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Abstract

The algorithm-design paradigm of algorithms using predictions is explored as a means of incorporating
the computations of lower-assurance components (such as machine-learning based ones) into safety-
critical systems that must have their correctness validated to very high levels of assurance. The
paradigm is applied to two simple example applications that are relevant to the real-time systems
community: energy-aware scheduling, and classification using ML-based classifiers in conjunction
with more reliable but slower deterministic classifiers. It is shown how algorithms using predictions
achieve much-improved performance when the low-assurance computations are correct, at a cost of
no more than a slight performance degradation even when they turn out to be completely wrong.
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1 Introduction

The increasing use of Learning-Enabled Components (LECs) in safety-critical applications
such as autonomous driving present unique challenges to the discipline of safety-critical
systems engineering. On the one hand, the availability of such LECs dramatically enhances
the capabilities of autonomous cyber-physical systems – it is hard to conceive of, e.g., self-
driving cars that do not make extensive use of LECs such as Deep Neural Networks for
perception. But on the other hand, most widely used LECs cannot provide performance
guarantees at high enough levels of assurance that they may be used in the verification and
validation processes that are so fundamental to safety-critical systems engineering.

Context. A recent line of work in the algorithms community, algorithms using predictions,
o�ers a promising approach for incorporating low-assurance predictions of the kind that
are typically provided by LECs into algorithms designed for use in safety-critical systems.
Algorithms using predictions are intended to perform very well when the predictor is accurate
(this property is called consistency – see Sec. 3), while simultaneously guaranteeing to provide
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3:2 The Safe and E�ective Use of Low-Assurance Predictions in Safety-Critical Systems

acceptable performance regardless of the quality of the predictions (called robustness – also
formally defined in Sec. 3).

In this paper, we investigate the applicability of this framework to safety-critical systems.
We have found that the framework needs to be adapted for this purpose due, amongst other
reasons discussed in Sec. 3, to the presence of hard constraints (e.g., deadlines that must
be met) in many safety-critical systems. Most prior work on algorithms using predictions
has focused upon pure optimization problems that do not include such hard constraints1 —
indeed, amongst the 28 papers tagged with the keyword ‘scheduling’ in the comprehensive
list of publications on the topic that is maintained on the Algorithms With Predictions
web-site,2 we found only two [2, 3] that consider workload models with hard deadlines. (We
will discuss these two papers further in Sec. 2.)

Our Contributions. In this paper, we adapt the algorithms using predictions framework
for use in safety-critical systems and provide an introductory explanation of the adapted
framework, specifically written to be comprehensible with moderate e�ort by members of
the real-time systems community who may have had no prior exposure to algorithms using
predictions. This explanation emphasizes the main features of the framework, and makes
the case that this framework can contribute to the ongoing e�orts of our community at
incorporating LECs into safety-critical CPS’s. In addition, we illustrate the applicability of
this framework to real-time systems by considering the following two problems that are of
interest to the real-time systems community:

1. As a first example illustration, we examine a problem that has been studied extensively
in our community: energy-e�cient hard-real-time scheduling. One of the main challenges
encountered in this problem is what is commonly referred to as “the WCET problem” [16]
– the non-determinism and variation in the execution duration of individual pieces of
code upon modern computing platforms. In hard-real-time systems, the WCET problem
requires that computing capacity be provisioned to accommodate a conservative worst-
case upper bound on the needed amount of computation; we will see that this can lead
to excessive energy being consumed during run time. If a reasonably good (although not
guaranteed to be correct) prediction on the actual execution duration of the code is also
available, then we will see that the algorithms using predictions framework can realise
considerable energy savings.

2. Our second example illustration considers a form of LECs called IDK classifiers that has
recently garnered some attention in the real-time systems community (see, e.g., [1, 5, 6]).
Classifiers are used for classifying sensor readings into one of a set of a classes (e.g., a
camera input to ‘pedestrian’, ‘stop sign’, etc.); LEC-based classifiers are generally not
able to guarantee to do so at a high enough level of assurance and so should be backed
up by deterministic –i.e., not learning-enabled– classifiers (including, perhaps human
intervention). We will examine how the framework of algorithms using predictions can
nevertheless use LEC-based classifiers to provide improved performance in the form of
reduced expected response times.

1 E.g., a paper at RTSS last year [18] proposed an algorithm using predictions for soft real-time scheduling
to minimize the average response time – it is not at all obvious how one would adapt this algorithm to
handle hard deadlines.

2 https://algorithms-with-predictions.github.io (Accessed on 25/02/2023.)
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Organization. The remainder of this manuscript is arranged as follows. In Section 2 we
step through the process of designing an algorithm using predictions for a very simple
energy-aware scheduling application, emphasizing, at each point in the presentation, the
role that the predictions play in the algorithm design and the consequent implications on
algorithm performance. This example application will give us an intuitive understanding of
the algorithm-design paradigm of algorithms using predictions; we formalize this intuition
in Section 3 and explicitly articulate the elements of the paradigm. We provide a second,
somewhat more sophisticated, illustration of the application of this paradigm in Section 4,
where we design an algorithm using predictions for minimizing the expected duration needed
to successfully complete a classification operation. We close in Section 5 by placing this work
within a larger context of safety-critical systems design, and some suggested directions of
follow-up research.

2 Illustrative Example: Energy-E�cient Scheduling

In this section we apply the algorithms using predictions framework, suitably adapted as
needed, to a problem that has been widely studied in the real-time systems community:
scheduling to minimize energy consumption (see, e.g., the surveys [4, 9] and the references
cited therein). We will show how predictions of run-time behavior, when available, can be
used to significantly reduce energy consumption when the predictions are somewhat accurate
while not requiring too much additional energy when the predictions are completely wrong.

This section is organized as follows. We first briefly describe (Sec. 2.1) the system
model we will use, in which a job is characterized by its worst-case execution time, which is
guaranteed to be a safe upper bound on its actual execution duration, as well as a prediction
(which may be inaccurate) of the actual duration for which it will execute. We then propose
(Sec. 2.2) a baseline prediction-oblivious algorithm that is fairly straightforward – what a
real-time systems developer would probably come up with if no prediction of the actual
execution duration had been provided. Next (in Sec. 2.3) we explain how the prediction can
be incorporated to obtain an algorithm that is more energy-e�cient than the prediction-
oblivious one when the prediction is more-or-less correct, whilst consuming not much more
energy than the prediction-oblivious algorithm even when the prediction is completely o� the
mark. We then (Sec. 2.4) address the issue of learning better predictions during run-time,
and finally (Sec. 2.5) apply these concepts upon a simple example system. We close out the
section by discussing related work and listing some open questions (Sec. 2.6).

2.1 System model

Since our primary purpose is to illustrate the algorithms using predictions framework, we will
make a number of simplifying assumptions in both our workload model and our energy model
for the purposes of ease of presentation (and so that we can focus on emphasizing the use of
prediction in the algorithms we develop). We will point out, where relevant, how our results
are easily modified to account for the factors that we abstract away in our simplifications.

We assume that we have a single job that is released at time zero, has a hard deadline
at time D, and is characterized by a worst-case execution time parameter (WCET) W ,
that is to be executed upon a uniprocessor platform. The work done by the processor over
any time-interval [t1, t2] is equal to

1s t2
t1

s(t) dt
2

, where s(t) denotes the processor speed at
time-instant t. The speed may be changed by the run-time scheduler at any instant to take
on any non-negative real value; there is no cost or penalty associated with changing the
speed. The power required to run the processor at some speed s is equal to s–, where – is a
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3:4 The Safe and E�ective Use of Low-Assurance Predictions in Safety-Critical Systems

symbol interpretation
W worst-case execution time
D deadline
P predicted execution time
– exponent of power function (power = speed–)

“ub robustness bound (maximum ratio of energy consumed)

Table 1 Summarizing the system model: ÈW, D, P, –, “ubÍ

positive real value that is larger than 1.3 Hence, the energy consumed by the processor over
any time-interval [t1, t2] is given by

1s t2
t1

!
s(t)

"–
dt

2
.

A predicted execution duration. As is widely known in the real-time systems community,
in safety-critical systems the values that are assigned to WCET parameters tend to be
conservative over-approximations; hence it is unlikely that our example job will actually need
to execute for a duration W under the overwhelming majority of run-time circumstances
that arise in practice. Let us assume that we additionally have a prediction, P , on the actual
execution time (AET) of the job, where P is a non-negative real-valued number that is no
larger than the WCET W .

Recall that our goal is to develop an algorithm that performs very well when the
prediction is correct, while simultaneously guaranteeing to not perform too poorly even when
the prediction is incorrect. We assume that we are provided with an additional parameter
that is a real number > 1, “ub, specifying the maximum multiplicative factor by which the
energy consumed by an algorithm using predictions may exceed the energy consumed by a
reasonable prediction-oblivious algorithm that ignores the prediction (which we will describe
in Sec. 2.2), regardless of how poor the prediction turns out to be.

Generalizing the model. As stated earlier, we are assuming a very simple system model
in order to keep the focus on the algorithms using predictions framework. Here, we briefly
discuss possible extensions to our model that render it more realistic.

We are considering the problem of scheduling a single job within a specified time-
interval [0, D]. Such problems could arise in application systems where a more complex
workload is being scheduled non-preemptively, with the non-preemptive schedule generated
using heuristic tools that seek to maximize the slack for each job. Energy-e�cient
implementation of the schedule so generated would require us to schedule each job within
a specified time-interval, yielding (for each job) the problem addressed in our model.
Our energy model (that the power needed to execute the processor at speed s is equal
to s–) is idealized in that it ignores, e.g., leakage energy. But as we will see later in
this section, the methodology we develop allows for ‘black-box’ models to be substituted
for this simple energy model – the overall methodology remains unchanged, the only
di�erence being that numerical computation (rather than the solving of closed-form
expressions) may be needed.
In a similar vein, adding the restriction that the processor speed may only take on one
of a few pre-specified permissible values does not change the essential structure of our

3 Observe that energy-e�cient scheduling is trivial if – Æ 1: it is optimal to simply run the processor at
maximum speed until the job completes.
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time

speed

tv D

1
P
tv

2

1
W ≠P
D≠tv

2

Figure 1 Speed profile for Algorithm alg (Sec. 2.3): A job is executed according to this profile
until completion (upon which the speed is set to zero).

methodology (although the combinatorial explosion resulting from having to choose from
amongst a set of discrete speeds may slow down the running times).

2.2 A Prediction-Oblivious Algorithm

If we were to choose to not make use of the prediction, a reasonable run-time algorithm
would be to set the processor speed to (W/D) and then execute the job until completion.
(This follows from the well-understood phenomenon —see, e.g., [17]— that for – > 1, the
energy required to complete a known amount of work is minimized by having the CPU run
at a constant speed for the duration of execution of the work. Thus, setting the processor
speed equal to W/D would result in the minimum energy consumption in the worst case –
i.e., when the job requires maximum execution.) Since this algorithm has the least worst-case
energy consumption, let us refer to it as WC. Note that the duration for which WC would
execute a job whose realized (i.e., actual) execution time turns out to be equal to A is

A
speed = A

W/D = AD
W time units. Hence, the energy consumed in executing a job with

actual execution time A, denoted EWC(A), is given by the following expression.

EWC(A) def=
53

W

D

4–

◊
3

AD

W

46
=

53
W

D

4–

◊ A ·
3

D

W

46
=

3
W

D

4–≠1
◊ A (1)

2.3 Incorporating The Prediction

We now develop an algorithm, alg, that makes use of the predicted value P of the actual
execution time of the job. Recall that the goal in so doing is to have alg consume less energy
than WC if the prediction is correct, i.e., if the actual execution time happens to be equal
(or close) to P , while consuming no more than “ub times the amount of energy consumed by
WC even if the prediction is completely o�.

Our prediction-oblivious algorithm of Section 2.2 had set the processor speed to equal
W/D. Observe that it is unsafe for alg to analogously replace the WCET W by the predicted
execution duration P and simply set the speed equal to P/D, since it would then have
completed exactly P units of execution by the deadline D. Hence if the prediction turns
out to be an underestimation and the actual execution time exceeds P , alg would cause a
deadline miss to occur. Therefore alg instead sets itself a virtual deadline tv that is strictly
before the actual deadline at D (i.e., tv < D — see Figure 1), and seeks to ensure that the
job will complete at this virtual deadline if the prediction is correct (i.e., the job needs exactly
P units of execution). Analogously to Algorithm WC in Section 2.2, this goal is achieved by
setting the initial processor speed equal to exactly P/tv. If during some execution the job
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3:6 The Safe and E�ective Use of Low-Assurance Predictions in Safety-Critical Systems

completes prior to time-instant tv, then it follows, by a reasoning analogous to that used
in deriving Expression 1, that the energy consumed in alg is equal to

!
(P/tv)–≠1 ◊ A

"
,

where A again denotes the actual execution time (the AET) of the job on this particular
execution. If however the job has not completed execution by its virtual deadline, alg
concludes that the prediction is incorrect and adjusts processor speed to ensure that the
maximum amount of execution that could remain, (W ≠P ), will complete within the duration
remaining prior to the actual deadline, (D ≠ tv); it does this by increasing the processor
speed to equal (W ≠ P )/(D ≠ tv). In this case the energy consumed over the interval [0, tv]
equals

1
(P/tv)–≠1 ◊ P

2
(since P units of work was done during this interval), while (A ≠ P )

units of work is done for the remainder of the execution and so the energy consumed between
time-instant tv and the job’s completion is equal to

1
((W ≠ P )/(D ≠ tv))–≠1 ◊ (A ≠ P )

2
.

Putting the pieces together, we conclude that the energy consumed by alg on executing an
invocation of the job that has AET A is given by

Ealg(A) =

Y
_]

_[

1
P
tv

2–≠1
◊ A, if A Æ P

1
P
tv

2–≠1
◊ P +

1
W ≠P
D≠tv

2–≠1
◊ (A ≠ P ), otherwise

(2)

It remains to specify how the value of tv is to be determined. Informally speaking, the slower
the processor speed the less the energy consumed. Since our goal in designing algorithms
that use predictions is to have excellent performance (in this example, minimal energy
consumption) in the event that the prediction is correct, we would like the initial processor
speed to be as small as possible — this is achieved by setting tv to be as large as we possibly
can. (Note from Expression 2 that Ealg(P ) is smaller for larger tv.) However in the event of
the prediction turning out to be incorrect, there should be adequate time remaining between
the virtual deadline and the actual one to allow the job to be completed by increasing the
processor speed. We have seen that increasing the processor speed requires an exponential
increase in the power needed (and hence the energy consumed) – we must ensure that
the total amount of energy consumed when the prediction is incorrect does not break the
specified robustness bound (i.e., does not exceed “ub times the amount of energy that would
be consumed by Algorithm WC to execute the same job). It is evident that since alg
executes at a greater speed (and hence less energy-e�ciently) than WC for A > P , the ratio
of Ealg(A)/EWC(A) increases with increasing A, taking its maximal value when the job
actually executes for a duration equal to its WCET (i.e., A takes on its largest possible value
of W ). The virtual deadline is therefore assigned the largest value of t for which

Ealg(W ) Æ “ub ◊ EWC(W )

©
3

P

t

4–≠1
◊ P +

3
W ≠ P

D ≠ t

4–≠1
◊ (W ≠ P ) Æ “ub ◊

3
W

D

4–≠1
◊ W (3)

Computing the virtual deadline tv. We now discuss how the largest value of t satisfying
Expression 3 is determined. For the special case where –, the exponent defining the
relationship between the processor’s speed and its power consumption, is equal to two (i.e.,
power equals speed-squared), Expression 3 may be algebraically rewritten as the quadratic
inequality

“ub ◊ t2 ≠

≠B˙ ˝¸ ˚3
(“ub ≠ 1) ◊ D + 2PD

W

4
◊t +

C˙ ˝¸ ˚3
PD

W

42
Æ 0 (4)
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and hence, using the well-known formula for finding the roots of a quadratic equation, we get
the following closed-form expression for tv (with B and C denoting the expressions indicated
in Eqn 4 above):

tv = ≠B +


B2 ≠ 4“ubC

2“ub
(5)

For values of – other than two, we do not have a closed-form expression for tv Instead we
can obtain, via numerical methods, an arbitrarily close approximation of the true value of tv

in the following manner.
1. Since alg should have its initial speed be no larger than the worst-case algorithm WC’s

initial speed, we should have (P/tv) Æ (W/D) or tv Ø (P/W ) ◊ D. This defines a lower
bound on the value of tv; D is obviously an upper bound.

2. Within this range, observe the monotonicity property of t satisfying Expression 3: if to

satisfies Expression 3 than so do all t < to; if to does not satisfy Expression 3 then neither
does any t > to.

3. We can therefore do binary search between
!
(P/W )◊D

"
and D to determine an arbitrarily

close approximation of the largest value of t satisfying Expression 3.
We have assumed here the simplified power model: (power = speed–) to derive the value to
be assigned to tv. We point out that more complex models may be used – simply replace
the one occurrence in the derivation of Eqn. 1 and the two occurrences in the derivation of
Eqn. 2 of (speed–) by calls to a black-box implementation of the appropriate power function.

2.4 Learning an Improved Prediction

Thus far, we have assumed that our goal is to schedule the execution of a single job in an
energy-e�cient manner. It may be the case for certain application scenarios that this single
job is invoked repeatedly in a periodic or sporadic manner. In such applications it may make
sense to update the predicted execution duration (the parameter P ) based on the observed
actual execution times of previously-executed invocations. (Standard techniques, such as a
PID controller or some appropriate Reinforcement Learning [15] method, may be used for
this purpose.) But observe that P appears in Expression 3 which is used in computing the
virtual deadline; hence, updating the value of P will require that the value assigned to the
virtual deadline parameter tv also be updated. That is, if the value of P is not a priori fixed
then the value assigned to the virtual deadline can be looked upon as a function of P — this
dependence of the virtual deadline on the value of P may be made explicit by referring to
the virtual deadline as a function of P : tv(P ). Computing tv(P ) every time the value of P
is updated may be computationally too expensive to do during run-time; hence we propose
to precompute the values of tv(P ) within a reasonable range of values for P , and store these
values (alongwith the corresponding values of the speeds at which the processor should be
run before and after tv) in a lookup table for use during run-time.

2.5 An Example

We will now illustrate the concepts introduced above upon an example problem instance
ÈW, D, P, –, “ubÍ = È8, 10, 5, 2, 1.1Í. That is, we have a job with WCET W = 8, relative
deadline D = 10, and a predicted execution duration P = 5, that is to be executed upon a
processor with the power exponent – = 2 (recall that this means that executing the processor
at speed s requires power s–). A robustness bound “ub = 1.1 is also specified: in using the
prediction we may not exceed 1.1 times the energy consumed by the prediction-oblivious
algorithm WC regardless of how inaccurate the prediction turns out to be.

ECRTS 2023



3:8 The Safe and E�ective Use of Low-Assurance Predictions in Safety-Critical Systems

Computing the virtual deadline. Since – happens to have value 2 in our example instance,
we may solve for tv exactly using Equation 5 to compute that tv = 7.6.

Comparing the two algorithms. We have plotted the ratio of the energy that is consumed
by the algorithm using predictions to that consumed by the prediction-oblivious algorithm in
Figure 2. This plot reveals that alg consumes approximately 82.2% of the energy that WC

Figure 2 Ratio of energy consumed by alg to the energy consumed by WC as a function of the
actual execution time (AET), as AET ranges from 0 to W = 8.

consumes when the AET of the job is at (or below) its predicted execution duration. Thus,
in this example a perfect prediction results in an approximately 17.8% savings in consumed
energy. This same level of savings is also obtained with predictions that over-estimate the
AET (i.e., when AET < P ). And while the relative savings decreases as the AET increases
beyond the predicted value, notice that the energy consumed by alg remains below that
consumed by WC as long as the AET is no larger than ¥ 6.575. Algorithm WC is more
energy-e�cient for values of AET that fall in the range (6.575, 8]; note, however, that the
ratio never exceeds the specified bound of “ub = 1.1.

Updating the prediction. For application scenarios where the same job is invoked repeatedly
at run-time, we had discussed in Section 2.4 how one could use on-line learning to update the
value of the prediction P . We had stated that the value of the virtual deadline parameter
tv changes as P changes – Figure 3 depicts tv as a function of P for our example. Prior to
run-time a table of values for tv as a function of P should be pre-computed and stored for
use during run-time.

2.6 Related Work and Future Directions

Although (as mentioned earlier) there is an extensive body of work dealing with energy-e�cient
scheduling, most of it does not consider predictions. We found only three papers [2, 3, 10]
dealing with energy from amongst the 28 papers tagged with the keyword ‘scheduling’ in
the list of publications maintained on the Algorithms With Predictions web-site4 (‘energy’
is not a searchable keyword there). In contrast to our model where we have just a single
job, these papers all allow for multiple jobs; however they make simplifying assumptions
regarding AETs that appear unrealizable in practice. Antoniadis et al. [2] assume that

4 https://algorithms-with-predictions.github.io (Accessed on 25/02/2023.)
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Figure 3 The virtual deadline tv(P ) as a function of the predicted execution duration P .

the exact execution duration of a job is known beforehand (and it is the arrival times and
deadlines that are unknown and the subject of prediction), while Bamas et al. [3] assume
that a job’s AET becomes known at the instant of job arrival. These assumptions do not
model the reality of the vast majority of embedded systems where the AET only becomes
known by actually executing a job to completion. Lee et al. [10] consider a very di�erent
problem (that does not involve deadlines): minimize energy cost in data centres where the
cost of energy depends upon both the volume and the peak usage, and where energy can be
either locally generated or drawn from the grid.

Future work. In our opinion, the most obvious generalization of our model would be to allow
for the specification of multiple jobs (eventually, even recurrent tasks). However exploiting
predictions for energy-e�cient scheduling becomes considerably more challenging when
multiple jobs are to be considered – the interested reader is encouraged to glance through [3]
to get a flavor for the complexities that arise even under the unrealistic assumption that
predictions of a job’s AET are revealed to hold or not upon job arrival (despite the other
simplifying assumptions there, such as that all jobs have the same relative deadline, processor
sharing is permitted, etc.).

3 Algorithms Using Predictions: The Foundations

The idea of “better than worst case” analysis has recently enjoyed much attention in theoretical
computer science [14]. The motivation is that worst case instances are not common, and so
we should design algorithms to also perform well in the common case while simultaneously
maintaining worst case guarantees. One approach is to use predictions to guide an algorithm
– these predictions may be generated via machine learning, human intuition, or other low
assurance methods. Such predictions may be incorrect, therefore algorithms should not trust
them entirely. The goal is to get the best of both worlds by improving performance when
the prediction holds, without degrading performance by too much when the prediction fails.
More specifically, these algorithms are characterized by three properties (formally defined a
bit later in this section):
1. Consistency (Definition 4): When the predictions are correct, the algorithm provides

very good performance for the instance.

ECRTS 2023



3:10 The Safe and E�ective Use of Low-Assurance Predictions in Safety-Critical Systems

2. Robustness (Definition 3): When the predictions are incorrect, the algorithm is not much
worse than a good algorithm that does not use predictions.

3. Smoothness (Definition 5): The algorithm’s performance degrades smoothly with the
error in the prediction.

In other words, the consistency of an algorithm using predictions characterizes its performance
when the predictor is perfectly accurate, and its robustness its performance guarantee
regardless of the quality of the predictions.

I Example 1. Let us revisit the example application of Sec. 2 —Fig 2 denotes the performance
ratio of the algorithm using predictions, alg, to that of the prediction-oblivious algorithm
WC. Note that the performance ratio is ¥ 0.822 when the prediction is exact – this is a
quantitative measure of alg’s consistency. alg’s robustness follows from the observation
that the performance ratio never exceeds the specified bound of “ub = 1.1. alg’s smoothness
property is visually evident from Fig 2: the performance ratio remains ¥ 0.822 for AETs Æ
prediction, and degrades smoothly with increasing error for AETs > the prediction. J

The standard manner of characterizing the performance of any algorithm (not just those using
predictions) designed to operate in an online setting is via competitive analysis. Consider
some relevant performance objective that we want to minimize 5 — in the example in
Section 2, this metric is energy.

I Definition 2 (Competitive Ratio). For any input X, let opt(X) denote the cost achieved
by an optimal clairvoyant algorithm and let alg(X) denote the cost of the online algorithm
alg on this input. The competitive ratio of alg is the ratio (alg(X)/opt(X)) maximized
over all possible inputs X.

One can think of the algorithms using predictions framework as a generalization of competitive
analysis. In this framework, the online algorithm gets a prediction, say P . This prediction
should be something that allows the algorithm to make better decisions than it would be able
to in the absence of this prediction — for instance, in the example of Sec. 2, the prediction is
the actual execution time (AET) of the job. We want the algorithm to perform well even with
incorrect predictions; therefore, robustness is simply the competitive ratio of an algorithm
which uses predictions.

I Definition 3 (Robustness). Given an online input X and prediction P for X, let alg(X, P )
denote the cost of the online algorithm using this prediction and opt(X) the cost of the
optimal clairvoyant algorithm. alg’s robustness is defined as the ratio (alg(X, P )/opt(X))
maximized over all values of X and P .

The algorithms using predictions framework seeks to ensure that robustness of an algorithm
is as close as possible to the best competitive ratio that can be achieved by any online
algorithm for the problem.

Informally, consistency is the competitive ratio of the algorithm when the prediction is
accurate — it measures how well the algorithm uses predictions to improve performance. In
particular,

I Definition 4 (Consistency). Given an online input X and an exact prediction P for X,
let alg(X, P ) denote the cost of the online algorithm using this prediction and opt(X) the
cost of the optimal clairvoyant algorithm. The consistency for the algorithm is defined as the

5 We can define this for maximization objectives in a similar manner.
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ratio alg(X, P )/opt(X) maximized over all values of X assuming P exactly matches the
predicted value.

There typically is a trade-o� between consistency and robustness since one can think of
robustness as hedging against an inaccurate prediction. In the energy example of Section 2,
one can adjust this trade-o� by making di�erent decisions about the virtual deadline — a
later virtual deadline may improve consistency while potentially being less robust and vice
versa.

In addition to consistency and robustness, we want the algorithms to be able to gracefully
handle small errors in predictions — this property is called smoothness. Smoothness is harder
to define precisely and generally. Given an input X, say the perfect prediction for X is PX

— this is the prediction which one would generate if we knew X precisely. Say the actual
prediction given the algorithm alg is P . The error error is some function of PX and P

— this function can be problem and algorithm specific, but informally is some di�erence
function between the two parameters which is 0 when P = PX and increases as the di�erence
between the two increases. Ideally, we want algorithms whose competitive ratio relative to
the optimal increases slowly as the error increases.

I Definition 5 (Smoothness). Given an online input X and a prediction P for X, let
alg(X, P ) denote the cost of the online algorithm using this prediction and opt(X) the
cost of the optimal clairvoyant algorithm Let error denote the error between the prediction
P and the perfect prediction Px for X. We say that the algorithm is f(error)-smooth if
alg(X, P )/opt(X) Æ — + f(error) for all error and all X.

We want the smoothness function f(error) to grow smoothly as error moves away from
0. Therefore, smoothness is simply a generalization of consistency — most definitions of
consistency are also in terms of the competitive ratio when the error is 0.

Adapting the framework. Above we have described the algorithms using predictions
framework as it is currently defined (and used) by the optimization algorithms community.
We now briefly discuss two ways in which this framework needs adaptation in order to render
it more suitable for safety-critical systems.
1. Whereas the framework focuses on the trade-o� between robustness and consistency, we

look upon robustness as a constraint that must be met, with consistency (and smoothness)
being metrics that we can optimize for/ trade o� amongst. Although this is in one sense
merely a restriction of the algorithms using predictions framework, both our examples (in
Sec. 2 and the upcoming one in Sec. 4) show that this restriction fundamentally changes
the process of applying the framework to specific problems.

2. The framework, as currently defined, primarily compares the performance of alg with that
of an optimal clairvoyant algorithm. But such comparison may not always be appropriate:
consider, for instance, our energy-e�cient scheduling application of Sec. 2. It is evident
that no on-line algorithm can have a competitive ratio (Definition 2) smaller than infinity6,
and hence the framework as currently defined is not applicable to this application. But

6 To see this, let so denote the initial speed at which alg runs the processor; for very (small) AET A, it
consumes

!
s–≠1

o ◊ A
"

units of energy. Meanwhile the clairvoyant opt, knowing the value of A, would
execute at speed (A/D) and so consume

!
(A/D)–≠1 ◊ A

"
units of energy. The competitive ratio is

thus
!

so D
A

"–≠1, which, for any fixed so > 0 (i.e., any initial speed chosen by alg), approaches Œ as
A æ 0.
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input Base Classifier

È‰1, p1Í
È‰2, p2Í
È‰3, p3Í

· · ·
· · ·

È‰k, pkÍ

p1 Ø pT ? ‰1
Y

“IDK”N

Figure 4 Obtaining an IDK classifier from a base classifier. For a given input, the base classifier
outputs up to k ordered pairs È‰i, piÍ, indicating that it believes that the input belongs to the class
‰i with confidence score pi. (It is assumed that p1 Ø p2 Ø · · · Ø pk, i.e., ‰1, ‰2, . . . , ‰k are the k
most likely classes, in order.) The threshold confidence parameter for the IDK classifier is set at pT .

we saw in Sec. 2 that applying our adaptation, which compares the performance of alg
with that of a reasonable prediction-oblivious algorithm, yields significant energy savings.

We point out that while the first adaption above can be looked upon as a restriction of the
algorithms using predictions framework, the second adaptation expands the typical use-case
for this framework and thereby enables its use in situations where the original framework is
not directly applicable. This expanded applicability was in evidence in Sec. 2; next in Sec. 4,
we will however not make use of this second adaptation, instead going back to the original
framework and comparing with an optimal clairvoyant algorithm.

4 Illustrative Example: IDK Classifiers

A classifier is a software component that categorizes each input provided to it into one of a
fixed set of classes. IDK classifiers, also known as classifiers that defer [7, 8, 12], are obtained
from base classifiers that use deep learning and related AI technologies in the following
manner (see Figure 4): if the base classifier is unable to arrive at a classification decision at an
adequately high level of confidence, then a dummy class, IDK (for “I Don’t Know”) is output
instead. In scenarios where classification is safety-critical, IDK classifiers should be used
in conjunction with more traditional (“deterministic”) classifiers for the same classification
problem: if an IDK classifier outputs IDK upon some input, then the deterministic classifier
is called upon that input to provide an authoritative classification. (Of course, it is only
meaningful to use IDK classifiers in this manner if doing so is more e�cient, in some sense
or the other, than directly calling the deterministic classifier in the first place.)

As part of ongoing e�orts to provide a scheduling-theoretic framework that allows for
the use of LECs in hard-real-time safety-critical systems, the real-time scheduling theory
community has recently (see, e.g., [1, 5, 6]) begun studying IDK classifiers. The three cited
papers [1, 5, 6] consider variants of this problem: given one or more IDK classifiers and a
deterministic classifier for the same classification problem, how does one determine which
of the classifiers to execute, and in what order, to minimize the expected duration needed to
obtain a successful classification (perhaps within a specified hard deadline)?

Abdelzaher et al. [1] describe how the training phase of IDK classifiers should be modified
in order to estimate the probabilities that they will succeed in classifying an arbitrary input.7
In this paper, we look upon the probability values so obtained as predictions of the true

7 Dependencies amongst classifiers can also be estimated by the method in [1]; e.g., what is the conditional
probability that IDK classifier Ki returns ‘IDK’ upon inputs for which classifier Kj has returned ‘IDK’?
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(unknown – perhaps unknowable) underlying probabilities, and apply the algorithms using
predictions paradigm to deal with the possibility that these predictions are incorrect.

The specific problem considered. Analogously to our approach in Section 2, we consider
here a simplified version of the problem studied in [1, 5, 6] upon which to apply our adaptation
of the algorithms using predictions framework. Specifically, we assume that we have available
to us a single IDK classifier and a single deterministic classifier for the same classification
problem, and must decide whether to (i) directly execute the deterministic classifier; or
(ii) first call the IDK classifier, subsequently calling the deterministic classifier in the event
that the IDK classifier returns ‘IDK.’ Our objective is to minimize the expected execution
duration – i.e., the duration needed to successfully classify the input. If the probability of the
IDK classifier returning a successful classification were a priori known, this problem would
be trivial to solve: call the IDK classifier first if and only if its execution duration, plus the
product of the probability it returns ‘IDK’ times the execution duration of the deterministic
classifier, is strictly smaller than the execution duration of the deterministic classifier. As
stated above we assume, however, that we only have a predicted, rather than the actual,
value of this probability. Specifically, let us suppose that the available pair of classifiers is
characterized as a three-tuple I

def= ÈC, �, DÍ where
• C is the execution duration8 of the IDK classifier, and D is the execution duration of

the deterministic classifier. (It is a reasonable assumption that C < D, since if C Ø D
there is no benefit, from the perspective of minimizing the expected execution duration,
to executing the IDK classifier.)

• � is the predicted probability that the IDK classifier will succeed (i.e., (1 ≠ �) is the
predicted probability that it will output ‘IDK’).
We point out that the “real” probability that the IDK classifier will succeed, which we will
denote as P , is unknown to a non-clairvoyant algorithm. That is, � is a prediction of the
unknown (perhaps unknowable) value of P .

Given such a three-tuple I
def= ÈC, �, DÍ, an algorithm must decide whether to call the IDK

classifier first (and call the deterministic classifier only if this returns ‘IDK’), or to directly
call the deterministic classifier. The performance metric of an algorithm that makes this
decision is the expected duration of its classification decision:

;
C + (1 ≠ P ) ◊ D, if the algorithm calls the IDK classifier first
D, if the algorithm directly calls the deterministic classifier

The objective is to obtain a classification with minimum expected duration. We define
the prediction error (see Sec. 3, the paragraphs between Definitions 4 and 5) to be the
di�erence between the actual and the predicted success probabilities:

error(I) def= |� ≠ P | (6)

A problem instance. As we have previously pointed out, in safety-critical systems it makes
sense to place a bound on the “poorness” of acceptable solutions – in the formalism of
algorithms using predictions as laid out in Sec. 3, to specify a bound on the robustness of

8 For this application (in contrast to the one in Sec. 2), we make the simplifying assumption that the
given parameters C and D represent the actual execution times (AETs) of the classifiers – this allows
us to focus on LEC-specific aspects of prediction without getting bogged down revisiting the kinds of
issues explored in Sec 2. The model is easily generalized to incorporate uncertainty in (and predictions
of) the values of these AET’s.
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C
D

bound on expected execution duration ratio

1

2

1

(1, 1)

(1, 2)

Figure 5 Bound on ratio of expected execution durations as a function of C/D. The straight
line: use the IDK classifier. The curve: do not use the IDK classifier.

the algorithm. Hence we specify a problem instance as (I, “ub) where I denotes the pair of
classifiers: I = ÈC, �, DÍ, and “ub denotes the maximum acceptable robustness, defined here
as the ratio of the expected execution duration for the algorithm using predictions to the
expected execution duration for an optimal algorithm (denoted opt) that knows the value of
P . Note that in contrast to the energy-e�cient scheduling example of Sec. 2 where we had
compared its performance of an algorithm designed to use predictions against the ‘reasonable’
prediction-oblivious algorithm that we specified in Sec. 2.2, here we are comparing against
an idealized clairvoyant optimal algorithm in opt.

4.1 An Algorithm Using the Prediction

We will now design an algorithm, alg (see Figure 6), that uses the predicted value � to
decide whether to directly execute the deterministic classifier, or to execute the IDK classifier
first and the deterministic one only if the IDK classifier fails. We will first explore the
constraints placed on alg due to the robustness requirement: that its performance (expected
duration) never exceed that of opt by more than a factor “ub. Once we have identified the
space of robust designs, we will next see how consistency considerations direct us to a choice
within this design space; finally, we will characterize the smoothness characteristics of this
choice.

Meeting the robustness constraint. alg must make one of the two available choices:
execute the IDK classifier first, or directly execute the deterministic classifier. Let us study
the implications upon robustness of each choice.
1. If alg executes the IDK classifier first, its expected duration is C + (1 ≠ P ) ◊ D. In

the worst-case scenario for alg, the value of P turns out to be equal to zero and opt,
knowing this, would directly execute the deterministic classifier for a duration of D. The
performance ratio is therefore equal to

!
1 + C

D

"
– this is plotted as a function of (C/D)

in magenta as the increasing straight line in Fig. 5.
2. If alg directly executes the deterministic classifier, then its duration is D. In the worst-

case scenario for alg, P = 1 and hence opt would execute the IDK classifier for a
duration of C. The performance ratio is therefore equal to

!
D
C

"
– this is plotted as a

function of (C/D) in teal as the decreasing curve in Fig. 5.
The plots of Figure 5 help us identify the space of acceptable designs for any given problem
instance (I = ÈC, �, DÍ, “ub). For this instance, locate the position of the point with x-
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coordinate (C/D) and y-coordinate “ub in Fig. 5.
1. If this point lies below both the curves, then neither choice can guarantee to meet the

specified robustness bound and hence we must declare failure
2. If this point lies between the two curves, the choice of whether to directly call the

deterministic classifier or to call the IDK classifier first is forced on alg by the robustness
bound. If the point lies to the left of the intersection of the two curves, then only calling
the IDK classifier first can guarantee the robustness bound whereas if it lies to the right
of the intersection, then only directly calling the deterministic classifier can guarantee
the robustness bound.

3. However if this point lies above both curves, then either choice meets the robustness
bound. This is the only situation where an algorithm is free to use the prediction; below
we will discuss how it does so and makes a choice to achieve consistency.

Let (x̂, ŷ) denote the point where the two curves in Fig. 5 intersect. We have 1 + x̂ = 1/x̂ and
ŷ = 1/x̂, from which it follows that (x̂, ŷ) = (1/Ï, Ï) where Ï denotes the famous constant
commonly called the Golden Ratio: Ï = (1 +

Ô
5)/2 ¥ 1.618. Theorem 6 follows:

I Theorem 6. (i) alg never returns failure for problem instances with “ub Ø Ï; and (ii) the
prediction is never useful for instances with “ub Æ Ï, where Ï denotes the Golden Ratio:
Ï = (1 +

Ô
5)/2. J

Achieving Consistency. As we have observed above, the prediction is meaningful only for
systems (I = ÈC, �, DÍ, “ub) for which the point (C/D, “ub) lies above both curves in Fig. 5.
Recall (Definition 4) that consistency characterizes the performance of an algorithm using
predictions when the prediction is exactly correct; for our example, that translates to the
case when � = P . If � = P , it is evident that alg should use the IDK classifier i�

1
C + (1 ≠ �) · D < D

2
…

1
C + D ≠ � D < D

2
…

1
� >

C

D

2

An alg that executes the IDK classifier i�
!
� > (C/D)

"
clearly has consistency equal to

one: when the prediction is exact, it has exactly the same expected duration to successful
classification as opt does.

Smoothness Analysis. We now analyze the smooth properties (Definition 5) of the algorithm
obtained above (for convenience, also listed in pseudo-code form in Figure 6). Since the
predictions are only usable when “ub > max(D/C, (1 + C/D)), we restrict our analysis of
smoothness to instances satisfying this property. In Figure 7, we plot the expected duration
of both alg (in blue) and opt (in red) as a function of the true probability of successful
classification by the IDK classifier, P , for both the cases when alg chooses to first execute
the IDK classifier (top left), and when it directly executes the deterministic classifier (bottom
left). Let us separately consider the two cases.
1. For alg to choose to use the IDK classifier (top left in Fig. 7), it must be the case that

� > C/D. Now when P is also Ø C/D, alg’s performance is the same as opt’s. On the
other hand when P < C/D, the performance ratio is given by

C + (1 ≠ P ) ◊ D

D
= C

D
+ (1 ≠ P ) = 1 +

3
C

D
≠ P

4

Meanwhile, error = � ≠ P >
!

C
D ≠ P

"
; plugging into the above expression, we have

performance ratio

= 1 +
3

C

D
≠ P

4
< 1 + error
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Input: (I, “ub)

1 /*I
def= ÈC, D, �Í; “ub is the maximum permissible robustness

2 if
!
“ub < min

!
1 + C

D , D
C

""
then /*Below both lines in Figure 5

3 return failure
4 if

!
min(1 + C

D , D
C ) Æ “ub Æ max

!
1 + C

D , D
C

""
then /*Between the lines in Figure 5

5 if
!
1 + C

D

"
Æ D

C then
6 return execute the IDK classifier first
7 else
8 return execute the deterministic classifier

9 if
!
“ub > max

!
1 + C

D , D
C

""
then /*Above both lines in Figure 5

10 if
!
� > D

C

"
then

11 return execute the IDK classifier first
12 else
13 return execute the deterministic classifier

Figure 6 The algorithm using predictions alg. (The prediction finds use in Lines 10-13.)

Observe that alg’s performance loss when compared to opt is one-sided – there is no
performance loss unless P < � (i.e., � is an over-estimation of the true probability P ).
The top right plot of Fig 7 plots the worst-case relative performance as a function of
error, as the error ranges over [0, C/D].

2. We can similarly consider the situation where alg decides against using the IDK classifier
(bottom left in Fig. 7). It must then be the case that � Æ C/D. If P is also Æ C/D,
then the performance ratio is one. If P > C/D, then the performance ratio is given by

D

C + (1 ≠ P ) ◊ D
= 1!

C
D

"
+ (1 ≠ P )

= 1
1 ≠

!
P ≠ C

D

"

Meanwhile, error = P ≠ � > P ≠
!

C
D

"
; plugging into the above expression, we have

performance ratio

= 1
1 ≠

!
P ≠ C

D

" <

3
1

1 ≠ error

4

Once again, alg’s performance loss when compared to opt is one-sided – there is no loss
unless P > � (i.e., � is an under-estimation of the true probability P ). The bottom right
plot of Fig 7 plots the worst-case relative performance as a function of error, as the error
ranges over [0, 1 ≠ (C/D)].

By visual inspection of the right-hand plots in Fig. 7, it is clear that the relative performance
of alg does indeed degrade smoothly with error. (When alg chooses to use the IDK classifier
– top right in Fig. 7 – the performance degrades linearly with error, but that is not the case
when alg directly uses the deterministic classifier – bottom right in Fig. 7.)

4.2 Related Work and Future Directions (on IDK Classifiers)

While several papers [1, 5, 6] dealing with IDK classifiers have recently appeared in the
real-time literature, we are not aware of any prior work that integrates predictions with IDK
classifiers. We nevertheless consider the prior papers [1, 5, 6] to be very relevant to our work
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P

execution duration

C + D

D

C

!
C
D

"
1 error

execution duration ratio

1

!
1 + C

D

"

0
!

C
D

"

P

execution duration

C + D

D

C

!
C
D

"
1 error

execution duration ratio

1

!
D
C

"

0
!

1 ≠ C
D

"

Figure 7 Smoothness. Blue is alg; red is opt. Top: alg uses the IDK classifier (and so
� > C/D). Bottom: alg does not use the IDK classifier (� Æ C/D).

(and closely related to it) since they, Abdelzaher et al. [1] in particular, directly address the
issue of obtaining a probabilistic characterization of run-time behavior of the classifiers by
detailing procedures for determining the probability values – these are the ‘predictions’ of
our model. These papers also consider cascades of multiple classifiers (rather than just two,
one IDK and one deterministic, as we have done), and show that one can in general obtain
smaller expected duration to classification via such longer cascades. As future work, we plan
to extend the methodology we have proposed in this manuscript to cascades of > 2 classifiers.

Another direction of future research involves incorporating learning. In our energy-e�cient
scheduling example of Sec. 2, we saw that if the job under consideration is repeatedly invoked
and predictions can therefore be improved via a process of on-line learning, how doing so may
allow for further e�ciency gains (Sec. 2.4). But incorporating learning is not straightforward
for IDK’s even if the classification problem is repeatedly invoked: if � Æ C/D, then alg
recommends against the use of the IDK classifier and we will never have a chance to update
the prediction (the value of �). Therefore some more sophisticated learning framework must
be applied. We may, for example, consider using RL-based learning [15] to occasionally force
alg to call the IDK classifier, but for this we can only guarantee robustness over a sequence
of classification decisions rather than on each individual classification.

5 Context and Conclusions

Sources of uncertainty abound in safety-critical real-time CPS’s that operate within complex
environments – these include traditional sources such as variation in run-time execution
duration (the ‘WCET problem’ [16]), and newer ones arising from the use of learning-enabled
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components in such systems. We believe that the recently proposed algorithm-design paradigm
of Algorithms using Predictions may be a good fit for dealing with such uncertainty, and
should therefore be considered for use in safety-critical real-time systems — this manuscript
reports on our e�orts at doing so. Most prior work on algorithms using predictions dealt
with pure optimization problems, and studied trade-o�s between consistency (making good
use of accurate predictions) and robustness (not su�ering too much performance loss when
predictions turn out to be incorrect). Since safety-critical systems are characterized by hard
constraints, we had to adapt the framework and accord primacy to robustness: given an
acceptable degree of robustness, identify a design space of acceptable algorithms and determine
the algorithm o�ering maximum consistency within this space (and then characterize the
smoothness of this algorithm). To demonstrate the usefulness of this framework, we have used
it to design algorithms for a pair of applications that are of current interest to the real-time
computing community; for both, we have shown that algorithms using predictions achieve
improved performance when accurate predictions are available, without being penalized
beyond pre-specified robustness bounds if the predictions go wrong.

As stated earlier, there are multiple sources of uncertainty in modern complex safety-
critical real-time CPS’s in addition to the two we have considered here. For each such source,
the availability of good predictions could potentially be used to improve performance. For
instance, in many event-triggered systems where triggering events may occur repeatedly, the
period parameter [11, 13] specifies the minimum duration between successive triggerings.
Current scheduling techniques usually allocate computational resources assuming that suc-
cessive triggerings will occur at the maximum rate (i.e., separated by exactly the period
parameter); if predictions are available of a larger inter-triggering duration, the algorithms
using predictions framework could perhaps be used to design algorithms that make e�cient
use of computational resources when such predictions are correct, without catastrophic
consequences if they turn out wrong.
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