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Abstract
Deep neural networks (DNNs) are becoming ubiquitous in

various safety- and security-sensitive applications such as self-
driving cars and financial systems. Recent studies revealed
that bit-flip attacks (BFAs) can destroy DNNs’ functionality
via DRAM rowhammer –by precisely injecting a few bit-flips
into the quantized model parameters, attackers can either de-
grade the model accuracy to random guessing, or misclassify
certain inputs into a target class. BFAs can cause catastrophic
consequences if left undetected. However, detecting BFAs is
challenging because bit-flips can occur on any weights in a
DNN model, leading to a large detection surface.

Unlike prior works that attempt to “patch” vulnerabilities
of DNN models, our work is inspired by the idea of “honey-
pot”. Specifically, we propose a proactive defense concept
named NeuroPots, which embeds a few “honey neurons” as
crafted vulnerabilities into the DNN model to lure the at-
tacker into injecting faults in them, thus making detection
and model recovery efficient. We utilize NeuroPots to de-
velop a trapdoor-enabled defense framework. We design a
honey neuron selection strategy, and propose two methods
for embedding trapdoors into the DNN model. Furthermore,
since the majority of injected bit flips will concentrate in the
trapdoors, we use a checksum-based detection approach to
efficiently detect faults in them, and rescue the model accu-
racy by “refreshing” those faulty trapdoors. Our experiments
show that trapdoor-enabled defense achieves high detection
performance and effectively recovers a compromised model
at a low cost across a variety of DNN models and datasets.

1 Introduction

Deep neural networks (DNNs) have achieved tremendous
success in many real-world applications ranging from com-
puter vision, speech recognition, disease diagnosis to safety-
and security-critical autonomous vehicles, and banking sys-
tems [1, 2, 3, 4, 5, 6]. Unfortunately, recent studies have
revealed that DNN inference execution on hardware engines

such as GPUs, FPGAs, and ASICs, can be directly compro-
mised by a variety of fault injection attacks [7]. In paral-
lel with existing data-centric attacks [8, 9, 10, 11, 12, 13],
these emerging model-centric attacks can also lead to attacker-
desired persistent accuracy loss without altering the input.

Fault injection attacks disrupt DNN inference by manipulat-
ing the model’s neuron activation, computed intermediate re-
sults, or weight parameters stored in buffers or memories, via
active fault injection techniques such as laser beaming [14],
row hammering [15, 16], or clock glitching [17]. Among
these methodologies, the recently discovered Bit-Flip Attack
(BFA) [16, 18] that exploits DRAM rowhammer vulnerability
is considered to be one of the most destructive attacks. BFA
injects faulty bits directly into memories that host weight
parameters with DeepHammer [16], a type of rowhammer
that can precisely flip a bit inside a DRAM page [19]. As
demonstrated in real DNN testbeds, by flipping only 13 bits
out of 1.2 billion bits of an 8-bit quantized DNN model, Deep-
Hammer can degrade the model accuracy to random guessing
within 66 seconds [16]. Moreover, a stealthy and probably
more dangerous variant of BFAs called Targeted Bit-Flip At-
tack (T-BFA) was proposed [20]. T-BFA can go unnoticed
for a long time as it only alters the classification of some
inputs with a very marginal impact on others. Considering a
resource-sharing environment where highly optimized DNN
models are deployed to serve multiple users (e.g., machine-
learning-as-a-service [5, 21]), BFAs can result in catastrophic
consequences if left undetected.

Defending against BFAs, however, can be very challeng-
ing. BFAs leverage a progressive search algorithm to select
and flip bits only in the most sensitive weights, and the lo-
cations of those bits are highly dependent on a very small
portion of input data that attackers have. As a result, it is
difficult to predict where BFAs will be landed and concen-
trate on those weights, as complex DNN models have too
many “vulnerable points” to protect against (more details in
Section 2.2). Defense solutions that passively detect faults
of weights in pre-selected layers can be suboptimal [22]. To
tackle this challenge, we propose a proactive defense con-



cept named “NeuroPots” (formally defined in Section 3.2).
Inspired by the idea of honeypots, NeuroPots embeds a few
specially designed “honey neurons” as vulnerabilities (i.e.,
trapdoors fully controlled by the defender) into the model to
lure BFA’s targeted chain of bit-flips. As honey neurons are
more vulnerable than normal neurons, BFAs are highly likely
to land on a few designated honey neurons. At runtime, faults
in honey neurons can be efficiently detected using checksums,
and the faulty weights can be recovered to the original value.

We comprehensively study NeuroPots’s theoretical and
practical foundations of trapping bit-flips under real system
constraints. Then based on NeuroPots, we design a trapdoor-
enabled defense framework to detect and mitigate different
basic and adaptive attacks. The evaluation shows that our
design incurs minimal impact on inference accuracy, but
is able to lure attackers to inject most bit-flips (if not all)
into those honey neurons. By checking only a very small por-
tion of model weights, attacks can be easily detected with a
close-to-zero false negative rate. The discovered position in-
formation of the trapped bit-flips further offers a unique oppor-
tunity to repair the model online at low cost (e.g., 0.69ms
time overhead and 99KB storage overhead for 14ms/22MB
ResNet-34 in ImageNet).

To the best of our knowledge, this is the first work that
adopts a HoneyPot-style proactive defense policy to offer
extremely lightweight real-time mitigation on the challenging
model-centric bit-flip attacks whose attack surface could be
too large to be covered by existing solutions. We hope that
our results could provide a new perspective for defending
emerging attacks in deep learning and will enable more in-
depth research along this direction.

2 Background and Motivation

In this section, we first provide a brief background on BFA,
T-BFA, and DeepHammer. Then we explain why a proactive
defense solution is crucial. Finally, we explain at a high level
the design intuition behind NeuroPots.

2.1 Bit-Flip Attack
Bit-Flip Attack and Target BFA. The goal of BFA is to
significantly degrade the model’s accuracy by performing a
minimum number of bit-flips. The objective function can be
represented as: maxB L( f (x,B), t), where B is the two’s com-
plement representation of quantized weights, t is the ground-
truth target of input x, L denotes the loss function of the model.
Unlike BFA, T-BFA aims to misclassify inputs from source
category p into the target category q (q 6= p). Meanwhile, the
remaining inputs will maintain their original categories (with
no impact on their accuracy) to ensure attack stealthiness.
T-BFA will minimize the following objective function:

min
B

L( f (x,B), tq)|x ∈ Xp)+L( f (x,B), t)|x /∈ Xp) (1)

Although BFA and T-BFA have different objectives, they both
utilize a gradient-based Progressive Bit Search (PBS) to find
the most vulnerable bits iteratively on quantized DNNs. PBS
consists of two steps: intra-layer and cross-layer search. In
the k-th iteration, the intra-layer search selects bits with top n
gradient5bL as the most vulnerable bit candidates at layer l.
For a q-bit quantized DNN,5bL can be represented as:

5bL = [
∂L

∂bNq−1
, . . . ,

∂L
∂b0

] (2)

Then, they apply a classical Fast Gradient Sign Method
(FGSM) [8] algorithm from adversarial attack to the n se-
lected vulnerable bit candidates, which can be presented as:

b∗ = b⊕
(

b⊕
(
±sign(5bL)+1

2

))
(3)

Note, BFA uses +sign(5bL) to maximize objective function,
while T-BFA applies -sign(5bL) to minimize its objective
function. Then, they evaluate the loss increment as Lk

l for
layer l. The same process will be performed in each layer
to obtain loss set {Lk

1 , . . . ,Lk
l , . . .L

k
L}. Then, the cross-layer

algorithm identifies the j-th layer with maximum loss (i.e.,
j=argmaxl{Lk

1 , . . . ,Lk
l , . . .L

k
L}) and flip the most vulnerable

bit with largest gradient in j-th layer.
DeepHammer Attack (BFA via row-hammer). At the

software-level, DeepHammer attack [16] optimizes BFA’s
vulnerable bits search algorithm. In the k-th iteration, after
selecting n vulnerable bits by ranking gradients 5bL like
BFA, DeepHammer flips each bit respectively and generates
a loss set as {Lk

l }n
i=1. The same process will be performed for

each layer. As a result, the total candidate bits will be n× l and
the corresponding loss set is {Lk}n×l

i=1 . DeepHammer selects
the bit that has the maximum loss as the most vulnerable bit.
At the hardware level, a new double-sided row-hammer attack
using a targeted column-page-stripe data pattern is proposed
to perform precise bit-flips in a DRAM page. Unlike the
previous two ideal attacks, to achieve precise bit flipping,
DeepHammer needs to obey a strict constraint, that is, only
one bit-flip per page. In this work, we assume BFA and
TBFA can flip any number of bits per DRAM page, while
DeepHammer is constraint by flipping only one bit per page.

2.2 Motivation for Proactive Defense
To maximize the attack efficiency, BFAs always perform bit-
flips on the most sensitive weights with the largest gradients.
Because the gradients for weights highly rely on inputs, the
generated bit-flip chain can be very different (i.e., different
combinations of bits, weights, and layers) if attackers use
different input data. Fig. 1(a) shows how bit-flips performed
by BFAs change as input data alters. In this study, we follow
the original setup of BFAs, first use three random seeds to
pick three batches of input data, and then perform BFAs on
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Figure 1: Comparison of the normal model and trapdoored model with NeuroPots under BFAs. (a) Layer-wise bit-flips distribution
of 3 attack chains with different seeds for ResNet-20 (normal model). (b) A diagram of the position of bit-flips of 3 attack chains
in a normal model. (c) A diagram of the position of bit-flips of 3 attack chains in a trappdoored model with NeuroPots.

each batch of input data individually. By only flipping 20
bits, BFAs can effectively degrade the model accuracy to
random guesses for ResNet-20 on CIFAR-10. From the three
trails of attack, we notice that although each trial focuses on
flipping bits in just a few layers, none of the layers receives a
bit-flip in all three trials. This study demonstrates that DNN
models have many unpredictable natural “vulnerable points”,
and hence defense solutions that rely on detecting faults of
weights in a few pre-selected layers can be suboptimal. In
other words, passively finding and examining a subset of
neurons (or layers) that is more vulnerable to BFAs can easily
lead to false negative given the limited coverage. Moreover,
it fails when facing adaptive attackers who can circumvent
these “fixed” vulnerable points and find another attack path.

The above observation motivates us to design a proactive
defense mechanism. Instead of blindly analyzing which lay-
ers/weights the highly unpredictable BFAs will land on, we
intentionally introduce vulnerabilities into the model to attract
BFAs, such that the locations of faults become determined. If
the crafted vulnerabilities are always easily discovered, we
can ensure that attackers inject bit-flips into them even if us-
ing different data. Furthermore, as we only need to protect
a few vulnerabilities, the detection overhead will be trivial
even using precise but high-cost detection methods. More
excitingly, if the vulnerabilities can trap most of the bit-flips,
we can quickly recover model accuracy by “refreshing" faulty
weights. To our best knowledge, no prior work can recover
model accuracy to the original level at run time.

2.3 NeuroPots Design Intuition
Consider a scenario where, starting from a trained DNN
model with a quantized parameter set B and any input x, the
attacker searches for a universal adversarial binary weight-bit
perturbation to induce a misclassification from the correct
label yx to any incorrect label other than yx in BFA (or a target
label yt 6= yx in T-BFA). This is analogous to looking for a
“shortcut” from the model to achieve the required systemat-
ical misclassification for any legitimate input x by flipping

the least amount of bits in the model parameter set B (e.g.,
13 bit-flips out of 1.2 billion bits [16]). Along these lines,
NeuroPots intentionally disguise a few neurons as decoys and
create shortcuts that are easier to locate and shorter than any
natural weakness attackers are searching for. Once the model
is trapdoored, an attacker will generate the adversarial chain
of bit-flips along shortcuts produced by NeuroPots.

Fig. 1(b) and 1(c) respectively depict the distribution of
bit-flips of three attack chains in the DNN model without
and with NeuroPots. Without NeuroPots, the bit-flips of the
three attack chains can appear in any weights across all layers.
In Fig. 1(c), we embed one honey neuron in each layer to
construct a trapdoored model. We can observe that 5 out
of 6 bit-flips of the three attack chains appear in weights
connected with the embedded honey neurons. Because at least
one bit-flip appears in honey weights for each attack chain,
we can therefore detect the attack accurately (we assume that
the detection approach can correctly detect faults of honey
weights). Moreover, all bit-flips of attack chains A and C
are trapped by NeuroPots, so these two trials can achieve
completed accuracy recovery by replacing faulty weights with
their golden backup. Because honey weights are a tiny portion
out of the entire weights in our experiments (e.g., ∼ 0.5% in
ResNet-34), the time and storage overhead for fault detection
and model recovery will be very low.

3 Trapdoor Defense using NeuroPots

We utilize NeuroPots to design a trapdoor-enabled proactive
defense framework. The key is to expand specific vulnerabili-
ties in the model via designed honey neurons. Such intentional
weaknesses we build into the DNN model (called “trapdoored
model”) will shape and lure bit-flip attacks to make them eas-
ily detected and recovered at inference time.

3.1 Threat Model and Design Objectives
Threat Model. We adopt the white-box threat model assump-
tion consistent with prior relevant works [16, 18], of which



the goal is to crush a well-trained quantized DNN model by
flipping a minimum number of weight bits after model de-
ployment. In particular, the attacker is assumed to possess
complete knowledge of the victim trapdoored model’s struc-
ture, weights, gradients, and partial knowledge of the training
data. This can be obtained by ways such as side-channel at-
tacks [23, 24]. The attacker’s program co-locates with the
victim model on resource-sharing platforms such as machine-
learning-as-a-service with DRAM hosting quantized parame-
ters. The attacker searches for the target chain of bit-flips via
gradient-based BFA algorithm [18] and performs the Deep-
Hammer attack [16] to precisely flip DRAM bits selected by
the BFA algorithm. Under real system constraints, we assume
DeepHammer only flips one bit per page. We also assume
the attacker does not have access to proposed detector (e.g.,
checksum or bit-by-bit check used at run time to detect BFA
or DeepHammer) and the small number of backup weights
associated with NeuroPots for online model recovery (e.g.,
secured in the trusted execution environment (TEE) like Intel
SGX [25] or ARM Trustzone [26, 27]). If ever compromised,
trapdoor detection and recovery can be reset.

Adaptive Adversaries. We define three types of attackers
based on their knowledge levels as follows. We evaluate the
online detection and model recovery capabilities against all
attackers in Section 6.
1. Basic Attacker is an entry-level attacker with no knowledge

of the trapdoor defense. The attacker directly applies BFAs
to the trapdoored model.

2. Expert Attacker is aware that the model is protected by
trapdoors and detection will examine the flipped bits dur-
ing inference. The attacker may also know some basic
principles of trapdoor designs (e.g., algorithms for select-
ing and creating honey neurons) and try to leverage such
knowledge to circumvent the defense. However, the at-
tacker does not know the exact characteristics of trapdoor
defense (e.g., the locations and number of honey neurons).

3. Oracle Attacker knows comprehensive details of trapdoor
defense, for example, the design principles, the number
and exact locations of embedded honey neurons, etc.

Defender’s Capability. We consider two scenarios: 1) The
defender has the ability to fine-tune the well-trained model
using training data (often a few epochs), so as to quickly
create trapdoored models. This is referred to as retraining-
based strategy described in Section 4.1.2. 2) The defender
does not have access to training hardware but a small number
of testing data, and can directly build the trapdoor from the
trained model without involving retraining. This is referred to
as one-shot strategy described in Section 4.1.2).

Design Goals. We have three major design goals. First,
the defense should detect adversarial bit-flips with very high
precision and/or close-to-zero false negative rate under differ-
ent levels of attackers; and recover model accuracy to almost

the original level (e.g., < 3%) for basic and expert attackers1.
Second, the trapdoored model should not impact inference ac-
curacy. Third, the defense should incur very low overhead, for
example, a very small number of honey neurons for detection
and negligible latency impact on normal inference.

3.2 Theoretical& Practical Basis of NeuroPots
In this section, we present formal theoretical principles as
well as practical implementation principles of our trapdoor-
enabled defense. These principles guarantee effectiveness in
mitigating adversarial bit-flips. They also lay solid founda-
tions for our detailed defense implementation in Section 4.

Theoretical Foundation of NeuroPots. To lure an attacker
into flipping weight bits within our designed NeuroPots, we
examine how the attacker uses a greedy strategy to identify
the most vulnerable weight bits from the model. While the
attacker’s choice of a chain of bit-flips could be highly unpre-
dictable (see Section 2.2), the first critical step is to identify
a bit with the largest gradient w.r.t loss function from each
layer based on a batch of training data. Then, the attacker
compares the impact of each individual bit-flip to loss func-
tion and finally flips the most influential bit from one iteration
to another. Intuitively, if we can intentionally magnify the gra-
dient |5W L | of some selected weights, then we will be able
to improve the chance of luring bit-flips to such weights and
make the attacker’s bit-flip chain predicable. Inspired by the
above intuition, we further investigate the backpropagation
rule to compute the gradient of loss function L w.r.t. weight
W l

i j that connects neuron j at layer l to neuron i at layer l−1:

∂L
∂W l

i j
=

{
g′(al

j)o
l−1
i ∑

nl+1

k=1 W l+1
jk δ

l+1
k 1≤ l < N

δl
jo

l−1
i l = N

(4)

where g is the activation function and δl
j is the error term of

neuron j at layer l (i.e., δl
j = ∂L

∂al
j
, in which al

j is neuron j’s

output before passed to g at layer l). In a hidden layer (i.e.,
1 ≤ l < N), the gradient magnitude of loss function L w.r.t.
W l

i j is determined by three key terms: g′(al
j) — the derivative

of activation function for neuron j at layer l; ol−1
i — neuron

i’s activation value at layer l−1; and ∑
nl+1

k=1 W l+1
jk δ

l+1
k — the

weighted summation of error terms of all neurons at layer
l + 1. The first term generally equals to a constant (either
0 or 1) due to the widely adopted ReLU function in DNNs
(g(x) = x if x ≥ 0, otherwise 0). Meanwhile, the last term
cannot guarantee the increase of the absolute value of the
summation, because weights and error terms could be negative
or positive As a result, we focus on the second term ol−1

i ,
which is the activation value of source neuron i at current
layer l−1. By just increasing ol−1

i , theoretically the gradient

1The online model repair is meaningful only if the recovered accuracy
can be close to its original level. We do not consider such recovery for the
oracle attacker due to a complete defense bypass.



magnitude of all weights (W l
i j) starting from a source neuron

i at the current layer to any destination neuron j at the next
layer can be enlarged. This is also applicable to the output
layer. In this way, we have the following formal definitions:

DEFINITION 1. Any neuron (or feature map in a convolu-
tional layer) with its activation value intentionally enlarged
can be defined as a “honey neuron” (or “honey feature map”).
All weights connected from the honey neuron to any neurons
at the next layer are “honey weights” that can be used to trap
malicious bit-flips from an attacker.

DEFINITION 2. “NeuroPots” consist of a set of honey neu-
rons and the weights connected from each honey neuron.

DEFINITION 3. Any DNN model with “NeuroPots” embed-
ded is defined as a trapdoored model.

Practical Foundation of NeuroPots. Another important
consideration of NeuroPots is to cover scatted bit-flips which
could stem from an expert attacker under real system con-
straints (e.g., DeepHammer with one flippable bit per 4KB
DRAM page). Fig. 2 depicts an example of mapping and
storing honey neuron’s connected weights in DRAM pages
for a convolutional layer. In this example, we use a honey
feature map (marked in yellow) instead of a single honey
neuron, and its connected weights to the next layer are 2D
filters in the same channel (marked in yellow) across all 3D
kernels. Since the computation of every output feature map
needs to read its corresponding 3D kernel from memory, the
weights will be stored in the granularity of an entire 3D kernel
for better access to a page. Given that honey weights in the
yellow 2D filter appear in every 3D kernel, and the size of
the total kernels in a convolutional layer (e.g., 256 3D kernels
with 3×3×64) is much larger than a DRAM page size (e.g.,
4KB), honey weights will be stored across several pages to
trap bit-flips, even if only a single honey feature map is embed-
ded. This is also applicable to fully connected layers — the
weight of a single honey neuron will be accessed whenever
computing an output neuron of the next layer.

Why Focus on Neurons? We need to emphasize that Neu-
roPots focus on neurons/feature-maps instead of individual
weights to create figurative holes. When attackers construct
adversarial bit-flips against the model, they will have a high
probability of falling into the trap. This is based on the fact
that the number of neurons/feature-maps is usually much
smaller than the weights in modern DNNs, and this can signif-
icantly reduce the attack surface and hence achieves efficient
and effective detection and mitigation in real-time.

4 Detailed Defense Implementation

A useful defense should be able to mitigate different levels
of attacks which are unpredictable but may occur in practical
scenarios. Therefore, the design of trapdoor-enabled defense
shall proactively consider defeating adversaries with differ-
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Figure 2: A conceptual view of mapping and storing honey
weights to DRAM pages for a convolutional layer. Each
DRAM page consists of multiple honey weights from the
highlighted 2D filters, covering the scattered bit flips.

ent capabilities (see Section 3.1). To achieve this, we first
introduce the two-step defense implementation: 1) offline
trapdoored model construction; and 2) online adversarial bit-
flip detection/mitigation. We then present the final defense
recommendation against basic and expert attackers.

4.1 Step 1: Trapdoored Model Construction

Our first step is to construct a trapdoored model offline before
model deployment, in which honey neurons and their associ-
ated weights are carefully designed and stealthily embedded
into a trained model.

4.1.1 Honey Neuron Selection

Since the basic idea of trapdoor design is to intentionally
make a small number of neurons more vulnerable, a sim-
ple approach would be to design a honey neuron selection
strategy based on the ranking of neuron activation response.
Intuitively, activating such already highly activated neurons is
more likely to trap bit-flips produced by basic attackers, with
less impact on inference accuracy. However, for skilled attack-
ers who are aware that honey neurons are selected by ranking
activation values, it may not work well since attackers may
avoid flipping bits associated with those highly activated neu-
rons to bypass the defense. Therefore, our solution needs to
enforce multiple levels of randomness in honey neuron selec-
tion: 1) the positions of honey neurons (e.g., which layer and
which neuron in a layer); 2) the activation rankings of honey
neurons (e.g. ranking at different levels); and 3) the number
of honey neurons. In this process, we also avoid selecting
“dead” neurons that always produce zero activation.

We further treat fully connected layer (neuron) and con-
volutional layer (feature map) differently in honey neuron
selection. In particular, for neurons in a fully connected layer,



we can randomly select the N neurons at a layer l. For neurons
in a convolutional layer, considering that weights (or kernels)
are shared by different neurons within the same output feature
map, to simplify the design, we could treat an entire input
feature map as a honey neuron, a.k.a honey feature map, and
all its corresponding 2D filters in 3D kernels become honey
weights (see Fig. 2). As a result, we randomly select the N
feature-maps as honey feature maps at layer l.

4.1.2 Honey Neuron Embedding

Once honey neurons are identified, the next step is to em-
bed them into a well-trained DNN model to create trap-
doors. Meanwhile, trapdoor embedding should not degrade
the model accuracy. To achieve the above goals, we need to
solve the following optimization problem:

min
θ

L( f (x,θ),y)+α ·
Nh

∑
l=1

Lh(o
l , t l) (5)

where Lh is the loss function for embedding honey neurons,
and α (0 < α < 1) is to balance model accuracy (first term)
and trapdoor embedding (second term). Nh is the number of
layers embedded with honey neurons. ol is the honey neuron’s
activation at layer l, while t l is its target activation value
(t l� ol). In our implementation, we set the target t l as γ times
initial value of ol (before trapdoor embedding), i.e., t l = γ ·ol

(γ > 1 is an expanding coefficient). To simply our design, we
set the same γc for all convolutional layers and the same γ f
for all fully connected layers. To solve the above optimization
problem, we propose two different methods: retraining-based
embedding and one-shot embedding.

Method 1: Retraining-based Embedding (Fine-tuning).
To optimize Eq. 5, a straightforward method is to fine-tune the
original model using an optimization (training) algorithm. For
trapdoor embedding, our goal is to minimize the difference
between honey neuron activation and its target. We use Mean
Square Error (MSE) as an extra loss term to achieve this goal:

Lh(o
l , t l) =

1
k

k

∑
i=1

(ol
i − t l

i )
2 (l 6= 0) (6)

where k is the number of honey neurons, and t l
i is the target

(constant) activation value for honey neuron i at layer l. It is
worth noting that honey feature maps embedding in convolu-
tional layers will be conducted at the granularity of a single
neuron of a feature map. Specifically, given a honey feature
map ol

i , we have (ol
i− t l

i )
2 = 1

n ∑
n
j=1(o

l
i j− t l

i j)
2, where n is the

number of neurons of a certain feature map at layer l. Intu-
itively, we can also concentrate on a small portion of neurons
(rather than all) of the feature map for reducing potential ac-
curacy degradation. However, our experiment indicates there
is not much difference in accuracy from acting on all neurons
of the feature map when the number of honey feature maps
is small. Thus, for design simplification, we will focus on all
neurons of a feature map in real implementation.

We use ADAM [28] as our optimization algorithm to mini-
mize Eq. 5 and Eq. 6. In general, we set a small value for α

in Eq. 5 (e.g., 0.01), since the value of L is very small for a
well-trained model, while the target activation value of honey
neuron, namely t l

i , is much larger than ol
i at the beginning of

the retraining process. Note that the retraining-based trapdoor
can be applied to any layer except for the input layer (i.e.,
l = 0). This is because the input data (e.g., pixels or words)
cannot be enlarged by fine-tuning parameters (e.g., weights).

Method 2: One-shot Embedding (Retraining-free). The
retraining-based trapdoored model construction is relatively
complex and costly, and it is only for defenders who have
the ability to fine-tune models using a large amount of train-
ing data. The one-shot trapdoored model construction ad-
dresses those issues. Specifically, the one-shot strategy aims
to quickly solve Eq. 5 by a set of simple computations with
very low cost, using the following two steps. First, we directly
enlarge the activation value of a honey neuron by multiplying
γ, i.e., ol ← γ · ol , to achieve trapdoor embedding (the sec-
ond term of Eq. 5 will be 0). Second, we shrink all weights
connected to the honey neuron by 1

γ
, so that the weighted

contributions from this neuron to neurons in the next layer
remain almost unchanged, hence minimizing the first term of
Eq. 5. The specific one-shot processing can be formulated as:

ol+1
i =

nl

∑
j=1

wl
ji ·ol

j = wl
0i ·o

l
0 + · · ·+(

1
γ
·wl

hi)(γ ·o
l
h)+ · · · (7)

where ol
h is the honey neuron at layer l, and wl

hi is the associ-
ated honey weights. For a full-precision model, this one-shot
processing will not bring any errors (we ignore bias here). For
a quantized model, however, because we need to re-quantize
the shrunk weights 1

γ
·wl

hi to fixed-point numbers, this will
bring a small amount of quantization error. A large γ could
also lead the original weight to 0 (behaves like pruning) if
the weight is small. However, we found that it only has a mi-
nor impact on model accuracy when embedding a few honey
neurons. For the honey feature map, like retraining-based trap-
door embedding, the one-shot processing will be applied to all
neurons of a feature map in a convolutional layer. Note that
the one-shot strategy can be applied to any layer (including
the input layer) because it will directly change the activation
value of honey neurons.

Impact of Trapdoor on Model Output. After finding the
most sensitive bit, the attacker will further measure the impact
of bit flipping on the loss function to verify if the flipping can
degrade model accuracy. Thus, to trap bit-flips efficiently, we
need to ensure that our trapdoor can cause a more considerable
change in model output when bit-flips are injected. For a
normal neuron, its impact on next layer’s output under BFAs
can be expressed as ol+1 = (w+∆w) · ol , where ∆w is the
weight distortion caused by bit-flips. In comparison, taking
the one-shot trapdoor as an example, a honey neuron’s impact
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Figure 3: Trapdoor-based fault detection and mitigation.

to the next layer is represented as:

ol+1 = (
1
γ
·w+∆w) · γ ·ol = (w+∆w) ·ol +(γ−1) ·∆w ·ol (8)

We can see ol+1 increases by (γ−1) ·∆w ·ol compared to the
normal neuron. Moreover, the attacker is more likely to flip
the most significant bit of weights to produce a large pertur-
bation ∆w, so the impact of the honey neuron to ol+1 will be
more significant, especially for a large γ. Such change will
propagate and accumulate to the following layers, causing a
dramatic change to the model output. Therefore, our trapdoor
can trap bit-flips efficiently.

Activation Ranking Obfuscation. While using a larger
expanding coefficient–γ to intentionally activate honey neu-
rons significantly can achieve a better bit-flip trapping effi-
ciency in basic attackers, expert attackers may still use such
information to bypass the defense. Therefore, we propose to
moderately enlarge the activation of honey neurons using a
smaller expanding coefficient (e.g., γ = 2) during embedding.
In this way, honey neurons’ ranking can be moved up slightly
and distributed across all ranking positions in a layer, increas-
ing the stealthiness. Even if attackers bypass higher-ranked
ones, those with a lower ranking can still trap bit-flips.

4.2 Step 2: Online Detection/Model Recovery
After constructing the trapdoored model offline, the next step
is to take advantage of it for online fault detection and model
recovery. As Fig. 3 shows, we add fault detection and miti-
gation into layers embedded with the trapdoor, while other
layers simply follow the original inference flow. Because
honey weights are a tiny portion of the DNN model, the fault
detection and recovery overhead will be very low. Therefore,
our defense has a trivial impact on the original inference. We
evaluate the inference time and storage overhead in Section 6.

4.2.1 Fault Detection

Because our trapdoor can significantly reduce the detection
surface, lightweight fault detection could be easily realized,
for example, via simple checksum or distance-based compar-
ison. As an example, we develop a simple checksum mech-
anism to detect faults on honey weights. If the sum of the
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Figure 4: Example of computing the filter-wise checksum of
honey weights (filter) with convolution (MAC) operations.

current honey weights is different from the original sum, the
model is then considered to be tampered. In particular, the
method takes advantage of Multiply-Accumulate (MAC) op-
erations commonly available in DNN hardware, and thus can
eliminate additional hardware support for detection. Also,
instead of checking the sum of all honey weights, it checks
the sum of honey weights at the granularity of filters to im-
prove detection performance. Fig. 4 illustrates the procedure
of utilizing convolution (or MAC) operations to compute the
sum of honey weights without additional hardware support.
Specifically, we set the honey feature map into 1 and others to
0. After conducting convolution operations with a 3D kernel,
the first neuron’s value in the output feature map will be the
sum of the honey weights (filter). For fully connected layers,
computation of neurons output can be treated as 1×1 con-
volution operation, so we can also use similar operations to
compute the sum of honey weights.

4.2.2 Run-time Model Recovery

After building the trapdoored model, the defender will need
to store a copy of clean honey weights in a secured zone (e.g.,
trusted execution environment (TEE) like Intel SGX [25] or
ARM Trustzone [26, 27]). Once faults are detected, we can
directly replace faulty honey weights with the clean copy
at run-time. In particular, to fit our filter-wise checksum de-
tection, the level of granularity for fault mitigation is set as
filter. Because we only need to store/recover a very small
amount of weights, the storage and time overheads are ex-
tremely low. Furthermore, since our trapdoor can trap most of
the bit-flips and mitigate the faults, the recovered model will
be very close to the original model and hence the inference
accuracy. It is worth mentioning that the recovered model
is still a trapdoored model, so we do not need to repeat the
trapdoor embedding process.

4.3 Putting It All Together For Final Defense
We build our final trapdoor-enabled defense to effectively
mitigate different basic and expert attackers by combining
all aforementioned techniques via the following manner: 1)
random honey neuron selection (position), neuron activation



ranking obfuscation (via tuning expanding coefficient γ in
embedding) and layer-wise coverage (via adjusting honey
neuron number); 2) filter-wise fine-grained fault detection
and model recovery in real time. In the following sections, we
use such a combination as the final recommended defense for
evaluation and discussion.

5 Adaptive Attack Design

Beyond the basic adversary, any meaningful defense must
withstand countermeasures from expert attackers who ac-
knowledge the defense. In Section 3.1, we define attackers
with different abilities to comprehensively evaluate trapdoor-
enabled defense. Particularly, attackers without any knowl-
edge of defense (original BFA, T-BFA and DeepHammer
Attack in Section 2.1), are referred as basic attackers.

In this section, we design expert attackers that are aware
that the target model has been embedded with trapdoors, and
know the basic principles of trapdoor design but no specific
details. We present multiple expert attackers separated into
two broad categories. First, we consider the bit (weight)-level
bypass approach (BBA) by crafting an adversarial bit-flip
chain from weight bits with lower gradients in the trapdoor
protected model, and then use it to attack this model. The
purpose is to avoid choosing an individual (weight) bit from
established NeuroPots in the model that often has a higher gra-
dient. Second, we consider neuron-level bypass approaches
(NBA) that focus on finding bit-flip chains that cause mis-
classification while avoiding using all weight bits possibly
associated with honey neurons.

5.1 Bit-level Bypass Attack (BBA)

To achieve the highest attack efficiency, a greedy non-expert
attacker searches the more vulnerable bits of the model to
generate an attack that would lead to the least number of
bit-flips. Our trapdoor-enabled defense takes advantage of
such an attack pattern to set a few disguised vulnerable traps,
e.g., weight bits with intentionally enlarged gradients located
in NeuroPots, to lure the attacker’s bit selection. Therefore,
an expert attacker who knows that a target model contains
such trapdoors may simply lower the objective by picking
weight bits whose gradients are not among the top list, to
circumvent pre-defined NeuroPots. Accordingly, the gradient-
based bit ranking search algorithm of this adaptive BFA can
be modified as follows:

bn−1
i = Topp|5W n−1

i
L( f (x,{W n−1

i }l
i=1))|

=⇒ bn−1
i = Topp

(
Lowt |5W n−1

i
L( f (x,{W n−1

i }l
i=1))|

) (9)

where t ∈ (0,100%) is an adjustable threshold. The algorithm
iteratively searches the most vulnerable p bits only from a
subset of weights–t% of weights with lower gradients in a

layer l, and excludes the rest (top) (1− t%) of weights with
higher gradients that may contain trapdoors.

5.2 Neuron-level Bypass Attacks

Instead of examining individual weight bit, more advanced
expert attackers would also consider defeating trapdoor by
first speculating honey neurons, and then avoiding injecting
bits in all their associated weights. Such neuron- (or Neu-
roPots) level bypass could potentially lead to better efficiency
for expert attacks, since all weights associated with identified
neurons will not be selected for bit flipping.

5.2.1 Ranking-based Neuron Bypass (R-NBA)

To trap more bit-flips, honey neurons generally need to have
large activations. Therefore, expert attackers could utilize
this property to identify honey neurons and bypass trap-
doors. Specifically, the attacker may rank activation mag-
nitude of neurons or feature maps (i.e., |o| or ∑

n
i |oi|), then

bypass all weights associated with the neurons with topkb |o|
or topkb ∑

n
i |oi| (e.g., kb = 10%) in certain layers. We name

this attack as R-NBA-b. On the other hand, if expert attackers
are aware that our trapdoor obfuscates the activation ranking
of honey neurons, they may further upgrade their attacks by
deliberately attacking the top-ranked neurons only to craft
the attack, since these neurons may not be honey neurons.
This attack can potentially generate a stealthy attack chain
that would need much fewer bit-flips, thereby lowering the
possibility of being detected by the trapdoor. This variant is
called R-NBA-a.

5.2.2 Frequency-based Neuron Bypass (F-NBA)

Another approach to precisely detect and bypass honey neu-
rons is to leverage the fact that, statistically, honey neurons are
likely to receive more bit-flips than normal neurons. In this
case, expert attacker can perform BFAs multiple times using
different input data, during which he or she counts the number
of bit-flips in weights associated with each neuron/feature-
map. A neuron whose weights receive more bit-flips is likely
to be a honey neuron, and all weights associated with this
neuron can be excluded from the bit-flip search process. We
name such a bypass attack as F-NBA. Specifically, this bit-flip
frequency detection includes two stages: 1) Testing (detect-
ing) stage –we perform the attack algorithm using different
training/testing data m times to generate a honey neuron set
{h}. In each testing, the number of bit-flips in weights asso-
ciated with each neuron ni will be counted. If the number of
bit-flips on neuron ni is larger than a threshold T (e.g., T = 2),
then ni is considered to be a honey neuron. We then add neu-
ron ni into the honey neuron set {h} (i.e., {h} ← {h}∪ ni).
2) Attacking (bypassing) stage–during attack we bypass all
weights associated with the honey neurons obtained from the



last step ni ∈ {h}. Generally, it is difficult for an attacker to
obtain enough data to generate different bit-flip chains to test
the target model many times. Here we make an aggressive
assumption for the purpose of evaluation.

6 Evaluation

In this section, we evaluate the performance of our trapdoor-
enabled defense against basic adversary and expert adversary
as described in Section 3.1. Specifically, our evaluation an-
swers the following questions:
1. How does NeuroPots impact the model accuracy?

2. How is the detection and mitigation performance of our
defense framework against basic and adaptive BFAs?

3. How much time and storage overhead does our fault detec-
tion and model recovery framework introduce?

6.1 Experimental Setup
We use PyTorch as our implementation framework. All simu-
lations are conducted in a workstation with one AMD Ryzen
Thread ripper 2990WX 32-Core Processor and four NVIDIA
GeForce RTX 2080Ti GPUs. Our DRAM is 32GB (X64, DR)
260-Pin DDR4 SODIMM and consists of 16 internal banks.

6.1.1 Datasets and DNN Structures

We evaluate the effectiveness of our trapdoor-enabled defense
framework with CIFAR-10 [29] and ImageNet [30] for image
classification and Google Speech Command [31] for speech
recognition datasets. Specifically, CIFAR-10 consists of 60K
of 32×32 colored images from 10 classes, in which 50K and
10K images are used for training and testing, respectively. Im-
ageNet contains 256×256 colored images from 1000 classes,
in which 1.3M, 100K and 50K images are used for training,
testing, and validation, respectively. Google Speech Com-
mand includes 65,000 one-second-long clips from 12 classes
(10 commands and 2 additional special labels), each of which
has 30 different words.

We evaluate our trapdoor-enabled defense across differ-
ent DNN structures. In particular, ResNet-20 [32] and VGG-
16 [33] are evaluated on CIFAR-10, while the evaluations of
AlexNet [34], ResNet-34, and a memory-efficient MobileNet-
V2 [35] are conducted on the complex ImageNet. The Google
Speech Command dataset is used to evaluate WideResNet-
28 [36]. The weights of all these DNNs are quantized to 8-bit.
The accuracy of well-trained quantized models are shown in
Table 1 (see w/o trapdoor column).

6.1.2 Attack Configuration and Fault Models

Basic Adversary. For basic adversary evaluation, we use
three types of original bit-flip attacks: BFA, T-BFA, and Deep-
Hammer. The goal of BFA and DeepHammer is to degrade

model accuracy to random guesses (i.e., 10%, 0.1%, 8.33%
for CIFAR-10, ImageNet, Google Speech Commands, respec-
tively). In comparison, T-BFA only misclassifies inputs from
source class p to a target class q while maintaining accu-
racy for all inputs from other classes j. We randomly select
a source and a target class in our experiment. In terms of
hardware constraints of bit-flips in DRAM, we assume BFA
and T-BFA can inject bit-flips into any weights of the model.
In contrast, as a real bit-flip attack via row-hammer, Deep-
Hammer only flips one bit per DRAM page. For each type
of BFAs, we repeat the above attack configuration 50 times
to generate 50 bit-flip chains (i.e., 50 fault models) using
different random seeds for each DNN.

Expert Adversary. We consider that attackers can inte-
grate the defense bypass techniques described in Section 5
with realistic DeepHammer to develop four adaptive Deep-
Hammer attacks: BBA, R-NBA-b, R-NBA-a, and F-NBA.
Without loss of generality, we set the configurations for these
attacks as follows: t = 98% for BBA (i.e., bypass weight bits
with top 2% gradient), kb = 5% for R-NBA-b and R-NBA-a
(i.e., bypass/only-attack 5% top-ranked neurons), T = 2 and
test times is 50 for F-NBA (i.e., run the attack algorithm 50
times with different seeds in the targeted model and bypass all
neurons that are attacked more than two times in any trials).
For simplicity, we focus on discussing these attacks under a
given defense budget (see defense budget setting discussion
in Section 6.1.3). We leave more evaluations under different
adaptive attack parameter settings in Appendix C.

The detailed configurations for three basic BFAs and four
adaptive attacks in all DNN models, including the number of
needed bit-flips, are presented in Table 8 of Appendix A.

6.1.3 Guidelines of Setting Key Parameters in Defense

We follow the procedure in Section 4.1 to create honey neu-
rons for defense. In particular, we randomly select honey
neurons and apply activation ranking obfuscation within a
layer. To increase their stealthiness and improve the trapping
rate, honey neurons are distributed across more layers. To
properly set the three key parameters of this process: 1) num-
ber of honey neurons per layer N, 2) expanding coefficient
γ, and 3) number of selected layers Nl , we follow the gen-
eral guidelines described below. A detailed ablation study is
provided in Section 7.1.

To choose an appropriate N for different models, we
empirically set the honey neuron number per layer–N =
max(2,d p%×Nm

Nl
e), where p is a given budget (percentage)

of honey neurons that can be used in defense, Nm is the to-
tal number of neurons in the model and Nl is the number
of selected layers. These parameters determine the defense
performance and time/storage overhead. In our evaluation,
we consider the following typical defense budget: the de-
fense incurred time overhead is no more than 10% of a single
inference time in any model, and the proportion of all se-



Table 1: The accuracy (%) of original and trapdoored models
(w/o and w/ trapdoor) on various datasets and DNN structures.

Dataset Structure w/o
trapdoor

w/ trapdoor
retraining one-shot

CIFAR-10 ResNet-20 90.34 89.34 90.24
VGG-16 92.07 91.3 91.82

ImageNet
AlexNet 57.47 56.16 56.04
ResNet-34 72.56 71.21 71.05
MobileNet-V2 71.89 70.16 69.96

Google Speech
Command WideResNet-28 97.73 96.58 97.12

lected neurons in any model is < 1%, except for ResNet-20
where 2.8% are honey neurons because it only contains∼ 700
neurons/feature-maps). We set Nl to 10 for all DNN models.
Note that, AlexNet only has 8 layers, so we embed honey neu-
rons to all layers of AlexNet. For honey neuron embedding,
we use a small expanding coefficient (e.g., γ = 2) to ensure
stealthiness and maintain original accuracy for all models.
To find a suitable expanding coefficient for each model, our
practice is to start with a relatively larger value (e.g., γ = 4). If
it incurs a noticeable impact on model accuracy, or all honey
neurons are top-ranked, we then gradually reduce its value
until not all honey neurons are top-ranked and the accuracy
drop is acceptable (e.g., less than 3%). The detailed defense
parameter settings are listed in Table 7 of Appendix B.

6.1.4 Evaluation Metrics

We focus on three evaluation metrics: 1) detection rate is
defined as the ratio between the number of models correctly
identified as malicious and the total number of malicious mod-
els. A higher detection rate indicates better defense efficiency;
2) mitigation success rate is calculated as the number of
models with accuracy recovered close to original level af-
ter defense divided by the total number of malicious models.
Here we define a successful mitigation empirically if the ac-
curacy difference between the recovered model and clean
model (without trapdoor) is less than 3%; 3) trapping rate
is the proportion of trapped bits out of the total number of
bit-flips injected by attackers. Intuitively, a higher trapping
rate indicates a better mitigation success rate.

6.2 Results and Analysis
6.2.1 Impact on Performance

If not properly selected and embedded, honey neurons can
cause model accuracy drop. We first evaluate how NeuroPots
impacts the model accuracy. Table 1 lists the accuracy of
the original model (w/o trapdoor) and the trapdoored model
(w/ trapdoor) in different DNN structures. We can observe
that both trapdoor embedding techniques (see Section 4.1)
only cause marginal accuracy drop for all DNN structures on
different datasets compared to the clean models. For example,
the retraining and one-shot trapdoored models of VGG-16 can

achieve 91.3% and 91.82% accuracy, which are only 0.77%
and 0.25% lower than their respective clean models.

6.2.2 Detection and Mitigation Effectiveness

Trapping Efficiency. Table 2 shows that our defense can
trap most bit-flips in the attack chain based on three bit-flip
chains generated by BFA on the retraining-based trapdoored
model of VGG-16. For example, our model captures 10 out
of 13 bit-flips in the first attack chain and achieves a 76.92%
trapping rate. Although our defense might not trap all faults
from attackers, the model’s accuracy can still be recovered to
the original level in the fault mitigation stage. This is because
our defense always traps the most destructive bit-flips of the
attack chain to interrupt the critical “attack path”. For example,
in Table 2, the first three bit-flips are trapped by our defense
in all three attack chains. The attackers always search for the
most vulnerable bits of current model iteratively. For each
iteration, the current most vulnerable bit is on top of the prior
bit-flips to maximize accuracy drop. If we can recover the first
few critical bit-flips, the remaining bit-flips are less important.

Detection and Mitigation Performance. As Table 3
shows, our trapdoor-enabled defense can achieve a very high
detection rate (100% in most cases) for three types of basic
attacks and four types of adaptive attacks in all DNN models.

Table 3 also reports the mitigation success rate in different
DNN models. On the one hand, for three types of basic attacks,
our defense achieves a considerably high mitigation success
rate in all DNN models. This indicates that most faulty mod-
els’ accuracy are recovered to the original level at run-time. In
particular, our defense achieves a similar mitigation success
rate for BFA and T-BFA (90.33% vs. 90% on average) but a
slightly worse performance for DeepHammer in most cases
(85.33% on average). This is because DeepHammer has the
one-bit-flip-per-page constraint, and therefore, the injected bit-
flips are more scattered and a lower portion of them is trapped.
On the other hand, for four types of adaptive attacks, our de-
fense only achieves slightly worse mitigation effectiveness
than the basic version (i.e., Deep Hammer) due to the random-
ness of selecting honey neurons. Such minor performance
degradation means that these strong adaptive attacks have a
very small chance to bypass a few honey weights/neurons.

6.2.3 Time and Storage Overhead

One of our design goals is to minimize the overhead of the
trapdoor-enabled defense model. Table 4 shows the time spent
on a model inference with and without the trapdoor, as well
as the additional storage overhead. For time cost, our defense
only takes slightly more time than the baseline due to involv-
ing fault detection and mitigation in the inference pipeline.
For example, in VGG-16, it costs an additional 0.07ms (to-
tal 4.96ms) compared to the baseline (4.89ms). For networks
with convolutional layers only (e.g. ResNet-20), the time over-



Table 2: Example bit-flip attack chains generated on retraining-based trapdoored VGG-16 (bold denotes trapped bits by defense).
# of
bit-flips Attack chain (layer number, in-layer offset of weight) Trapping rate (%) Accuracy (%)

Accuracy (%) after
fault mitigation

13
(3,36441)->(2,9913)->(2,9916)->(1,363)->(16,1771)->(16,3587)->(4,77753)
->(16,1984)->(5,208)->(16,3312)->(7,226285)->(4,2873)->(4,98494) 76.92 10.65 90.31

6 (3,36446)->(2,9913)->(4,98494)->(4,144574)->(16,1771)->(16,3587) 100 10.72 91.3

10
(2,21432)->(3,36447)->(4,98490)->(2,9913)->(6,240883)->(16,1771)
->(5,243840) ->(5,204670)->(16,3587)->(5,48002) 60 10.84 91.34

Table 3: Detection/mitigation rate of trapdoor design (one-shot) on different models and datasets under basic and adaptive attacks.
Detection Rate (%)

Attack
Type Attack CIFAR-10 ImageNet

Google Speech
Command AVG

VGG-16 ResNet-20 AlexNet ResNet-34 MobileNet-V2 WideResNet-28

Basic
BFA 100 100 100 100 100 100 100

T-BFA 100 100 100 100 100 100 100
DeepHammer 100 100 100 100 100 100 100

Adaptive

BBA 100 100 100 100 100 100 100
R-NBA-b 100 100 100 100 100 100 100
R-NBA-a 100 100 100 100 100 100 100
F-NBA 100 100 100 100 100 100 100

Mitigation Success Rate (%)

Basic
BFA 98 96 88 90 84 86 90.33

T-BFA 98 94 90 92 80 86 90
DeepHammer 92 90 84 86 78 82 85.33

Adaptive

BBA 88 76 80 64 76 74 76.33
R-NBA-b 86 70 78 68 74 72 74.67
R-NBA-a 90 86 80 84 78 76 82.33
F-NBA 90 80 82 82 76 74 80.67

head is slightly increased but is < 10% due to having more
honey feature maps. For storage cost, it requires almost neg-
ligible extra memory (e.g., 99KB or 0.5% in ResNet-34), to
store a small number of clean honey weights for all DNN
models. Overall, compared to traditional passive defense ap-
proaches, our proactive approach can effectively reduce the
number of weights needed for fault detection and mitigation
under BFAs, and incurs very low time and storage overhead.

7 Discussion

7.1 Ablation Study

In Section 6.1.3 we present general guidelines for selecting
three key hyper-parameters for NeuroPots-based trapdoor de-
fense. Without loss of generality, in this section we analyze
how these parameters impact our model performance using
ResNet-20 and CIFAR-10 dataset.

Impact of Expanding Coefficient γ. Fig. 5(a) shows how
expanding coefficient impacts the trapping effectiveness under
basic and adaptive attacks. For most of the attacks (e.g., Deep
Hammer and BBA), a larger γ could significantly increase
the trapping effectiveness. However, we can also observe that
a larger γ decreases the trapping rate for R-NBA-b. This is
because the weight gradients of honey neurons increases as γ

grows. Once the gradients become large enough, these honey
neurons will fall into the higher-ranked category, which R-
NBA-b can effectively bypass. Therefore, to ensure a decent

detection and mitigation performance for all attacks, we need
to choose an appropriate γ (generally less than 3).

Impact of Number of Honey Neurons Per Layer N. In
Fig. 5(b), we observe that more honey neurons in each se-
lected layer improves the trapping rate for all attacks. How-
ever, having too many honey neurons suffers from higher
time and storage overhead. For example, when N = 5, storing
honey weights brings 3.38% extra storage overhead. There-
fore, an appropriate number of honey neurons in each layer is
essential to balance trapping effectiveness and overhead.

Impact of Number of Selected Layers Nl (or Honey
Neuron Distribution). Fig. 5(c) shows how Nl impacts the
trapping rate. In this experiment, we keep the total number
of honey neurons unchanged (i.e., 20 honey neurons/feature-
maps) and spread honey neurons evenly across each selected
layer. For example, if the number of selected layers is 4, we
select 5 honey neurons in each layer for the first 4 layers in the
model. We found that distributing honey neurons across more
layers can increase trapping rates for most attacks. However,
for R-NBA-b, we observe that too scattered honey neurons
could hurt trapping effectiveness (e.g., when the number of
selected layers is larger than 10). This is because when Nl
becomes too large, some layers may have only one honey
neuron, and therefore R-NBA-b can bypass it so that the en-
tire layer becomes unprotected. Therefore, we use at least
2 honey neurons in each selected layer with an appropriate
number of selected layers (e.g., 10 layers) to ensure trapping
effectiveness for all attacks.



Table 4: Time and storage overhead of our trapdoor-enabled defense on different DNN structures and datasets.
Inference flow CIFAR-10 ImageNet Google Speech Command

ResNet-20 VGG-16 AlexNet ResNet-34 MobileNet-V2 WideResNet-28

Time Cost (ms) w/o trapdoor (baseline) 1.13 4.89 48.22 13.45 31.98 12.19
w/ trapdoor +0.11 (9.7%) +0.07 (1.4%) +0.87 (1.8%) +0.69 (5.1%) +0.34 (1.1%) +0.55 (4.5%)

Storage Cost (MB) w/o trapdoor (baseline) 0.27 34 61 22 3.5 36
w/ trapdoor +0.0037 (1.3%) +0.12 (0.4%) +0.57 (0.9%) +0.099 (0.5%) +0.0038 (0.1%) +0.33 (0.9%)
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Figure 5: The impact of expanding coefficient γ (a), number of honey neurons per layer N (b), and number of selected layers Nl
(c) on trapping rates.

Table 5: The trapping rate, detection rate and mitigation rate
in different DRAM page sizes under DeepHammer attack.

Size Trapping rate (%) Detection rate (%)
Mitigation
Success rate (%)

4K 72.3±8.5 100 92
8K 71.5±8.4 100 94
16K 69.5±7.9 100 92
32K 68.2±8.6 100 92
64K 68.9±8.2 100 92

7.2 Comparison and Discussion

Influence of Scattered Flips. We now discuss the impact of
scattered bit-flips on defense performance. Keeping the one-
bit-per-page constraint unchanged, we vary the page size to
control the degree of scattering bit-flips in Deep Hammer. The
default DRAM page size in Deep Hammer is 4K. As Table 5
shows, the detection rate remains 100% for all page sizes.
The trapping rate of trapdoor defense remains stable beyond
4K page size. Similarly behavior is observed for mitigation
success rate. As the page size grows, each page will contain
more honey neurons. Although bit-flips becomes more scat-
tered in larger pages, having more honey neurons in each page
can effectively trap the bit-flips and stabilize the trapping rate
(and hence mitigation rate). Overall, more scattered bit-flips
only have a limited impact on our defense.

Comparison to Natural “Neural Pots”. We inspect the
relationship between natural “neural pots” (neurons with natu-
rally very high activation with no additional embedding oper-
ation) and NeuroPots. To make a fair comparison, for natural
“neural pots”, we use the same configuration as NeuroPots
(i.e., N = 2, Nl = 10 in ResNet-20). As Fig. 6 shows, the
trapping effectiveness of natural “neural pots” is much lower
than NeuroPots, especially for adaptive attacks such as BBA.
This is because in natural “neural pots”, without the embed-
ding operation, there is no guarantee that the selected highly
activated neurons remain highly activated for all inputs. Addi-

tionally, in some trials, those highly activated neurons can be
bypassed by well-designed adaptive attacks. Therefore, the
stealthy honey neuron embedding in NeuroPots is necessary.

Comparison to Random Neuron Monitoring and Run-
time Analysis. A simple baseline defense could be monitor-
ing neurons randomly to detect attacks. Fig. 7 compares our
trapdoor defense with this random neuron monitoring defense.
To achieve a relatively high detection rate (e.g., > 90%), this
baseline needs to monitor 50% of neurons at least, resulting in
a high time overhead. For example, an extra 1.82ms is needed
for an inference that normally takes 1.13ms to monitor 50% of
neurons, totaling 2.95ms or 2.6× that original inference time–
1.13ms). Compared to random neuron monitoring, trapdoor
defense only needs to monitor 2.8% of neurons with 0.11ms
additional time (e.g., total 1.24ms, 9.7% of the inference time)
to achieve a 100% detection rate.

Comparison to Existing Detection Methods. One of the
key capabilities of NeuroPots is to detect BFAs accurately
in real-time at extremely low cost, hence we also experimen-
tally compare trapdoor defense with detection-based defense.
Since existing detection can be roughly divided into two cate-
gories: 1) machine learning-based–training a simple model
for fault detection [22, 37]; 2) signature-based–embed unique
signatures, e.g., watermark or checksum, into the original
model and then compute and compare signatures on the fly
to detect faults [38, 39, 40]. Without loss of generality, we
choose two representative solutions in the respective category
for the comparison: weight encoding detection (WED) [22]
and DeepAttest (a.k.a., Fingerprint) [38]. In particular, WED
applies weight sensitivity analysis to pick weights from a
few most sensitive layers to train a single-layer perception to
generate the detecting secret-key, while Fingerprint utilizes a
shredder storage format to randomly select weights to embed
fingerprint. Then the detecting secret-key or fingerprint ex-
tracted and computed from protected weights are compared
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Figure 7: The detection rate and time cost by random neuron
monitoring. Time cost of monitoring 0% neuron is the original
inference time (1.13 ms).

with the golden ones for fault detection at the online stage.
Since BFAs only change a few weights, it is nearly impossi-
ble to capture faulty weights using random weight selection.
Thus, to construct a fair baseline and lower the detection
overhead, we also apply WED’s sensitive weight selection
to Fingerprint. It is worth noting that neither Fingerprint nor
WED offers fault mitigation, so we only compare detection
efficiency. As Fig. 8 (a) shows, NeuroPots achieves a better
detection rate than WED and Fingerprint. Moreover, as Fig. 8
(b) shows, NeuroPots incurs much lower time cost than the
two baselines in all models due to significantly reduced attack
detection surface (e.g., 90∼ 100× for AlexNet).

7.3 Defense Against Oracle Attack

An oracle attacker has all details about the trapdoor, including
algorithm, the number and exact locations of honey neurons,
such that the attacker can entirely circumvent NeuroPots and
crush the trapdoor defense. We use this strongest attack which
is often impractical, to test the upper bound of our defense.
We design a hybrid countermeasure to ensure that the ora-
cle attacker cannot circumvent NeuroPots without spending
an unreasonable amount of effort. So far, we have explained
how NeuroPots can be used to craft honey neurons. In the hy-
brid countermeasure described below, we also use NeuroPots
to enhance normal neurons that are vulnerable to BFAs and
make them more robust. We name such neurons as enhanced
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Figure 8: The comparison of detection rate and time cost
against existing representative detection approaches.

neurons. We assume the oracle attacker is also fully aware of
details about enhanced neurons in addition to honey neurons.
The rationality is that: if the attacker circumvents honey neu-
rons which offer a shortcut for BFA, and enhanced neurons
that indicate a much longer path for bit-flips, he or she will
be forced to create a path from the (remaining) normal neu-
rons insensitive to BFA. This could lead to the unreasonable
amount of effort for attacker under real hardware constraints.

Specifically, the hybrid countermeasure involves two steps:
(1) Selecting honey neurons and normal neurons that need en-
hancement; and (2) Embedding honey neurons and enhanced
neurons into the DNN model. In step 1, we first categorize
neural network layers into three levels (high/mid/low) accord-
ing their sensitivity to attack. A layer’s sensitivity can be
measured by the sum of the absolute value of its top n weight
gradient. The larger it is, the more sensitive a layer is. We
empirically choose the number of layers for each level. For
high-sensitivity layer, we treat all neurons as honey neurons.
For mid-sensitivity layers, we identify the top kh activated
neurons (e.g., kh = 10%) as honey neurons. In addition, en-
hanced neurons are selected from the top ke activated neurons
(e.g., ke = 50%) among the remaining 1− kh neurons. We
leave all neurons in low-sensitivity layers untouched (nor-
mal neurons). In step 2, we set a large expanding coefficient
(γ > 1) for honey neurons but a smaller one (0 < γ < 1) for en-
hanced neurons. The purpose is to suppress the sensitivity of
enhanced neurons that might originally have high sensitivity.

We evaluate it against oracle DeepHammer attack based on
the following settings: γ = 2 (γ = 0.5) for honey neurons (en-
hanced neurons), the 1st and 8th layers as the high-sensitivity
layers, 2nd, 3rd, 4th layers as the mid-sensitivity layers, and
the remaining layers as the low-sensitivity layers. As Table 6
shows, the number of bit-flips needed by oracle attacker in-
creases as the percentage of honey weights increases, for
example, 17.6× with merely 2.4% honey weights compared
to clean models without trapdoor. We observe the similar
trend in other models (See Appendix D). This means that the



Table 6: The overhead of trapdoor and the number of bit-flips
under the oracle attack (ResNet-20).

kh (%) 0 (baseline) 5% 10% 15% 20%
No. of bit-flips 14 82 125 169 243

Num. of
honey weights -

5K
(1.8%)

5.5K
(2%)

5.9K
(2.2%)

6.3K
(2.4%)

Num. of
honey neurons -

22
(3.2%)

24
(3.5%)

26
(3.8%)

28
(4%)

defense can significantly raise the bar for the attacker to exert
faults injection physically at the cost of more honey neurons.

7.4 Limitations
While our NeuroPots-enabled trapdoor defense can effectively
trap bit-flips and repair the model online at a low cost, it has a
few known limitations. First, the fine-tuning-based honey neu-
ron embedding may incur a retraining cost in large and com-
plex models. Although the retraining-free one-shot method
lowers the cost, both methods still lead to marginal accu-
racy drop. Second, there is still time overhead added into the
original inference, e.g. higher overhead in small models than
large ones (9.7% for ResNet-20 v.s. 1.1% for MobileNet-V2).
Third, while our defense well defeats a series of the state-of-
the-art bit-flip attacks which always attempt to tamper the
model by flipping a minimum amount of weight bit-flips, in-
cluding the latest BFA flipping even less bits within only
one layer [41], our evaluated adaptive attacks are limited to
weight gradient-based bit-flip attacks. Considering the exis-
tence of other attacks, e.g. bit-flip trojan attack by hacking
model weights and input simultaneously [42] (different threat
model), and non-gradient attacks, the NeuroPots-based de-
fense idea can be further explored along this direction.

8 Related Work

Deep Neural Networks (DNNs) are vulnerable to both data-
and model-centric attacks. While the defenses against the
former, such as evasion [8, 9, 10], poisoning [43, 44], back-
door/trojan [11, 12, 13, 45, 46] have been intensively studied,
this does not hold for the latter exploiting hardware-based
fault injection techniques [14, 15, 16, 17, 47, 48]. Along this
direction, the recent BFAs crush quantized DNNs by leverag-
ing greedy gradient-based bit search and precise row-hammer
to flip the least number of weight bits stored in DRAMs.

There exist a few attempts to directly address BFA which
can be grouped into two categories: fault-tolerance enhance-
ment and fault detection. In the first category, it often requires
costly binarization-aware training [49] or BFA-aware weight
reconstruction [50], leading to either noticeable accuracy drop
or limited robustness improvement. For the second category, it
either requires detecting all model weights [38, 40, 51] to en-
sure detection rate or detecting weights within sensitive layers
only [22, 39] through embedding signatures or training ma-
chine learning models for detection. They either suffer from

high overhead or false negative detection. Moreover, they
cannot realize high-accurate real-time model recovery. As
evaluated in Section 7.2, NeuroPots-based trapdoor defense
outperforms them in detection rate and overhead significantly.

Hardware countermeasures can also prevent physical fault
injection channels. However, general rowhammer defenses
such as Error-Correcting Code and Intel SGX can be bro-
ken by new types of rowhammer attacks [52, 53], not to
mention the non-trivial hardware modifications like addi-
tional/probabilistic refreshes, memory controller redesign, etc.

Honeypot-based proactive defense has been applied in
many fields like IoT security [54, 55], cloud security [56, 57],
and network security [58, 59]. Recently “honeypot" is also
used to detect input-based adversarial attacks in deep learn-
ing [60]. However, our work differs in two aspects from theirs:
1) problem– bit flips inside DNN models v.s. pertubations of
input data outside DNNs; 2) approach– crafting honey neu-
rons inside DNNs vs. input trigger-based backdoor training.

9 Conclusion

In this work, we propose NeuroPots–a proactive defense con-
cept against the emerging bit-flip attacks (BFAs) dedicated to
quantized DNNs. Based on NeuroPots, we design a trapdoor-
enabled defense framework to efficiently detect and mitigate
BFAs. Our method embeds a very few well-designed honey
neurons as vulnerabilities into DNN models. These vulnera-
bilities are trapdoors that largely attract attackers to inject bit-
flips to the weights associated with honey neurons. Since most
bit-flips are captured by trapdoors, defenders can detect faults
and recover model accuracy effectively at run time. Extensive
experimental results show that our trapdoor-enabled defense
achieves high detection (mitigation) rate and extremely low
overhead against a variety of static and adaptive attacks.
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A Number of Bit-flips under BFAs

In Table 8, we list the number of bit-flips generated by three
basic BFAs and four adaptive attacks in clean models (w/o
trapdoor) and the trapdoored models (w/ trapdoor) on various
DNN structures. For basic attacks, we can observe that the
number of bit-flips in the trapdoored model is less than the
corresponding clean model on average for most DNN struc-
tures. For example, in ResNet-20, DeepHammer needs to flip
an average of 16 bits to degrade the clean model’s accuracy to
random guessing, while it needs 5 bits on the trapdoored mod-
els. This is because our defense intentionally implants more
vulnerable points into the model to attract attackers, which
makes attackers achieve their goals more easily. Note differ-
ent models have different resistance abilities to BFAs, causing
varied numbers of needed bit-flips. Since attackers usually
cannot know how many bit-flips are needed to achieve their
goal in a clean targeted model, it is hard to perceive trapdoors
by attackers. For adaptive attacks, we can observe that attack-
ers need to flip more bit-flips to achieve their goal, compared
to clean and trapdoored models under basic attacks.

B Detailed Settings of Trapdoor Techniques

Detailed settings of the trapdoor techniques are listed in Ta-
ble 7. We can observe that the optimal γ based on the guide-
lines described in Section 6.1.3 is generally (1, 3].

C Results of Defending against Adaptive At-
tacks with Different Attack Settings

We further evaluate the defense performance of the trapdoor-
enabled defense against various adaptive attacks by using
three representative DNN models and two datasets–CIFAR-
10 and ImageNet.

C.1 Defending against BBA
As Fig. 9 shows, the detection rate of our defense is always
100%. When t = 90%, the mitigation success rate slightly
drops, but the number of bit-flips of attack increases > 12.2×
(we set the maximum number of bit-flips is 500 in our ex-
periments), 13.9×, 14.6× compared to baseline on VGG-16,
AlexNet, ResNet-34, respectively.

C.2 Defending against NBA
Results for R-NBA. In Fig. 10, we can observe that, when
kb = 30%, the mitigation success rate of our defense decreases
by ∼ 20%, while the number of bit-flips of the attack rises
by > 12.2×, 10.1×, 13.9× on VGG-16, AlexNet, ResNet-34,
respectively.

Results for F-NBA. The results are shown in Fig.11. As
Fig. 11 (a) shows, when test times is 100, the attacker only
detects a small percentage of honey neurons on three models.
Therefore, in Fig 11 (b) and (c), we can observe that the
detection rate of our defense is still 100%, and the mitigation
success rate only has negligible degradation on three models.

D Defending against Oracle Attack

Table 9 reports the detailed settings and results of hybrid
countermeasures against oracle attack to test the bound of our
trapdoor defense. As a result, if oracle attacker bypasses our
functional neurons (honey and enhanced neurons), the needed
bit-flips (or the efforts needed in physical fault injection) of
the attacker will increase by > 12.2×, 12.1×, 13× on VGG-
16, AlexNet, ResNet-34, respectively.

Table 7: Detailed configurations of NeuroPots on different
DNN structures and datasets

Dataset Structure N Nl γ

CIFAR-10 ResNet-20 2 10 3
VGG-16 10 10 3

ImageNet
AlexNet 25 8 (all layers) 2

ResNet-34 15 10 3
MobileNet-V2 2 10 1.1

Google
Speech

Command
WideResNet-28 10 10 3



Table 8: Number of bit-flips (mean±standard deviation) of clean model (w/o trapdoor) and trapdoor model (w/ trapdoor) under
various basic BFAs and adaptive attacks for different DNNs.

Basic Attacks

Trapdoor Attack CIFAR-10 ImageNet
Google Speech

Command
ResNet-20 VGG-16 AlexNet ResNet-34 MobileNet-V2 WideResNet-28

w/o trapdoor
BFA 13±6 32±11 13±4 9±2 3±1 5±3

T-BFA 13±5 35±11 13±5 8±2 3±1 5±4
DeepHammer 16±6 41±13 16±5 11±3 3±1 6±3

w/ trapdoor
BFA 4±1 10±2 10±4 5±1 3±1 3±1

T-BFA 4±1 11±2 10±4 6±1 3±1 4±2
DeepHammer 5±1 22±9 13±5 8±1 3±1 3±1

Adaptive Attacks

w/ trapdoor

BBA 17±7 75±16 31±6 16±5 3±1 8±3
R-NBA-b 20±8 80±15 29±8 18±4 3±1 11±2
R-NBA-a 17±6 62±12 17±5 13±3 3±1 8±2
F-NBA 19±6 60±13 20±6 12±3 3±1 7±2

Table 9: Configuration details and results of our hybrid countermeasures under oracle attack.
Models High-sensitivity layers Mid-sensitivity layers γ for honey/

enhanced neurons kh/ke
Num. of bit-fllips Honey weights

w/o trapdoor w/ trapdoor w/ trapdoor
VGG-16 [1] [2,3,4] 5/0.5 20/50 41 >500 51K (0.15%)
AlexNet [1] [2,3,4] 2/0.5 30/50 15 181 576K (1.06%)

ResNet-34 [1,10] [2,3,4,5,8,32] 2/0.5 20/50 10 130 92K (0.42%)
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Figure 9: Results of the trapdoor-enabled defense against bit-level bypass (BBA) expert attack on VGG-16, AlexNet, ResNet-34.
a) Detection rate of our defense. b) Mitigation success rate of our defense. c) Number of bit-flips of the attack.
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Figure 10: Results of the trapdoor-enabled defense against neuron-level bypass expert attack (R-NBA-b) with bypassing
top-ranked neurons on VGG-16, AlexNet, ResNet-34. a) Detection rate of our defense. b) Mitigation success rate of our defense.
c) Number of bit-flips of the attack.
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Figure 11: Results of the trapdoor-enabled defense against neuron-level bypass expert attack with bit-flips frequency-based
neuron bypass (F-NBA) on VGG-16, AlexNet, ResNet-34. a) Honey neurons detection rate of the attack b) Detection rate of our
defense. c) Mitigation success rate of our defense. d) Number of bit-flips of the attack.
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