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Abstract
While ERM suffices to attain near-optimal generalization error in the stochastic learning setting,
this is not known to be the case in the online learning setting, where algorithms for general concept
classes rely on computationally inefficient oracles such as the Standard Optimal Algorithm (SOA).
In this work, we propose an algorithm for online binary classification setting that relies solely
on ERM oracle calls, and show that it has finite regret in the realizable setting and sublinearly
growing regret in the agnostic setting. We bound the regret in terms of the Littlestone and threshold
dimensions of the underlying concept class.

We obtain similar results for nonparametric games, where the ERM oracle can be interpreted
as a best response oracle, finding the best response of a player to a given history of play of the
other players. In this setting, we provide learning algorithms that only rely on best response oracles
and converge to approximate-minimax equilibria in two-player zero-sum games and approximate
coarse correlated equilibria in multi-player general-sum games, as long as the game has a bounded
fat-threshold dimension. Our algorithms apply to both binary-valued and real-valued games and
can be viewed as providing justification for the wide use of double oracle and multiple oracle
algorithms in the practice of solving large games.

1. Introduction

The advent of Deep Learning has exacerbated the importance of learning models which involve a
large number of parameters or are non-parametric. Non-parametric learning is learning at its fullest
generality. We make no assumption about the structure of our decision space, working with po-
tentially infinite and non-continuous hypothesis classes. From a theoretical standpoint, most study
of non-parametric learning has focused on the stochastic setting, where one learns a model given
independent observations from some distribution. This study has led to important developments
in—both frequentist and Bayesian—non-parametric Statistics, including the discovery of notions of
complexity of hypotheses classes, such as the celebrated VC and fat-shattering dimensions, which
tightly capture the number of observations from a distribution that is necessary to select a hypothe-
sis whose prediction error under the distribution is approximately optimal. In fact, this is achieved
via Empirical Risk Minimization (ERM), the simple method, which given a hypothesis class H, of
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functions mapping a feature set X to a label set Y ⊆ R, and a set of observations {(xi, yi)}Ni=1,
outputs:1

(ERM): argmin
h∈H

N∑
i=1

|h(xi)− yi|. (1)

The main goal of this paper is to advance our understanding of non-parametric learning in the
more general setting of online learning, which is general enough to capture a variety of other learn-
ing settings as special cases and has found applications in a diversity of fields, including optimiza-
tion and game theory, which is also in the focus of this paper. We will consider a fairly general on-
line learning setting wherein a learner interacts with an adversary over a number of rounds. In each
round t = 1, 2, . . . , T , the learner picks a distribution D̂t over functions h : X → Y , where X is a
feature set and Y ⊆ R is a label set, then the adversary picks a feature-label pair (xt, yt) ∈ X × Y ,
and then the learner draws a sample ĥt ∼ D̂t and suffers loss |ĥt(xt) − yt|. The learner’s losses
add up over rounds and the learner’s goal is to make her total loss over several rounds as small as
possible compared to some benchmark loss computed with hindsight information.

There are many variations to the theme depending on what distribution D̂t the learner is allowed
to use, what data (xt, yt) the adversary is allowed to supply, what benchmark loss the learner com-
petes against, etc. In this work, we consider the common setting where there is some class H of
hypotheses from X to Y , and the performance of the learner is measured against the optimal hind-
sight error made by functions in this class: infh∈H

∑T
t=1 |h(xt)− yt|, i.e. the goal of the learner is

to minimize the following quantity, called regret, in expectation or with good probability:

T∑
t=1

|ĥt(xt)− yt| − inf
h∈H

T∑
t=1

|h(xt)− yt|. (2)

When the distributions D̂t chosen by the learner are supported on hypotheses from H the learner is
called (randomized) proper, otherwise the learner is called improper. When the pairs (xt, yt) chosen
by the adversary satisfy that yt = h(xt) for some h ∈ H the setting is called realizable otherwise
the setting is called agnostic. Finally, when Y = {0, 1}, we call H a 0-1-valued or binary-valued
concept class and the learning task online classification. Otherwise, when Y = R or some subset
such as [0, 1],H is called real-valued and the learning task is called online regression.

Similar to the stochastic setting, there has been extensive work in the online setting on devel-
oping complexity measures of concept classes, which suffice to characterize or bound the optimal
regret (2) that is attainable by a proper or improper learner, in the realizable or agnostic setting, and
for binary-valued or real-valued functions. For example, the celebrated work of Littlestone (1988)
characterizes the optimal regret bound attainable by an improper learner, in the realizable online
classification setting, in terms of a complexity measure of the concept class H that is now known
as Littlestone dimension of H; see Definition 17. More recent work by Daskalakis and Golowich
(2022) provides near-matching bounds for the optimal regret of proper learners in the same setting,
and generalizes this result to proper learners in the realizable online regression setting, providing
regret bounds in terms of the natural generalization to this setting of Littlestone dimension, called
sequential fat-shattering dimension; see Definition 23. In the agnostic setting, Ben-David et al.

1. To be formal, if the infh∈H
∑N

i=1 |h(xi) − yi| is not attained, we allow some small optimization error ϵ > 0 from
an ERM oracle, namely allowing it to output any hypothesis whose loss is within ϵ from the infimum.
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(2009) and Alon et al. (2021) characterize the optimal regret of improper learners in the online clas-
sification setting in terms of Littlestone dimension, while in the online regression setting Rakhlin
et al. (2010) characterize the optimal regret of proper learners in terms of the sequential Rademacher
complexity as well as in terms of the sequential fat-shattering dimension, the latter characterization
being recently tightened by Block et al. (2021). Finally, Hanneke et al. (2021) obtain near-optimal
proper learners for online classification in the agnostic setting via more constructive arguments
compared to Rakhlin et al. (2010) and Block et al. (2021).

In contrast to the stochastic setting, however, our understanding of attainable regret in the online
learning setting is quite more limited, in the sense that the afore-described works, which bound or
characterize the optimal regret, are either non-constructive or make oracle queries to the Standard
Optimal Algorithm (SOA) proposed by Littlestone (1988) or generalizations thereof (Daskalakis
and Golowich, 2022). Indeed, learning algorithms for non-parametric hypothesis classes must have
access to some oracle in order to interface with a potentially infinite menu of hypotheses. We must
keep in mind, though, that our goal in studying learning in this general setting is to say something
meaningful about specific learning tasks. Thus, our selection of oracle model should be informed
by the tasks to which we hope to apply our non-parametric algorithm. SOA and its generalizations
involve computing the Littlestone dimension or the sequential fat-shattering dimension of concept
classes defined by the online learner in the course of its interaction with the adversary, which are
challenging computations, even when the concept class and the set of features are finite (Manurangsi
and Rubinstein, 2017; Manurangsi, 2022). Thus, the non-parametric learning algorithms coming
from the SOA oracle model are utterly useless for any practical applications.

On the other hand, the stochastic learning setting is studied under the more standard ERM oracle
model (1). The learning algorithms here enjoy both success in their guaranteed performance and
practical feasibility in their more realistic oracle assumption. Ideally, we would like to construct
online learning algorithms using this standard oracle too. One of the main questions we ask is thus
the following:

Goal 1 In the non-parametric online learning setting, do there exist learning algorithms whose
steps run in finite time given access to an ERM oracle as well as standard arithmetic operations,
and whose regret is finite or sublinearly growing with T?

One of our main contributions is to provide positive answers to this question for the online classifi-
cation setting, as summarized in Table 1. In the realizable setting, we provide an improper learner
whose regret is finite and a proper learner whose regret grows sublinearly in the number of rounds;
see Theorem 6. In the agnostic setting, we provide an improper learner with sublinear regret as well
as a proper learner whose regret is also sublinear but grows faster than that of the proper learner;
see Theorem 8. The regret, time per iteration, and ERM oracle calls per iteration of our algo-
rithms are bounded in terms of the Littlestone dimension of the concept class and/or the threshold
dimension of the concept class, formally defined in Definition 18 and related to the Littlestone di-
mension as per Lemma 20. We note that our algorithms use a weaker oracle than the ERM oracle,
called consistent oracle, formally given in Definition 4. This oracle takes as input a set of examples
(x1, y1), . . . , (xn, yn) and outputs some h ∈ H such that yi = h(xi) for all i, if such h exists.

We note that, in the worst case, our algorithms require a number of iterations that is exponential
in the Littlestone dimension. This is expected due to the lowers bounds of Hazan and Koren (2016).
They show that there exist finite concept classes H such that Ω̃(

√
|H|)-many ERM and function

evaluation queries are necessary to obtain sublinear regret in the agnostic proper setting. WhenH is
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Setting Time per iter. ERM calls/iter. Regret
Realizable, improper min(t, 4m, Cd) 1 min(4m, Cd)

Realizable, proper t 1 T
2m+2
2m+3

Agnostic, improper tmin(4m,Cd) tmin(4m,Cd)
√
T min(4m, Cd)

Agnostic, proper eo(T ) T d T
2m+3
2m+4

Table 1: The table describes the complexities of our online learner, Algorithm 1 (and its extension
to the agnostic setting), in various settings, up to polylogarithmic factors. We use the
following parameters: m = tr(H), the threshold dimension of the concept class; d =
Lit(H), the Littlestone dimension ofH; T , the total number of iterations; and t, the current
iteration count (in case the complexity is different for different t). The complexities are up
to polylogarithmic factors and C is an absolute constant.

finite, its Littestone dimension is bounded by log |H|. Thus the total time in the last line of Table 1
should have exponential dependence on the Littlestone dimension.

One of the main applications of online learning is for the purpose of equilibrium learning in
games. Indeed, the existence of agnostic, proper learners whose regret grows sublinearly in the
number of rounds in the online regression setting with finite concept classes can be used to establish
the existence as well as the distributed learnability of minimax equilibria in two-player zero-sum
games with a finite number of actions per player and coarse correlated equilibria in multi-player
general-sum games with a finite number of actions per player; see e.g. Cesa-Bianchi and Lugosi
(2006). This result has been recently generalized to non-parametric games, i.e. games wherein
players have an infinite set of actions, under the condition that a collection of concept classes (one
class per player) defined in terms of the game’s payoff matrix have finite Littlestone or sequential
fat-shattering dimensions Hanneke et al. (2021); Daskalakis and Golowich (2022); Rakhlin et al.
(2010). However, the resulting algorithms for equilibrium learning in non-parametric games also
involve SOA oracles. Our second goal in this paper is the following:

Goal 2 Consider a family of non-parametric two-player zero-sum (respectively multi-player general-
sum) games for which minimax (respectively coarse correlated) equilibria exist. For such family of
games, are there algorithms for computing an ϵ-approximate minimax (respectively coarse corre-
lated) equilibrium, which run in finite time given access to best-response oracles for each player
(a.k.a. ERM calls) as well as standard arithmetic operations?

Our other main contribution is to provide positive answers to this question, as summarized in Ta-
ble 2. In particular, Theorem 12 provides an algorithm computing an ϵ-approximate minimax equi-
librium of a two-player zero-sum game, whose number of iterations, time per iteration and number
of best-response (a.k.a. ERM) calls are bounded in terms of the fat-threshold dimension of the game,
as per Definition 36. Theorem 13 provides similar results for approximate coarse correlated equi-
librium computation. Our results apply to both binary-valued and real-valued games. It is important
to note that our algorithm for solving zero-sum games is a variant of the double oracle algorithm,
proposed by McMahan et al. (2003). In our variant, the players grow the action sets they consider in
alternating rounds of the algorithm as opposed to simultaneously in every round. So our Theorem 12
provides conditions under which our variant of the double oracle algorithm converges in games with
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Setting Time per iter. BR calls/it. #iterations
Minmax, 0-1 valued t/ϵ4 log t/ϵ2 CLit(G)/ϵ2 ∧ ϵ−C VC(G)2 tr(G) logVC(G)/ϵ4

Minmax, real valued t/ϵ4 log t/ϵ2 Csfat(G,ϵ)/ϵ2 ∧ ϵ−CI(G)2 fattr(G,ϵ)/ϵ5

CCE, 0-1 valued kt/ϵ2 k log t/ϵ2 C(k/ϵ3) Lit(G)

CCE, real valued kt/ϵ2 k log t/ϵ2 C(k/ϵ3) sfat(G,ϵ)

Table 2: The table describes the time per iteration, the number of best-response calls per iteration
and the number of iterations of our algorithms, up to polylogarithmic factors for finding an
O(ϵ)-approximate Nash in a zero-sum two player game (minmax equilibrium) and Coarse
Correlated Equilibrium (CCE) in general games G. Here, C > 0 is a universal constant,
and Lit,VC, tr, sfat, fat, fattr denote Littlestone, VC, threshold, sequential fat, fat and

fat-threshold dimensions of G, I(G) =
∫ 1
0

(√
fat(G, δ)dδ

)2
and ∧ denotes a minimum

of two terms.

infinite action spaces, answering a question raised by Gemp et al. (2022) and their references. In
a similar vein, our algorithm for solving multi-player games provides a multi-player variant of the
double oracle algorithm and conditions under which it converges. Such multi-oracle algorithms are
used extensively in practice for equilibrium computation in large games such as multi-agent rein-
forcement learning; see e.g. the discussion on the policy-space response oracles (PSRO) algorithm
in (Gemp et al., 2022) and its references. Again our work provides convergence guarantees when
the action sets are infinite.

We want to highlight that we give the first algorithm for general concept classes and games that
can be implemented with access to an ERM oracle. Though SOA-oracle algorithms only require
polynomially-many iterations in the Littlestone dimension, the execution of a single iteration for
even simple tasks can take exponentially long. Our ERM-oracle algorithms enjoy fast per-iteration
time complexity, and often in terminate in far fewer than the worst-case exponentially-many it-
erations. It is no surprise that the algorithms that arise from the ERM-oracle model parallel the
algorithms actually used in the practice of solving large games (known as double-oracle algorithms;
discussed under Goal 2). In contrast, the algorithms that arise from the SOA-oracle model are ut-
terly dissimilar from any practical algorithms. The thesis of this work is that, rather than making
oracle assumptions based on what will guarantee a polynomial regret bound, we should instead se-
lect an oracle based on what is practically feasible, and then from there, see what regret guarantees
are possible.

2. Preliminaries

We include below a shortened version of the preliminaries. See Section A for a full version.

Games A k-player game is a pair (A, u), where A = A1 × · · · × Ak and u = (u1, . . . , uk),
where each up : A → R. Each Ap is the set of actions (a.k.a. strategies) available to player p
and each up is the utility, or payoff, function of player p, which maps the set of action profiles A
to the reals. Each player’s goal is to maximize their own utility. We denote by A−p the Cartesian
product of {Aj}q ̸=p. Similarly, for any action a = (a1, . . . , ak) ∈ A, denote by a−p the Cartesian
product of {aq}q ̸=p. A mixed strategy for player p is a distribution over Ap. A zero-sum game is a
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two-player game such that u1(a, b) = −u2(a, b) for all a ∈ A and b ∈ B. We sometimes compress
our notation and represent a zero-sum game as (A,B, u) where u : A×B → R is a single function
representing the utility function of player 2. Player 2 aims to maximize this utility while player 1
aims to minimize this utility.

Definition 1 (ϵ-Nash equilibrium and ϵ-CCE) Let (A, u) denote a game. An ϵ-approximate Nash
equilibrium is a collection of probability measures, µ1, . . . , µk, overA1, . . . ,Ak, respectively, such
that for any player p ∈ [k] and any dp ∈ Ap,

Ea∼µ1×···×µk
[up(dp, a−p)] ≤ Ea∼µ1×···×µk

[up(a)]− ϵ.

A Coarse Correlated Equilibrium (CCE) is a joint measure µ over A such that for any player p and
any dp ∈ Ap,

Ea∼µ[up(dp, a−p)] ≤ Ea∼µ[up(a)]− ϵ.

Definition 2 (Minimax equilibrium) Given a zero-sum game G = (A,B, u)2, we say that G has
a minimax equilibrium if

inf
µ1∈∆(A)

sup
µ2∈∆(B)

Ea∼µ1,b∼µ2 [u(a, b)] = sup
µ2∈∆(B)

inf
µ1∈∆(A)

Ea∼µ1,b∼µ2 [u(a, b)] (3)

where ∆(A) and ∆(B) denote the set of all probability measures over A and B respectively. If
Eq. (3) is satisfied, we say the probability measures µ1, µ2 optimizing Eq. (3) are a minimax equi-
librium of G. Denote by Val(G) value of the game, which is the value of both sides of Eq. (3).

Dimensions Given a real-valued function-class F over a domain X and ϵ > 0, define the ϵ-fat
threshold dimension of F , fattr(F , ϵ), to be the largest m ≥ 0 such that there exist f1, . . . , fm ∈ F
and x1, . . . , xm ∈ X and a threshold θ ∈ R such that

fi(xj) ≥ θ + ϵ for all i ≤ j ∈ [d]

fi(xj) ≤ θ for all i > j ∈ [d]
(4)

For 0-1 classes define the threshold dimension of F as tr(F) = fattr(F , 1/2). We will also use the
notion of VC and Littlestone dimension, VC(F) and Lit(F) for real 0-1 valued classes and their
real-valued analogues, the fat and sequential fat-shattering dimensions, fat(F , ϵ) and sfat(F , ϵ) (all
defined in Section A).

These dimensions can be extended to games: For each player p, her utility up : Ap×A−p → R
can be thought of as a concept class Fp over the domain set Xp = Ap, whose concepts fa−p

are parametrized by elements a−p ∈ A−p and are defined by fa−p(ap) := up(ap, a−p), for each
ap ∈ Ap. We define the dimension of a game to be the maximal dimension over these utility
function classes, where p ranges across all players.

Convex hulls and their dimensions. Denote by conv(F) the convex hull of F , namely the class
of all convex combinations of elements fromF , by ∆(X ) the set of all probability distributions over
X , by dconv(F) the dual convex hull of F the set of all elements from F extended to the domain
∆(X ) by taking an expectation, namely, f(µ) = Ex∼µ[f(x)] for all f ∈ F and µ ∈ ∆(X), and by
conv 2(F) = dconv(conv(F)). Similarly, for a game G we denote by conv(G) the game obtained
from G where the action sets Ap are replaced by ∆(Ap). We prove the following theorem, which
bounds the threshold dimension of conv 2(F) (see Appendix D for the proof):

2. We slightly abuse notation and throughout denote a zero-sum game (A× B, u) as (A,B, u)
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Theorem 3 For [0, 1]-valued concept classes F , fattr(conv(F), ϵ) ≤ eC sfat(F ,ϵ/C)/ϵ2 and same
result holds when conv is replaced by dconv and conv2 and when F is replaced by a zero-
sum two-player game G. Moreover, for a zero-sum two-player game G, fattr(conv(G), ϵ) ≤
ϵ−CI(G)2 fattr(G,ϵ/C)/ϵ5 , where I(G) :=

(∫ 1
0

√
fat(G, ϵ)dϵ

)2
and C > 0 is a universal constant.

For {0, 1}-valued games, we have tr(conv(G), ϵ) ≤ O
(
(1/ϵ)C VC(G)2 tr(G) log(VC(G))

)
Throughout, we use the notation Õ(·) for omitting poly-logarithmic factors.

3. Online learning

We describe below our algorithm and results in the online learning setting. First, we define the
oracles that the algorithm is allowed to use:

Definition 4 (Consistent oracle) For any set of pairs {(x1, y1), . . . , (xt, yt)}, the oracle outputs
h ∈ H such that h(xi) = yi, for all i ∈ [t], if exists (otherwise it is undefined).

Definition 5 (Value oracle) For any h ∈ H and x ∈ X , return h(x).

We notice that the only access that the algorithm has to the function-class H is via the consistent
oracle. Further, the only access to the set X is via the examples generated by the adversary. We
present the following theorem on Algorithm 1 which only has access to these two oracles:

Theorem 6 (Realizable) LetH be a 0-1 valued concept class and assume the stream of examples is
realizable by some h∗ ∈ H. Then, Algorithm 1, instantiated as an improper learner, has the follow-
ing bound on its regret and on its number of calls to the consistent oracle: min

(
O
(
4tr(H)

)
, eO(Lit(H))

)
;

if Algorithm 1 is instantiated as a randomized proper learner, the bound changes to Õ

(
T

2 tr(H)+2
2 tr(H)+3

)
.

Here, tr(H) and Lit(H) are the threshold and Littlestone dimensions ofH, respectively.

We notice that Theorem 6 provides a new proof that Lit(H) ≤ O
(
4tr(H)

)
: indeed, Littlestone

dimension equals the smallest regret possible for any improper learner in the realizable setting.3

Notice that the best known bound is Lit(H) ≤ 2tr(H) (Alon et al., 2019, Theorem 3) (Hodges
et al., 1997)(Shelah, 1990)). Additionally, as a direct corollary, we obtain the first polynomial-time
algorithm that, given a full description of the class, implements a no-regret learner whose mistake
bound depends only on Littlestone’s dimension.

Corollary 7 There is an online learner who has access to a table of size n = |H||X | that describes
a binary-valued concept-class H over X , that has a mistake bound of eO(Lit(H)) in the realizable
setting and runs in time O(n) per iteration.

For comparison, SOA achieves a mistake bound of Lit(H), however, its runtime is not polynomial
in n: while SOA requires computation of Littlestone’s dimension, under hardness assumptions, it
is impossible to even approximate Littlestone’s dimension in time polynomial in n as long as it is
ω(1) (Frances and Litman, 1998; Manurangsi and Rubinstein, 2017; Manurangsi, 2022). On the

3. Equivalently, a constant bound on the regret is called mistake bound.
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other hand, the halving algorithm (Shalev-Shwartz and Ben-David, 2014) takes time O(|H|) per
iteration, however, its mistake bound is O(log |H|) – this does not depend only on Lit(H).

Next, we describe the result for the agnostic setting, which is obtained by applying the reduction
of Ben-David et al. (2009) from the agnostic to the realizable setting, while using Algorithm 1 as
the realizable learner in this reduction (see Section B for the proof):

Theorem 8 (Agnostic) LetH be a 0-1 valued class. Then, there exists an improper learner which
accesses H only via the consistent and value oracles, that achieves in the improper setting a regret

of
√

T min
(
Õ
(
4tr(H)

)
, eO(Lit(H))

)
and Õ

(
T

2 tr(H)+3
2 tr(H)+4

)
in the proper setting.

3.1. Algorithm

Below we describe the algorithm for the realizable setting. It has two variants, proper and improper.
For convenience of notation, in the proper setting, we say that the algorithm plays a distribution µt

over hypotheses h ∈ H in each iteration t and suffers loss Loss(µt, (xt, yt)) := Prh∼µt [h(xt) ̸=
yt].4 In the improper setting, the algorithm is allowed to take a weighted majority vote over hy-
potheses and it will select the label that is predicted with the largest probability according to µ.

Formally, the learner predicts ŷt := Maj(µt, xt) =

{
1, Prh∼µt [h(xt) = 1] ≥ 1/2

0, otherwise
.

The algorithm proceeds in phases, where each phase consists of multiple rounds of prediction.
In each phase, j, the algorithm plays a distribution over some pool of actions {h1, . . . , hj}. By the
end of each phase, the algorithm adds a new action to the pool, hj+1, which is taken as a hypothesis
that is consistent with the whole history of elements (x, y) observed by the algorithm throughout all
phases.

Next, we describe the phases. Fix a phase j, denote the distribution played by the algorithm
at any round t of this phase by µt and we describe how to determine µt: first, µ1 is the uni-
form distribution over all the hypotheses available in this phase: {h1, . . . , hj}. In rounds t when
Loss(µt, (xt, yt)) ≥ ϵ, the algorithm updates µt via a multiplicative-weight update. In the remain-
ing rounds, no update is made, and µt+1 ← µt. We call this type of update Lazy multiplicative
weights. The phase j ends once Tj updates have been made. We rely on an auxiliary parameter α
to determine the value of Tj . See Algorithm 1 for the main pseudocode and Algorithm 2 for the
implementation of each phase.

4. The alternative would be to sample one h from H - these two notions are equivalent if one is interested in an expected
loss.
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Algorithm 1 Online Action Insertion
Input: A function classH.
Parameters: ϵ, α > 0.
Subroutines: Consistent oracle (Definition 4), Lazy Multiplicative Weights (Algorithm 2).

1. Initialize active action setH1 ← {h1} for arbitrary h1 ∈ H.

2. For phase j = 1, 2, . . . , J :

(a) Instantiate the algorithm Lazy Multiplicative Weights with the function-
class Hj and parameters Tj =

⌈
C log |Hj |

α2

⌉
and ϵ (C > 0 is a constant), in order to pre-

dict in the next classification rounds, until the execution of Lazy Multiplicative
Weights terminates.

(b) Call the consistent oracle to obtain hj+1 ∈ H that is consistent with all pairs (x, y)
observed in all previous rounds throughout all phases.

(c) Update the active action setHj+1 ← Hj ∪ {hj+1}.

Algorithm 2 Lazy Multiplicative Weights

Input: A finite set of functions G = {g1, . . . , gn} ⊆ {0, 1}X .

Parameters: K rounds with an update, accuracy parameter ϵ > 0, learning rate η =

√
log|G|
2K .

1. Initialize a uniform probability distribution µ1 =
(
µ1
1, . . . , µ

1
n

)
=
(
µ1(g1), . . . , µ

1(gn)
)

over
G, where µ1

i ← 1
n for all i = 1, . . . , n.

2. k ← 0.

3. For t = 1, 2, . . . :

(a) If proper: predict µt, observe (xt, yt) and suffer Loss(µt, (xt, yt)).
Else (if improper): Observe xt, predict ŷt := Maj(µt, xt), observe yt and suffer a loss
I(ŷt ̸= yt).

(b) If Loss(µt, (xt, yt)) ≥ ϵ:

i. ∀i, µt+1
i ← µt

i exp(−η|gi(xt)− yt|) /
∑n

j=1 µ
t
j exp(−η|gj(xt)− yt|).

ii. k ← k + 1.
iii. If k = K then Return.

Else: make no update: µt+1 ← µt.

3.2. Proof

Proper learner, bound in terms of tr(H) We say that a distribution µ overHmakes an ϵ-mistake
on (x, y) ∈ X×{0, 1} if Loss(µ, (x, y)) ≥ ϵ. We say that the algorithm makes an ϵ-mistake on iter-
ation t if its prediction µt makes an ϵ-mistake on (xt, yt). Our first goal would be to bound the num-
ber of ϵ mistakes made by the algorithm. This will be done by bounding the number of phases ob-

9
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served by the algorithm. Assume that the algorithm has observed more than J phases, and for every
j ∈ [J ], denote by Zj the set of elements (x, y) observed by the algorithm on phase j, on which the
algorithm made an ϵ-mistake. For any h ∈ H, denote Loss(h, Zj) = 1

|Zj |
∑

(x,y)∈Zj
I(h(x) ̸= y)

as the fraction of mistakes of h on the elements of Zj . Recall the pool of functions h1, . . . , hJ
maintained by the algorithm in phase J . In the following lemma, we argue that the loss applied on
the functions h1, . . . , hJ and the sets Z1, . . . , ZJ , have the following threshold behavior:

Lemma 9 Let h1, . . . , hJ and Z1, . . . , ZJ be defined as in the preceding paragraph. Then, for all
i, j ∈ [J ]

Loss(hi, Zj) ≥ ϵ− α if i ≤ j

Loss(hi, Zj) = 0 if i > j
(5)

Proof For i > j, Loss(hi, Zj) = 0 since hi is the output of a consistent oracle that observed all the
examples from previous rounds, including those from Zj . Next, we proceed with i ≤ j. To prove
for i ≤ j, fix round j, and notice that the Lazy multiplicative weights algorithm, restricted to rounds
where the adversary played actions in Zj , behaves exactly as the original multiplicative weights
algorithm. There are Tj such rounds, and let µt1 , . . . , µ

tTj be the learner’s distributions overHj for
these rounds. From the Multiplicative Weights guarantee (see Lemma 30) and by definition of Tj ,
the regret of the learner is upper bounded by O

(√
Tj log j

)
≤ Tjα:

ϵTj ≤
Tj∑
k=1

Loss(µtk , (xtk , ytk)) ≤ min
h∈{h1,...,hj}

Tj∑
k=1

|h(xtk)− ytk |+ Tjα

= Tj min
h∈{h1,...,hj}

Loss(h, Zj) + Tjα,

where the first inequality holds since the algorithm makes an ϵ-mistake in each of these rounds, the
second due to the regret guarantee of multiplicative weights and the third since Zj = {(xtk , ytk)}k∈[Tj ].
By rearranging terms, this concludes that for all i ≤ j, Loss(hi, Zj) ≥ ϵ− α.

Let h⋆ be the function that is realizable with all the examples provided by the adversary through-
out all phases, namely, h⋆(xt) = yt for observed (xt, yt). Such h⋆ exists due to the realizability
assumption. For i ∈ [J ], define the function fi(x) = (hi⊕h⋆)(x) := I(hi(x) ̸= h⋆(x)), and notice
that Eq. (5) implies the following, where unif(Zj) denotes a uniform distribution over Zj and only
x is sampled (rather than the pair (x, y)):

Ex∼unif(Zj)[fi(x)] ≥ ϵ− α if i ≤ j

Ex∼unif(Zj)[fi(x)] = 0 if i > j
(6)

By a simple inductive argument, Eq. (6) is sufficient to imply a lower bound on the threshold
dimension of {f1, . . . , fJ} in terms of J , which equivalently bounds the number of phases J in
terms of tr({f1, . . . , fJ}):

Lemma 10 Let f1, ..., fJ : X → {0, 1} and Z1, ..., ZJ ⊂ X such that Eq. (6) holds, let m ∈ N

and assume that J ≥
∑m

k=1

(
1

ϵ−α

)k
. Then, tr({f1, . . . , fJ}) ≥ m.

10
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Proof We prove the claim by induction on m. For m = 0, trivially there exists a threshold game
of size 0. For the induction step, assume that the claim holds for m − 1. To prove for m, we
need to show that there exist functions g1, . . . , gm ∈ {f1, . . . , fJ} and x1, . . . , xm ∈ X such that
gi(xj) = I(i ≤ j). We will start by determining xm and gm and the remaining elements fi and
gi will be taken from the induction hypothesis. To determine xm, we notice that from double
summation and from the condition of this lemma,

Ex∼unif(ZJ )|{i ∈ [J ] : fi(x) = 1}| =
J∑

i=1

Ex∼unif(ZJ )[fi(x)] ≥ J(ϵ− α) .

This implies that there exists x′ ∈ ZJ such that the set Ix′ := {i ∈ [J ] : fi(x
′) = 1} is of cardinality

at least J(ϵ − α). We take xm = x′. The functions g1, . . . , gm will be taken from {gi}i∈Ix′ and
this will guarantee that gi(xm) = 1 = I(i ≤ m). We denote i′ = max Ix′ and set gm = fi′ .
The remaining elements x1, . . . , xm−1 will be taken from the sets {Zj}j∈I′ where I ′ = Ix′ \ {i′}.
This will guarantee that for all j < m, gm(xj) = 0 = I(m ≤ j), using Eq. (6). We would
like to apply the induction hypothesis on the functions {fi}i∈I′ and the sets {Zj}j∈I′ . Indeed, the

induction hypothesis can be applied since |I ′| = |Ix′ | − 1 ≥ (ϵ − α)J − 1 ≥
∑m−1

k=1

(
1

ϵ−α

)k
,

which follows by the computed bound on |Ix′ | and by the assumption J ≥
∑m

k=1

(
1

ϵ−α

)k
. Hence,

the induction hypothesis yields that tr({fi}i∈I′) ≥ m − 1, which imply the existence of functions
g1, . . . , gm−1 ∈ {fi}i∈I′ and elements x1, . . . , xm−1 ∈ X such that gi(xj) = I(i ≤ j) for all
i, j ∈ [m− 1]. Together with gm and xm, the arguments above imply that gi(xj) = I(i ≤ j) for all
i, j ∈ [m], which concludes the induction step. The proof follows.

We are now ready to bound the number of ϵ-mistakes of the algorithm. Combining Lemma 9,
Eq. 6 and Lemma 10, we obtain that J <

∑tr({f1,...,fJ})+1
k=1 (ϵ− α)−k ≤ 2(ϵ− α)− tr({f1,...,fJ})−1,

assuming that ϵ ≤ 1/2. Recall that fi = hi⊕h⋆ and defineH⊕h⋆ := {h⊕ h⋆ : h ∈ H}. Lemma 74
argues that tr(H ⊕ h⋆) ≤ 2 tr(H) + 1, consequently, J ≤ 2(ϵ− α)−2 tr(H)−2. Recall that the
number of ϵ-mistakes in each phase j is at most O

(
log(j)/α2

)
. Assuming that there are at least J

phases, the total number of mistakes is bounded by O
(
J log J/α2

)
. Substituting the bound on J

and optimizing over α, one obtains that the number of ϵ-mistakes is at most O
(
tr(H)3ϵ−2 tr(H)−2

)
(see Lemma 39). The total regret of the algorithm is bounded by the number of ϵ-mistakes, plus
ϵT , in order to account for the loss for less-than-ϵ-mistakes. Setting ϵ = T−1/(2 tr(H)+3) yields the

bound of Õ
(
T

2 tr(H)+2
2 tr(H)+3

)
.

Bounds for the improper learner. Recall that the improper learner takes a majority vote over µt,
therefore, it makes a mistake only if µt makes a 1/2-mistake. Substituting ϵ = 1/2 in the bound on
the number of ϵ-mistakes of the proper learner, one obtains the desired bound of Õ

(
4tr(H)

)
. For the

bound in terms of Littlestone’s dimension, we use the fact that Eq. (6) implies that fattr(dconv(H⊕
h⋆), ϵ − α) ≥ J (for the dual convex dconv(·) see Section 2). Indeed, the functions f1, . . . , fJ ∈
H ⊕ h⋆ and the elements

{∑
x∈Zj

x
|Zj |

}
j∈[J ]

∈ conv(X), satisfy Eq. (4) in the definition of the

ϵ-fat threshold dimension. The bound in Theorem 3 on the threshold dimension of the dual convex
concludes the proof. See Lemma 40 for the proof of this argument.
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4. Computing equilibria in games

In this section, we will provide an algorithm for computing approximate Nash equilibria in zero-sum
two-player games and coarse correlated equilibria in general multi-player games. The algorithm is
allowed to use the following oracles:

Definition 11 (Best-response and value oracles) An ϵ-best response oracle in a game (A1, . . . ,Ak, u)
receives a player p, a finitely-supported distribution µ−p over the Cartesian productA−p =

∏
q ̸=pAq

and outputs an action âp ∈ Ap that ϵ-maximizes the player’s utility against a random sample from
the distribution:

Ea−p∼µ−p [up(âp, a−p)] ≥ sup
ap∈Ap

Ea−p∼µ−p [up(ap, a−p)]− ϵ .

A value oracle receives a player p and actions (a1, . . . , ak) and outputs up(a1, . . . , ak).

We notice that a best-response oracle can be viewed as an ERM oracle, that maximizes reward
instead of minimizing loss. We note that the only access that the algorithms have to the game is
via these oracles and they are not allowed to access the action sets apart via these oracles. This
aims to capture the scenario that their action sets are large or perhaps even infinite. Algorithms
are given under the assumption that the sequential fat-shattering dimension sfat(G, ϵ) of the game
is finite. It has been shown that if the dimension is infinite, an equilibrium might not exist (Han-
neke et al., 2021; Daskalakis and Golowich, 2022).5 In the following two sections, we present our
two results: in Section 4.1 we present the result for computing a Nash equilibrium in two-player
zero-sum games. In Section 4.2 we study general sum games and show how to compute a coarse
correlated equilibrium, whereas computing Nash is a significantly harder problem: for finite games,
it is PPAD-hard (Daskalakis et al., 2009; Chen et al., 2009) whereas CCE is poly-time computable
(Hart and Mas-Colell, 2000; Hart and Schmeidler, 1989)

4.1. Approximating Nash equilibrium in zero-sum two-player games

Theorem 12 Let G = (A,B, u) be a zero-sum two-player game, where u : A × B → [0, 1] and
let ϵ > 0. There is an algorithm to find an O(ϵ)-Nash for this game using the following number of
ϵ-best response oracle calls (assuming this number is finite):

O
(
min

(
eC sfat(G,ϵ/C)/ϵ2 , (1/ϵ)CI(G)2 fattr(G,ϵ/C)/ϵ5

))
; I(G) =

(∫ 1

0

√
fat(G, ϵ)

)2

.

As a first step, we argue that it is possible to find an approximate Nash for a game (A,B, u) where
one of the players has a finite action set and random access to that set and the second player has
an infinite action-set and an ϵ-best response oracle. We use the reduction from online learning to
equilibrium computation which states that if two players play an algorithm whose regret behaves as
o(T ) in a zero-sum game, then the pair of uniform distributions over their actions converges to a
Nash equilibrium as T →∞. We use the common technique where the player with the finite number
of actions can play a no-regret algorithm (such as multiplicative weight update) and the second

5. There are some delicacies in the statement of when there exists, or there does not exist, an equilibrium and the exact
conditions are not known. See Section A.4 and (Hanneke et al., 2021; Daskalakis and Golowich, 2022) for more
discussion.

12
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player plays best-response, which is a no-regret algorithm as well. We notice that a modification of
this technique does not work when both players play best response since best-response is no-regret
only if it is played second, after observing the opponent’s action.

Next, we will provide the algorithm to compute an ϵ-Nash in a zero-sum game (A,B, u) where
bothA andB are possibly infinite or very large. The algorithm was inspired by the proof of existence
of minimax equilibria by Hanneke et al. (2021). It gradually accumulates actions for each of the two
players until reaching a sufficiently large finite subgame whose ϵ-Nash equilibrium approximates
the Nash of the complete game. In particular, at each iteration t, Player 1 will hold a finite subset
of actions, At ⊆ A, that grows as t increases, namely, A0 ⊆ A1 ⊆ A2 ⊆ · · · . Similarly, Player 2
will hold finite sets B0 ⊆ B1 ⊆ · · · . The initial sets A0 and B0 are of cardinality 1 and contain a
single arbitrary element from A and B, respectively. Then, the players take turns adding actions to
change the value of the game in their favor. In particular each iteration t begins where Players 1 and
2 hold the sets of actions At−1 and Bt−1, respectively. Then, Player 1, whose aim is to minimize
the utility u and the value Val, finds a set of actions At ⊇ At−1, such that Val(At, Bt−1) ≤
Val(At−1, Bt−1) − Ω(ϵ). This is done by computing an approximate Nash equilibrium for the
game (A, Bt−1, u) where Player 1 is unrestricted and player 2 is restricted to her finite set Bt, and
adding the support of this approximate Nash to At−1, thus creating At. Then, similarly, Player
2 responds by finding a set of actions, Bt ⊇ Bt−1 that increase the value of the game, namely,
Val(At, Bt) ≥ Val(At, Bt−1) + Ω(ϵ) thus changing the value in her favor. The algorithm stops
when no player can improve the value by more than ϵ. See Algorithm 3 for the pseudocode.

Algorithm 3 ϵ-approximate Nash Equilibrium for a zero-sum game

Input: A zero-sum game (A,B, u), a parameter ϵ > 0.
Subroutines:

• Nash: Receives sets of actions A and B for both players, and an ϵ > 0, where either A is
finite or B is. It outputs an ϵ-Nash for the subgame (A,B, u) (Algorithm 5)

• Val: Receives finite sets of actions of the players. Returns the value of this finite subgame.

1. A0 ← {a}, B0 ← {b}, where a ∈ A and b ∈ B are arbitrary actions.

2. For t = 1, 2, . . .

(a) (µt,1, µt,2)← Nash(A, Bt−1, ϵ).

(b) At ← At−1 ∪ Support(µt,1).

(c) (ξt,1, ξt,2)← Nash (At,B, ϵ).
(d) Bt ← Bt−1 ∪ Support(ξt,2).
(e) If Val(At, Bt−1) ≥ Val(At−1, Bt−1)− ϵ or Val(At, Bt) ≤ Val(At, Bt−1) + ϵ:

i. Return (ξt,1, µt,2).

The first statement that is proven is that the output of the algorithm is an approximate Nash
equilibrium. Intuitively, this follows from the fact that when the game ends, no player can add action
to drastically change their value. The second statement is that the algorithm eventually ends. This

13
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is proven using the fact that fattr(conv(G), ϵ) is finite, which follows from Theorem 3. Intuitively,
the finiteness of fattr(conv(G), ϵ) implies that there exists no sequence of mixed strategies (i.e.
distributions over actions) µ1, µ2, . . . for player 1 and ξ1, ξ2, . . . for player 2 and a threshold θ such
that u(µi, ξj) ≥ θ + ϵ if i ≤ j and u(µi, ξj) ≤ θ if i > j – this can be shown to imply that the
players cannot keep adding actions to increase the value by Ω(ϵ) to their favor indefinitely.

Lastly, we explain how the two bounds on fattr(conv(G), ϵ) are derived in Theorem 3: the
bound in terms of the threshold dimension of G is an adaptation of the beautiful technique of Han-
neke et al. (2021) using Ramsey numbers, that was used to prove the existence of minimax in a
wide class of zero-sum games. The bound in terms of the sequential fat-shattering dimension uses a
standard technique of comparison to the sequential Rademacher complexity of Rakhlin et al. (2010).

4.2. CCE in multi-player general-sum games

We prove the following theorem for finding a CCE in a general game:

Theorem 13 Let G = (A = A1 × · · · × Ak, u = (u1, · · · , uk)) be a multi-player game. Assume
that utilities are bounded up : A → [0, 1], and let ϵ > 0. Then, Algorithm 8 executed with
parameters G, ϵ will compute an O(ϵ) − CCE for the game using using the following number of
ϵ-best response oracle calls: O

(
eC(k/ϵ3) sfat(G,ϵ/C)

)
.

In order to extend our algorithm for finding a Nash in a two-player zero-sum for our setting, we
use the brilliant reduction of Papadimitriou and Roughgarden (2008) from multiplayer games to a
two-player game which we term the CCE game. Here, player 1 selects an entire strategy profile a
and Player 2 selects a player p and an alternative action dp for player p. The utility for player 2 in
the CCE game, corresponds to the gain in utility (in the original game) made by player p deviating
to action dp when everyone is playing according to strategy profile a. This utility can be defined
formally as a matrix whose entries are indexed by a and (p, dp), as follows:

Definition 14 (The CCE matrix of a game) For a game G = (A = A1×· · ·×Ak, u = (u1, · · · , uk)),
the CCE matrix MG

CCE : A×
(⋃

pAp

)
is defined, for a ∈ A and (p, dp) ∈

⋃
pAp as

MG
CCE[a, (p, dp)] = up(dp, a−p)− up(ap, a−p)

The goal of Player 1 is to minimize MG
CCE[a, (p, dp)]. An existence of CCE in the original

game implies that there exists a distribution µ∗ over strategy profiles in that game, such that no
deviation is profitable for any of the players. In particular, if Player 1 plays µ∗, this guarantees that
the utility against any action of Player 2 is at most 0, which implies that the value of the CCE game,
if exists, is at most 0. Similarly, the mixed-strategy µ played by Player 1 in any ϵ-approximate Nash
equilibrium for the CCE game, constitutes an ϵ-approximate CCE in the original game. Therefore,
we would like to apply Algorithm 3 to find a Nash equilibrium of the CCE game. Yet, this requires
two things: (1) Bounding the various dimensions of the CCE matrix in terms of those of the original
game, which is proved using closure properties of these dimensions that appear in Appendix F; and
(2) Implementing best-response oracles for the players of the CCE game, based on best-response
and value oracles for the original game. We notice that since the utility of Player 2 corresponds
to the deviations of players from a strategy-profile given by Player 1, the best deviation can be
simulated using a best response oracle for the original game. For Player 1, we will not simulate a
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best-response oracle. Rather, recall that such an oracle is used only for computing an approximate
Nash equilibrium for the half-infinite game, where Player 2 is restricted to play from finitely many
actions and Player 1 is unrestricted. Hence, it is sufficient to compute such a Nash equilibrium, a
task that can be reduced to a computation of a CCE in a finite subgame of the original game.6 In
that finite game, the set of actions available to the players correspond to the actions of Player 1 in
the CCE game.
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Appendix A. Preliminaries

A.1. Function Classes and Dimensions

We work with two types of function classes: 0-1 function classes, and the more general real-valued
function classes. We define them here as well as their accompanying notions of dimensionality.

A.1.1. 0-1 FUNCTION CLASSES

Definition 15 (0-1 function class) Define a 0-1 function class F to be a set of concepts, f : X →
{0, 1}, where X is called a domain set and {0, 1} is a label set.

The three important notions of dimensionality of 0-1 function classes are the following.

Definition 16 (VC Dimension) For a 0-1 function class F , denote its VC Dimension VC(F) to
be the maximal d (possibly infinite) such that there exists a magnitude-d subset {x1, · · · , xd} ⊆ X
satisfying the following. For all binary strings b ∈ {0, 1}d, there exists f ∈ F that satisfies

f(xi) = bj for all j ∈ [d]

Definition 17 (Littlestone Dimension) For a 0-1 function class F , denote its Littlestone Dimen-
sion Lit(F) to be the maximum depth d of a complete, binary tree T = (V,E), such that the
children of any internal node are ordered by left and right and such that any internal node v ∈ V is
labeled by x(v) ∈ X and every leaf is labeled by fv ∈ F , and these labeling functions satisfy the
following: let v1− v2 · · · − vd− vd+1 = ℓ be a root-to-leaf path along the tree, where v1 is the root
and vd+1 is a leaf. Then, for any i ∈ [d]:

fℓ(x(vi)) = 1 if vi+1 is a left child of vi
fℓ(x(vi)) = 0 if vi+1 is a right child of vi

We also utilize the concept of threshold dimension, a concept similar to VC dimension but only
requiring the existence of a hypothesis for each “threshold binary string” of the form (0, · · · , 0, 1, · · · , 1).

Definition 18 (Threshold Dimension) For a 0-1 function class F , denote its Threshold Dimen-
sion tr(F) to be the maximal d (possibly infinite) such that there exist magnitude-d subsets {f1, . . . , fd} ⊆
F and {x1, · · · , xd} ⊆ X satisfying the following.

fi(xj) = 1 for all i ≤ j ∈ [d]

fi(xj) = 0 for all i > j ∈ [d]

These dimensions are related in the following ways.

Lemma 19 VC(F) ≤ min(Lit(F), tr(F))

The Lemma follows from standard arguments.

Lemma 20 log Lit(F) ≤ tr(F) ≤ 2Lit(F)

For the proof, see (Alon et al., 2019, Theorem 3) and the references therein Hodges et al. (1997);
Shelah (1990)
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A.1.2. REAL-VALUED FUNCTION CLASSES

The following definitions are analogous to those for 0-1 function classes.

Definition 21 (Real-valued function class) Define a real-valued function class F as a set of con-
cepts f : X → R. Similarly, define a [0, 1]-valued function class as a collection of functions
f : X → [0, 1].

When defining the three analogous concepts of dimensionality in the real-valued setting, we
introduce a margin parameter ϵ to ensure hypotheses are sufficiently distinct. Let us start with the
real-valued analogue of VC dimension: “ϵ-fat-shattering dimension”.

Definition 22 (ϵ-fat-shattering dimension) For a real-valued function class F , denote its ϵ-fat-
shattering dimension fat(F , ϵ) to be the maximal d (possibly infinite) such that there exists a
magnitude-d subset {x1, · · · , xd} ⊆ X and witnesses (θ1, · · · , θd) ∈ Rd satisfying the following.
For all binary strings b ∈ {0, 1}d, there exists fb ∈ F with

fb(xj) ≥ θj + ϵ for all j ∈ [d] with bj = 1

fb(xj) ≤ θj for all j ∈ [d] with bj = 0
(7)

Next, the real-valued analogue of Littlestone dimension: “ϵ-sequential-fat-shattering dimen-
sion”.

Definition 23 (ϵ-sequential-fat-shattering dimension) For a real-valued function class F , de-
note its ϵ-sequential-fat-shattering dimension sfat(F , ϵ) to be the maximum depth of a complete
binary tree T = (V,E), whose internal nodes v ∈ V are labeled by elements x(v) ∈ X and are
accompanied by some witnesses θ(v), whose leaves ℓ ∈ V are labeled by fℓ ∈ F , such that the
following holds: for any root-to-leaf path v1, . . . , vd, vd+1 = ℓ in the tree and for any i ∈ [d]:

fℓ(x(vi)) ≥ θ(vi) + ϵ if vi+1 is a left child of vi
fℓ(x(vi)) ≤ θ(vi) if vi+1 is a right child of vi

(8)

For the real-valued analogue of threshold dimension (ϵ-fat-threshold dimension), we slightly
shift our use of the witness parameters. Rather than have a distinct witness θj for each xj (as in
the definition of ϵ-fat-shattering dimension) or for each v (as in the definition of ϵ-sequential-fat-
shattering dimension), we use the same θ across. The reasoning behind this stems from our eventual
use of representing game matrices as function classes, where it is preferred to have a definition that
is symmetric to transposing the matrix, or equivalently, to swapping the roles of the concept class F
and the domain set X . When we are considering bounded real-valued function classes (for example,
only taking on values in [0, 1]), defining the ϵ-fat-threshold dimension in this way will only lead to
a O(1/ϵ) factor difference in the dimension.

Definition 24 (ϵ-fat-threshold dimension) For a real-valued function class F , denote its ϵ-fat-
threshold dimension fattr(F , ϵ) to be the maximal d (possibly infinite) such that there exist magnitude-
d subsets {f1, . . . , fd} ⊆ F and {x1, . . . , xd} ⊆ X and a witness θ ∈ R satisfying the following.

fi(xj) ≥ θ + ϵ for all i ≤ j ∈ [d]

fi(xj) ≤ θ for all i > j ∈ [d]
(9)
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For real-valued function classes bounded on [0, 1], these dimensions are related in the following
ways.

Lemma 25 For any [0, 1]-valued function class F and any ϵ > 0,

fat(F , ϵ) ≤ min

(
sfat(F , ϵ), fattr(F , ϵ/2)

2ϵ

)
. (10)

Further, there exist universal constants c, C > 0 such that:

cϵ log(ϵ log(sfat(F , ϵ))/C)

log(1/(Cϵ))
≤ fattr(F , ϵ) ≤ 2sfat(F ,ϵ)+1 (11)

We note that the left part of Eq. (11) was proved by (Daskalakis and Golowich, 2022, Lemma 8.4)
and the remaining proofs are standard. We include sketches in Appendix G.

Lastly, we define the convex hull of a function class:

Definition 26 The convex hull of a function-class F over domain X is defined as:

conv(F) =


m∑
j=1

λjfj : m ∈ N, f1, . . . , fm ∈ F , λ1, . . . , λm ≥ 0,

m∑
i=1

λi = 1


The dual convex hull of a class is defined as a class on the domain conv(X) as the set of all formal
convex combinations of finitely many elements from X , namely,

conv(X) =

{
ℓ∑

i=1

λixi : ℓ ∈ N, λ1, . . . , λℓ ∈ [0, 1],
ℓ∑

i=1

λi = 1

}
where

∑
i λixi is a formal sum. Extend each f ∈ F to the domain conv(X) by defining the extended

function dconv(f) as

dconv(f)

(∑
i

λixi

)
=
∑
i

λif(xi) .

Define the dual convex hull of F as

dconv(F) = {dconv(f) : f ∈ F}

Lastly, define conv2(F) = dconv(conv(F)).

A.1.3. UNIFORM CONVERGENCE

Below, we use the notion of uniform convergence, which enables one to sample-down a distribution
and compress it to a distribution over a small number of elements, while changing the expectation
of each function by at most ϵ.

Definition 27 (Uniform convergence) For a concept class F over a domain set X , define by
c(F , ϵ, δ) the smallest number m, such that for any measure µ over X ,

Pr
x1,...,xm∼µ (i.i.d)

[
∀f ∈ F ,

∣∣∣∣∣ 1m
m∑
i=1

f(xi)− Ex∼µ[f(x)]

∣∣∣∣∣ ≤ ϵ

]
≥ 1− δ.

Denote by c(F , ϵ) = infδ<1 c(F , ϵ, δ).
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Intuitively, the support of any distribution can be compressed down to a size of at most c(F , ϵ),
while changing expectations of functions in F by at most ϵ.

We notice that c(F , ϵ, δ) can be bounded in terms of the VC dimension of 0-1 valued classes
and in terms of the shattering numbers of real-valued classes: Rudelson and Vershynin (2006).

Lemma 28 Let F be a concept class. If F is 0-1 valued then

c(F , ϵ, δ) ≤ C
VC(F) + log(1/δ)

ϵ2
,

where C > 0 is a universal constant. Similarly, if F is [0,M ]-valued then

c(F , ϵ, δ) ≤ C

(∫M
0

√
fat(F , ϵ)

)2
+ log(1/δ)

ϵ2

A.2. Online learning and Multiplicative-Weights algorithm

We address the online learning setting in realizable and agnostic settings. Let H ⊆ {0, 1}X be
a hypothesis class, where X is the instance space and Y = {0, 1} is the label space. The online
learning protocol can be formulated as a game between the learner and an adversary, where at rounds
t = 1, 2, . . . , T ,

1. The adversary chooses (xt, yt) ∈ X × {0, 1}.

2. The learner observes xt and predicts ŷt ∈ {0, 1}.

3. The learner observes yt and suffers a loss |ŷt − yt|.

In the section, we assume realizability which means that all target labeled are generated by a func-
tion h⋆ ∈ H, that is, h⋆(xt) = yt for t ∈ [T ]. Define the mistake bound for a deterministic algorithm
A : (X × Y)∗ ×X → {0, 1} by

M(H,A) = sup
h⋆∈H,T,x1:T

T∑
t=1

∣∣A((x1:(t−1), y1:(t−1)), xt
)
− h⋆(xt)

∣∣ .
We can write the output of the algorithm as a function ĉt(x) = A

(
(x1:(t−1), y1:(t−1)), x

)
. We say

that the algorithm is improper if the output functions ĉt do not belong toH.
The learner is allowed to make randomized predictions, where the adversary picks (xt, yy) with-

out knowing the random bits of the learner in this round. We analyze the expected loss of the learner.
Formally, for a randomized algorithm A : (X × Y)∗ × X → ∆({0, 1}), we define the expected
loss of algorithm A in T rounds

L(H,A, T ) = sup
h⋆∈H,x1:T

T∑
t=1

E
∣∣A((x1:(t−1), y1:(t−1)), xt

)
− h⋆(xt)

∣∣ ,
where the expected loss at round t can be interpreted as the probability of predicting incorrectly at
round t. If we write the algorithm’s (random) output as a function ĉt(x) = A

(
(x1:(t−1), y1:(t−1)), x

)
,

we say that the algorithm is randomized proper for a function class H if the function ĉt belong to
H. In other words, the algorithm draws a function from a distribution that is supported onH.

In the agnostic setting, we define the more general setting of prediction with expert advice,
where the loss function is arbitrary and not necessarily the 0-1 loss as in the realizable setting.
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Definition 29 (Prediction with expert advice) There are N experts indexed by [N ] = {1, . . . , N}.
In each time step t = 1, . . . , T the learner chooses a probability vector µt = (µt

1, . . . , µ
t
N ) from the

simplex SN =
{
p ∈ RN : ∀i, pi ≥ 0 and

∑N
i=1 pi = 1

}
. Thereafter, a loss vector ℓt ∈ [0, 1]N is

revealed to the learner In the adversarial setting, the loss vectors ℓ1, . . . , ℓT are entirely arbitrary
and may be chosen by an adversary. The goal of the learner is to minimize the regret, given by

RT :=
T∑
t=1

µt · ℓt − min
i∈[N ]

T∑
t=1

ℓt(i).

Lemma 30 (Multiplicative weights algorithm) Multiplicative Weights algorithm with learning

rate η =
√

logN
2T suffers a regret of O(

√
T logN) where N is the number of experts and T is the

horizon length. Further, the time complexity is O(N) per iteration.

For proof, see Littlestone (1988), Arora et al. (2012), and (Schapire and Freund, 2013, Section 6)

Algorithm 4 Multiplicative Weights
Parameters: Learning rate parameter η > 0.

1. Initialize a uniform probability distribution µ1 =
(
µ1
1, . . . , µ

1
N

)
over the N experts, where

µ1
i ← 1

N for all i = 1, . . . , N .

2. For t = 1, 2, . . . , T :

(a) Predict µt and suffer a loss µt · ℓt.
(b) Update µt+1 based on ℓt:

∀i, µt+1
i ← µt

i exp(−ηℓt(i)) /Zt where Zt =
n∑

j=1

µt
j exp(−ηℓt(j)) .

A.3. Games

A.3.1. GAMES AND EQUILIBRIA

Definition 31 (Multi-player game) A k-player game is a pair (A, u), where A = A1 × · · · × Ak

and u = (u1, . . . , uk), where each up : A → R. We assume that eachAi is accompanied with some
Σ-algebra that u is measurable with respect to. Each Ap is the set of actions available to player p
and each up is the utility, or payoff, function of player p, which maps the set of action profiles A
to the reals. Each player’s goal is to maximize their own utility. We denote by A−p the Cartesian
product of {Aj}q ̸=p. Similarly, for any action a = (a1, . . . , ak) ∈ A, denote by a−p the Cartesian
product of {aq}q ̸=p.

Definition 32 (Zero-sum game) A zero-sum game is a two-player game such that u1(a, b) =
−u2(a, b) for all a ∈ A and b ∈ B. We sometimes compress our notation and represent a zero-sum
game as (A,B, u) where u : A × B → R is a single function representing the utility function of
player 2. Player 2 aims to maximize this utility while player 1 aims to minimize this utility.
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Definition 33 (ϵ-Nash equilibrium and ϵ-CCE) Let (A, u) denote a game. An ϵ-approximate Nash
equilibrium is a collection of probability measures, µ1, . . . , µk, overA1, . . . ,Ak, respectively, such
that for any player p ∈ [k] and any dp ∈ Ap,

Ea∼µ1×···×µk
[up(dp, a−p)] ≤ Ea∼µ1×···×µk

[up(a)]− ϵ.

A Coarse Correlated Equilibrium (CCE) is a joint measure µ over A such that for any player p and
any dp ∈ Ap,

Ea∼µ[up(dp, a−p)] ≤ Ea∼µ[up(a)]− ϵ.

Definition 34 (Minimax equilibrium) Given a zero-sum game G = (A,B, u)7, we say that G has
a minimax equilibrium if

inf
µ1∈∆(A)

sup
µ2∈∆(B)

Ea∼µ1,b∼µ2 [u(a, b)] = sup
µ2∈∆(B)

inf
µ1∈∆(A)

Ea∼µ1,b∼µ2 [u(a, b)] (12)

where ∆(A) and ∆(B) denote the set of all probability measures over A and B respectively. If
Eq. (12) is satisfied, we say the probability measures µ1, µ2 optimizing Eq. (12) are a minimax
equilibrium of G and denote by Val(G) value of the game, which is the value of both sides of
Eq. (12).

The following relation holds between an ϵ-Nash and the value of the game:

Lemma 35 Let G(A,B, u) denote a zero-sum game with a minimax equilibrium. If (µ1, µ2) is an
ϵ-approximate Nash equilibrium for this game, then

inf
a∈A

Eb∼µ2 [u(a, b)] ≥ Val(G)− ϵ; sup
b∈B

Ea∼µ1 [u(a, b)] ≤ Val(G) + ϵ.

We note that a distribution over actions of a particular player p is also termed a mixed strategy,
and given mixed strategies µ1, . . . , µk for the players, we abuse notation and denote for any p ∈ [k]
the utility of player p given mixed strategies µ1, . . . , µk as up[µ1, . . . , µk] := Ea∼µ1×...×µk

[up(a)].

A.3.2. GAME DIMENSIONS

We now extend these dimensionality definitions from function classes to games. For each player
p, her utility up : Ap × A−p → R can be thought of as a concept class Fp over the domain set
Xp = Ap, whose concepts fa−p are parametereized by elements a−p ∈ A−p and are defined by
fa−p(ap) := up(ap, a−p), for each ap ∈ Ap. We define the dimension of a game to be the maximal
dimension over these utility function classes, where p ranges across all players.

7. We slightly abuse notation and throughout denote a zero-sum game (A× B, u) as (A,B, u)
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Definition 36 (Real-valued fat and threshold dimension for a multi-player game) Let G = (A, u)
be a k-player game. We define

fat(G, ϵ) = max
p

fat(Fp, ϵ)

fattr(G, ϵ) = max
p

fattr(Fp, ϵ)

sfat(G, ϵ) = max
p

sfat(Fp, ϵ)

c(G, ϵ, δ) = max
p

c(Fp, ϵ, δ)

I(G) =

(∫ 1

0

√
fat(G, ϵ)

)2

Lastly, the convex hull of a game

G = ((A1, . . . ,Ak), u)

as the game conv(G) = ((conv(A1), . . . , conv(Ak)), ũ) where conv(Ap) is the set of all finitely-
supported probability measures over Ap and ũp(µ1, . . . , µk) := E

ap
i.i.d∼ µp

[up(a1, . . . , ak)].

A.3.3. BEST-RESPONSE ORACLE

Definition 37 (Best-response oracle) Let (A, u) be a multi-player game. An ϵ-best-response ora-
cle receives a bounded-support distribution µ over A−p and outputs an action âp ∈ Ap that is an
ϵ-best response, namely:

Ea−p∼µ up(âp, a−p) ≥ sup
ap∈Ap

Ea−p∼µ up(ap, a−p)− ϵ.

A.4. On learnability and the existence of game equilibria

We say that a concept class F is uniformly online learnable if there is a function R : N → [0,∞),
that satisfies R(T ) = o(T ) as t → ∞, such that for any T there exists an online learner that
achieves a regret of at most R(T ). We notice that a class is uniformly online learnable with regret
of o(T ) if and only if its ϵ-sequential-fat-shattering dimension is finite for all ϵ > 0. We notice
that Algorithm 1 achieves a regret of o(T ) for any such class, using only a best response oracle, yet,
with suboptimal regret.

Next, we discuss the reduction (see e.g., (Schapire and Freund, 2013, Section 6)) which shows
that online learnability of an appropriate function-class implies the existence of an equilibria. First,
we define the notion of a repeated game: this denotes the iterative setting, where in each iteration
i = 1, . . . , T , each of the players is playing an action and gains a reward according to their utility.
Equivalently, the negation of their reward can be viewed as a loss that they suffer. The next lemma
states that if both players in a zero-sum game play a no-regret learning algorithm, then the average-
iterate converges to a Nash equilibrium. Similarly, in a general sum game the average iterates
converge to a CCE:

Lemma 38 (Equilibria computation via a repeated game) Assume a repeated game between two
players in a zero-sum game, that is repeated for T iterations, where in each iteration t, player 1
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plays an action at1 and player 2 plays at2. Assume that each player p suffers a regret of ϵT , for
p ∈ {1, 2}, namely:

T∑
t=1

up(a
t
p, a

t
−p) ≥ sup

ap∈Ap

T∑
t=1

up(ap, a
t
−p)− ϵT.

Denote by µp the uniform distribution over a1p, . . . , a
T
p , for p ∈ {1, 2}. Then, (µ1, µ2) is an ϵ-Nash

equilibrium.
Similarly, in a general-sum multi-player game, assume a repeated game such that every player

p ∈ [k] plays action atp in iteration t ∈ [T ] and suffers a regret of at most ϵT . Denote by µ the joint
distribution over A which is the uniform distribution over the multiset {(at1, . . . , atk)}t∈[T ]. Then, µ
is an ϵ-CCE.

In particular, this implies that any game which admits no-regret learners has a minimax (for a
zero-sum game) or a CCE (for general games). This implies that games with bounded ϵ-sequential-
fat-shattering dimension for all ϵ > 0 admit such equilibria. Equivalently, games with bounded
ϵ-fat-threshold dimension ϵ > 0 attain such equilibria.

The converse is not completely true, yet, for zero-sum games, there are known lower bounds
that use similar notions of a dimension. For example, in a 0-1 valued game, assume that the game
contains a subgame which is an infinitely large threshold game, namely, there exist actions {an1}n∈N
and {an2}n∈N such that u(an1 , a

m
2 ) = 1 if m ≥ n and 0 otherwise. Then, as observed by Hanneke

et al. (2021), this subgame does not contain a Nash Equilibrium. There is a gap between the above
described upper and lower bound, which is the setting where the threshold dimension is infinite,
namely, there are arbitrarily large threshold games, yet, there is no infinitely large threshold sub-
game. In this particular setting, Hanneke et al. (2021) showed that if additional the VC dimension
is finite then the game admits a Nash Equilibrium.

Appendix B. Deferred proofs for Online Learning

Lemma 39 Let 0 < ϵ ≤ 1/2, let d ≥ 1, let α = ϵ/(d+ 1) and let J such that

1 ≤ J ≤
(

1

ϵ− α

)d

.

Then,
J log J

α2
≤ Cd3 log(1/ϵ)

(
1

ϵ

)d

where C > 0 is a universal constant.

Proof First,

1

ϵ− α
=

1

ϵ

1

1− 1/(d+ 1)
=

1

ϵ

(
1 +

1

d

)
.

Consequently,

J log J

α2
≤ d log(1/(ϵ− α))

α2

(
1

ϵ− α

)d

= d3(log(1/ϵ) + log(1 + 1/d))

(
1

ϵ

)d(
1 +

1

d

)d

≤ Cd3 log(1/ϵ)

(
1

ϵ

)d

.
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Lemma 40 The improper variant of Algorithm 1 makes at most CLit(F) mistakes, for a universal
constant C > 0.

Proof Substitute ϵ = 1/2 and α = 1/4. It has argued, in the main proof body, that fattr(dconv(H⊕
h∗), ϵ − α) ≥ J , under the assumption that the algorithm runs for more than J phases. By Theo-
rem 3,

J ≤ dconv(H⊕ h∗, ϵ− α) = eC sfat(H⊕h∗,(ϵ−α)/C)/(ϵ−α)2 = eC Lit(H⊕h∗)/(ϵ−α)2

= eC
′ Lit(H⊕h∗)

for universal constants C,C ′ > 0. It is well known and follows from definition that Lit(H) =
Lit(H⊕ h∗), which yields that

J ≤ eC Lit(H) .

Since the number of times the distribution µt of the algorithm makes an ϵ-mistakes in each round j
is bounded by O

(
log(j)/α2

)
≤ O(log(J)) (recall α = 1/4), the total number of times of such an

ϵ-mistake across all phases is bounded, up to constants, by

J log J ≤ C Lit(H)eC Lit(H) ,

where C is a universal constant. Recall that in the improper setting, the algorithm predicts according
to the majority. Consequently, it makes a mistake if µt makes an ϵ = 1/2 mistake. Hence, the
number of mistakes of the algorithm is bounded by O(eC Lit(H)).

B.1. Agnostic Online Learning

Proof [Proof of Theorem 8] We start with the bound for improper learners. We use the reduction of
Ben-David et al. (2009) to reduce from agnostic to realizable. In their proof, they instantiate

(
T
M

)
algorithms for the realizable setting, where M is the mistake bound of the realizable algorithm (i.e.
the regret bound). Each of these instantiations is fed with the original sequence of x1, . . . , xT , how-
ever, the labels y1, . . . , yT are different in each instantiation. A multiplicative weights algorithm
(Algorithm 4) is used to choose between these experts. In their paper, they proved that the regret of
this algorithm is bounded by O(

√
TM log T )8, which translates to the bound of Theorem 8, when

one substitutes M with mistake bound (i.e. the regret bound) of the improper learner from Theo-
rem 6. In the randomized proper setting, instead of a bound on the number of mistakes, the proof of
Theorem 6 yields a bound M(ϵ) on the number of ϵ-mistakes. While translating it into the reduction
of Ben-David et al. (2009), one obtains a total regret of O

(√
TM(ϵ) log T + Tϵ

)
, where Tϵ ac-

counts for the additional loss caused by the fact that each of the experts possibly suffers an additional
regret of Tϵ, accounting for less-that-ϵ-mistakes. Substituting the bound of M(ϵ) ≤ Õ

(
ϵ−2 tr(H)−2

)
from Theorem 6 and substituting ϵ = T−1/(2 tr(H)+4) yields a total regret of T

2 tr(H)+3
2 tr(H)+4 .

8. In their paper, Ben-David et al. (2009) provided an algorithm for the agnostic setting with a mistake bound of
O(

√
T Lit(H) log T ), however, the only property they used of the Littlestone’s dimension is the existence of an

algorithm with a mistake bound Lit(H) for the realizable setting. Hence, we can replace Lit(H) with the mistake
bound of any algorithm and the proof would follow.
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Number of oracle calls and Runtime: Since the algorithm selects from
(
T
M

)
using multiplicative

weight update, the runtime is linear in the number of experts and equals O
((

T
M

))
. In the improper

setting, M = Õ
(
4tr(H)

)
, which translates to a bound of

(
T
M

)
≤ T Õ(4tr(H)) and in the proper setting,

one a bound on M(ϵ) ≤ Õ
(
ϵ−2 tr(H)−2

)
, which yields a regret of T Õ(ϵ−2 tr(H)−2). For the specific

choice of ϵ = T−1/(2 tr(H)+4), the runtime per iteration is at most T Õ(T (2 tr(H)+3)/(2 tr(H)+4)).
The number of oracle calls can be trivially bounded by the runtime. Though, one can obtain a

better bound. There are at most td distinct functions if we restrict our hypothesis class to a domain
of size t. In particular, there are at most td maximal realizable partial labelings of {x1, . . . , xt}. It
suffices to call the consistent oracle only on these maximal labelings (and the collection maximal
realizable labelings of x1, . . . , xt+1 can be efficiently constructed from those over x1, . . . , xt). This
yields at bound of at most T d oracle calls per iteration.

Appendix C. Minmax in zero-sum games

This section is dedicated to the proof of Theorem 12. We denote the game as G = (A,B, u), where
A and B are the sets of actions of Players 1 and 2, respectively. In Section C.1 we will describe an
algorithm that solves the minimax of a game where one player has infinitely many actions at hand,
and she is equipped with a best-response oracle, and the other player has finitely many actions, to
which he has random access. Next, in Section C.2 we describe an algorithm, that iteratively uses the
algorithm for the half-infinite game to compute a Nash equilibrium for a game where both players
have infinitely many actions.

C.1. Nash for a half-infinite game

In this section, we will describe an algorithm to find a Nash equilibrium for a game where one of
the players has a finite set of actions and the other player has an infinite set of actions. Assume
without loss of generality that player 1 has the finite action set. A similar approach to computing an
equilibria in half-infinite games appeared in the context of robust PAC learning (Feige et al., 2015;
Attias et al., 2022).

In order to compute the Nash equilibrium, recall from Lemma 38 that if the players play a
repeated game and if both players play a no-regret learning algorithm, then their average-iterate
converge to a Nash equilibrium. In particular, multiplicative weights (Algorithm A.2) and ϵ-best
response are both no-regret learning algorithms, therefore, the following lemma is a (well known)
consequence of Lemma 30:

Lemma 41 (Multiplicative weights vs. best response) Assume a repeated zero-sum game for T
iterations, between player 1 who plays over n actions and player 2 whose number of actions is
unbounded and possibly infinite. Assume that Player 1 plays the exponential weights algorithm to
choose a mixed strategy µt over their actions in each iteration t ∈ [T ], and assume that player 2
reacts with an ϵ-best-response bt to the uniform mixture of µ1, . . . , µt, namely,

1

t

t∑
i=1

u(µi, bt) ≥ sup
b∈B

1

t

t∑
i=1

u(µi, b)− ϵ.
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Denote by µ the uniform mixture of µ1, . . . , µT and by ξ the uniform distribution over b1, . . . , bT .
Then, (µ, ξ) is an O

(√
log(n)/T + ϵ

)
-Nash equilibrium.

Following Lemma 41, we propose Algorithm 5, where Player 1 plays exponential weights over her
actions and Player 2 plays a best-response, using his best-response oracle.

Algorithm 5 ϵ-Nash Equilibrium for a half-infinite zero-sum game

Input: A game (A = {a1, . . . , an},B, u), a value ϵ > 0.
Subroutines:

• BestResponse oracle: receives a mixed strategy over actions from A and an ϵ > 0 and
outputs an ϵ-best response from B (see Definition 37).

• The utility function u(a, b) that receives a pair of actions and outputs its utility.

1. T ←
⌈
C log |A|

ϵ2

⌉
; η ←

√
log|A|
2T .

2. µ1 =
(
µ1
1, . . . , µ

1
n

)
denotes a uniform probability distribution over A where µ1

i ← 1
n for all

i = 1, . . . , n.

3. b1 ← BestResponse(µ1, ϵ).

4. For t = 2, . . . , T

(a) For i = 1, . . . , n,

µt
i ← µt−1

i exp(ηu(at−1, bi))/Z
t where Zt =

n∑
j=1

µt−1
j exp(ηu(at−1, bj))

(b) bt ← BestResponse(µt, ϵ)

5. Return (µ̄, ξ̄), where µ̄ is the uniform mixture of µ1, . . . , µt, namely, µ̄i =
1
T

∑T
t=1 µ

t
i and ξ̄

is the uniform distribution over b1, . . . , bT

We obtain the following statement:

Lemma 42 (Nash for the half-infinite game) Let G = (A = {a1, . . . , an},B, u) be a zero-sum
game where |A| = n and B is possibly infinite, and let ϵ > 0. Then, Algorithm 5, executed with the
parameter ϵ, finds an O(ϵ)-Nash equilibrium, after T = O(log n/ϵ2) iterations.

Proof Algorithm 5 implements exponential-weights vs best response, therefore, the proof follows
directly from Lemma 41.

C.2. The algorithm for the fully-infinite game

We first argue that the output of the algorithm is an O(ϵ)-approximate Nash equilibrium.
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Lemma 43 Assume that Algorithm 3 stops. Then, the returned strategies constitute a 5ϵ-Nash for
the original game (A,B, u).

Proof Since the game ends, then either Val(At, Bt−1) ≥ Val(At−1, Bt−1) − ϵ or Val(At, Bt) ≤
Val(At, Bt−1) + ϵ. Assume first that the latter holds.

Notice that for any t,
Val(At, Bt−1) ≤ Val(A, Bt−1) + ϵ. (13)

This is due to the fact that in the game (At, Bt−1, u), player 1 has a strategy that guarantees her
a value of at least Val(A, Bt−1): indeed, her strategy ξt,1 satisfies this property, because ξt,1 is a
strategy for player 1 in the game (A, Bt−1, ϵ). Similarly,

Val(At, Bt) ≥ Val(At,B)− ϵ. (14)

Recall that we assumed that Val(At, Bt) ≤ Val(At, Bt−1) + ϵ. This with the equations above
yields:

Val(At,B)− ϵ ≤ Val(At, Bt) ≤ Val(At, Bt−1) + ϵ ≤ Val(A, Bt−1) + 2ϵ.

Recall that µt,2 is the strategy for player 2 in an ϵ-Nash in the game (A, Bt−1, u). This implies that
for any a ∈ A,

u(a, µt,2) ≥ Val(A, Bt−1)− ϵ ≥ Val(At, Bt)− 3ϵ. (15)

Similarly, since ξt,1 is the strategy for player 1 in an ϵ-Nash for the game (At,B, u), then for every
b ∈ B:

u(ξt,1, b) ≤ Val(At,B) + ϵ ≤ Val(At, Bt) + 2ϵ.

Combining the equations above, we obtain that

Val(At, Bt)− 3ϵ ≤ u(ξt,1, µt,2) ≤ Val(At, Bt) + 2ϵ.

Consequently,

u(ξt,1, µt,2)− inf
a∈A

u(a, µt,2) ≤ Val(At, Bt) + 2ϵ− (Val(At, Bt)− 3ϵ) = 5ϵ,

and similarly,

sup
b∈B

u(ξt,1, b)− u(ξt,1, µt,2) ≤ Val(At, Bt) + 2ϵ− (Val(At, Bt)− 3ϵ) = 5ϵ.

This concludes that (ξt,1µt,2) is a 5ϵ-Nash, and recall that we assumed that Val(At, Bt) ≤ Val(At, Bt−1)+
ϵ. This was one of the stopping conditions. However, we have to consider the second stopping con-
dition, namely, that Val(At, Bt) ≥ Val(At−1, Bt)− ϵ. Recall that Eq. (13) states that

Val(At, Bt−1) ≤ Val(A, Bt−1) + ϵ

and we substitute t− 1 instead of t in Eq. (14) to obtain that

Val(At−1, Bt−1) ≥ Val(At−1,B)− ϵ.
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Combining with our assumption that

Val(At, Bt−1) ≥ Val(At−1, Bt−1)− ϵ,

we obtain that

Val(At−1,B)− 2ϵ ≤ Val(At−1, Bt−1)− ϵ ≤ Val(At, Bt−1) ≤ Val(A, Bt−1) + ϵ.

Since µt,2 is the strategy of player 2 in an ϵ-Nash for the game (A, Bt−1, u), we obtain that for any
a ∈ A,

u(a, µt,2) ≥ Val(A, Bt−1)− ϵ ≥ Val(At−1, Bt−1)− 3ϵ.

Further, since ξt,1 is the strategy of player 1 in the ϵ-Nash for the game (At,B, u) and since the
Nash equilibrium is monotone under addition of actions to a single player, for any b ∈ B,

u(ξt,1, b) ≤ Val(At,B) + ϵ ≤ Val(At−1,B) + ϵ ≤ Val(At−1, Bt−1) + 2ϵ.

The proof concludes similarly to how it ended in the first of the two cases that we analyze.

Next, we are bounding the stopping time of the algorithm.

Lemma 44 Algorithm 3 stops after O(fattr(conv(G), ϵ)/ϵ) iterations.

Proof [of lemma 44] Suppose the game runs for more than T iterations. First, we would like to find
indices 1 ≤ i1 < i2 < · · · < iq < T for which the following hold:

Val(Aij , Bik) ≤ θ if j > k

Val(Aij , Bik) ≥ θ + ϵ/2 if j ≤ k.
(16)

We claim that we can always guarantee q = O(Tϵ) such indices.
Define a ’crossing’ of an interval [a, b] where 0 ≤ a < b ≤ 1 to be a pair of numbers c, d such

that c ≤ a < b ≤ d. We will prove that we can find q pairs of the form (Val(Ai, Bi−1),Val(Ai, Bi))
that cross the same interval. Indeed, if we take the numbers Val(Ai, Bi−1), for 1 ≤ i ≤ T , by
Lemma 75 we have that at least ϵT/2 of them lying in the interval U =

[
θ − ϵ

2 , θ
]
, for some θ,

and denote them by i1 < · · · < iq. Since the algorithm has not stopped at any of these iterations,
by the stopping condition of the algorithm it holds that Val(Aij , Bij ) ≥ Val(Aij , Bij−1) + ϵ ≥
θ+ ϵ/2. This concludes that (Val(Aij , Bij−1),Val(Aij , Bij )) crosses the interval [θ, θ+ ϵ/2]. This
concludes Eq. (16): indeed, for all j > k, since ij > ik, consequently, ik ≤ ij − 1 then, by the
definition of the algorithm, Bik ⊆ Bij−1, which implies, by the monotonicity of the value of the
game, that

Val(Aij , Bik) ≤ Val(Aij , Bij−1) ≤ θ.

Similarly, one can deduce that Val(Aij , Bik) ≥ θ + ϵ/2 for j ≤ k, which concludes Eq. (16).
Recall that taking the average of c(G, ϵ

12 , δ) (defined in Definition 36) actions can guarantee us
an ϵ

12 -approximate minmax strategy αij for player 1 in the game (Aij , Bij−1 , u), due to uniform
convergence (27). Similarly we can get a ϵ

12 -approximate minmax strategy βij for player 2 in the
game (Aij , Bij , u). For these strategies, notice that for all j > k, it holds that

u(Aij , Bik) ≤ θ +
ϵ

6
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and for all j ≤ k, it holds that
u(Aij , Bik) ≥ θ +

ϵ

3
.

Now, look at the matrix where the rows are parameterized by the strategies of player 1, {αij : 1 ≤
j ≤ q}, the columns by the strategies of player 2, {βik : 1 ≤ k ≤ q}, and the value of the (j, k)
entry is taken to be u(αij , βik). This constitutes a matrix where all entries above and at the diagonal
are at least θ + ϵ

3 and below the diagonal at most θ + ϵ
6 . This concludes that the ϵ

6 -fat threshold
dimension of the mixed-strategy game is at least Ω(Tϵ), namely fattr(conv(G), ϵ) ≥ Ω(Tϵ) which
gives T ≤ O( fattr(conv(G),ϵ)

ϵ ), as required.

In order to bound the number of oracle calls, we add the following lemma:

Lemma 45 Assume that Algorithm 3 runs for T iterations. Then, the number of oracle calls is
bounded by O(T/ϵ2 · log(T/ϵ2)).

Proof First, we would like to bound the sizes of At and Bt by O(t log t/ϵ2). In order to show
that, notice that At is obtained from At−1 by adding the support of an ϵ-approximate Nash for the
half-infinite game (A, Bt−1, u). We would like to bound the size of the support of the strategy
of Player 1 in such an approximate Nash. This approximate Nash is computed in Algorithm 5,
and the size of the support equals the number of iterations of this algorithm, which is bounded by
O(log |Bt−1|/ϵ2), by Lemma 42. This implies that |At| ≤ |At−1| + C(log |Bt−1| + C)/ϵ2 for a
universal constant C > 0 and similarly, since Bt is obtained from Bt−1 by adding the support of an
approximate Nash for the game (At,B, u), it holds that |Bt| ≤ |Bt−1|+C(log |At|+C)/ϵ2. It can
be proven by induction that |At|, |Bt| ≤ O((t/ϵ2) log(t/ϵ2)). We notice that the number of oracle
calls by iteration t equals exactly |At|+ |Bt|, which concludes the proof.

We are now ready to prove our main theorem.
Theorem 12 Let G = (A,B, u) be a zero-sum two-player game, where u : A × B → [0, 1] and
let ϵ > 0. There is an algorithm to find an O(ϵ)-Nash for this game using the following number of
ϵ-best response oracle calls (assuming this number is finite):

O
(
min

(
eC sfat(G,ϵ/C)/ϵ2 , (1/ϵ)CI(G)2 fattr(G,ϵ/C)/ϵ5

))
; I(G) =

(∫ 1

0

√
fat(G, ϵ)

)2

Proof [Proof of Theorem 12] We notice that Lemma 43 implies that the output of Algorithm 3 is an
O(ϵ)-Nash. Furthermore, Lemma 44 bounds the number of iterations by T ≤ O(fattr(conv(G), ϵ)/ϵ)
and Lemma 45 implies that the number of oracle calls is bounded by Õ

(
fattr(conv(G), ϵ)/ϵ3

)
. The

proof of Theorem 12 follows by substituting fattr(conv(G), ϵ) with its bound in terms of the various
dimensions of the game G, according to Theorem 3:

fattr(conv(G), ϵ) ≤ eC sfat(G,ϵ/C)/ϵ2 .

The total bound on the number of oracle calls is then

Õ
(
fattr(conv(G), ϵ)/ϵ3

)
≤ eC sfat(G,ϵ/C)/ϵ2/ϵ3.

Notice that the fact of 1/ϵ3 can be omitted by changing the constant in the exponent, and this yields
the desired bound on the number of oracle calls and concludes Theorem 12.
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Appendix D. Bounding the threshold dimension of the mixed-strategy game

In this Sections D.1 and D.2 we prove Theorem 3, which consists of two upper bounds on fattr(conv(F), ϵ)
and fattr(conv(G), ϵ) for a zero-sum game G and a concept class F . We further present lower
bounds in Section D.3.

D.1. A bound using Ramsey’s theory

In this section, we will prove the following lemma:

Lemma 46 Let G be a zero-sum game, then,

fattr(conv(G), ϵ) ≤ O

((
2

ϵ

)c(G,ϵ/4)2 fattr(G,ϵ/4)/ϵ
)
.

We notice that substituting c(G, ϵ/4) with
(∫ 1

0

√
fat(G, ϵ)dϵ

)2
/ϵ2 using Lemma 28, yields one of

the two bounds of Theorem 3.
In the proof, we will use the following variants of Ramsey numbers, as defined below:

Definition 47 (Multi-colored Ramsey number)

• R(n,Q) is defined as the maximal size of a complete graph that contains no monochromatic
n-clique, where each edge can be colored by one of Q colors.

• R(n,Q, ℓ) is defined as the maximal size of a complete graph that contains no n-monochromatic
clique, if each edge is colored by ℓ colors out of Q possible colors.

• R
(
(n1, n2, . . . , nQ), Q, ℓ

)
is defined as the maximal size of a complete graph that contains

no ni-monochromatic clique of color i, if each edge is colored by ℓ colors out of Q possible
colors. Note that R

(
(n, n, . . . , n), Q, ℓ

)
= R(n,Q, ℓ)

The following bound holds:

Proposition 48 (A bound on R(m,Q), from Balaji et al. (2021) Corollary 3.9) For n,Q ∈ N, R(n,Q)
can be bounded as follows

R(n,Q) ≤ 3 + e

2

(Q(n− 2))!

((n− 2)!)Q

Using the bound m! = O(mm), we can write the above as:

R(n,Q) ≤ O(QQn)

Here, we show how to improve the bound if we know that each edge is colored with ℓ colors:

Proposition 49 (A bound on R(n,Q, ℓ)) For n,Q, l ∈ N, l < Q it holds that:

R
(
n,Q, ℓ

)
≤ 2
(Q
ℓ

)(n−2)Q
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An immediate corollary from the above proposition is the following:

Corollary 50 (A bound on R(n,Q, ϵQ)) We have that for n,Q ∈ N and ϵ ∈ (0, 1)

R(n,Q, ϵQ) ≤ O

((
1

ϵ

)Qn
)

Now to prove Proposition 49, we use the following:

Proposition 51 (Proposition 2.1, Balaji et al. (2021)) Suppose ℓ,Q, n1, . . . , nr ∈ N, and suppose
A1, . . . , AQ are sets with |A1 ∪ · · · ∪AQ| = n. If n > n1 + · · ·+ nQ−Q, then |Ai| ≥ ni for some
1 ≤ i ≤ Q

Lemma 52 For some Q, ℓ, n1, n2, .., nQ ∈ N, we have that:

ℓ
(
R
(
(n1, n2, . . . , nr), Q, ℓ

)
− 1
)

≤ R
(
(n1 − 1, n2, . . . , nQ), Q, ℓ

)
+ · · ·+R

(
(n1, n2, . . . , nQ − 1), Q, ℓ

)
− (Q− 1)

Proof [of Lemma 52] Assume N = R
(
(n1, n2, . . . , nr), Q, ℓ

)
. Let v be an arbitrary node out of

the N nodes of the KN graph and denote is the parent node. Allocate the N − 1 remaining vertices
into r sets, namely A1, A2, ..., AQ, where each node can appear in multiple sets. A node u will be
assigned to set Ac, where c = 1, 2, . . . , Q if one of the colors of the edge that connects u and v is c.
Now, note that

|A1 ∪A2 ∪ ... ∪AQ| = (N − 1)ℓ

since each edge has ℓ colors. If we assume towards contradiction that:

(N − 1)ℓ > R
(
(n1 − 1, n2, . . . , nr), Q, ℓ

)
+ · · ·+R

(
(n1, n2, . . . , nr − 1), Q, ℓ

)
− (Q− 1)

then there exists an i such that |Ai| ≥ R
(
(n1, . . . , ni − 1, . . . nr), Q, ℓ

)
. If such an i exists, that

means that we either have a Knj clique for i ̸= j in Ai, or we have a Kni−1 clique in Ai, and
therefore we can create a Kni clique by connecting the parent node v with the ni−1 nodes in Ai that
form that clique. That means that we have a color i for which we have a monochromatic clique of
size ni, contradicting the definition of the multi-colored Ramsey number R

(
(n1, n2, . . . , nr), Q, ℓ

)
.

Thus it must be that

(N − 1)ℓ > R
(
(n1 − 1, n2, . . . , nr), Q, ℓ

)
+ · · ·+R

(
(n1, n2, . . . , nr − 1), Q, ℓ

)
− (Q− 1)

as required.

Proof [of Proposition 49] Let us define the following quantity

S(N,Q, ℓ) = max
(n1,n2,...,nQ)|ni≥2,

∑
i ni=N

R
(
(n1, . . . , nQ), Q, ℓ

)
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Note that S(2Q,Q, ℓ) = 2, as we have that
∑Q

i ni = 2Q which means either ni = 2∀i in which
case the multi-colored Ramsey number is 2, or there exists i such that ni = 1 in which case the
number is 1. We can use Lemma 52 as follows:

S(N,Q, ℓ) = R
(
(n1, . . . , nQ), Q, ℓ

)
≤

R
(
(n1 − 1, . . . , nQ), Q, ℓ

)
+ · · ·+R

(
(n1, . . . , nQ − 1), Q, ℓ

)
ℓ

+ 1− Q− 1

ℓ

≤
R
(
(n1 − 1, . . . , nQ), Q, ℓ

)
+ · · ·+R

(
(n1, . . . , nQ − 1), Q, ℓ

)
ℓ

≤ Q

ℓ
S(N − 1, Q, ℓ)

Using the above we can conclude that:

S(N,Q, ℓ) ≤
(Q
ℓ

)N−2Q
S(2Q,Q, ℓ) = 2

(Q
ℓ

)N−2Q

Thus for the Multi colored Ramsey number R
(
(n1, . . . , nQ), Q, ℓ

)
we have

R
(
n,Q, ℓ

)
≤ S(nQ,Q, ℓ) ≤ 2

(Q
ℓ

)(n−2)Q

We proceed with the proof of Lemma 46 as well as Corollary 53 for the binary setting. Denote
m = fattr(conv(G), ϵ) and n = fattr(G, ϵ/2)). Since the ϵ-fat threshold dimension of the mixed-
strategy game is m, that means that there exist strategies αi, βi, i ∈ [m] and a threshold θ ∈ [0, 1]
for which u(αi, βj) ≤ θ if i > j and u(αi, βj) ≥ θ + ϵ if i ≤ j. These strategies’ supports may
be unbounded. Towards applying the bound on the multi-colored Ramsey numbers, we would like
to replace these strategies with strategies that have the above properties, with perhaps a gap smaller
than ϵ, however with bounded support. We use the uniform-convergence parameter of the game
from Definition 36, c(G, ϵ/8), to argue that for any i ∈ [m], there exists a strategy α′

i for Player 1,
that is a uniform distribution on c(G, ϵ/8) actions (possibly with repetitions), which approximates
the strategy αi up to an error of ϵ/8. More precisely, for any strategy β of player 2 and any i ∈ [m],∣∣u(α′

i, β)− u(αi, β)
∣∣ ≤ ϵ

8

Similarly, there exist strategies β′
i, i ∈ [m] supported on c(G, ϵ/8) actions, such that for any strategy

α of player 1, ∣∣u(α, β′
i)− u(α, βi)

∣∣ ≤ ϵ

8
.

Thus, for strategies α′
i, β

′
i we will have u(α′

i, β
′
j) ≤ θ + ϵ

4 if i > j and u(α′
i, β

′
j) ≥ θ + 3ϵ

4 if i ≤ j.
We want to bound the ϵ-fat threshold dimension of the pure strategy game. To do so, let us take

the graph Km. Suppose Q = c(G, ϵ/8)2. We determine how to color an edge (i, j), where i > j, in
the following manner: create two matrices of dimensions Q×Q each, denoted by Ai,j and Bi,j . The
matrix Ai,j is the utility matrix of the subgame where Player 1 is restricted to play from support(α′

i)
and Player 2 from support(β′

j). In particular, denoting support(α′
i) = {ai,1, . . . , ai,c(G,ϵ/8)} and

support(β′
j) = {bj,1, . . . , bj,c(G,ϵ/8)}, we define Ai,j

k,ℓ = u(ai,k, bj,ℓ). Similarly, the matrix Bi,j
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corresponds to the game where Player 1 plays from support(αj) and Player 2 from support(βi),
where Bi,j

k,ℓ = u(aj,kbi,ℓ).
Since α′

i and β′
j are each uniform distributions over their supports, then for all i > j, u(α′

i, β
′
j) =

1
Q2

∑
k,ℓA

i,j
k,ℓ and similarly u(α′

j , β
′
i) = 1

Q2

∑
k,ℓB

i,j
k,ℓ. Since for i > j, u(α′

i, β
′
j) ≤ θ + ϵ

4 and

u(α′
j , β

′
i) ≥ θ + 3ϵ

4 , it holds that 1
Q2

∑
k,ℓ

(
Bi,j

k,ℓ −Ai,j
k,ℓ

)
≥ ϵ

2 .

Suppose out of the Q2 pairs (k, l), δQ2 are such that Bi,j
k,ℓ − Ai,j

k,ℓ ≥
ϵ
4 and for the rest we have

that Bi,j
k,ℓ −Ai,j

k,ℓ <
ϵ
4 . That implies that

ϵ

2
≤ 1

Q2

∑
k,ℓ

(
Bi,j

k,ℓ −Ai,j
k,ℓ

)
≤

(1− δ)Q2 ϵ
4 + δQ2

Q2
= (1− δ)

ϵ

4
+ δ =⇒ δ ≥

ϵ
4

1− ϵ
4

≥ ϵ

4

Consider now all the pairs (k, l) for which Bi,j
k,ℓ − Ai,j

k,ℓ ≥
ϵ
4 holds. Divide the interval of [0, 1]

into ⌈8ϵ ⌉ intervals of size ϵ
8

(
I1 = [0, ϵ

8), I2 = [ ϵ8 ,
2ϵ
8 ), . . .

)
and assign the pair (k, l) in the interval

which Ai,j
k,l belongs to. If the pair belongs to interval Ir, we color the edge (i, j) with color (k, l, r).

Note that in total there are Q2⌈8ϵ ⌉ colors.
Suppose we can form a monochromatic clique of size t in the graph Km we constructed, with

vertices u1, u2, . . . , ut. That means that there exist actions a1, a2, . . . , at ∈ A and b1, b2, . . . , bt ∈ B
such that u(ai, bj) ≤ θ′ if i > j and u(ai, bj) ≥ θ′+ ϵ

8 if i ≤ j. That implies that the ϵ-fat threshold
dimension of the game is at least t. Above, we constructed a complete graph, where each edge is
multicolored with ϵQ2

4 colors out of the available Q2⌈8ϵ ⌉ colors. By Corollary 50, we have that a

monochromatic clique in Km of size n+1 will exist if m ≥ O
((

1
ϵ

) 1
ϵ
Q2n
)
≥ R(n+1, Q2⌈8ϵ ⌉,

ϵQ2

4 ).
As we assumed the ϵ−fat threshold dimension of the pure strategy game is exactly n, we need to

have m ≤ O
((

1
ϵ

) 1
ϵ
Q2n
)
= O

((
1
ϵ

) 1
ϵ
c(G,ϵ/8)2n

)
as otherwise we would have a threshold of at least

n+ 1.
With a slight modification to the previous argument, we attain the following corollary for binary-

valued games,

Corollary 53 Let G be a {0, 1}-valued zero-sum game, then,

tr(conv(G), ϵ) ≤ O
(
(1/ϵ)C VC(G)2 tr(G) log(VC(G))

)
Proof As in the general case of real valued games, for all i > j ∈ [m], we can construct the Q×Q
matrix Ai,j with entries Ai,j

k,l = u(ai,k, bj,ℓ) for ai,k ∈ support(α′
i) and bj,ℓ ∈ support(β′

j) and the

Q×Q matrix Bi,j with entries Bi,j
k,l = u(aj,k, bi,ℓ) for aj,k ∈ support(α′

j) and bi,ℓ ∈ support(β′
i).

Again, we have 1
Q2

∑
k,ℓ

(
Bi,j

k,ℓ −Ai,j
k,ℓ

)
≥ ϵ

2 .
Now, importantly though, the matrices have values in {0, 1}. This means there must exist at

least 1 pair (k, l) for each (i, j) with Bi,j
k,ℓ −Ai,j

k,ℓ = 1. So, rather than discretizing the [0, 1] interval
and coloring each edge i, j using Q2

⌈
8
ϵ

⌉
colors, we can use simply Q2 colors, and a monochromatic

clique will imply a threshold matrix in the pure strategy game. Even though each (i, j) pair receives

one color here, the reduction in number of colors gives us the improved m ≤ O
((

Q2
)Q2n

)
, as

desired.
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D.2. A bound based on the sequential fat-shattering dimension of the original game

In this section, we prove one of the two bounds from Theorem 3, stated as the following lemma:

Lemma 54 Let F be a [0, 1]-valued concept class. Then, there exist universal constants C1, C2 >
0 such that

fattr(conv(F), ϵ) ≤ 2C1 sfat(F ,ϵ/C2)/ϵ2 .

Further, the same holds when conv(F) is replaced with either dconv(F) and conv2(F), and when
F is replaced with a zero-sum game G.

We use the definition of the sequential Rademacher complexity of a class F (Rakhlin et al.,
2010):

Definition 55 Given a concept class F over a domain X , given horizon length T > 0, and given
functions Z0, . . . , ZT−1 where Zt : {−1, 1}t → X , define the sequential Rademacher complexity
of F with respect to Z = (Z0, . . . , ZT−1) as

sRad(F , T, Z) = Eϵ1,...,ϵT

[
sup
f∈F

T∑
t=1

ϵtf(Zt−1(ϵ1, . . . , ϵt−1))

]
,

where ϵ1, . . . , ϵT are sampled uniformly and independently from {−1, 1}. Define sRad(F , T ) =
supZ sRad(F , T ).

The following are upper and lower bounds on the sequential Rademacher complexity given the
sequential fat-shattering dimension were initially proved by (Rakhlin et al., 2010, Proposition 9)
and the upper bound was improved by Block et al. (2021).

Lemma 56 Let F be a concept class, and let ϵ > 0. Then, for any T ≥ sfat(F , ϵ), it holds that

sRad(F , T ) ≥ cϵ
√
T sfat(F , ϵ),

where c > 0 is a universal constant. Further, if F is [0, 1]-valued, then for any T ≥ 1,

sRad(F , T ) ≤ C

(
Tϵ+

∫ 1

ϵ

√
T sfat(F , r)dr

)
,

where C > 0 is a universal constant.

Further, we use the following lemma (Rakhlin et al., 2010, Lemma 3):

Lemma 57 Let F be a concept class. Then, sRad(F) = sRad(conv(F)).

Consequently, we obtain the following bound:

Lemma 58 Let F be a [0, 1]-valued concept class and let ϵ ∈ (0, 1]. Then,

sfat(conv(F), ϵ) ≤ C1 sfat(F , ϵ/C2)

ϵ2

where C1, C2 > 0 are universal constants.
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Proof Let T = sfat(conv(F), ϵ), denote by c, C the constants of Lemma 56, let ϵ′ > 0. Apply
Lemma 56, Lemma 57 and the fact that sfat(F , r) is monotonic decreasing in r to obtain:

cϵ
√
T sfat(conv(F), ϵ) ≤ sRad(conv(F), T ) = sRad(F , T )

≤ C

(
Tϵ′ +

∫ 1

ϵ′

√
T sfat(F , r)dr

)
≤ CTϵ′ + C

√
T sfat(F , ϵ′)

= Cϵ′
√
T sfat(conv(F), ϵ) + C

√
T sfat(F , ϵ′).

Setting ϵ′ = c/(2C), one obtains that

cϵ

2

√
T sfat(conv(F), ϵ) ≤ C

√
T sfat(F , ϵ′).

Consequently,

sfat(conv(F), ϵ) ≤
(
2C

c

)2 sfat(F , ϵ′)
ϵ2

.

This concludes the proof.

We use that fattr(F , ϵ) ≤ 2⌈sfat(F ,ϵ)⌉ to obtain the desired bound. In order to obtain the
bounds where conv(F) is replaced with either dconv(F) or conv2(F), we notice that the proof
follows from the same arguments, replacing Lemma 57 with sRad(F , T ) = sRad(conv(F), T ) =
sRad(dconv(F), T ) = sRad(conv2(F), T ), whose proof follows similar arguments as the proof
of Lemma 57. Lastly, for a game G, the bound follows directly from the bound for concept classes
F , since the various dimensions of G are obtained by considering the relevant concept classes.

D.3. A lower bound

We prove two lower bounds on fattr(conv(F), ϵ): one in terms of tr(F) and another one in terms
of Lit(F), for some 0-1 classes F . This is stated in the following two lemmas.

Lemma 59 For any n ∈ N, n ≥ 2 and any ϵ < 1, there exists a 0-1 valued concept class F with
fattr(conv(F), ϵ) = n whereas tr(F) ≤ O(log n) (where O hides constants that depend only on
ϵ).

Proof We will prove for ϵ = 0.2 however the proof for any ϵ follows the same arguments with the
numerical constants changed. We will define a distribution over concept classes and show that with
probability greater than 0, a random concept class from this distribution satisfies the desired proper-
ties. Define the random concept class F as a union of classes F1, . . . ,Fn over the domain X = [n].
Each Fi contains ℓ different elements, fi,1, . . . , fi,ℓ where ℓ = Θ(log n) is to be determined exactly
later. We independently, for each i ∈ [n], k ∈ [ℓ] and j ∈ [n], define

fi,k(j) =

{
1 w.p 0.7 and 0 w.p 0.3 if i ≤ j

1 w.p 0.3 and 0 w.p 0.7 if i > j.

We notice that for each i ≤ j ∈ [n], from Chernoff-Hoeffding bound,

Pr

[
1

k

ℓ∑
k=1

fi,k(j) ≥ 0.6

]
≥ 1− e−cℓ,
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where c > 0 is a universal constant, and similarly for any i > j ∈ [n],

Pr

[
1

k

ℓ∑
k=1

fi,k(j) ≤ 0.4

]
≥ 1− e−cℓ.

We set ℓ = log(3n2)/c and notice that e−cℓ ≤ 1/(3n2). By a union bound over i, j ∈ [n], we get
that with probability at least 2/3, for all i, j ∈ [n]:

ℓ∑
k=1

fi,k ≥ 0.6 if i ≤ j

ℓ∑
k=1

fi,k ≤ 0.4 if i > j

If this holds, then fattr(conv(F), 0.2) = n. This is obtained by taking the convex combinations
{1ℓ
∑ℓ

k=1 fi,k}i∈[n] as the functions fi in Definition 24.
Lastly, we will show that with probability at least 1/3, tr(F) ≤ O(log n). Let M > 0

and we will see that if M ≥ Ω(log n) (with a sufficiently large constant), there are no functions
f1, . . . , fM ∈ F and elements x1, . . . , xM ∈ X such that for all i, j ∈ [M ], f i(xj) = I(i ≤ j).
Fix some functions f1, . . . , fM ∈ F and x1, . . . , xM ∈ X , and notice that

Pr
[
∀i, j ∈ [n], f i(xj) = I(i ≤ j)

]
≤ 0.7M

2
,

since f i(xj) are independently chosen and each value for f i(xj) can be taken with probability at
most 0.7 and there are M2 values to be satisfied. We note that there are at most (ℓn)MnM ≤
O(n2 log n)M choices for {f1, . . . , fM , x1, . . . , xM}, and by a union bound over all choices, we
have

Pr[tr(F) ≥M ]

= Pr
[
∃f1, . . . , fM ∈ F , ∃x1, . . . , xM ∈ X, s.t. ∀i, j ∈ [M ], f i(xj) = I(i ≤ j)

]
≤ (Cn2 log n)M0.7M

2 ≤ eC1 log(n)M−C2M2
,

where C,C1, C2 are universal constants. If we set M = C3 log(n) for a sufficiently large con-
stant C3, then the probability above is bounded by 1/3. We obtain that with probability 1/3,
fattr(conv(F), 0.2) = n and tr(F) ≤ O(log(n)) as required.

Lastly, we notice the following lower bound fattr(conv(F), ϵ) in terms of Littlestone’s dimen-
sion of the class:

Lemma 60 For any n there exists a 0-1 valued classF such that Lit(F) ≤ log n while fattr(conv(F), ϵ) =
n, for all ϵ < 1. Similarly, there a class F such that Lit(F) ≤ log n while fattr(dconv(F), ϵ) = n.

Proof For the first part of the lemma that involves conv(F), this follows from the fact that fattr(conv(F), ϵ) ≤
Lit(F), that Lit(F) ≤ log |F|, and that for n there exists a class F of n elements with tr(F) = n:
Indeed, consider the class F = {f1, . . . , fn} where fi : [n] → {0, 1} defined by fi(j) = I(i ≤ j).
This class has threshold dimension n by definition. The second part of the lemma, that involves
dconv(F), is proved similarly.
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Appendix E. CCE

Recall our definition of the CCE-matrix of a game

Definition 14 (The CCE-matrix of a game) For a game G = (A =
∏k

p=1Ap, u = (u1, · · · , uk)),
the CCE-matrix MG

CCE : A×
(⋃

pAp

)
is defined, for a ∈ A and dp ∈ Ap as

MG
CCE[a, (p, dp)] = up(dp, a−p)− up(ap, a−p)

As stated in Section 4.2, in order to compute a CCE of G, we would like to run something
analogous to Algorithm 3 on the zero-sum matrix game on MG

CCE. To do so, we need two things:

1. Bounds on the dimension parameters of MG
CCE

2. Best-response oracles for the two players of the game

For item 1, viewing MG
CCE as a [−1, 1]-concept class {fa|a ∈ A} over the domain set X =⋃

pAp, we prove the following.

Lemma 61 Let G = (A, u) be a k-player game with bounded utilities up : A → [0, 1] for all
p. Then, the combinatorial dimensions of the game G bound those of the MG

CCE concept class as
follows

fat(MG
CCE, 16ϵ) ≤ O(k fat(G, ϵ) log fat(G, ϵ) log2(1/ϵ))

sfat(MG
CCE, 2ϵ) ≤ O((k/ϵ) sfat(G, ϵ))

fattr(MG
CCE, 2ϵ) ≤ (k/ϵ) fattr(G, ϵ)

Proof We introduce the notation MG
CCE[A,Ap] to denote the submatrix of MG

CCE containing only
the columns in Ap. We can express MG

CCE as the horizontal concatenation of matrices:

MG
CCE =

[
MG

CCE[A,A1], · · · ,MG
CCE[A,Ak]

]
We will bound the dimensions of MG

CCE[A,Ap] for all p and use that to bound the dimensions
of MG

CCE using the horizontal concatenation lemmas of Appendix F. We partition the rows of each
matrix MG

CCE[A,Ap] as follows. For each integer z ∈ [0, 1/ϵ], define

Sp,z,ϵ = {a ∈ A|up(ap, a−p) ∈ [zϵ, (z + 1)ϵ)}

We can express MG
CCE[A,Ap] as the vertical concatenation of matrices:

MG
CCE[A,Ap] =

M
G
CCE[Sp,0,ϵ,Ap]

MG
CCE[Sp,1,ϵ,Ap]

...


We will bound the dimensions of MG

CCE[Sp,z,ϵ,Ap] for all z and use that to bound the dimen-
sions of MG

CCE[A,Ap] using the vertical concatenation lemmas of Appendix F. Recall the utility
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concept class of player p. Fp is defined over the domain set Xp = Ap, and has concepts fa−p pa-
rametereized by elements a−p ∈ A−p defined as fa−p(dp) := up(dp, a−p), for each dp ∈ Ap. Note,
for all (ap, a−p) ∈ Sp,z,ϵ we have up(ap, a−p) ∈ [zϵ, (z+1)ϵ). Therefore, for all (ap, a−p) ∈ Sp,z,ϵ

and dp ∈ Ap,

MG
CCE[(ap, a−p), (p, dp)]− (z + 1/2)ϵ ∈ [fa−p(dp)− ϵ/2, fa−p(dp) + ϵ/2]

Since the (z + 1/2)ϵ-shifted concepts of MG
CCE[Sp,z,ϵ,Ap] correspond to concepts of Fp up to

an additive factor of ϵ/2, any shattering structure present in MG
CCE[Sp,z,ϵ,Ap] with a margin of 2ϵ

must exist in Fp with a margin of at least ϵ. This is due to the fact that the (z + 1/2)ϵ shift can be
incorporated in the witness parameters of the structure θ. Thus,

fat(MG
V [Sp,z,ϵ,Ap], 2ϵ) = fat(Fp, ϵ) ≤ fat(G, ϵ)

sfat(MG
V [Sp,z,ϵ,Ap], 2ϵ) = sfat(Fp, ϵ) ≤ sfat(G, ϵ)

fattr(MG
V [Sp,z,ϵ,Ap], 2ϵ) = fattr(Fp, ϵ) ≤ fattr(G, ϵ)

(17)

Using the vertical concatenation lemmas of Appendix F, as well as equation (17), we conclude

fat(MG
CCE[A,Ap], 16ϵ) ≤ O(fat(G, ϵ) log fat(G, ϵ) log2(1/ϵ)) (18)

sfat(MG
CCE[A,Ap], 2ϵ) ≤ O((1/ϵ) sfat(G, ϵ)) (19)

fattr(MG
CCE[A,Ap], 2ϵ) ≤ (1/ϵ) fattr(G, ϵ) (20)

where (18) follows from Lemma 66, (19) follows from Lemma 68, and (20) follows from Lemma
72. Then,

fat(MG
CCE, 16ϵ) ≤ O(k fat(G, ϵ) log fat(G, ϵ) log2(1/ϵ)) (21)

sfat(MG
CCE, 2ϵ) ≤ O((k/ϵ) sfat(G, ϵ)) (22)

fattr(MG
CCE, 2ϵ) ≤ (k/ϵ) fattr(G, ϵ) (23)

where (21) follows from Lemma 67, (22) follows from Lemma 70, and (23) follows from Lemma
73.

For item 2, we need to be able to compute two things. We have a zero-sum matrix game
on MG

CCE : A ×
(⋃

pAp

)
→ [−1, 1] between a minimizing player selecting distributions over

action profiles µ ∈ ∆{A} and a maximizing player selecting distributions over deviations ξ ∈⋃
pAp. The corresponding “ϵ-best-response” oracles would return, for all ξ ∈ ∆

(⋃
pAp

)
, â =

BestResponse(ξ, ϵ) ∈ A satisfying

1[â]TMG
CCEξ ≤ inf

a∈A
1[a]TMG

CCEξ + ϵ (24)

and, for all µ ∈ ∆(A), (p̂, dp̂) = BestResponse(µ, ϵ) ∈
⋃

pAp satisfying

µTMG
CCE1[(p̂, dp̂)] ≥ sup

(p,ap)∈
⋃

p Ap

µTMG
CCE1[(p, ap)]− ϵ (25)
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As stated in Section 4.2, (24) is not necessary. It is used at time step t in Algorithm 3 when the
minimizing player is increasing her set of actions At−1 → At in order to improve her value in the
game versus the maximizing player’s current set of actions Bt−1. For the specific case of the matrix
game MG

CCE , we have the following construction of At in terms of Bt−1.

Algorithm 6 Finite-CCE
Input: A finite game ((B1, . . . , Bk), u), an ϵ > 0
Subroutines:

• Multiplicative-weight update: a no-regret learning algorithm that operates on a finite set of
actions (Algorithm A.2)

1. Simulate a repeated game between the k players, where each player plays according to mul-
tiplicative weight update (Algorithm A.2), for T = Θ

(
log(maxp |Bp|) /ϵ2

)
iterations

2. Return the uniform distribution over {a1, . . . , aT } where at is the strategy profile played by
the players at iteration t.

From Lemma 38, we have that the output of Algorithm 6 will constitute an ϵ-CCE for the subgame
G′ = (

∏
pBt−1,p, u). Therefore, we have

ValMG
CCE

(Support(Finite-CCE(Bt−1)), Bt−1) ≤ ϵ (26)

By the definition of ϵ-CCE, there is no profitable deviation for any player to any strategy within the
subgame G′. Therefore, the outputted distribution µ must satisfy supξ∈∆(Bt−1) µ

TMG
CCEξ ≤ ϵ, and

Player 1 can force the game to have value≤ ϵ using a strategy supported on Support(Finite-CCE(Bt−1)).
This suffices for the purposes of our algorithm. To achieve (25), we introduce the following subrou-
tine
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Algorithm 7 ϵ-best deviation for an action profile distribution

Input: A bounded-support distribution over action profiles µ ∈ ∆(A), a value ϵ > 0
Subroutines:

• BestResponsep oracle: for a player p, receives a bounded-support distribution over ad-
versary actions µ−p ∈ ∆(A−p) and an ϵ > 0 and outputs an ϵ-best response from Ap (see
Definition 37).

• Utility functions up(ap, a−p) for all players p that receive an action profile and outputs player
p’s utility

1. For p = 1, 2, . . . , k

(a) Marginalize: µ−p[a−p]←
∑

ap∈Support(µ)p µ[(ap, a−p)] for a−p ∈ Support(µ)−p

(b) Best deviation for p: dp ← BestResponsep(µ−p, ϵ)

(c) Value of not deviating for p: vp ←
∑

a∈Support(µ) up(ap, a−p)µ[a]

(d) Value of best deviation for p: v′p ←
∑

a−p∈Support(µ)−p
up(dp, a−p)µ−p[a−p]

2. Player with greatest value increase if she deviates: p̂← argmaxp∈[k] v
′
p − vp

3. Return (p̂, dp̂)

The following lemma demonstrates that this subroutine gives the desired ϵ-best-response of (25).

Lemma 62 (Best deviation for an action profile distribution) Consider a game
G = (A =

∏k
p=1Ap, u = (u1, · · · , uk)), bounded-support distribution over action profiles µ ∈

∆(A), and a value ϵ > 0. Then, Algorithm 7 executed with parameters µ, ϵ outputs a (p̂, dp̂)
satisfying

µTMG
CCE1[(p̂, dp̂)] ≥ sup

(p,ap)∈
⋃

p Ap

µTMG
CCE1[(p, ap)]− ϵ

Proof Recalling Definition 37, our ϵ-best-response oracle for player p receives a bounded-support
distribution µ−p ∈ ∆(A−p) and outputs an action dp ∈ Ap satisfying

∑
a−p∈A−p

up(dp, a−p)µ−p[a−p] ≥ sup
ap∈Ap

 ∑
a−p∈A−p

up(ap, a−p)µ−p[a−p]

− ϵ

Therefore, for all p, the values vp, v′p in Algorithm 7 satisfy

v′p − vp =
∑

a−p∈A−p

∑
ap∈Ap

(
up(dp, a−p)− up(ap, a−p)

)
µ[(ap, a−p)]

≥ sup
ap∈Ap

 ∑
a−p∈A−p

∑
ap∈Ap

(
up(ap, a−p)− up(ap, a−p)

)
µ[(ap, a−p)]

− ϵ
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or equivalently

v′p − vp = µTMG
CCE1[(p, dp)] ≥ sup

ap∈Ap

µTMG
CCE1[(p, ap)]− ϵ

Therefore, defining p∗ such that (̂p, ap) ∈ Ap∗ where

(̂p, ap) = arg sup
(p,ap)∈

⋃
p Ap

µTMG
CCE1[(p, ap)]

we have

µTMG
CCE1[(p̂, dp̂)] ≥ µTMG

CCE1[(p
∗, dp∗)]

≥ sup
ap∗∈Ap∗

µTMG
CCE1[(p, ap)]− ϵ

= sup
(p,ap)∈

⋃
p Ap

µTMG
CCE1[(p, ap)]− ϵ

as desired.

We are now ready to state our main algorithm and prove our main theorem.

Algorithm 8 O(ϵ)-approximate CCE for a general-sum game

Input: A general-sum game G = (A =
∏k

p=1Ap, u = (u1, · · · , uk)), a parameter ϵ > 0
Subroutines:

• BestDeviation: Receives a bounded-support distribution over action profiles µ ∈ ∆(A),
and a value ϵ > 0. Returns an ϵ-best-response from

⋃
pAp for the matrix game on MG

CCE

• Nash: Receives finite set of action profiles A ⊂ A, and an ϵ > 0. Returns an ϵ-Nash
for the two-player zero-sum subgame (A,

⋃
pAp,M

G
CCE) using BestDeviation as its

BestResponse subroutine(Algorithm 5)

• FiniteCCE: Receives a finite game ((B1, · · · , Bk), u) and returns an ϵ-CCE

• Val: Receives finite sets of action profiles A ⊂ A and of deviations B ⊂
⋃

pAp. Returns the
value of this finite subgame on MG

CCE.

1. A0 ← ∅, B0 ← {(1, a1), · · · , (k, ak)}, where (a1, · · · , ak) ∈ A are arbitrary actions

2. For t = 1, 2, . . .

(a) At ← At−1 ∪ Support(FiniteCCE((Bt−1,1, . . . , Bt−1,k), u)) where Bt−1,p =
Bt−1 ∩ Ap

(b) (ξt,1, ξt,2)← Nash
(
At,
⋃

pAp, ϵ
)

(c) Bt ← Bt−1 ∪ Support(ξt,2)
(d) if Val(At, Bt) ≤ 3ϵ

i. Return ξt,1
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As stated previously, this algorithm is analogous to Algorithm 3 run on the game matrix MG
CCE,

with a modification to how the minimizing player adds actions to her support (using FiniteCCE).
Analogously, we have the following theorem.

In a similar fashion with section C.2, we will use three main results to prove Theorem 13,
bounding the total number of oracle calls made by Algorithm 8. First, we show that the output
of Algorithm 8, given that it stops, constitutes an O(ϵ)-CCE(Lemma 63). Then, we show that
Algorithm 8 necessarily stops after fattr(conv(MG

CCE), 2ϵ) iterations (Lemma 64). Last, we show
that Algorithm 8 running for T iterations makes only O(kT/ϵ2·log(T/ϵ2)) oracle calls (Lemma 65).

Lemma 63 Assume that Algorithm 8 stops. Then, the returned strategies constitute a 5ϵ-CCE for
the original game G = (A, u).

Proof The returned ξt,1 is the strategy for player 1 in an ϵ-Nash for the game (At,
⋃

pAp,M
G
CCE).

So, for every deviation (p, dp) ∈
⋃

pAp:

MG
CCE[ξ

t,1, (p, dp)] ≤ Val(At,
⋃
p

Ap) + ϵ

Since ξt,2 is the strategy for player 2 in an ϵ-Nash for the game (At,
⋃

pAp,M
G
CCE), we have:

Val(At,
⋃
p

Ap) ≤ Val(At, Bt) + ϵ.

Lastly, by the stopping condition of Algorithm 8

Val(At, Bt) ≤ 3ϵ.

Combining these 3 equations gives the desired MG
CCE[ξ

t,1, (p, dp)] ≤ 5ϵ for all (p, dp) ∈
⋃

pAp.

Lemma 64 Algorithm 8 terminates after fattr(conv(MG
CCE), 2ϵ) iterations.

Proof Suppose the algorithm runs for ≥ T iterations. Then, we will have support sets A1 ⊆ A2 ⊆
· · · ⊆ AT and B1 ⊆ B2 ⊆ · · · ⊆ BT satisfying the following. For all 1 ≤ i, j ≤ T ,

ValMG
CCE

(Ai, Bj) ≤ ϵ if i > j

ValMG
CCE

(Ai, Bj) ≥ 3ϵ if i ≤ j

The first holds due to (26) and the fact that Support(Finite-CCE(Bt−1)) ⊆ At. The
second holds because the continuation of the algorithm implies the stopping condition is not met.
Defining αi to be the minmax strategy of Player 1 in the subgame (Ai, Bi−1,M

G
CCE) and βi to be

the minmax strategy of Player 2 in the subgame (Ai, Bi,M
G
CCE) for all i, we have

MG
CCE[αi, βj ] ≤ ϵ if i > j

MG
CCE[αi, βj ] ≥ 3ϵ if i ≤ j

which constitutes a (2ϵ)-fat-thresholding matrix in MG
CCE. Therefore, fattr(conv(MG

CCE), 2ϵ) ≥
T as desired.

In order to bound the number of oracle calls, we add the following lemma:
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Lemma 65 Assume that Algorithm 8 runs for T iterations. Then, the number of oracle calls is
bounded by O(kT/ϵ2 · log(T/ϵ2)).

Proof First, we would like to bound the sizes of At and Bt by O(t/ϵ2 · log(t/ϵ2)). In order to
show that, notice that Bt is obtained from Bt−1 by adding the support of an ϵ-approximate Nash
for the half-infinite game (At,

⋃
pAp,M

G
CCE). We would like to bound the size of the support

of the strategy of Player 2 in such an approximate Nash. This approximate Nash is computed in
Algorithm 5, and the size of the support equals the number of iterations of this algorithm, which is
bounded by O(log |At|/ϵ2), by Lemma 42. Further, we would like to argue that |At| ≤ |At−1| +
C(log |Bt−1|+C)/ϵ2 for a universal constants C > 0. Indeed, this is true since At is obtained from
At−1 by adding the support of a CCE computed by Algorithm 6, given an action-set taken from
Bt−1, and the support size is bounded by O(log(|Bt|)/ϵ2). By an inductive argument, it is easy to
show that these two recursive equations for At and Bt imply that |At|, |Bt| ≤ O

(
t/ϵ2 · log(t/ϵ2)

)
.

Lastly, it remains to bound the number of oracle calls. Notice that any addition of an action to
the support of Player 2 involves computing a best deviation (Algorithm 7), which is being used as a
subroutine in this instance of the half-infinite equilibrium computation (Algorithm 5). Algorithm 7
makes exactly k calls to the best response oracle. Thus, the total number of calls is bounded by
O
(
kt/ϵ2 · log(t/ϵ2)

)
.

We are now ready to prove our main theorem. Recall
Theorem 13 Let G = (A = A1×· · ·×Ak, u = (u1, · · · , uk)) be a multi-player game. Assume that
utilities are bounded up : A → [0, 1], and let ϵ > 0. Then, Algorithm 8 executed with parameters
G, ϵ will compute an O(ϵ)−CCE for the game using using the following number of ϵ-best response
oracle calls:

O
(
eC(k/ϵ3) sfat(G,ϵ/C)

)
Proof [Proof of Theorem 13] We notice that Lemma 63 implies that the output of Algorithm 8 is an
O(ϵ)-CCE. Furthermore, Lemma 64 bounds the number of iterations by T ≤ fattr(conv(MG

CCE), 2ϵ)

and Lemma 65 implies that the number of oracle calls is bounded by Õ
(
(k/ϵ2) fattr(conv(MG

CCE), 2ϵ)
)
.

The proof of Theorem 13 follows by substituting fattr(conv(MG
CCE), 2ϵ) according to Theorem 3:

fattr(conv(MG
CCE), 2ϵ) ≤ eC sfat(MG

CCE,2ϵ/C)/ϵ2 .

The total bound on the number of oracle calls is then

Õ
(
(k/ϵ2) fattr(conv(MG

CCE), 2ϵ)
)

≤ (k/ϵ2)eC sfat(MG
CCE,2ϵ/C)/ϵ2

Notice that the fact of k/ϵ2 can be omitted by changing the constant in the exponent. Lastly, plug-
ging in our bounds on the dimensions of MG

CCE in terms of those of G from Lemma 61, we get that
the number of oracle calls made by Algorithm 8 is

≤ eC(k/ϵ3) sfat(G,ϵ/C)

as desired.
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Appendix F. Concatenation Lemmas

Lemma 66 (Vertical ϵ-fat-shattering concatenation tool) For each p ∈ [k], say we have a real-
valued function class Fp defined on a domain set X with fat(Fp, ϵ) ≤ d. Then, the “vertically-
concatenated” real-valued function class

⋃
pFp has fat(

⋃
pFp, 8ϵ) = O

(
log(k) + d log(d) log2(1/ϵ)

)
.

Proof For a real-valued function class F , define the ϵ-covering growth function

NF ,ϵ(n) = max
S⊆X
|S|=n

min{|V | : V is an ϵ-cover, under the∞-norm, of F on S} (27)

That is, we want to find the smallest V ⊆ RS such that, for all f ∈ F , there exists v ∈ V such that,
for all x ∈ S, |f(x) − v(x)| ≤ ϵ. For each p ∈ [k], if Vp is an ϵ-cover of Fp, then

⋃
p Vp ϵ-covers⋃

Fp. Therefore,
N⋃

p Fp,ϵ(n) ≤
∑
p

NFp,ϵ(n)

From Theorem 1.5 of Kakade and Tewari (2008), if fat(F , ϵ) ≤ d, then

NF ,4ϵ(n) ≤ O
( n

ϵ2

)⌈d log( en
dϵ )⌉ (28)

Given this, we can argue the following about the vertically-concatenated real-valued function class.
Since a union of covers of the Fp for each p will cover

⋃
pFp,

N⋃
p Fp,4ϵ(n) ≤

∑
p

NFp,4ϵ(n) ≤ k O
( n

ϵ2

)⌈d log( en
dϵ )⌉

and for n = Ω
(
log(k) + d log(d) log2(1/ϵ)

)
log

(
k O
( n

ϵ2

)⌈d log( en
dϵ )⌉
)

= log(k) + d(1 + log(n/d) + log(1/ϵ)) (log(n) + 2 log(1/ϵ)) = o(n)

Therefore, for n = C
(
log(k) + d log(d) log2(1/ϵ)

)
with sufficiently large constant C,

N⋃
p Fp,4ϵ(n) < 2n

Therefore, for all S = {x1, · · · , xn} ⊆ X and all θ ∈ Rn, there exists b ∈ {0, 1}n such that there
is no f ∈

⋃
pFp with

f(xj) > θj + 8ϵ for all j ∈ [n] with bj = 1

f(xj) ≤ θj for all j ∈ [n] with bj = 0
(29)

If there existed such an fb ∈
⋃

pFp for every b, each would have to be covered by a distinct v in
the minimal (4ϵ)-cover V . This would force the size of the cover to be at least 2n, a contradiction.
Therefore, fat(

⋃
pFp, 8ϵ) = O

(
log(k) + d log(d) log2(1/ϵ)

)
, as desired.
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Lemma 67 (Horizontal ϵ-fat-shattering concatenation tool) Say we have real-valued function
classes Fp for all p ∈ [k] defined on mutually-disjoint domain sets Xp with fat(Fp, ϵ) ≤ d. Let’s
say these classes all have the same magnitude, and their elements are enumerated by a set A. That
is, for all p, there is an fp,a ∈ Fp for each a ∈ A. We define the “horizontal concatenation”
function class F = {fa|a ∈ A} where each fa :

⋃
pXp → R is defined

fa(x) = fp,a(x) for all x ∈ Xp for all p (30)

Then, the horizontal concatenation function class F has fat(F , ϵ) ≤ kd.

Proof Assume for the sake of contradiction that there exists S = {x1, · · · , xkd+1} ⊆
⋃

pXp and
witnesses θ1, · · · , θkd+1 such that for every b ∈ {0, 1}kd+1, there exists a ∈ A with

fa(xj) ≥ θj + ϵ for all j ∈ [kd+ 1] with bj = 1

fa(xj) ≤ θj for all j ∈ [kd+ 1] with bj = 0
(31)

By the pigeon hole principle, there must exist a p ∈ [k] such that |S ∩ Xp| ≥ d + 1. That would
imply, for every b ∈ {0, 1}|S∩Xp|, there exists a ∈ A with

fp,a(xj) ≥ θj + ϵ for all j with xj ∈ S ∩Xp and bj = 1

fp,a(xj) ≤ θj for all j with xj ∈ S ∩Xp and bj = 0
(32)

contradicting our assumption that fat(Fp, ϵ) ≤ d, as desired.

Lemma 68 (Vertical ϵ-sequential-fat-shattering concatenation tool) For each p ∈ [k], say we
have a real-valued function class Fp defined on a domain set X with sfat(Fp, ϵ) ≤ d. Then, the
“vertically-concatenated” real-valued function class

⋃
pFp has sfat(

⋃
pFp, ϵ) ≤ k(d+ 1)− 1.

Proof Assume for the sake of contradiction there exists a complete binary tree T = (V,E) of depth
k(d + 1), whose internal nodes v ∈ V are labeled by elements x(v) ∈ X and have witnesses
θ(v), and whose leaves ℓ ∈ V are labeled by fℓ ∈

⋃
pFp, such that the following holds: for any

root-to-leaf path v1, . . . , vk(d+1), vk(d+1)+1 = ℓ in the tree and for any i ∈ [k(d+ 1)]:

fℓ(x(vi)) ≥ θ(vi) + ϵ if vi+1 is a left child of vi
fℓ(x(vi)) ≤ θ(vi) if vi+1 is a right child of vi

We color the leaf nodes of the tree with k colors where c(ℓ) = p iff fℓ ∈ Fp. We will demonstrate
that there exists a complete binary “subtree” of depth d + 1 that is leaf-monochromatic. Here, we
define a subtree to be a tree T ′ = (V ′, E′) on a subset of nodes V ′ ⊆ V where every internal node
v ∈ V ′ satisfies:

vleft is the left child of v in T ′ implies vleft is a left descendant of v in T
vright is the right child of v in T ′ implies vright is a right descendant of v in T

We also ensure that leaves in T ′ are leaves in T . The existence of this depth-(d+ 1) complete leaf-
monochromatic subtree would give the desired contradiction, implying that for some p, sfat(Fp) ≥
d+ 1. To prove the existence of this subtree, we will use the following lemma.
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Lemma 69 Define Rleaf(C1, · · · , Ck) to be the minimum integer such that any complete binary
tree of depth Rleaf(C1, · · · , Ck) with k-colored leaves necessarily has, for some p ∈ [k], a complete
binary subtree of depth Cp with all leaves colored p. Then,

Rleaf(C1, · · · , Ck) ≤
∑
p

Cp

From the lemma, Rleaf(d+1, · · · , d+1) ≤ k(d+1) and therefore the desired leaf-monochromatic
depth-(d+ 1) subtree exists.

Proof [Proof of Lemma 69] We prove by induction on
∑

pCp. For a base case, note that Rleaf(0, · · · , 0) =
0. For a depth-0 binary tree (consisting of 1 leaf node), whatever color we select for the leaf, the
leaf itself will constitute the desired depth-0 leaf-monochromatic subtree.

Assume the claim holds for all Rleaf(C
′
1, · · · , C ′

k) with
∑

pC
′
p ≤ d. Let’s consider a k-leaf-

colored depth-(d + 1) tree and
∑

pCp = d + 1. We note that the two child trees of the root have
depth d ≥ Rleaf(C1, · · · , Cp − 1, · · · , Ck) for an arbitrarily selected color p. If either child tree
contains a q-leaf-monochromatic subtree of depth Cq for some q ̸= p, we are done. So, from
the inductive hypothesis, assume both child trees contain p-leaf-monochromatic subtrees of depth
Cp − 1. These two trees together with the root give the desired p-leaf-monochromatic subtree of
depth Cp.

Lemma 70 (Horizontal ϵ-sequential-fat-shattering concatenation tool) Say we have real-valued
function classesFp for all p ∈ [k] defined on mutually-disjoint domain sets Xp with sfat(Fp, ϵ) ≤ d.
Let’s say these classes all have the same magnitude, and their elements are enumerated by a set A.
That is, for all p, there is an fp,a ∈ Fp for each a ∈ A. We define the “horizontal concatenation”
function class F = {fa|a ∈ A} where each fa :

⋃
pXp → R is defined

fa(x) = fp,a(x) for all x ∈ Xp for all p

Then, the horizontal concatenation function class F has sfat(F , ϵ) ≤ kd.

Proof Assume for the sake of contradiction there exists a complete binary tree T = (V,E) of depth
kd + 1, whose internal nodes v ∈ V are labeled by elements x(v) ∈

⋃
pXp and have witnesses

θ(v), whose leaves ℓ ∈ V are labeled by fℓ ∈ F , such that the following holds: for any root-to-leaf
path v1, . . . , vkd+1, vkd+2 = ℓ in the tree and for any i ∈ [kd+ 1]:

fℓ(x(vi)) ≥ θ(vi) + ϵ if vi+1 is a left child of vi
fℓ(x(vi)) ≤ θ(vi) if vi+1 is a right child of vi

We color the internal nodes of the tree with k colors where c(v) = p iff x(v) ∈ Xp. We will demon-
strate that there exists a complete binary subtree of depth d + 1 that is internally-monochromatic.
The existence of this complete internally-monochromatic subtree would give the desired contradic-
tion, implying that for some p, sfat(Fp) ≥ d+1. To prove the existence of this subtree, we will use
the following lemma.
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Lemma 71 Define Rint(C1, · · · , Ck) to be the minimum integer such that any complete binary
tree of depth Rint(C1, · · · , Ck) with k-colored internal nodes necessarily has, for some p ∈ [k], a
complete binary subtree of depth Cp with all internal nodes colored p. Then,

Rint(C1, · · · , Ck) ≤
∑
p

Cp − k + 1

From the lemma, Rint(d+1, · · · , d+1) ≤ kd+1 and therefore the desired internally-monochromatic
depth-(d+ 1) subtree exists.

Proof [Proof of Lemma 71] We prove by induction on
∑

pCp. For a base case, note that Rint(1, · · · , 1) =
1. For a depth-1 binary tree (consisting of 1 internal node and 2 leaves), whatever color we select
for the internal node, the tree itself will constitute the desired depth-1 internally-monochromatic
subtree (leaves are not colored).

Assuming the claim holds for all Rint(C
′
1, · · · , C ′

k) with
∑

pC
′
p ≤ d, let’s consider a k-colored

depth-(d + 1) tree. Assume without loss of generality that the root has color p. We note that its
two child trees have depth d ≥ Rint(C1, · · · , Cp − 1, · · · , Ck). If either child tree contains a q-
internally-monochromatic subtree of depth Cq for some q ̸= p, we are done. So, from the inductive
hypothesis, assume both child trees contain p-internally-monochromatic subtrees of depth Cp − 1.
These two trees together with the root of color p give the desired p-interally-monochromatic subtree
of depth Cp.

Lemma 72 (Vertical ϵ-fat-threshold concatenation tool) For each p ∈ [k], say we have a real-
valued function class Fp defined on a domain set X with fattr(Fp, ϵ) ≤ d. Then, the “vertically-
concatenated” real-valued function class

⋃
pFp has fattr(

⋃
pFp, ϵ) ≤ kd.

Proof Assume for the sake of contradiction that there exists F = {f1, · · · , fkd+1} ⊆
⋃

pFp,
S = {x1, · · · , xkd+1} ⊆ X , and witness θ such that for every i, j ∈ [kd+ 1]

fi(xj) ≥ θ + ϵ for all i ≤ j

fi(xj) ≤ θ for all i > j
(33)

By the pigeon hole principle, there must exist a p ∈ [k] such that |F ∩ Fp| ≥ d+ 1. Therefore,
for every i, j with fi, fj ∈ F ∩ Fp

fi(xj) ≥ θ + ϵ for all i ≤ j

fi(xj) ≤ θ for all i > j
(34)

contradicting our assumption that fattr(Fp, ϵ) ≤ d, as desired.

Lemma 73 (Horizontal ϵ-fat-threshold concatenation tool) Say we have real-valued function
classes Fp for all p ∈ [k] defined on mutually-disjoint domain sets Xp with ϵ-fat-threshold dimen-
sion ≤ d. Let’s say these classes all have the same magnitude, and their elements are enumerated
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by a set A. That is, for all p, there is an fp,a ∈ Fp for each a ∈ A. We define the “horizontal
concatenation” function class F = {fa|a ∈ A} where each fa :

⋃
pXp → R is defined

fa(x) = fp,a(x) for all x ∈ Xp for all p (35)

Then, the horizontal concatenation function class F has ϵ-fat-threshold dimension ≤ kd.

Proof Assume for the sake of contradiction that there exists A = {f1, · · · , fkd+1} ⊆ A, S =
{x1, · · · , xkd+1} ⊆

⋃
pXp, and witness θ such that for every i, j ∈ [kd+ 1]

fi(xj) ≥ θ + ϵ for all i ≤ j

fi(xj) ≤ θ for all i > j
(36)

By the pigeon hole principle, there must exist a p ∈ [k] such that |S ∩Xp| ≥ d+ 1. Therefore,
for every i, j with xi, xj ∈ S ∩Xp

fp,i(xj) ≥ θ + ϵ for all i ≤ j

fp,i(xj) ≤ θ for all i > j
(37)

contradicting our assumption that fattr(Fp, ϵ) ≤ d, as desired.

Lemma 74 Let F be a 0-1 valued function class. Define the XOR of 2 functions as follows:
(f ⊕ g)(x) = I(f(x) ̸= g(x)). We also define the XOR of a function class F and a function g as
follows: F ⊕ g = {f ⊕ g : f ∈ F}. Then we have that:

tr(F ⊕ g) ≤ 2 tr(F) + 1

Proof Consider the function class in which all the entries from F are flipped and name if F̄ . Now
let us concatenate the two function classes F and F̄ vertically, as the functions are the rows of the
function class. Name this new function class Fconc. Note that the threshold dimension of Fconc is
going to be at most the sum of the threshold dimensions of F and F̄ , i.e.

tr(Fconc) ≤ tr(F) + tr(F̄)

Moreover, one can notice that if F has threshold dimension tr(F), then the threshold dimension of
F̄ has to be at least tr(F)− 1. Similarly, the threshold dimension of F has to beat least tr(F̄)− 1.
So we have tr(F) ≥ tr(F̄)− 1. Thus we have:

tr(Fconc) ≤ tr(F) + tr(F̄) ≤ 2 tr(F) + 1

Finally we will prove that tr(F ⊕ g) ≤ tr(Fconc), which combined with the above result will give
us the required bound.
Recall that the rows of a function class are the functions. Let us take a look at what happens to the
column j of F when we XOR it with the entry of the function g, gj , at that column j. If gj = 0 then
the column is not swapped, otherwise if gj = 1 the column is swapped. Therefore each column of
F ⊕ g is either a column of F or a column of F̄ . That means that any threshold in F ⊕ g will be
contained in Fconc, thus concluding our proof.
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Appendix G. Various inequalities

We first prove the following auxiliary lemma:

Lemma 75 Let θ1, . . . , θd be numbers in [0, 1−ϵ] for some ϵ > 0. Then, there exists some θ ∈ [0, 1]
such that

|{i ∈ [d] : θi ∈ [θ − ϵ/2, θ]}| ≥ ϵd

2

Proof For each i ∈ [d], if θ is drawn uniformly at random from [0, 1], then with probability ϵ/2
it holds that θi ∈ [θ − ϵ/2, θ]. Consequently, taking expectation over θ, the expected number of
elements i such that θi ∈ [θ − ϵ/2, θ] is ϵd/2. There exists some θ ∈ [0, 1] that realizes this
expectation, namely, that there are at least ϵd/2 elements i such that θi ∈ [θ − ϵ/2, θ], as required.

Using Lemma 75, we proceed to providing a sketch of Lemma 25:
Proof [Proof sketch of Lemma 25] let d = fat(F , ϵ). By definition of the fat-shattering dimension,
there exists a set {x1, . . . , xd} and witnesses (θ1, . . . , θd) that satisfy Eq. (7). To prove fat(F , ϵ) ≤
sfat(F , ϵ), notice that we can construct a complete binary tree of depth d, such that all internal nodes
of depth i are labelled by xi+1, for i = 0, . . . , d− 1. Further, Eq. (7) imply that one could label the
leaves with appropriate functions f ∈ F such that Eq. (8) holds, which implies that sfat(F , ϵ) ≥ d
as required.

For the inequality fat(F , ϵ) ≤ fattr(F ,ϵ/2
2ϵ , we use the same notation of {x1, . . . , xd} and wit-

nesses (θ1, . . . , θd) that satisfy Eq. (7), where d = fat(F , ϵ). By Lemma 75 there is some θ ∈ [0, 1]
such that there exist at least ϵd/2 elements i ∈ [d] such that θi ∈ [θ, θ+ ϵ/2]. Let i1, . . . , im denote
the set of indices of these θi variables, where m ≥ ϵd/2. By Eq. (7), for each j ∈ [m] there exists
fj ∈ F such that f(xiℓ) ≥ θij+ϵ ≥ θ+ϵ for all ℓ ∈ {j, j+1, . . . ,m} and such that f(xiℓ) ≤ θij ≤ θ
for all ℓ ∈ [j − 1]. This, by definition, implies that fattr(F , ϵ/2) ≥ m ≥ ϵd/2 = ϵ fat(F , ϵ)/2, as
required.

For the inequality fattr(F , ϵ) ≤ 2sfat(F ,ϵ)+1, notice that it is equivalent to sfat(F , ϵ) ≥ log fattr(F , ϵ)−
1. It is sufficient to prove that sfat(F , ϵ) ≥ ⌊log fattr(F , ϵ)⌋. To obtain that, denote m =
2⌊fattr(F ,ϵ)⌋ and notice that given functions f1, . . . , fm ∈ F elements x1, . . . , xm ∈ X and θ ∈ [0, 1]
that satisfy Eq. (9), one could construct a tree whose internal nodes are labelled by x2, . . . , xm and
whose leaves are labelled by f1, . . . , fm, that satisfies Eq. (8).

The left part of Eq. (11) was proved by (Daskalakis and Golowich, 2022, Lemma 8.4).
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