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Abstract

Enabling efficient communication in artificial agents brings
us closer to machines that can cooperate with each other and
with human partners. Hand-engineered approaches have sub-
stantial limitations, leading to increased interest in methods
for communication to emerge autonomously between artifi-
cial agents. Most of the research in the field explores unsit-
uated communication in one-step referential tasks. The tasks
are not temporally interactive and lack time pressures typically
present in natural communication and language learning. In
these settings, agents can successfully learn what to commu-
nicate but not when or whether to communicate. Here, we
extend the literature by assessing emergence of communica-
tion between reinforcement learning agents in a temporally in-
teractive, cooperative task of navigating a gridworld environ-
ment. We show that, through multi-step interactions, agents
develop just-in-time messaging protocols that enable them to
successfully solve the task. With memory—which provides
flexibility around message timing—agent pairs converge to a
look-ahead communication protocol, finding an optimal solu-
tion to the task more quickly than without memory. Lastly,
we explore situated communication, enabling the acting agent
to choose when and whether to communicate. With the op-
portunity cost of forgoing an action to communicate, the act-
ing agent learns to solicit information sparingly, in line with
the Gricean Maxim of quantity. Our results point towards the
importance of studying language emergence through situated
communication in multi-step interactions.
Keywords: emergent communication; reinforcement learning;
artificial agents; cooperative game

Introduction

Communication is a key skill for collaboration and hence
largely beneficial in multi-agent settings. As humans, we
share well-established communication protocols that have
evolved over thousands of generations to suit the needs of
our daily tasks and to take advantage of our cognitive and
physical capabilities. As an example, natural languages are
known to be compositional, making them easier to learn and
use (Kirby & Hurford, 2002). Similarly, when we commu-
nicate, we are known to try to be as informative as possi-
ble, giving only as much information as is needed (Grice,
1975). If future artificial systems are to cooperate with hu-
mans, it will be beneficial for their communication protocols
to follow these patterns. Studying communication emergence
among artificial agents supports the design of machines that
will work well with each other and with people (Crandall et
al., 2018; Steels, 2003).
With a recent increase in available computational power,

the field has seen a lot of progress (Wagner, Reggia,

Figure 1: Experimental setup. The speaker sees a pixel-based rep-
resentation of the maze and can broadcast messages; the listener sees
either no environmental context or has partial visibility (3 pixels in
front as indicated by the colored box) and can navigate the maze to
reach the goal. Stars indicate possible goal locations.

Uriagereka, & Wilkinson, 2003; Lazaridou & Baroni, 2020).
Thus far, emergent communication has largely been studied
in one-step referential games, such as the Lewis signalling
task (Chaabouni, Kharitonov, Dupoux, & Baroni, 2019; Li
& Bowling, 2019; Lazaridou, Hermann, Tuyls, & Clark,
2018). This type of learning environment is known to suc-
cessfully enable language development (Kirby & Hurford,
2002) but does not allow agents to accelerate the learning pro-
cess through back-and-forth interaction. Simulated commu-
nication emergence has also been studied in other game-based
environments, some allowing multi-step interaction, such as
a 2-player negotiation task (Cao et al., 2018) or a multi-modal
referential game (Evtimova, Drozdov, Kiela, & Cho, 2018).
Initial results show benefits of multi-step dialogue for com-
munication emergence (Evtimova et al., 2018). Here, we
build on this idea and evaluate the consequences of allowing
multi-step communication in a multi-step task.
In most studies, the emerged language structures are ana-

lyzed for shared commonalities with natural languages, such
as compositionality or encoding efficiency. Although desired,
it is nontrivial for such properties to emerge spontaneously
between artificial agents (Kottur, Moura, Lee, & Batra, 2017).
For instance, artificial agents tend towards an anti-efficient
encoding (Chaabouni et al., 2019). This likely happens be-
cause in the Lewis signalling task, as well as in other simu-
lated environments (Cao et al., 2018), agents have no incen-
tive to be concise. The communication is not situated in the
task and hence excessive use of communication does not neg-
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Figure 2: Agents without memory in a T-maze environment. Both agents with and without visibility learn to solve the task via the shortest
path, as indicated by the normalized reward per step converging to 1. For the best agent pairs there is no ambiguity in the messages—each
message corresponds to exactly one action. Some messages have synonyms—the listener interprets multiple messages in the same manner.

atively affect the outcome of the game (or cause agent frustra-
tion), as it might in a real-world situation (Steels & Brooks,
1995). In real life, there might be an opportunity cost to lan-
guage that is not reflected in the learning environment of the
Lewis signalling task. Initial work shows that it is possible to
incentivise efficient communication by modifying the agents’
reward structure, e.g., by adding an internal cost of articula-
tion (Rita, Chaabouni, & Dupoux, 2020). In our approach, we
show it is possible to obtain sparse communication by provid-
ing the agent with an action-communication trade-off, in line
with the idea that reward is enough to shape language (Silver,
Singh, Precup, & Sutton, 2021). We provide the listener (i.e.
acting agent) with agency to reason about the timing of com-
munication and about whether to communicate at all.
In our experiments, we explore the emergence of commu-

nication in a cooperative multi-step navigation task. We place
agents in a pixel-based gridworld setting, expanding on the
work of (Kajić, Aygün, & Precup, 2020). In the task, the
speaker observes a maze with a goal location and communi-
cates information while the listener navigates the maze, ob-
taining a reward for both agents at the goal. Like humans
or robots that can only observe a small part of the world in
their proximity, the listener has a limited view of its envi-
ronment and has to rely on the speaker for guidance (Denis,
Pazzaglia, Cornoldi, & Bertolo, 1999). In the first set of
experiments, we implement unsituated communication—the
speaker’s message gets broadcasted to the listener at each
step of the task, similarly to the communication setup in prior
work. In the second set of experiments, we situate the com-
munication in the environment—we allow the acting agent to
actively choose between (i) taking an action to move through
the maze and (ii) soliciting information from the speaker.
Our contributions are three-fold: (1) we study the emer-

gence of unsituated communication through multi-step in-
teraction, (2) we explore the effect of agents having mem-

ory—and the ability to reason about message timing—on the
emerged communication protocol and agents’ ability to con-
verge to a collaborative solution, and (3) we investigate how
situating communication in the task affects the communica-
tion protocol and overall task performance.

Experimental Setup

The environment. We define a cooperative navigation task
as a Markov Decision Process (MDP). The environment is set
up as a pixel-based gridworld. Each gridworld is 7 by 7 cells
with different maze patterns, as illustrated in Figure 1. We
refer to the two tested gridworld patterns as a T-maze and a
dead-ends environment. Features of the world are represented
with colors: walls are black, the maze is white, the agent is
green, and the target is blue, as visualized in Figure 4. The
features are encoded with binary vectors.
The agents. There are two agents, a speaker and a listener

(i.e. acting agent). The listener is embedded inside the grid-
world and can take actions to move between cells. The action
space of the listener spans 5 actions [move up, move down,
move right, move left, stay in place]. The listener’s observa-
tion consists of the environmental view (if any) concatenated
with the message from the speaker. We test the listener un-
der two conditions: (1) with no visibility, where the listener’s
observation consists solely of the speaker’s message, and (2)
with partial visibility, where the listener can see the 3 pixels
directly in front of them. The second variant gives the listener
environmental context to take actions without needing to rely
solely on communication.
The speaker does not reside within the gridworld and can-

not take environmental actions (i.e. navigate the maze) but in-
stead can communicate information to the listener. The mes-
sage space of the speaker spans 5 symbols [0,1, ...,4]. At each
timestep, the speaker can see the entire gridworld, including
the location of the agent and the location of the goal. The
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Figure 3: Comparison of agents with and without memory in two environments; listener has partial visibility. Memory plays a role in
shaping the learned language. (1) Instead of using just-in-time communication, agents gravitate towards using a look-ahead communication
protocol. Already before the listener reaches a junction, the speaker broadcasts a consistent message, signalling the correct action at the next
junction. (2) Memory improves convergence. Note that the grey lines converge slower and plateau at lower values.

speaker’s view of the world map is rotated to align with the
direction that the listener is facing.
In our experiments, we test agents with and without mem-

ory. Agents without memory have to rely only on their current
observations to generate messages or pick actions. Agents
with memory have an internal representation of the history of
an episode—they can use accumulated knowledge from prior
timesteps to make decisions in the current timestep.
Agent architectures. The speaker and the listener are

designed as two independent reinforcement learning (RL)
agents. Both agents have the same architecture without shar-
ing weights or gradient values. They both have a 2-layer Con-
volutional Neural Network (CNN) that generates a 8�32 bit
representation of the environment. In the case of the listener,
this representation of the environment gets concatenated with
the message received from the speaker. In both cases, the
vector gets passed into a fully connected layer that generates
the agent’s action. Agents with memory have an additional
single-layer LSTM (Hochreiter & Schmidhuber, 1997) after
their fully connected layer.
We train the agents using neural fitted Q learn-

ing (Riedmiller, 2005), with an Adam optimizer (Kingma &
Ba, 2015) and Qt(l) with l = 0.9. The Q values are updated
using temporal difference (TD) error where the bootstrapped
Qt(l) is defined as follows:

Qt(l) = (1�l)
•

Â
n=1

ln�1Q(n)
t

During training, agents use an e-greedy policy with the ex-
ploration rate set as e = 0.01.
The task. The goal of the agents is to cooperate so that

the listener reaches the target. In each experimental episode,
both agents receive a reward R= 1 if the listener reaches the
target before the episode terminates. Episode timeout is set to

100 steps. The goal locations are randomly assigned to one
of 4 corners in the T-maze or one of 5 corridor ends in the
dead-ends maze, as indicated with stars in Figure 1. In each
episode, the listener agent starts from the bottom middle cell.
Communication modes. We compare two modes of com-

munication: (1) real-time messaging with a passive listener,
and (2) real-time messaging with an active listener. In mode
1, the speaker generates a 1-token message at every timestep
and the message gets broadcasted to the listener before they
choose an action. The speaker has to reason about both the
content and timing of their message, deciding both what and
when to communicate. In mode 2, we implement real-time
messaging with an active listener. Here, the message is only
broadcasted to the listener after they ask for information. The
active listener can solicit to receive information in the next
timestep by choosing to stay in place at the current timestep.
The listener has to learn whether to communicate at all. In
our implementation, the speaker still generates a message at
every timestep, even though it might not be shared with the
active listener.
We define the communication in mode 1 as unsituated—it

is free and guaranteed to the agent at every timestep. There is
no opportunity cost to communication. The communication
in mode 2 is situated—we allow the acting agent to actively
choose between (i) taking an environmental action and (ii)
soliciting information from the speaker. As a result, the active
listener experiences an opportunity cost to communication.
They have to forego a move in the environment (that could
bring them closer to the target) in order to obtain information
from the speaker and make an informed decision.
Evaluation metrics. We evaluate agent performance using

3 metrics: (1) task success (via the mean return per episode),
(2) optimality of task solution (via the normalized reward per
step), and (3) communication sparsity (via the number of asks
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Figure 4: An episode walk-through of an active listener with partial visibility. The listener learns to solve the task optimally, deciding to
stay and ask for information when at a junction (twice during the episode). At each of the 11 timesteps, we visualize (left) the speaker’s view
of the board with an overlaid green box indicating the listener’s view, and (right) the speaker’s message and listener’s action at that step.

per episode). The metric of task success represents the likeli-
hood of the agents succeeding at reaching the target before
episode timeout. At each training step, this metric is cal-
culated as the average per-episode reward (0 or 1) over all
completed episodes until that step. When ⇡ 1, the agents
are reliably reaching the target in each episode. The sec-
ond metric quantifies the optimality of the path taken to solve
the task. If the task is solved in the optimal number of steps
(nopt steps = 9 in the T-maze, nopt steps = 8.4 in the dead-ends
maze), the agents obtain a per-step reward of 1. The value
is calculated as nopt steps ⇤ (Rcurrent episode/nepisode steps). Fi-
nally, the metric of communication sparsity quantifies the ef-
ficiency of information exchanged between the agents when
communication is situated. The metric represents the aver-
age per-episode number of messages that the active listener
requests from the speaker. Depending on the listener’s char-
acteristics: partial or no visibility, the optimal number of asks
in the T-maze environment is equal to 2 or 9 asks per episode
for agents without memory, and 1 ask per episode for agents
with memory.
Hyperparameters. After an initial exploration, we use a

reward discount g = 0.99. For each experiment, we run a hy-
perparameter sweep over learning rates of the speaker and lis-
tener a = [10�5,10�6,10�7] and over the size of the environ-
mental representation s= [4,8,16,32]. We run the simulation
with each hyperparameter setting 10 times with different ran-
dom seeds. In the results for each experiment, we present the
best performing agent pair from our hyperparameter sweep
and/or the mean over the 10 replicas with the same hyperpa-
rameters as the best performing pair. When we plot metric
means, we include the standard error of the mean.

Results

Task validation. We start by generating a baseline for the
task, experimentally validating that communication is re-
quired to solve it. In the T-maze environment, we compare
agents with the communication channel open and inactive.

We find that without communication agents are unable to re-
liably solve the task. When the listener has no visibility (see
left panel in Figure 2), agents with no communication are un-
able to solve the task at all. Under partial visibility (middle
panel), agents without communication can succeed in the task
with a mean return of ⇡ 0.25 per episode, taking close to 100
steps per episode to reach the target.
With memory, baseline performance improves. The lis-

tener (i.e. acting agent) is able to reliably traverse the maze
in search of the target, particularly when equipped with par-
tial visibility. However, due to the random location of the
target, the listener cannot consistently solve the task in an op-
timal number of steps. The solution optimality of the best
agent pairs with memory and no communication converges
to a normalized reward per step of ⇡ 0.45. When allowed to
communicate, all agents in the T-maze environment learn to
solve the task and best agent pairs find an optimal solution.
Agents learn timely communication through multi-step

interaction. We evaluate communicating agents in the T-
maze environment under two visibility conditions. Given no
memory, agents learn a just-in-time communication protocol,
as visible in the heatmaps in Figure 2. Agents agree on unam-
biguous meanings of messages and, in some cases, learn syn-
onyms to signal the same environmental action. Under partial
visibility, the meaning of messages depends on the environ-
mental context (e.g. message 1 at the corridor is consistently
interpreted by the listener as ‘move up’ but at the junction as
‘move right’). Importantly, successful agents converge to a
just-in-time protocol, where at each time step the listener can
unambiguously interpret the speaker’s message.
Memory improves communication emergence and in-

fluences timing in the established communication proto-

cols. To investigate how memory can affect communication,
we trained agents in the two environments. We find that mem-
ory improves time to convergence. Note in Figure 3 how
the agents with memory converge faster than agents without
memory. Memory can also improve the agents’ ability to find
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Figure 5: Best performing pair of agents without memory with an active listener in a T-maze environment. Both agents with and
without visibility learn to solve the task via the shortest path. The listeners learn to query the speakers in the optimal number of asks (once
per step when the listener has no visibility and once per junction when the listener sees environmental context). Note that the listeners ask for
information frequently at the beginning of the interaction and gradually less over time.

an optimal solution. We observe this in the more difficult
dead-ends environment, where even the best agent-pair with-
out memory does not converge to an optimal solution.
What is more, the emerged protocol is different. The best-

performing agents with memory learn a look-ahead commu-
nication protocol instead of deferring to communicating just-
in-time like before. An example of this is that the speaker
with memory might broadcast the same message for the first
4 steps of a T-maze episode, alerting the listener to make a
left or right turn at the junction. In contrast, the successful
agents with no memory would broadcast a ‘go straight’ mes-
sage for the first few steps of an episode and a unique message
for turning at the junction. As a result, with memory we no
longer observe a one-to-one mapping between the messages
broadcasted at each step by the speaker and the actions taken
by the listener at that step. However, we still observe a con-
sistent communication pattern and unambiguous messaging,
as visible in the heatmaps in Figure 3. Empowering agents
with memory results in them incoporating message timing
into their newly developed communication protocol.
The pressure of time in a multi-step interaction can in-

centivise sparse communication. In the last set of experi-
ments, we evaluate the impact of situated communication on
language emergence. We train agent pairs with an active lis-
tener to solve the navigation task in a T-maze environment
under two visibility conditions. Figure 4 shows a step-by-
step example episode for a listener with partial visibility. The
heatmaps in Figure 5 illustrate the communication protocol of
the best agent pairs. Under the no visibility condition, the lis-
tener queries the speaker for ‘move up’, ‘turn left’, and ‘turn
right’ actions, proportionally to their frequency in the task so-
lution. Under the partial visibility condition, information so-
licitation takes place mostly at the junctions, where the acting
agent has a choice between two viable environmental actions.

The active listener can learn to near optimally solicit informa-
tion, asking ⇡ 9.76 and ⇡ 2.06 times per episode under the
two visibility conditions, respectively.
In Figure 5 on the left, we illustrate the learning curves of

the best performing agent pairs. Note that the active listeners
ask for information frequently at the beginning of the inter-
action and gradually less over time. This suggests that agents
initially have opportunities to align on a protocol. Over time,
listeners learn when and whether to solicit information as
communication comes with a cost. We also observe that the
best performing agent pairs with an active listener converge
to an optimal solution faster than the best performing agent
pairs with a passive listener. The results suggest that situated
communication not only allows the agents to learn a sparse
communication protocol, in line with the Gricean Maxim of
quantity, but also has a positive impact on convergence speed.
The active listener exhibits a preference for just-in-time

communication. Interestingly, when we test situated com-
munication between agents with memory, agents continue to
ask for information at the junctions, as visible in the heatmaps
in Figure 6. This is non-obvious—given memory, the active
listener could ask for information at any point in the maze. In
fact, if the agent were to be optimally sparse, they could (1)
ask for information only once at the beginning of an episode,
(2) receive a message encoding the address of the target, and
(3) follow the relevant policy from memory. Instead, the ac-
tive listener with memory learns sparse communication rel-
ative to a passive listener but they do not achieve the theo-
retically maximum sparsity. An active listener with memory
persists to ask for information at the junctions when it is im-
mediately actionable. This speaks to the importance of allow-
ing agents to learn the timing of communication. This result
suggests that it is easier for agents to succeed at the task when
they exchange information when it is immediately actionable.
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Figure 6: Best performing pair of agents with memory with an active listener in a T-maze environment. Both agents with and without
visibility learn to solve the task via the shortest path. The listeners learn to query the speaker sparsely compared to a passive listener, but they
do not converge to the theoretically minimal number of asks, persisting to ask for information when it is immediately actionable.

Conclusion & Discussion

Our results point towards the importance of studying emer-
gent communication in multi-step interactions. The inter-
active aspect of communicating over time enables agents to
learn both what and when to communicate. Secondly, we find
that there is value in situating the communication in the task
and giving the listener agency to choosewhether to communi-
cate at all. In this way, we improve convergence and allow the
reward to shape the emergent communication protocol to ex-
hibit properties of natural languages, such as sparsity. Our on-
going work will expand this idea and situate both the speaker
and listener in the environment, allowing both agents to com-
municate and take actions in the gridworld environment.
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Kajić, I., Aygün, E., & Precup, D. (2020). Learning to coop-
erate: Emergent communication in multi-agent navigation.

Meeting of the Cognitive Science Society.
Kingma, D. P., & Ba, J. (2015). Adam: Amethod for stochas-
tic optimization. Int. Conf. on Learning Representations.

Kirby, S., & Hurford, J. R. (2002). The emergence of linguis-
tic structure: An overview of the iterated learning model.
Simulating the Evolution of Language.

Kottur, S., Moura, J. M., Lee, S., & Batra, D. (2017). Natural
language does not emerge ‘naturally’ in multi-agent dialog.
Conf. on Empirical Methods in NLP.

Lazaridou, A., & Baroni, M. (2020). Emergent multi-agent
communication in the deep learning era. arXiv preprint
arXiv:2006.02419.

Lazaridou, A., Hermann, K. M., Tuyls, K., & Clark, S.
(2018). Emergence of linguistic communication from ref-
erential games with symbolic and pixel input. Int. Conf. on
Learning Representations.

Li, F., & Bowling, M. (2019). Ease-of-teaching and language
structure from emergent communication. Advances in Neu-
ral Information Processing Systems.

Riedmiller, M. (2005). Neural fitted q iteration–first expe-
riences with a data efficient neural reinforcement learning
method. European Conf. on Machine Learning.

Rita, M., Chaabouni, R., & Dupoux, E. (2020). “Laz-
Impa”: Lazy and impatient neural agents learn to commu-
nicate efficiently. Conf. on Computational Natural Lan-
guage Learning.

Silver, D., Singh, S., Precup, D., & Sutton, R. S. (2021).
Reward is enough. Artificial Intelligence.

Steels, L. (2003). Evolving grounded communication for
robots. Trends in Cognitive Sciences.

Steels, L., & Brooks, R. (1995). The artificial life route to
artificial intelligence: Building embodied, situated agents.

Wagner, K., Reggia, J. A., Uriagereka, J., & Wilkinson, G. S.
(2003). Progress in the simulation of emergent communi-
cation and language. Adaptive Behavior.

620


