respectively. The beam search length is 8. Please see Ap-
pendix D for the detailed configuration.

Table 4. Results with BART-large on XSum. Here Ratio is the
proportion of remaining weights. We report R-1/2/L. The best
results on each dataset are shown in bold. Lead-3 means choosing
the first 3 sentences as the summarization.

Ratio Method XSum CNN/DailyMail

- Lead-3 16.30/1.60/11.95 40.42/17.62/36.67
100% BARTlarge 45.14/22.27/37.25 44.16/21.28/40.90

50% ITP 38.42/16.32/31.43 40.76/18.30/37.65
LoSparse 39.18/16.91/31.62 41.54/19.04/38.58

40% ITP 36.71/14.96/29.86 40.52/18.10/37.31
LoSparse 38.30/16.02/30.72 41.42/19.00/38.47

30% ITP 34.42/13.15/27.99 40.35/17.98/37.15
LoSparse 37.41/15.42/30.02 41.21/18.84/38.21

Main Results. We compare LoSparse with baseline meth-
ods under 30%, 40%, and 50% remaining ratios. We do not
report results on lower remaining ratios because the baseline
methods fail to surpass the Lead-3 baseline. Table 4 summa-
rizes experiment results on the XSum and CNN/DailyMail
test datasets. Note that LoSparse consistently surpasses
the baseline methods under all remaining ratios in terms of
ROUGE scores. For instance, LoSparse outperforms ITP
on XSum dataset by 2.99 in terms of ROUGE-1 score. We
also remark that LoSparse is more efficient under extremely
low remaining ratios. For example, the gain on ROUGE-1
increases from 0.76 to 2.99 when the ratio drops from 50%
to 30%. Note that LoSparse is particularly effective on more
difficult summarization tasks. For example, XSum is more
abstract and hence more difficult than CNN/DailyMail, and
LoSparse yields 2.99 gain on XSum compared to 0.86 on
CNN/DailyMail.

4.4. Analysis

Effectiveness of Sparse Approximations. We experiment
the model compression without sparse approximation to
study its effectiveness. Specifically, we compare LoSparse
with two variants: (i) we discard the sparse matrices and
only fine-tune the low-rank matrices UV (Low-rank 1); (ii)
we follow the initialization as (8) but gradually prune the
initialized S into zero (Low-rank 2). Figure 5 summarizes
the performance of these two variants on MNLI, SQuAD,
and XSum. The results show that our method outperforms
two low-rank variants, which verifies the effectiveness of
the sparse approximation. Moreover, we find Low-rank 2 is
better than Low-rank 1. We discuss it in Section 5.

Sparsity Allocation. We study how low-rank and sparse
approximations cooperate with each other. Specifically,
given a fixed remaining ratio, we change the proportion
of low-rank matrices and accordingly the ratio of sparse
matrices. Figure 6 summarizes the result under different
allocations. We see low-rank and sparse approximations
exhibit the nearly equal contribution to the performance on
NLU tasks as the performance stays stable when changing
the allocation.

4.5. Combination with Knowledge Distillation

Knowledge distillation is a popular technique to improve the
performance of small models (Romero et al., 2014; Hinton
et al., 2015). In knowledge distillation, the small model
(student) is trained to mimic the output of a larger fine-
tuned model (teacher) such that the performance of the
small model can be improved.

We remark that compression methods are complementary
to knowledge distillation. We show it by integrating knowl-
edge distillation into LoSparse and other pruning methods.
Specifically, we choose a DeBERTaV3-base model that
is fine-tuned on specific tasks as the teacher model and a
compressed DeBERTaV3-base model as the student model.
Then we conduct layer-wise distillation for them. Please
see Appendix E for more training details. Table 5 shows
the results. We find that distillation can further improve
the performance of LoSparse and other compression meth-
ods. It shows that compression and knowledge distillation
are complementary to each other. Besides, LoSparse still
achieves better performance than ITP when integrated with
distillation. It demonstrates the effectiveness of LoSparse in
the setting of distillation.

Table 5. Results of distilling the fined-tuned DeBERTaV3-base
to the compressed DeBERTaV3-base on MNLI, SQuAD, SST-2,
and RTE. We compress the model to 20% of its original size by
LoSparse and ITP, and then conduct layer-wise distillation.

Method MNLI SQuAD SST-2 RTE

DeBERTabase 90.5 87.6 / 93.5 96.1 82.0

ITP 85.9 77.9 / 87.2 92.0 58.1
LoSparse 84.6 / 84.7 81.0 / 89.8 93.2 71.1

We conduct further investigation on the performance of com-
bining LoSparse and knowledge distillation on BERT-base
models. Similarily, we choose a BERT-base model that
is fine-tuned on specific tasks as the teacher model and a
compressed BERT-base model as the student model. We
find out combining LoSparse and knowledge distillation can
achieve a comparable or even better performance than pop-
ular compression method, such as PKD (Sun et al., 2019),
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Figure 5. Comparison between LoSparse and two variants of low-rank approximation on different tasks. The x-axis represents the
remaining ratios. LoSparse outperforms all other low-rank approximation variants. It indicates adding sparse approximation can promote
the performance low-rank approximation.
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Figure 6. Results about sparsity allocations. The x-axis represents the proportion of low-rank matrices over total pre-trained weights. The
performance stays stable as changing the low-rank ratio. It suggests that our method is not sensitive to low-rank ratio.

MixKD (Liang et al., 2020), CoDIR (Sun et al., 2020),
BERT-of-Theseus (Xu et al., 2020), Low-Rank BERT Fea-
ture Distillation + KD (Noach & Goldberg, 2020), Path2:
BERT+FWSVD(Hsu et al., 2022b). Please see Appendix E
for more training details.

Table 6 shows the comparison of the aforementioned meth-
ods. From the table , we can see that LoSparse combined
with knowledge distillation can achieve an on-par or better
result than most distillation methods, such as PKD, under
different remaining ratio. Our method also excels the combi-
nation of low-rank approximation methods and knowledge
distillation such as Low-Rank BERT Feature Distillation +
KD.

4.6. Embed with Other Compression Method

LoSparse is a generic compression method. It can be em-
bedded into other popular methods, such as CoFi (Xia et al.,
2022). CoFi is a coarse to fine-grained compression ap-
proach. It uses 3-level masks to determine which layer,
heads, and neurons should be pruned. In the first level, it
adds masks to MHA sub-layers and FFN sub-layers as a
coarse compression. In the second level, it adds masks to
the attention heads inside the MHA. In the final level, it
adds masks to every neuron as the third level compression.

In addition, it utilizes knowledge distillation to enhance the
performance.

To embed our method into CoFi, we replace the third level
masks as our method and keep the first and second level
masks. Specifically, we first decompose the pre-trained
weight matrices into low-rank and sparse matrices. Then,
we follow the same training approach as CoFi. As for distil-
lation, since CoFi has not released the teacher models, we
download all the teacher models from Text Attack 2(Morris
et al., 2020) except teachers for the MNLI task. To obtain
the MNLI teacher, we fine-tune BERT-base using following
hyperparameters: learning rate is 3× 10−5, batch size is 32,
number of training epochs is 3. See Appendix F for more
experiment details.

Experiment results are listed in Table 7. We see that
LoSparse can improve the performance of CoFi on all
datasets. For example, our method improves the accuracy
by around 1% on MRPC, RTE, and SST-2. This notable
improvement shows LoSparse is complementary to existing
compression methods.

2https://huggingface.co/textattack
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Table 6. Results of distilling the fined-tuned BERT-base to the compressed BERT-base on MNLI, RTE, QNLI, and SST-2. We compress
the model to 25% and 50% of its original size by LoSparse, and then conduct layer-wise distillation.

Ratio Method MNLI RTE QNLI SST-2

50% PKD 81.5 / 81.0 65.5 89.0 92.0
MixKD 82.2 / 81.2 68.3 88.2 92.5
CoDIR-Fine 83.6 / 82.8 65.6 90.4 93.6
BERT-of-Theseus 82.3 / N.A. 68.2 89.5 91.5
Low Rank BERT Feature Distillation + KD 84.8 / 83.7 71.1 91.4 92.4
Path2: BERT+FWSVD 83.0 / N.A. N.A. 89.5 91.2
LoSparse + distillation 85.1 / 85.3 75.8 92.2 93.2

25% PKD 76.7 / 76.3 58.2 84.7 87.5
MixKD 77.2 / 76.8 62.0 84.4 89.5
BERT-of-Theseus 78.8 / N.A. 59.5 82.1 87.2
LoSparse + distillation 84.6 / 84.7 72.2 91.4 92.3

Table 7. Embed LoSparse into CoFi. The compression ratio is 10%. BERTbase indicates the fine-tuning results and is also the teacher
model for knowledge distillation. CoFi and LoSparse are all applied in BERTbase. The best performances are in bold.

Ratio MNLI MRPC RTE QNLI SST-2
Acc Acc / F1 Acc Acc Acc

BERTbase 84.41 87.74 / 91.35 72.56 91.54 92.43

CoFi 80.00 84.07 / 88.50 67.51 86.67 90.60
CoFi+LoSparse 82.56 85.54 / 89.45 68.23 89.66 91.51

5. Discussion
In Section 4.4, we find Low-rank 2 performs much better
than Low-rank 1. That is, pruning out all sparse matrices
is more effective than fine-tuning a low-rank matrix that
is obtained from singular value thresholding. This result
suggests that our method is capable of enhancing the low-
rank approximation. This is because the initialization of
Low-rank 1 is different from the pre-trained weights such
that it may lose too much knowledge from the pre-trained
weights. As a result, the performance drops severely on
downstream tasks. Our method, on the other hand, bridges
the gap between low-rank initialization and the pre-trained
weight so as to retain the original knowledge stored in the
pre-trained weights. This suggests that, although the low-
rank approximation alone is more efficient and concise,
we should leverage the sparse approximation to guide its
training process. Beside the improvement brought by our
method, low-rank approximation, however, still have an
intrinsic drawback. They ignore the diversity of neurons.
Therefore, our method is crucial to remedy this drawback.

Yu et al. (2017); Hawkins et al. (2021) have applied the low-
rank and sparse compression to CNN. They mask out some
kernels in a convolution layer as the sparse approximation
and add two sequential convolutional layers that are parallel

to the sparse convolutional layer as the low-rank approxima-
tion. This approach, however, does not directly approximate
any matrix, which makes the low-rank and sparse approx-
imation unrelated. In addition, the kernels in CNN do not
have as many dimensions as the matrices in transformer-
based models. Therefore, the CNN kernels inherently have
fewer ranks, thereby diminishing their efficacy when high
compression rates are wanted.

6. Conclusion
We propose LoSparse, a compression method for trans-
former models, which combines the low-rank approximation
and the structured sparse approximation. Experiments on
natural language understanding, question answering, and
natural language generation show that our method signifi-
cantly surpasses previous compression approaches. More-
over, our method is particularly effective in natural language
generation tasks and the setting of extremely high sparisity
level. We show that our method is generic and complemen-
tary with other popular compression methods. Experiments
show LoSparse can improve the performance of CoFi and
conventional iterative pruning with knowledge distillation.
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A. GLUE Dataset Statistics
We present the dataset statistics of GLUE (Wang et al., 2019) in the following table.

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 8. Summary of the GLUE benchmark.

B. Natural Language Understanding
B.1. Training Details

Implementation Details. The implementation of LoSparse is based on publicly available Huggingface (Paszke et al., 2019)
code-base 3.

Hyper-parameter Details.

We select the proportion of the parameters r of all low-rank matrices over all pre-trained parameters from {1%, 2%, 3%, 5%}
and present the best final ratio we choose as below. Neuron importance scores are often unstable during training due to the
variance between different data from different batches and different training dynamics between iterations (e.g. dropout)
(Zhang et al., 2022). In addition to involving exponential moving of average in calculating the neuron importance score,
we attempt large batch sizes to calculate a more smooth and accurate importance score. We find out large batch sizes are
profoundly helpful in most GLUE tasks.Therefore, we apply a large batch size on most tasks in GLUE.

For the choice of pruning hyperparameters, we follow the pruning schedule of Zhang et al. (2022),i.e. the training epochs,
initial warm up, and final warm up. We only change the warm up steps to accommodate the change in batch sizes as the
total training steps will change when batch size changes. We also use the same β as Zhang et al. (2022) except for some
minor changes in CoLA and RTE task.

Table 9 summarizes the detailed hyperparameters for each task used in pruning DeBERTaV3-base. Table 10 summarizes the
detailed hyperparameters for each task used in pruning BERT-base.

C. Question Answering
C.1. Dataset

Following Sanh et al. (2020), we also choose SQuAD v1.1 (Rajpurkar et al., 2016b) to evaluate the performance of LoSparse
on question answering task.

3https://github.com/huggingface/transformers/tree/main/examples/pytorch
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Table 9. Hyper-parameter setup of LoSparse for GLUE benchmark for pruning DeBERTaV3-base.

Ratio Hyper-parameter MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B

# epochs 8 20 10 10 10 6 15 15
Batch size 256 128 256 64 256 256 256 16

Learning rate 9× 10−5 1× 10−4 5× 10−5 1× 10−4 5× 10−5 8× 10−5 3× 10−4 1× 10−4

ti 675 25 250 38 675 125 62 500
tf 3375 150 1500 112 2750 1250 187 2500

20% β 0.85 0.75 0.85 0.85 0.85 0.85 0.7 0.85
r 5% 2% 3% 5% 2% 1% 2% 2%

15% β 0.85 0.85 0.85 0.85 0.85 0.85 0.75 0.85
r 3% 2% 1% 1% 3% 3% 2% 2%

10% β 0.85 0.85 0.85 0.85 0.85 0.85 0.8 0.85
r 3% 2% 5% 3% 5% 1% 2% 2%

Table 10. Hyper-parameter setup of LoSparse for GLUE benchmark for pruning BERT-base.
Ratio Hyper-parameter MNLI RTE QNLI

# epochs 8 20 10
Batch size 256 128 256

Learning rate 5× 10−5 5× 10−5 5× 10−5

ti 675 25 250
tf 3375 150 1500

20% β 0.85 0.60 0.85
r 5% 2% 2%

15% β 0.85 0.7 0.85
r 5% 2% 3%

10% β 0.85 0.50 0.85
r 5% 2% 3%

C.2. Training Details

We set the batch size as 16, the number of epochs for fine-tuning as 10, the optimizer as AdamW and the learning rate as
5× 10−5 for all experiments. Similarly, we follow the pruning schedule of Zhang et al. (2022),i.e. we take the same initial
warm up steps and final warm up steps. We use the same settings for all sparsities. The hyperparameters are summarized
specifically in Table 11. We use the hyperparameters in Table 11 for pruning both DeBERTaV3-base and BERT-base.

Table 11. Hyper-parameter setup of LoSparse on question answering tasks (SQuAD v1.1, Rajpurkar et al. (2016b)).

Task # epochs Batch size Learning rate ti tf r β

SQuAD 10 16 5× 10−5 5400 22000 5% 0.85

D. Natural Language Generation
D.1. Training Details

We set the batch size as 32, the number of training epoch as 10. We choose Adam as the optimizer and try learning rate from
{6× 10−6, 1× 10−5, 2× 10−5, 4× 10−5, 6× 10−5, 1× 10−4}. We find the optimal learning rate is 4× 10−5. We also
adjust the sparse approximation ratio, choosing from 5%, 10%, 15%, 20%. We find the best sparse ratio is 10%. We also fix
the initial warm up steps ti as 12800, final warm up steps tf as 51200, and β as 0.85.
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E. Combination with Knowledge Distillation
E.1. Teacher Models

For DeBERTaV3-base teacher models, We trained the teacher models following the hyperparameters of in He et al. (2021)’s
official repository 4.The performance of the teacher model are shown in Table 5.

For BERT-base teacher models, we used the teacher models released on Huggingface by textattack 5.

E.2. Training Details

We first prune the model following the details Table 9. Then, we conduct layerwise distillation with distillation coefficient α
as 15. The other training hyperparameters are listed as below.

Table 12. Hyper-parameter setup of LoSparse on knowledge distillation with DeBERTaV3-base.

Task # epochs Batch size Learning rate alpha output alpha layer

MNLI 50 32 9× 10−5 0 15

SQuAD 50 16 5× 10−5 0 15

SST-2 50 32 8× 10−5 0 15

RTE 50 16 1× 10−4 0 15

Table 13. Hyper-parameter setup of LoSparse on knowledge distillation with BERT-base.

Task # epochs Batch size Learning rate alpha output alpha layer

MNLI 50 32 9× 10−5 0 15

RTE 50 16 5× 10−5 0 15

QNLI 50 32 5× 10−5 5 5

SST-2 50 32 3× 10−4 1 1

F. Combination with CoFi
F.1. Teacher Models

As CoFi has not released the teacher models, we download all the teacher models from Text Attack 6(Morris et al., 2020)
except teachers for the MNLI task. To obtain the MNLI teacher, we fine-tune BERT-base using following hyperparameters:
learning rate: 3× 10−5, batch size: 32, training epochs: 3.

F.2. Training Details

CoFi masks out hidden states to control the remaining parameters while our method compress matrices directly, so the
total compression ratio is easily calculated as ratio = ratioCoFi × ratioLoSparse. We choose ratioLoSparse = 0.5 and
ratioCoFi = 0.2 for 10% total compression ratio.

For LoSparse part, we use the same hyperparameters in Appendix B. As for CoFi, please refer the training schedule and the
rest hyperparameters to its official repository 7.

4https://github.com/microsoft/DeBERTa
5https://huggingface.co/textattack
6https://huggingface.co/textattack
7https://github.com/princeton-nlp/CoFiPruning
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