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Abstract

Few-shot knowledge graph (KG) completion task aims to perform inductive rea-
soning over the KG: given only a few support triplets of a new relation ./ (e.g.,
(chop, ./, kitchen), (read, ./, library)), the goal is to predict the query triplets
of the same unseen relation ./, e.g., (sleep, ./, ?). Current approaches cast the
problem in a meta-learning framework, where the model needs to be first jointly
trained over many training few-shot tasks, each being defined by its own relation,
so that learning/prediction on the target few-shot task can be effective. However,
in real-world KGs, curating many training tasks is a challenging ad hoc process.
Here we propose Connection Subgraph Reasoner (CSR), which can make predic-
tions for the target few-shot task directly without the need for pre-training on the
human curated set of training tasks. The key to CSR is that we explicitly model
a shared connection subgraph between support and query triplets, as inspired by
the principle of eliminative induction. To adapt to specific KG, we design a corre-
sponding self-supervised pretraining scheme with the objective of reconstructing
automatically sampled connection subgraphs. Our pretrained model can then be
directly applied to target few-shot tasks on without the need for training few-shot
tasks. Extensive experiments on real KGs, including NELL, FB15K-237, and
ConceptNet, demonstrate the effectiveness of our framework: we show that even a
learning-free implementation of CSR can already perform competitively to existing
methods on target few-shot tasks; with pretraining, CSR can achieve significant
gains of up to 52% on the more challenging inductive few-shot tasks where the
entities are also unseen during (pre)training.

1 Introduction

Knowledge Graphs (KGs) are structured representations of human knowledge, where each edge
represents a fact in the triplet form of (head entity, relation, tail entity) [10, 13, 17, 20].
Since KGs are typically highly incomplete yet widely used in downstream applications, predicting
missing edges, i.e., KG completion, is one of the most important machine learning tasks over these
large heterogeneous data structures. Deep learning based methods have achieved great success on
this task [19, 21, 26], but the more challenging few-shot setting [23] is much less explored: Given a
background knowledge graph, an unseen relation, and a few support edges in triplet form, the task is
to predict whether this unseen relation exists between a query entity and candidate answers based
on the background knowledge graph. Such a setting captures the most difficult and important case
during KG completion: predict rare relations (i.e. appearing only a few times in the existing KG) and
incorporating new relations into the KG efficiently. It also tests the inductive reasoning skill of the
model on deriving new knowledge data-efficiently, which is critical for AI in general.
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Figure 1: The few-shot KG completion problem includes (A) few-shot task that aims to learn a new
relation (purple) and (B) background knowledge graph. Our CSR framework (C) first contexualizes
all triplets in the background KG, then finds the shared hypothesis in the form of a connection
subgraph using the Hypothesis Proposal module, and finally tests whether there is an evidence close
enough to the hypothesis using Evidence Proposal module. In general all edges shown have different
relation types, but here we only highlight ones in the connection subgraph with colors.

Existing approaches to few-shot KG completion [3, 18, 23, 24] typically adopt the meta-learning
framework [8], where the model is trained over a meta-training set consisting of many few-shot tasks
created from different relations in the background knowledge graph. GMatching [23], FSRL [24]
and Att-LMetric [18] are metric-based meta-learning methods that try to learn a good metric where
positive query pairs are closer to representation of edges in the support set than the negative ones.
MetaR [3] is an optimization-based meta-learning method that use a meta-learner to improve the
optimization of the task learner, such that the task learner can quickly learn with only few examples.

However, creating the meta-training set for some unknown few-shot tasks in test time is a very
difficult ad hoc process in practice. On existing benchmarks [23], the training few-shot tasks and
the target few-shot tasks are both randomly sampled from relations with least occurrences in the
full knowledge graph, meaning the training and target relations are from the same distribution. But
in reality, one has no information about the target few-shot tasks and the meta-training needs to be
manually constructed out of the background knowledge graph. This is challenging since background
knowledge graph often has a limited number of tasks due to the limited number of relations; creating
too many meta-training tasks out of the background KG may remove a large number of edges from
the KG, making it sparse and hard to learn over. Moreover, with a small meta-training set, the
target few-shot tasks are very likely out of the curated meta-training set distribution, since the novel
relation could be more complicated than known ones and the entities involved the target few-shot
tasks can also be unseen. This then makes meta-learning based method suffer negative transfer due to
distribution shift. Thus, having a method that can perform well on any novel few-shot tasks without
relying on specifically designed meta-training set is crucial for real-world applications.

Here we propose a novel modeling framework Connection Subgraph Reasoner (CSR) that can make
prediction on the target few-shot task directly without the need for meta-learning and creation of a
curated set of training few-shot tasks. Our insight is that a triplet of the unseen relation of interest
can be inferred through the existence of a hypothesis in the form of a connection subgraph, i.e. a
subgraph in KG that connect the two entities of the triplet. Intuitively, the connection subgraph
represents the logical pattern that implies the existence of the triplet. For the (chop, ./, kitchen)
example, such a connection subgraph that implies ./ is a two hop path in KG: {(chop, can be done

with, knife), (knife, is located at, kitchen)}. This insight allows us to cast the few-shot
link prediction as an inductive reasoning problem. Following the eliminative induction method of
inductive reasoning [9], our framework first recovers this hypothesis from the support triplets by
finding the connection subgraph approximately shared among the support triplets, then tests whether
this hypothesis is also a connection subgraph between the query entity and a candidate answer. We
show the full pipeline along with an example of connection subgraph in Figure 1. To better adapt to
specific KG, we design a novel encoder-decoder architecture based on graph neural networks (GNN)
to implement the two stages and a corresponding self-supervised pretraining scheme to reconstruct
diverse connection subgraphs.
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We demonstrate that a training-free implementation of CSR via edge mask optimization can already
discover the connection subgraph and reach link prediction performance competitive to many meta-
learning methods over real-world knowledge graphs. With pretraining and optionally meta-learning
over background KG uniformly, our method achieves high performance on both transductive and
inductive few-shot test tasks that involve long tails relations, which are out of distribution to the
training tasks; while existing methods using meta-learning suffers from distribution shift and cannot
handle inductive tasks. Over real KGs including NELL [13], FB15K-237 [20], and ConceptNet
[17], our method consistently exceeds or matches state-of-the-art methods in meta-training tasks free
setting, and far exceeds the best existing methods by up to 52 % in the the more challenging inductive
few-shot tasks where entities in the target few-shot tasks are also unseen. The implementation of
CSR can be found in https://github.com/snap-stanford/csr.

2 Related Work

2.1 Few-shot Relational Learning via Meta-Learning

Meta-learning is a paradigm of learning across a set of meta-training tasks and then adapting to a
new task during meta-testing [8]. To the best of our knowledge, all existing methods on few-shot
KG completion follow the meta-learning paradigm to address the data scarcity in the target few-shot
task [3, 18, 23, 24]. Therefore, these methods require the access to a meta-training set that contains
many few-shot KG completion tasks for training. On the two existing benchmarks NELL-One and
Wiki-One[23] the meta-training set is constructed by sampling from long tail relations, in the same
way as the target few-shot tasks are constructed. However, such a meta-training set is not given in
real world application and needs to be manually constructed out of the background knowledge graph
G to mimic the actual few-shot task during test time. This curation is inherently challenging because
that the background knowledge graph has a limited number of relations/tasks in G , the distribution of
the novel relations of interest is unknown, and the entites in the target few-shot tasks can be unseen in
the background KG. In this paper, we develop a more general pretraining procedure to remove the
dependency on manually created training tasks.

2.2 Few-shot Learning via Pretraining

It has been shown in natural language processing [2, 16] and computer vision [4, 5, 7] domains
that large-scale self-supervised pretraining can significantly improve task-agnostic few-shot learning
ability. One of the most successful pretraining objectives is predicting the next token or image patch
given ones seen before it. However, how to design such powerful pretraining objectives for few-shot
relational learning is still under-explored. In this work, we design a well motivated self-supervised
pretraining objective, i.e. recovering diverse connection subgraphs that correspond to different
inductive hypothesis. We show that such a pretraining scheme can significantly improve few-shot
relational learning tasks on knowledge graphs.

3 Few-shot KG Completion

Few-shot KG completion is defined as follows [3, 23]: Denote the background KG that represents
the known knowledge as G = (E ,R, T ), where E andR represents the set of entities and relations.
T = {(h, r, t)|h, t 2 E , r 2 R} represents the facts as triplets. Given a new relation r

0 62 R
and a support set Sr0 = {(hk, r

0
, tk)|hk 2 E}Kk=1, we want to make predictions over a query set

Qr0 = {(hj , r
0
, ?)|hj 2 E}Jj=1. This prediction on (hj , r

0
, ?) is typically converted to scoring triplet

(hj , r
0
, e) for all candidate entities e then ranking the scores. So we will proceed to consider Qr0

as directly containing full triplets (hj , r
0
, e) to score. We call this a K-shot KG completion task,

typically the number of support is a small number (K  5).

Note that existing works generally assume the entities in the few-shot tasks (support + query set)
belong to the background KG. However, in real world cases, the goal of few-shot KG completion is
to simulate learning of novel relations that may involve new entities not exist yet on the KG. Thus, in
this paper we also consider a more challenging inductive setting where entities in the few-shot tasks
do not belong to the entity set E , but new triplets about these unseen entities can be added at test time.
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4 Connection Subgraph Reasoner

In this section, we first discuss our main motivation from the inductive reasoning perspective and
present the general framework based on it. Then we introduce both learning-free and learning-based
implementations of this framework.

4.1 Inductive Reasoning

Inductive Reasoning refers to the reasoning process of synthesizing a general principle from past
observations, and then using this general principle to make predictions about future events [9].
Few-shot link prediction task can be seen as an inductive reasoning task with background knowledge.

The key motivation of our work is eliminative induction, one of the principled methods used to
reach inductive conclusions. Specifically, we consider the scientific hypothesis method: eliminating
hypotheses inconsistent with observations. In the context of few-shot link prediction task, we
explicitly try to find a hypothesis consistent with all examples in the support set, then test whether the
the query is consistent with this hypothesis.

To illustrate a simple case of this, we use the ./ example where the support triplets are (chop,
./, kitchen), (read, ./, library), and query triplet is (sleep, ./, ?). From a background KG
(e.g.ConceptNet), we can know a lot of knowledge in forms of triplets about these entities, such as
(kitchen, is part of, a house) and (read, is done by, human) etc. We essentially want to
find an induction hypothesis that explains how chop is related to kitchen in the same way that read is
related to library. In other words, we want to find the shared connection pattern over the background
KG that connects both two pairs of entities. In this case, we can observe that there is a simple shared
2 hop connection path that connects both pairs:

{(chop, can be done with, knife), (knife, is located at, kitchen)} (1)
{(read, can be done with, book), (book, is located at, library)} (2)

The abstracted inductive hypothesis consistent with both examples in the support set is then

9Z, (hc, can be done with, Z) ^ (Z, is located at, tc) =) (hc, ./, tc). (3)

This hypothesis can then be used to deduce that (sleep, ./, bedroom) has a high score, since we know
{(sleep, can be done with, bed), (bed, is located at, bedroom)} from the background KG.

More generally, the shared connection pattern can be graph structured instead of a two-hop path,
which then form a connection subgraph between the two end entities instead of a connection path
(Figure 1). Here we define the connection subgraph: Let G0 = (E 0

,R0
, T 0) be any subgraph of the

background KG G, (i.e., E 0 ✓ E , R0 ✓ R and T 0 ✓ T ) that satisfies the following requirement
for a given pair of nodes (hc, tc) on the KG. (1) hc 2 E 0 and tc 2 E 0; (2) there is no disconnected
component. We define the connection subgraph GC of (hc, tc) to be any such G0 where we further
ignore the node identity. The key insight is that we should only consider the relation structure patterns
and abstract away the node identity in order to construct a hypothesis.

Then a hypothesis like Eq. 3 can be represented as a connection subgraph GC by interpreting
each clause as an edge. And such a hypothesis is consistent with a support/query triplet (h, r,
t) if GC is a connection subgraph of h, t. In terms of the ./ example, the triplet (sleep, ./,
bedroom) is consistent with the hypothesis Eq. 3 because the connection subgraph form of the
hypothesis (hc, can be done with, Z) ^ (Z, is located at, tc) is a connection subgraph be-
tween sleep and bedroom, with hc, Z, tc corresponding to sleep, bed and bedroom respectively.
Given a pair of node, we further call the KG subgraph with node identity an evidence that wit-
nesses why the hypothesis is consistent with a connection subgraph of h, t;. Note the key difference
between hypothesis and evidence is that, different pair of nodes may share the same hypothe-
sis but each may have different evidence to support the consistency with such a hypothesis. As
an example, for both (sleep, ./, bedroom) and (chop, ./, kitchen), the hypothesis is the same
(hc, can be done with, Z)^(Z, is located at, tc). Yet the evidences are respectively {(sleep,
can be done with, bed), (bed, is located at, bedroom)} and {(chop, can be done with,
knife), (knife, is located at, kitchen)}

Note that this hypothesis formulation can be seen as a generalization of the typical path structured
logic rules considered by the multi-hop reasoning [11, 12, 22] and rule induction [6, 15] literature.
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However, even with our graph structured hypothesis so far, such a strict way of testing the consistency
with a hypothesis by checking of whether GC is a connection subgraph of h, t exactly would be
time-consuming and brittle due to the fuzziness of target relations and the KG incompleteness. Below
we develop our framework that relaxes the hypothesis representation and consistency testing criteria.

4.2 General Framework

Based on the above motivation, we design the following general framework Connection Subgraph
Reasoner (CSR) that includes 2 main modules: hypothesis proposal module Mp and evidence
proposal module Me. CSR then has the following 3 components:

(1) Triplet Contextualization. We first contextualize each triplet (h, r0, t) in support set Sr0 and
query set Qr0 by retrieving its contextualized graph G(h, t) ⇢ G such that it contains h, t and
captures most of the immediately relevant information about the pair. There are several prior works
on retrieving smaller subgraph around a triplet in KG for link prediction [19, 25]. We choose to use
the enclosing subgraph proposed by Grail [19], which is the subgraph induced by all nodes that are
in the k hops neigborhood of both h, t. We generally use k = 1, 2 depends on the density of KG.
We also supplement with random sampling of the neighbors of h, t in case the enclosing subgraph
itself is too small. We call the contextualized graphs of support triplets support graphs, and the
contextualized graphs of query triplets query graphs.

(2) Hypothesis Proposal. After contextualization, we would like to find the hypothesis consistent
with all support graphs. We use a hypothesis proposal module Mp to generate a hypothesis from
each support graph such that they are most similar to each other. Each hypothesis can be represented
as a soft edge maskm : [0, 1]E over edges in the corresponding support graph. To aggregates these
hypotheses to produce the embedding of one final hypothesis b, we take the mean of their GNN
embedding produced by a graph encoder Menc.

{mi}Ki=1 = Mp({G(hi, ti)|(hi, r
0
, ti) 2 Sr0})

b =
1

K

KX

i=1

Menc(G(hi, ti),mi)
(4)

Mp should compare all support graphs and output masks that represent the largest common connection
subgraph, i.e.

argmax(
KX

i=1

X

E

mi),

s.t. 8i, j 2 1...K, s(Menc(G(hi, ti),mi), Menc(G(hj , tj),mj)) > 1� ✏ (5)

(3) Hypothesis Testing. Finally, we want to test whether each query graph is consistent with the
proposed hypothesis. We uses evidence proposal module Me to take in b and a query graph to output
the closest evidence to the hypothesis represented by b. The score of the query is then the cosine
similarity between b and the embedding of the evidence.

mq = Me(b,G(hq, tq))

score = s(b,Menc(G(hq, tq),mq))
(6)

Me is intended to output mq such that

s(Menc(G(hq, tq),mq), b) > 1� ✏ (7)

Overall, we model hypothesis softly as the aggregation of approximately shared hypothesis connection
subgraphs between support graphs as found by Mp, then test its probabilistic consistency with query
graph by finding how close an evidence for this hypothesis can be found in the query graph by Me.
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For the Menc, we use the alternative message passing in PathCon [21] so that that it does not use
entity embedding as input can measures graph isomorphism :

a
i
v =

1

1 +
P

e2N (v) me

X

e2N (v)

s
i
e ·me (8)

s
i
v = a

i
v|| (v = h)|| (v = t) (9)

s
i+1
e = �(([sv, su, se]) ·W i + b

i), u, v 2 N (e) (10)

Menc(G,m) = max_pool(aLv )||aLh ||aLt , (11)

where L is number of layers and s
1
e is random or pretrained relation embedding. Note that we

concatenate the head and tail representation in the final graph representation so that the hypothesis
and evidence subgraph are compared with heads and tails matched already.

For Mp and Me, we introduce two specific implementations that satisfies the requirements Eq. 5 and
7 in the following sections.

4.3 CSR-OPT: Learning-free Implementation

We implement Mp and Me as a learning free optimization processes, where the masks are optimized
toward Eq. 5 and 7 directly.

ForMp, we formulate it as a constraint optimization problem:

Mp({G(hi, ti)|(hi, r
0
, ti) 2 Sr0}) = argmax

X
({mi}Ki=1)� � ⇤H(mq) (12)

s.t.

X
s(Menc(G(hi, ti),mi),Menc(G(hj , tj),mj)) > 1� ✏

0
,

connectivity(mi) > 1� ✏
0

Here we add a constraint on the connectivity that measures whether the nodes in the subgraph
represented by mi can be reachable from head or tail within 2 hops in the subgraph. Let A be a soft
adjacency matrix of the edge mask mi 2 [0, 1]|E|. We compute whether two nodes i, j can reach
each other within 2 hops as Ri,j = min((I +A+A

2)[i, j], 1), then

connectivity(mi) =
1

|E|
X

e=(n,n0)2E

mie ⇤min(Rn,hi +Rn,ti +Rn0,hi +Rn0,hi , 1) (13)

We also add the entropy regularization terms H(·) to force the mask to represent a valid subgraph.
Similarly, forMe:

T (b,G(hq, tq)) = argmax s(b,Menc(G(hq, tq),mq))� � ⇤H(mq) (14)

We optimize each objective independently using gradient descent, but do not train them together end to
end. TheMenc remains random initialized, but we found that this “random” GNN is already powerful
enough to distinguish non-isomorphic graphs as needed. Although this implementation is straight
forward and learning free, it is slow and difficult to incorporate additional training. Nevertheless, it
serves as a good way for directly verifying our hypothesis on the framework design.

4.4 CSR-GNN: Learning-based Implementation and Pretraining Scheme

We also design a fully GNN-based encoder-decoder approach to implement Mp and Me. We use
two models as building blocks: encoder fENC(G1,m1) : G ⇥ R|E| ! Rd that encodes graph G1

weighted by m1 to an embedding b, and decoder fDEC(G2, b) : G ⇥ Rd ! R|E| that decodes out the
weight m2 such that graph G2 weighted by m2 corresponds to the input embedding b. Intuitively,
fDEC(G2, fENC(G1,m1))) compares G1, G2 and finds the subgraph of G2 that is closest to the
subgraph of G1 induced by m1.

We then implementMp as an iterative process of comparing between all pairs of support graphs using
this encoder-decoder, as shown in Algorithm 1. We start with a full edge mask mi = 1 for each
graph Gi. During each iteration, each graph Gj obtains edge mask mjk as a result of comparing
against Gk weighted by mk. Gj then takes the shared parts betweenmjk by taking an element wise
minimum to obtain mj .
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Algorithm 1 Hypothesis Proposal ModuleMp of CSR-GNN
Require: n support graphs G1, . . . , Gn

1: Initialize the masks of all support graphs to be all ones: mi = 1, 8i 2 1, . . . , n
2: for iter  1, . . . do
3: for j  1, . . . , n do
4: for k  1, . . . , n do
5: mjk = fDEC(Gj , fENC(Gk,mk))
6: end for
7: mj = mink mjk

8: end for
9: end for
10:
11: return [m1, . . . ,mn]

Algorithm 2 CSR-GNN Full Architecture
Require: n support graphs G1, . . . , Gn, query graph Gq

1: m1, . . . ,mn = Mp(G1, . . . , Gn)
2: Obtain subgraph embedding using the encoder: gi = fENC(Gi,mi)
3: Average subgraph embedding of the supporting graphs b = 1

n

P
i gi

4: Decode masks using g from the query graph Gq: mq = fDEC(Gq, b)
5: Obtain subgraph embedding for the query graph: gq = fENC(Gq,mq)
6:
7: return cosine_similarity(gq, b)

We use fDEC(·) directly as Me. Combining these two steps, the full architecture is shown in 2, where
the encoder fENC(·) is shared with Menc. We use the same PathCon atchitecture for fDEC(·) as for
Menc, except that we concatenate b to the input edge embeddings before the first layer.

Encoder-Decoder Pretraining To train this encoder-decoder architecture, we simply use recon-
struction: given a graph G and a randomly sampled mask m 2 R|E|, we should obtain back the same
mask m after applying both encoder and decoder (Figure 2)

Lossrecon = `CE(m, fDEC(G, fENC(G,m))) (15)
To jointly train together withMenc, we also add contrastive loss

g = Menc(G,m) (16)
gpos = Menc(G, fDEC(G, fENC(G,m))) (17)
gneg = Menc(G

0
, fDEC(G

0
, fENC(G,m))) (18)

Losscontrast = max(s(gpos, g)� s(gneg, g) + �, 0) (19)
During pretraining, we sample graph G and G

0 by sampling random triplets per relation and con-
textualize them. G, G0 should correspond to different relations. Then we samplem that represents
mutiple random paths connecting to either head or tail in G.

5 Experiments

We evaluate our method CSR-OPT and CSR-GNN on few-shot KG completion tasks over three real
world KGs – NELL, FB15K-237 and ConceptNet. We take NELL directly from NELL-One [23] but

Encode

Sample Edge Masks

Decode

Reconstruct Edge Masks

Optimize Reconstruction Loss

Figure 2: Pretraining of Connection Subgraph Reconstruction.
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Table 1: Statistics of the benchmark datasets. BG refers to the background KG available during
training time.

NELL FB15K-237 ConceptNet
#rels #entities #edges #tasks #rels #entities #edges #tasks #rels #entities #edges #tasks

Trans-BG 291 68544 181109 11 200 14543 268039 30 14 790703 2541996 2

Ind-BG 291 44005 82318 - 200 11290 112477 - 14 619163 1191782 -
Ind-Test 291 24539 98791 11 200 3253 155562 10 14 171540 1350214 2

add different settings; we select the fewest appearing relations as target few-shot tasks in FB15K-237
and ConceptNet following [12, 23]. We summarize the statistics of all three datasets in Table 1. We
also created one synthetic dataset for explanatory purpose. Across all four KGs, (1) we first evaluate
our method against the previous methods on real KGs in terms of few-shot learning performance
without the pre-designed training few-shot tasks set, on both transductive and inductive settings;
(2) we perform extensive ablation studies on each component of our method and show that every
component are indispensable in our framework; (3) we show that with a manually curated meta-train
set, meta-learning based method suffers from negative transfer when facing a different target test set;
(4) on the synthetic dataset, we further show that our method is able to recover complex hypothesis
and evidence connection subgraphs during the prediction. We consider state-of-the-art few-shot KG
completion baselines MetaR and FSRL in terms of the standard ranking metrics MRR and Hits@h,
where we sample 50 negative tail candidates for each query triplet and rank them together with the
positive tail entity. Hits@h measures the percentage of times that the positive tail is ranked higher
than h among the negative tail candidates. We use h = 1, 5, 10. For simplicity, we only consider the
number of few shot example K = 3, even though all methods here can generalize to arbitrary K.
See appendix A for more details on full experiment setups. Since the methods have low variance in
general, bellow we omit the standard deviations in the table and provide them instead in appendix A.

5.1 Few-shot Learning without Curated Training Tasks

We first evaluate our method CSR-OPT and CSR-GNN along with baselines on the three real KGs
without curated training tasks. This means that on NELL we do not use the meta-train split originally
provided in NELL-One. To adapt MetaR and FSRL to this setting, we use pretrained entity and
relation embeddings as in the original papers, but meta-train them on randomly sampled tasks from
the background KG instead. Since our method is designed to not include entity embeddings, we add
it in by concatenating the head and tail entity embedding to the representation produced byMenc in
CSR-GNN. Similarly, we also perform end-to-end finetuning on the same set of randomly sampled
tasks in addition to our pretraining objectives. See ablations for these modifications in Section 5.2.

5.1.1 Transductive Setting

As shown in Table 2, we demonstrate that our learning-free method CSR-OPT can already give
competitive performance without any training over the real dataset. With CSR-GNN, we can
pretrain over these real KG to achieve higher performance exceeding/competitive to meta learning
results: CSR-GNN gives 17.8% improvement of MRR over the second best method on NELL, 5%
improvement on ConceptNet and comes close second on FB15k-237. On FB15K-237, the graph
is much denser than NELL and ConceptNet so that the pretrained entity embeddings could already
capture most relational structures when predicting the query triples. However, this is only limited to
the transductive setting, where all entities are seen during pretraining.

5.1.2 Inductive Setting

We evaluate the same set of methods in inductive version of these three datasets, where all entities
involved in the testing few-shot task and their one hop neigbors are unseen in the background
knowledge graph. In this setting, we do not use entity embedding for our methods, and pick the best
performance for baselines between using and not using entity embedding. As shown in table 5, our
methods only drops slightly in performance than in the transductive setting comparing to baselines,
resulting in significantly larger gains of up to 52% in this more challenging setting. This is because
our architecture is designed entirely based on topological rule and does not rely on entity embeddings,
while the performance of baselines in the transductive setting rely heavily on entity embedding. To
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Table 2: Performance comparison on transductive few-shot tasks without curated training tasks

MRR Hits@1 Hits@5 Hits@10

N
EL

L MetaR 0.471 0.322 0.647 0.763
FSRL 0.490 0.327 0.695 0.853
CSR-OPT 0.463 0.321 0.629 0.760
CSR-GNN 0.577 0.442 0.746 0.858

FB
15

K
-2
37 MetaR 0.805 0.740 0.881 0.937

FSRL 0.684 0.573 0.817 0.912
CSR-OPT 0.619 0.512 0.747 0.824
CSR-GNN 0.781 0.718 0.851 0.907

C
on

ce
pt
N
et MetaR 0.318 0.226 0.390 0.496

FSRL 0.577 0.469 0.695 0.753
CSR-OPT 0.559 0.450 0.692 0.736
CSR-GNN 0.606 0.496 0.735 0.777

Table 3: Inference time on NELL (inductive
setting).

NELL (inductive) MetaR FSRL CSR-GNN
Inference Time (s) 5.52 14.24 17.50
MRR 0.355 0.180 0.511

Table 4: Inference time on NELL (transduc-
tive setting).

NELL (transductive) MetaR FSRL CSR-GNN
Inference Time (s) 5.50 14.49 18.33
MRR 0.471 0.490 0.577

further demonstrate this, we show in Appendix B that our methods achieve similar large gain of up to
52% under transductive setting when all entity embedding are randomized during testing, equivalent
to an extreme inductive setting.

Table 5: Performance comparison on inductive few-shot tasks without curated training tasks

MRR Hits@1 Hits@5 Hits@10

N
EL

L MetaR 0.353 0.191 0.517 0.820
FSRL 0.180 0.090 0.242 0.360
CSR-OPT 0.425 0.303 0.534 0.657
CSR-GNN 0.511 0.348 0.725 0.837

FB
15

K
-2
37 MetaR 0.315 0.143 0.506 0.896

FSRL 0.453 0.299 0.571 0.922
CSR-OPT 0.554 0.429 0.727 0.844
CSR-GNN 0.624 0.479 0.833 0.894

C
on

ce
pt
N
et MetaR 0.154 0.041 0.260 0.452

FSRL 0.402 0.233 0.603 0.740
CSR-OPT 0.547 0.425 0.726 0.740
CSR-GNN 0.611 0.496 0.729 0.786

5.1.3 Inference Time

We have also measured the inference time of our method and baselines on NELL. As shown in Table
3 and 4, we find that our method has comparable inference runtime compared with state-of-the-art
baselines FSRL but it’s slower than MetaR. The reason is that for each query triplet, our model needs
to use the evidence proposal module to decode the edge masks and obtain the embeddings for the
connection subgraphs. Compared with MetaR, which directly uses shallow KG embeddings to score
each query triplet in TransE style, CSR achieves much better empirical performance and also allows
inductive few-shot KG link prediction.
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Table 6: Ablative results on NELL.

Entity Embedding Finetuning Hypothesis Proposal Evidence Proposal MRR

" " " " 0.577
7 " " " 0.511
7 7 " " 0.466
7 7 7 " 0.441
7 7 " 7 0.436
7 7 7 7 0.420

5.2 Ablation Study

Here we conduct ablation study on each component of our proposed model CSR-GNN on the NELL
dataset. Specifically we consider the four components of our models. It includes (1) whether we use
the pretrained KG entity embeddings or not; (2) whether we perform additional finetuning of our
model; (3) whether we perform the hypothesis proposal as shown in Algorithm 1, an alternative is to
directly assign full one masks for m1, . . . ,mn without detecting the common subgraph; (4) whether
we perform the evidence proposal for the query triplets, if not, we will propose a full one mask for the
query graph. As shown in Table 6, each component in our model is indispensable. Due to our model
architecture design, without entity embeddings, MRR decreases from 0.577 to 0.511, however it’s
still much higher than state-of-the-art baselines with pretrained entity embeddings (0.471 for MetaR).
Next we show that the two proposed stages Hypothesis Proposal and Evidence Proposal play a key
role. Without either of them, it means that our model can no longer accurately perform eliminative
induction over the support or the query triples, which may significantly deteriorates the performance.

5.3 Robustness to Distribution Shift

To demonstrate the distribution shift problem when constructing meta-training set, we construct a
new set of test few-shot learning tasks and compare the meta-learning based methods performance
on this new test set against performance on the original test set when using the same meta-training
set. Specifically, on the existing NELL dataset, the meta-training and test tasks/relations are sampled
from the same long-tail distribution. Here we sample the new set of test few-shot learning tasks by
randomly sampling the 10 test relations from the whole background KG, so that there exists a gap
between the training tasks and the test tasks on the new set. Comparing ours with the state-of-the-art
FSRL, we achieve comparable MRR on both test the original and our new challenging tasks (0.590
vs 0.540) while FSRL suffers greatly from the distribution gap (0.578 vs 0.459). This demonstrates
the robustness of our method in handling different distribution of test tasks.

5.4 Synthetic Dataset

For explanatory purpose, we construct synthetic datasets that strictly follow our assumptions so that
we have the ground truth of the hypothesis connection subgraphs. In each task, all support graphs
contain a shared connection graph, and the query is only True if the query graph also contains the
same connection graph. We show that CSR-OPT can recover hypothesis and evidence connection
subgraphs with high IOU of 0.843 and 0.992 when the hypothesis is in the form of a 4 clique. With
direct supervision of ground truth hypothesis during training, CSR-GNN can also achieve high IOU
of 0.809 and 0.981. See full details in Appendix C.

6 Conclusion

In this paper we proposed CSR, a general framework for few-shot relational reasoning over knowledge
graphs using self-supervised pretraining. Based on eliminative induction, we model hypothesis as the
shared connection subgraph between the support triplets and predict the query triplets by checking
evidence of the connection subgraph in the query graph. Our method achieves state-of-the-art
performance across multiple datasets on few-shot link prediction without curated training tasks.
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