Geometric Latent Diffusion Models for 3D Molecule Generation

Minkai Xu'! Alexander S. Powers!2 Ron O. Dror“! Stefano Ermon”! Jure Leskovec !

Abstract

Generative models, especially diffusion models
(DMs), have achieved promising results for gen-
erating feature-rich geometries and advancing
foundational science problems such as molecule
design. Inspired by the recent huge success of
Stable (latent) Diffusion models, we propose a
novel and principled method for 3D molecule
generation named Geometric Latent Diffusion
Models (GEOLDM). GEOLDM is the first la-
tent DM model for the molecular geometry do-
main, composed of autoencoders encoding struc-
tures into continuous latent codes and DMs oper-
ating in the latent space. Our key innovation is
that for modeling the 3D molecular geometries,
we capture its critical roto-translational equivari-
ance constraints by building a point-structured
latent space with both invariant scalars and equiv-
ariant tensors. Extensive experiments demon-
strate that GEOLDM can consistently achieve
better performance on multiple molecule gener-
ation benchmarks, with up to 7% improvement
for the valid percentage of large biomolecules.
Results also demonstrate GEOLDM’s higher ca-
pacity for controllable generation thanks to the
latent modeling. Code is provided at https:
//github.com/MinkaiXu/GeoLDM.

1. Introduction

Generative modeling for feature-rich geometries is an im-
portant task for many science fields. Typically, geometries
can be represented as point clouds where each point is em-
bedded in the Cartesian coordinates and labeled with rich
features. Such structures are ubiquitous in scientific do-
mains, e.g., we can represent molecules as atomic graphs
in 3D (Schiitt et al., 2017) and proteins as proximity spatial
graphs over amino acids (Jing et al., 2021). Therefore, de-
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veloping effective geometric generative models holds great
promise for scientific discovery problems such as material
and drug design (Pereira et al., 2016; Graves et al., 2020;
Townshend et al., 2021). Recently, considerable progress
has been achieved with machine learning approaches, es-
pecially deep generative models. For example, Gebauer
et al. (2019); Luo & Ji (2021) and Satorras et al. (2021a)
proposed data-driven methods to generate 3D molecules
(in silico) with autoregressive and flow-based models re-
spectively. However, despite great potential, the results are
still unsatisfactory with low chemical validity and small
molecule size, due to the insufficient capacity of the under-
lying generative models (Razavi et al., 2019).

Most recently, diffusion models (DMs) (Ho et al., 2020;
Song et al., 2021) have emerged with surprising results on
image synthesis (Meng et al., 2022) and beyond (Kong et al.,
2021; Li et al., 2022). DMs define a diffusion process that
gradually perturbs the data, and learn neural networks to
reverse this corruption by progressive denoising. Then the
denoising network can conduct generation by iteratively
cleaning data initialized from random noise. Several studies
have also applied such frameworks to the geometric domain,
especially molecular structures (Hoogeboom et al., 2022;
Wau et al., 2022; Anand & Achim, 2022). However, the
existing models typically run DMs directly in the atomic
feature space, which typically is composed of diverse phys-
ical quantities, e.g., charge, atom types, and coordinates.
These features are multi-modal with discrete, integer, and
continuous variables, making unified Gaussian diffusion
frameworks sub-optimal (Hoogeboom et al., 2022; Wu et al.,
2022) or requiring sophisticated, decomposed modeling of
different variables (Anand & Achim, 2022). Besides, the
high dimensionality of input features also increases DM
modeling difficulty, since the model’s training and sampling
require function forward and backward computation in the
full input dimension. Therefore, the validity rate of gener-
ated molecules is still not satisfying enough, and an ideal
approach would be a more flexible and expressive frame-
work for modeling complex structures.

In this paper, we propose a novel and principled method
to overcome the above limitations by utilizing a smoother
latent space, named Geometric Latent Diffusion Models
(GEOLDM). GEOLDM is set up as (variational) autoen-
coders (AEs) with DMs operating on the latent space. The
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Figure 1. Ilustration of GEOLDM. The encoder £, encodes molecular features x, h into equivariant latent variables zy, zn, and the latent
diffusion transitions q(zx,¢, Zn,+|2x,t—1, Zn,t—1) gradually added noise until the latent codes converge to Gaussians. Symmetrically, for
generation, an initial latent z, 7, z, 7 is sampled from standard normal distributions and progressively refined by equivariant denoising
dynamics €¢(2zx, zn). The final latents z, z, are further decoded back to molecular point clouds with the decoder De.

encoder maps the raw geometries into a lower-dimensional
representational space, and DMs learn to model the smaller
and smoother distribution of latent variables. For model-
ing the 3D molecular geometry, our key innovation is con-
structing sufficient conditions for latent space to satisfy the
critical 3D roto-translation equivariance constraints, where
simply equipping latent variables with scalar-valued' (i.e.,
invariant) variables lead to extremely poor generation qual-
ity. Technically, we realize this constraint by building the
latent space as point-structured latents with both invariant
and equivariant variables, which in practice is implemented
by parameterizing encoding and decoding functions with ad-
vanced equivariant networks. To the best of our knowledge,
we are the first work to incorporate equivariant features, i.e.,
tensors, into the latent space modeling.

A unique advantage of GEOLDM is that unlike previous
DM methods operating in the feature domain, we explicitly
incorporate a latent space to capture the complex structures.
This unified formulation enjoys several strengths. First, by
mapping raw features into regularized latent space, the la-
tent DMs learn to model a much smoother distribution. This
alleviates the difficulty of directly modeling complex struc-
tures’ likelihood, and is therefore more expressive. Besides,
the latent space enables GEOLDM to conduct training and
sampling with a lower dimensionality, which can also ben-
efit the generative modeling complexity. Furthermore, the
use of latent variables also allows for better control over the
generation process, which has shown promising results in
text-guided image generation (Rombach et al., 2022). This
enables the user to generate specific types of molecules with
desired properties. Finally, our framework is very general
and can be extended to various downstream molecular prob-
lems where DMs have shown promising results, i.e., target
drug design (Lin et al., 2022) and antigen-specific antibody
generation (Luo et al., 2022).

'In this paper, we will use “scalar” and “tensor” to interchange-
ably refer to type-0 (invariant) and type-1 (equivariant) features,
following the common terminologies used in geometric literature.

We conduct detailed evaluations of GEOLDM on multiple
benchmarks, including both unconditional and property-
conditioned molecule generation. Results demonstrate that
GEOLDM can consistently achieve superior generation per-
formance on all the metrics, with up to 7% higher valid
rate for large biomolecules. Empirical studies also show
significant improvement for controllable generation thanks
to latent modeling. All the empirical results demonstrate
that GEOLDM enjoys a significantly higher capacity to ex-
plore the chemical space and generate structurally novel and
chemically feasible molecules.

2. Related Work

Latent Generative Models. To improve the generative
modeling capacity, a lot of research (Dai & Wipf, 2019; Yu
et al., 2022) has been conducted to learn more expressive
generative models over the latent space. VQ-VAEs (Razavi
et al., 2019) proposed to discretize latent variables and use
autoregressive models to learn an expressive prior there. Ma
et al. (2019) instead employed flow-based models as the la-
tent prior, with applications on non-autoregressive text gen-
eration. Another line of research is inspired by variational
autoencoder’s (VAE’s) problem that the simple Gaussian
priors cannot accurately match the encoding posteriors and
therefore generate poor samples, and Dai & Wipf (2019);
Aneja et al. (2021) therefore proposed to use VAEs and
energy-based models respectively to learn the latent distri-
bution. Most recently, several works successfully developed
latent DMs with promising results on various applications,
ranging from image (Vahdat et al., 2021), point clouds (Zeng
et al., 2022), to text (Li et al., 2022) generation. Among
them, the most impressive success is Stable Diffusion mod-
els (Rombach et al., 2022), which show surprisingly realistic
text-guided image generation results. Despite the consider-
able progress we have achieved, existing latent generative
methods mainly work on latent space only filled with typi-
cal scalars, without any consideration for equivariance. By
contrast, we study the novel and challenging task that latent
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space also contains equivariant tensors.

Molecule Generation in 3D. Although extensive prior
work has focused on generating molecules as 2D graphs
(Jin et al., 2018; Liu et al., 2018; Shi et al., 2020), interest
has recently increased in 3D generation. G-Schnet and G-
SphereNet (Gebauer et al., 2019; Luo & Ji, 2021) employed
autoregressive approaches to build molecules by sequen-
tial attachment of atoms or molecular fragments. Similar
frameworks have also been applied to structure-based drug
design (Li et al., 2021; Peng et al., 2022; Powers et al., 2022).
However, this autoregressive approach requires careful for-
mulation of a complex action space and action ordering.
Other studies utilized atomic density grids, by which the
entire molecule can be generated in “one step” by outputting
a density over the voxelized 3D space (Masuda et al., 2020).
However, these density grids lack the desirable equivariance
property and require a separate fitting algorithm. In the
past year, DMs have attracted attention for molecule genera-
tion in 3D (Hoogeboom et al., 2022; Wu et al., 2022), with
successful application in downstream tasks like target drug
generation (Lin et al., 2022), antibody design (Luo et al.,
2022), and protein design (Anand & Achim, 2022; Trippe
et al., 2022). However, existing models mainly still work on
the original atomic space, while our method works on the
fundamentally different and more expressive latent space.

3. Background
3.1. Problem Definition

In this paper, we consider generative modeling of molecular
geometries from scratch. Let d be the dimension of node
features, then each molecule is represented as point clouds
G = (x,h), where x = (xy,...,xy) € RV*3 is the atom
coordinates matrix and h = (hy,..., hy) € RV*4 i the
node feature matrix, such as atomic type and charges. We
consider the following two generation tasks:

(I) Unconditional generation. With a collection of
molecules G, learn parameterized generative models py(G)
which can generate diverse and realistic molecules G in 3D.
(II) Controllable generation. With molecules G labeled
with certain properties s, learn conditional generation mod-
els pp(G|s) which can conduct controllable molecule gener-
ation given desired property value s.

3.2. Equivariance

Equivariance is ubiquitous for geometric systems such
as molecules, where vector features like atomic forces
or dipoles should transform accordingly w.rt. the coor-
dinates (Thomas et al., 2018; Weiler et al., 2018; Fuchs
et al., 2020; Batzner et al., 2021). Formally, a function F
is defined as equivariant w.x.¢ the action of a group G if
F o S4(x) =Ty 0 F(x),Vg € G where Sy, Ty are trans-

formations for a group element g (Serre et al., 1977). In
this work, we consider the Special Euclidean group SE(3),
i.e., the group of rotation and translation in 3D space, where
transformations 7, and S, can be represented by a transla-
tion t and an orthogonal matrix rotation R.

In molecules the features h are SE(3)-invariant while
the coordinates will be affected” as Rx + ¢ = (Rx; +
t,...,Rxy +t). This requires our learned likelihood to be
invariant to roto-translations. Such property has been shown
important for improving the generalization capacity of 3D
geometric modeling (Satorras et al., 2021a; Xu et al., 2022).

3.3. Diffusion Models for Non-geometric Domains

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) are latent variable models that model the data x
as Markov chains x7 - - - xg, with intermediate variables
sharing the same dimension. DMs can be described with
two Markovian processes: a forward diffusion process
q(x1.7 | X0) = Hleq(xt | x;—1) and a reverse denois-
ing process pg(Xo.1) = p(XT) Hthl po(Xi—1 | x¢). The
forward process gradually adds Gaussian noise to data x;:

q(x¢ | x4—1) = N(xe5 /1 = Bixy—1, B D), (D

where the hyperparameter (3.7 controls the amount of noise
added at each timestep ¢. The 31.7 are chosen such that sam-
ples x7 can approximately converge to standard Gaussians,
i.e., q(xr) ~ N(0,I). Typically, this forward process g is
predefined without trainable parameters.

The generation process of DMs is defined as learning a
parameterized reverse denoising process, which aims to in-
crementally denoise the noisy variables x7.; to approximate
clean data x in the target data distribution:

pg(thl | Xt) = N(thl; NG(Xtat)apr% 2

where the initial distribution p(xr) is defined as A/ (0, I).
The means pg typically are neural networks such as U-Nets
for images or Transformers for text, and the variances p;
typically are also predefined.

As latent variable models, the forward process
q(X1.7|x0) can be viewed as a fixed posterior, to
which the reverse process pg(xo.r) is trained to
maximize the variational lower bound of the likeli-
hood of the data Ly, = Egx;.1[x0) log% +
Z;F:z logw - 1ogp9(x0|x1)].

Po (Xt—1(xt)
rectly optimizing this objective is known to suffer serious
training instability (Nichol & Dhariwal, 2021). Instead,
Song & Ermon (2019); Ho et al. (2020) suggest a simple

However, di-

2We follow the convention to use Rx to denote applying group
actions R on x, which formally is calculated as xR7 .
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surrogate objective up to irrelevant constant terms:

Low = By conona[w(®)lle — €502, )

where x; = a;Xq + o€, with ap = \/Hi=1(1 — fBs) and

oy = /1 — a? are parameters from the tractable diffu-
sion distributions q(x¢|x0) = N (x¢; auxo, 071 ). €9 comes
from the widely adopted parametrization of the means

L 1 _ B ioht-
po(xe,t) == i (Xt T €9(x¢,t)). The reweight

57
) o 207 (1-B¢)(1—af)’ ) )
simply setting it as 1 often promotes the sampling quality.
Intuitively, the model ey is trained to predict the noise vector
€ to denoise diffused samples x; at every step ¢ towards a
cleaner one x;_1. After training, we can draw samples with

€p by the iterative ancestral sampling:

ing terms are w(t) = while in practice

Xt—1 = \/11—Bt (Xt - \/fi(yg EQ(Xt,t)) + PtE, (4)
with € ~ N(0, I'). The sampling chain is initialized from
Gaussian prior xp ~ p(z7) = N (x7;0, I).

4. Method

In this section, we formally describe Geometric Latent Dif-
fusion Models (GEOLDM). Our work is inspired by the
recent success of stable (latent) diffusion models (Rombach
et al., 2022), but learning latent representations for the geo-
metric domain is however challenging (Winter et al., 2021).
We address these challenges by learning a faithful point-
structured latent space with both invariant and equivariant
variables, and elaborate on the design details of geometric
autoencoding and latent diffusion in Section 4.1 and Sec-
tion 4.2 respectively. Finally, we briefly summarize the
simple training and sampling scheme in Section 4.3, and
further discuss extensions for conditioning mechanisms in
Section 4.4. A high-level schematic is provided in Figure 1.

4.1. Geometric Autoencoding

We are interested in first compressing the geometries G =
(x,h) € RN*(3+4) (see Section 3.1 for details) into lower-
dimensional latent space. We consider the classic autoen-
coder (AE) framework, where the encoder £4 encodes G
into latent domain z = £4(x, h) and the decoder D learns
to decode z back to data domain %, h = D¢ (z). The whole
framework can be trained by minimizing the reconstruction
objective d(D(E(G)), G), e.g., L, norms.

However, this classic autoencoding scheme is non-trivial in
the geometric domain. Considering we follow SE(3) group
in this paper (see Section 3.2), the typical parameterization
of latent space as invariant scalar-valued features (Kingma
& Welling, 2013) is very challenging:

Proposition 4.1. (Winter et al., 2022) Learning autoencod-
ing functions £ and D to represent geometries G in scalar-
valued (i.e., invariant) latent space necessarily requires an
additional equivariant function 1) to store suitable group
actions such that D(1(G),E(G)) = Tyg) © D(E(G)) =G.

The idea of this proposition is that Geometric AE requires
an additional function ' to represent appropriate group
actions for encoding, and align output and input positions
for decoding, to solve the reconstruction task. We leave a
more detailed explanation with examples in Appendix A.
For euclidean groups SE(n), Winter et al. (2022) suggests
implementing 1) as equivariant ortho-normal vectors in the
unit n-dimensional sphere S™.

In our method, instead of separately representing and apply-
ing the equivariance with 1), we propose to also incorporate
equivariance into £ and D by constructing latent features as
point-structured variables z = (zy,z,) € RV*G+k) which
holds 3-d equivariant and k-d invariant latent features zy
and z;, for each node. This in practice can be implemented
by parameterizing £ and D with equivariant graph neural
networks (EGNN5s) (Satorras et al., 2021b), which extract
both invariant and equivariant embeddings with the property:

Rz.+t,zy = E4(Rx+t,h); Rx+t, h = D (Rzy+t, z),
&)
for all rotations R and translations £. We provide parameter-
ization details of EGNNs in Appendix C. The latent points
zx can perform the role of v required in Proposition 4.1, to
align the orientation of outputs towards inputs. Furthermore,
this point-wise latent space follows the inherent structure of
geometries G, thereby achieving good reconstructions.

Then the encoding and decoding processes can be for-
mulated by gy (zx,zn|x,h) = N(Es(x,h),00I) and
pe(x,h|zy,2p) = Hivzl Pe (4, hilzx, zn) respectively. Fol-
lowing Xu et al. (2022); Hoogeboom et al. (2022) that linear
subspaces with the center of gravity always being zero can
induce translation-invariant distributions, we also define
distributions of latent z, and reconstructed x on the sub-
space that 27 Zy,; (or x;) = 0. The whole framework can
be effectively optimized by:

£AE = Erecon + L:rega

(6)
Liecon = _Eq¢(zx7zh|x,h)p§ (X, h‘zm Zh)v

which is a reconstruction loss combined with a regulariza-
tion term. The reconstruction loss in practice is calculated
as Lo norm or cross-entropy for continuous or discrete fea-
tures. For the £,,, terms we experimented with two variants:
KL-reg (Rombach et al., 2022), a slight Kullback-Leibler
penalty of g4 towards standard Gaussians similar to varia-
tional AE; and ES-reg, an early-stop g, training strategy to
avoid a scattered latent space. The regularization prevents
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latent embeddings from arbitrarily high variance and is thus
more suitable for learning the latent DMs (LDMs).

4.2. Geometric Latent Diffusion Models

With the equivariant autoencoding functions £ and D,
now we can represent structures G using lower-dimensional
latent variables z while still keeping geometric properties.
Compared with the original atomic features which are high-
dimensional with complicated data types and scales, the
encoded latent space significantly benefits likelihood-based
generative models since: (i) as described in Section 4.1,
our proposed AEs can be viewed as regularized autoen-
coders (Ghosh et al., 2020), where the latent space is more
compact and smoothed, thereby improving DM’s training;
(ii) latent codes also enjoy lower dimensionality and benefit
the generative modeling complexity, since DMs typically
operate in the full dimension of inputs.

Existing latent generative models for images (Vahdat et al.,
2021; Esser et al., 2021) and texts (Li et al., 2022) usually
rely on typical autoregressive or diffusion models to model
the scalar-valued latent space. By contrast, a fundamental
challenge for our method is that the latent space z contains
not only scalars (i.e,, invariant features) zy but also tensors
(i.e,, equivariant features) z. This requires the distribution
of latent DMs to satisfy the critical invariance:

pg(Zx,Zh) ZPO(RZXazh)7 v R. (7)

Xu et al. (2022) proved that this can be achieved if the initial
distribution p(zx 1, zn, ) is invariant while the transitions
Do (2Zx,t—1, Zn.t—1|Zx,t, Zn,¢) are equivariant:

Pe(Zx,tflaZh,tfﬂzx,tyzh#t) =
Po(Rzx t—1,2n1—1|R2Zxt,2n), VR.
®)
Xu et al. (2022); Hoogeboom et al. (2022) further show
that this can be realized by implementing the denoising
dynamics €y with equivariant networks such that:

RZx7t_1 + t, Zht—1 = €9 (sz,t + t, Zn,t, t), VR andt.

©))
which in practice we parameterize as time-conditional EG-
NNs. More model details are also provided in Appendix C.
Similar to the encoding posterior, in order to keep transla-
tion invariance, all the intermediate states zy ;, zy ¢ are also
required to lie on the subspace by . zy ;,; = 0 by moving
the center of gravity. Analogous to Equation (3), now we
can train the model by:

Lipn = Eeg)emn(0.0), [W(t)||€ = €9(2x,t, 21, 1)]]?],
(10)

with w(t) simply set as 1 for all steps ¢.

Theoretical analysis. The combined objective for the
whole framework, i.e., Lag + L1py, appears similar to the

Algorithm 1 Training Algorithm of GEOLDM
1: Input: geometric data G = (x, h)
2: Initial: encoder network &, decoder network D¢, de-
noising network €g
. First Stage: Autoencoder Training
: while ¢, £ have not converged do

3

4

5: iy, ph < Ep(x,h) {Encoding}
6: e~N(0,I)

7:  Subtract center of gravity from €4 in € = [€y, €]

8 Zy,Zp — €O 09+ 1 {Reparameterization }
9: %, h  De(zx,2n) {Decoding}

10:  Lag = reconstrcution([%, h], [x, h]) + Ly,
11:  ¢,& + optimizer(Lag; ¢, &)

12: end while

13: Second Stage: Latent Diffusion Models Training
14: Fix encoder parameters ¢

15: while 6 have not converged do
16:  Zx0,2h,0 ~ ¢o(2Zx, Zn|X, h)
17 t~U(0,T), e ~N(0,I)
18:  Subtract center of gravity from € in € = [&, €]
19: 24,2 = Qy|2x,0, 2Zn,0] + Oc€

20: £LDM = ||6 — Ga(Zx7t, Zht, t)H2

21: 0 < optimizer(Lrpy; 0)

22: end while

23: return £y, De, €9

{As lines 5-8}

standard VAE objective with an additional regularization.
We make the formal justification that considering neglecting
the minor L4 term, £ = Lyecon + L1y is theoretically an
SE(3)-invariant variational lower bound of log-likelihood:

Theorem 4.2. (informal) Let L := Lypcon + Lrpy. With
certain weights w(t), L is an SE(3)-invariant variational
lower bound to the log-likelihood, i.e., for any geometries
(x,h), we have:

[’(X’ h) 2 —Epiu [logp@g (X7 h)]7 and
L(x,h) = L(Rx +t,h), V rotation R and translation t,

where pg ¢(x,h) Epg (z,,20)Pe (X, D2y, 21) is the
marginal distribution of (x, h) under GEOLDM model.

Furthermore, for the induced marginal distribution
pa.¢(x, h), we also hold the equivariance property that:

Proposition 4.3. With decoders and latent DMs defined
with equivariant distributions, the marginal pg ¢(x,h) =
Epy (2,,2)Pe (X, |2y, 21) is an SE(3)-invariant distribution.

These theoretical analysis suggest that GEOLDM is pa-
rameterized and optimized in an SE(3)-invariant fashion,
which is a critical inductive bias for geometric generative
models (Satorras et al., 2021a; Xu et al., 2022) and pro-
vides explanations as to why our framework can achieve
better 3D geometries generation quality. We provide the full
statements and proofs in Appendix B
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Figure 2. Molecules generated by GEOLDM trained on QM9 (left three) and DRUG (right four).

Algorithm 2 Sampling Algorithm of GEOLDM
1: Input: decoder network D¢, denoising network €

2: zy 1, zZn ~ N(0,1I)

3: fortinT, T —1,---,1do

4 e~N(0,I) {Latent Denoising Loop}
5:  Subtract center of gravity from € in € = [€, €p)

6: Zi—1 = \/11_[5,‘ (Zt - \/lﬂiaf 69(Zt7 t)) + Pt€

7: end for

8: x,h ~ pe(x,h|zy0,2n,0) {Decoding}
9: return x, h

4.3. Training and Sampling

With the proposed formulation and practical parameteriza-
tion, we now present the training and sampling schemes for
GEOLDM. While objectives for training Geometric AEs
and LDMs are already defined in Equations (6) and (10),
it is still unclear whether the two components should be
trained one by one, or optimized simultaneously by back-
propagation through reparameterizing (Kingma & Welling,
2013). Previous work about latent DMs for image genera-
tion (Sinha et al., 2021; Rombach et al., 2022) shows that
the two-stage training strategy usually leads to better perfor-
mance, and we notice similar phenomena in our experiments.
This means we first train AE with regularization, and then
train the latent DMs on the latent embeddings encoded by
the pre-trained encoder. A formal description of the training
process is provided in Algorithm 1.

With GEOLDM we can formally define a residual generative
distribution pg ¢(x, h, zx, zn) = po(2x, zn)pe(x, h|zy, z1),
where py refers to the latent DM modeling the point-
structured latent codes, and p¢ denotes the decoder. We can
generate molecular structures by first sampling equivariant
latent embeddings from pg and then translating them back
to the original geometric space with p¢. The pseudo-code
of the sampling procedure is provided in Algorithm 2.

For the number of nodes NN, in the above sections, we
assume it to be predefined for each data point. In prac-
tice, we need to sample different numbers N for generating
molecules of different sizes. We follow the common prac-
tice (Satorras et al., 2021a) to first count the distribution
p(NN) of molecular sizes on the training set. Then for gen-
eration, we can first sample N ~ p(N) and then generate
latent variables and node features in size V.

4.4. Controllable Generation

Similar to other generative models (Kingma & Welling,
2013; Van Den Oord et al., 2016), DMs are also capable of
controllable generation with given conditions s, by model-
ing conditional distributions p(z|s). This in DMs can be im-
plemented with conditional denoising networks €y (z, ¢, s),
with the critical difference that it takes additional inputs
s. In the molecular domain, desired conditions s typically
are chemical properties, which are much lower-dimensional
than the text prompts for image generations (Rombach et al.,
2022; Ramesh et al., 2022). Therefore, instead of sophisti-
cated cross-attention mechanisms used in text-guided image
generation, we follow Hoogeboom et al. (2022) and simply
parameterize the conditioning by concatenating s to node
features. Besides, as a whole framework, we also adopt
similar concatenation methods for the encoder and decoder,
i.e., £4(x,h, s) and D¢(2zy, 2, s), to further shift the latent
codes towards data distribution with desired properties s.

5. Experiments

In this section, we justify the advantages of GEOLDM
with comprehensive experiments. We first introduce our
experimental setup in Section 5.1. Then we report and
analyze the evaluation results in Section 5.2 and Section 5.3,
for unconditional and conditional generation respectively.
We also provide further ablation studies in Appendix E to
investigate the effect of several model designs. We leave
more implementation details in Appendix D.

5.1. Experiment Setup

Evaluation Task. Following previous works on molecule
generation in 3D (Gebauer et al., 2019; Luo & Ji, 2021;
Satorras et al., 2021a; Hoogeboom et al., 2022; Wu et al.,
2022), we evaluate GEOLDM by comparing with the state-
of-the-art approaches on three comprehensive tasks. Molec-
ular Modeling and Generation measures the model’s ca-
pacity to learn the molecular data distribution and generate
chemically valid and structurally diverse molecules. Con-
trollable Molecule Generation concentrates on generating
target molecules with desired chemical properties. For this
task, we retrain the conditional version GEOLDM on molec-
ular data with corresponding property labels.

Datasets. We first adopt QM9 dataset (Ramakrishnan et al.,



Geometric Latent Diffusion Models for 3D Molecule Generation

Table 1. Results of atom stability, molecule stability, validity, and validity x uniqueness. A higher number indicates a better generation
quality. Metrics are calculated with 10000 samples generated from each model. On QM9, we run the evaluation for 3 times and report
the derivation. Note that, for DRUG dataset, molecule stability and uniqueness metric are omitted since they are nearly 0% and 100%
respectively for all the methods. Compared with previous methods, the latent space with both invariant and equivariant variables enables
GEOLDM to achieve up to 7% improvement for the validity of large molecule generation.

QM9 DRUG

# Metrics Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%) | Atom Sta (%) Valid (%)
Data ‘ 99.0 95.2 97.7 97.7 ‘ 86.5 99.9
ENF 85.0 4.9 40.2 394 - -
G-Schnet 95.7 68.1 85.5 80.3 - -
GDM 97.0 63.2 - - 75.0 90.8
GDM-AUG 97.6 71.6 90.4 89.5 77.7 91.8
EDM 98.7 82.0 91.9 90.7 81.3 92.6
EDM-Bridge 98.8 84.6 92.0%* 90.7 82.4 92.8%
GRAPHLDM 97.2 70.5 83.6 82.7 76.2 97.2
GRAPHLDM-AUG 97.9 78.7 90.5 89.5 79.6 98.0
GEOLDM 98.9 + 0.1 894+05 93.8+04 92.7 £0.5 84.4 99.3

*Results obtained by our own experiments. Other results are borrowed from recent studies (Hoogeboom et al., 2022; Wu et al., 2022).

2014) for both unconditional and conditional molecule gen-
eration. QM9 is one of the most widely-used datasets
for molecular machine learning research, which has also
been adopted in previous 3D molecule generation stud-
ies (Gebauer et al., 2019; 2021). QM9 contains 3D struc-
tures together with several quantum properties for 130k
small molecules, limited to 9 heavy atoms (29 atoms includ-
ing hydrogens). Following (Anderson et al., 2019), we split
the train, validation, and test partitions, with 100K, 18K,
and 13K samples. For the molecule generation task, we also
test GEOLDM on the GEOM-DRUG (Geometric Ensemble
Of Molecules) dataset. The DRUG dataset consists of much
larger organic compounds, with up to 181 atoms and 44.2
atoms on average, in 5 different atom types. It covers 37 mil-
lion molecular conformations for around 450,000 molecules,
labeled with energy and statistical weight. We follow the
common practice (Hoogeboom et al., 2022) to select the 30
lowest energy conformations of each molecule for training.

5.2. Molecular Modeling and Generation

Evaluation Metrics. We measure model performances by
evaluating the chemical feasibility of generated molecules,
indicating whether the model can learn chemical rules from
data. Given molecular geometries, we first predict bond
types (single, double, triple, or none) by pair-wise atomic
distances and atom types. Then we calculate the atom stabil-
ity and molecule stability of the predicted molecular graph.
The first metric captures the proportion of atoms that have
the right valency, while the latter is the proportion of gener-
ated molecules for which all atoms are stable. In addition,
We report validity and uniqueness metrics, which are the
percentages of valid (measured by RDKIT) and unique

molecules among all the generated compounds.

Baselines. We compare GEOLDM to several competitive
baseline models. G-Schnet (Gebauer et al., 2019) and Equiv-
ariant Normalizing Flows (ENF) (Satorras et al., 2021a)
are previous equivariant generative models for molecules,
based on autoregressive and flow-based models respectively.
Equivariant Graph Diffusion Models (EDM) with its non-
equivariant variant (GDM) (Hoogeboom et al., 2022) are
recent progress on diffusion models for molecule genera-
tion. Most recently, Wu et al. (2022) proposed an improved
version of EDM (EDM-Bridge), which further boosts the
performance with well-designed informative prior bridges.
To yield a fair comparison, all the baseline models use the
same parameterization and training configurations as de-
scribed in Section 5.1.

Results and Analysis. We generate 10, 000 samples from
each method to calculate the above metrics, and the results
are reported in Table 1. As shown in the table, GEOLDM
outperforms competitive baseline methods on all metrics
with an obvious margin. It is worth noticing that, for the
DRUG dataset, even ground-truth molecules have 86.5%
atom-level and nearly 0% molecule-level stability. This is
because the DRUG molecules contain larger and more com-
plex structures, creating errors during bond type prediction
based on pair-wise atom types and distances. Furthermore,
as DRUG contains many more molecules with diverse com-
positions, we also observe that unique metric is almost 100%
for all methods. Therefore, we omit the molecule stability
and unique metrics for the DRUG dataset. Overall, the supe-
rior performance demonstrates GEOLDM'’s higher capacity
to model the molecular distribution and generate chemically
realistic molecular geometries. We provide visualization of



Figure 3. Molecules generated by conditional GEOLDM. We conduct controllable generation with interpolation among different Polariz-
ability « values with the same reparametrization noise €. The given « values are provided at the bottom.

Table 2. Mean Absolute Error for molecular property prediction. A
lower number indicates a better controllable generation result. Re-
sults are predicted by a pretrained EGNN classifier w on molecular
samples extracted from individual methods.

Property a  Ae enomo eromo p - Cy

Units Bohr® meV meV meV D I%OIIK
QMOY* ‘ 0.10 64 39 36  0.043 0.040
Random* | 9.01 1470 645 1457 1.616 6.857
Natoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GEOLDM | 237 587 340 522 1.108 1.025

*The results of QM9 and Random can be viewed as lower
and upper bounds of MAE on all properties.

randomly generated molecules in Figure 2, and leave more
visualizations in Appendix F.

Ablation Study. Furthermore, to verify the benefits of in-
corporating equivariant latent features, we conduct ablation
studies with only invariant variables in the latent space,
called Graph Latent Diffusion Models (GRAPHLDM).
We run GRAPHLDM with the same configuration as our
method, except that all modules (i.e., encoder, decoder, and
latent diffusion models) are instead equipped with typical
non-equivariant graph networks. We also follow Hooge-
boom et al. (2022) to test GDM-AUG and GRAPHLDM-
AUG, where models are trained with data augmented by
random rotations. Table 1 shows the empirical improvement
of GEOLDM over these ablation settings, which verifies the
effectiveness of our latent equivariance design.

5.3. Controllable Molecule Generation

Evaluation Metrics. In this task, we aim to conduct control-
lable molecule generation with the given desired properties.
This can be useful in realistic settings of material and drug
design where we are interested in discovering molecules
with specific property preferences. We test our conditional
version of GEOLDM on QM9 with 6 properties: polariz-
ability «, orbital energies egonmo, eLumo and their gap Ae,
Dipole moment p, and heat capacity C,. For evaluating
the model’s capacity to conduct property-conditioned gen-
eration, we follow Satorras et al. (2021a) to first split the

QMO training set into two halves with 50K samples in each.
Then we train a property prediction network w on the first
half, and train conditional models on the second half. After-
ward, given a range of property values s, we conditionally
draw samples from the generative models and then use w
to calculate their property values as 5. We report the Mean
Absolute Error (MAE) between s and S to measure whether
generated molecules are close to their conditioned property.
We also test the MAE of directly running w on the second
half QM9, named QM9 in Table 2, which measures the bias
of w. A smaller gap with QM9 numbers indicates a better
property-conditioning performance.

Baselines. We incorporate existing EDM as our baseline
model. In addition, we follow Hoogeboom et al. (2022) to
also list two baselines agnostic to ground-truth property s,
named Random and N,,,s. Random means we simply do
random shuffling of the property labels in the dataset and
then evaluate w on it. This operation removes any relation
between molecule and property, which can be viewed as
an upper bound of MAE metric. Nyoms predicts the molec-
ular properties by only using the number of atoms in the
molecule. The improvement over Random can verify the
method is able to incorporate conditional property informa-
tion into the generated molecules. And overcoming Nagoms
further indicates the model can incorporate conditioning
into molecular structures beyond the number of atoms.

Results and Analysis. We first provide a visualization of
controlled molecule generation by GEOLDM in Figure 3,
as qualitative assessments. We interpolate the conditioning
property with different Polarizability values o while keeping
the reparameterization noise € fixed. Polarizability refers
to the tendency of matter, when subjected to an electric
field, to acquire an electric dipole moment in proportion to
that applied field. Typically, less isometrically molecular
geometries lead to larger o values. This is consistent with
our observed phenomenon in Figure 3.

We report the numerical results in Table 2. As shown in the
table, GEOLDM significantly outperforms baseline models,
including the previous diffusion model running on atomic
features (EDM), on all the property metrics. The results
demonstrate that by modeling in the latent space, GEOLDM
acquired a higher capacity to incorporate given property
information into the generation process.
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6. Conclusion and Future Work

We presented GEOLDM, a novel latent diffusion model
for molecular geometry generation. While current models
operate directly on high-dimensional, multi-modal atom fea-
tures, GEOLDM overcomes their limitations by learning
diffusion models over a continuous, lower-dimensional la-
tent space. By building point-structured latent codes with
both invariant scalars and equivariant tensors, GEOLDM is
able to effectively learn latent representations while main-
taining roto-translational equivariance. Experimental results
demonstrate its significantly better capacity for modeling
chemically realistic molecules. For future work, as a gen-
eral and principled framework, GEOLDM can be extended
to various 3D geometric generation applications, e.g., ap-
ply GEOLDM in more realistic drug discovery scenarios
with given protein targets, or scale up GEOLDM for more
challenging 3D geometries such as peptides and proteins.
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A. Explanation of Proposition 4.1

We first explain the intuition behind the theoretical justification of Proposition 4.1 by an example here. Considering given
a input geometry G = (h, x), the encoder £ and decoder D, such that G = D(E(G)). Then we can transform G by an
action g from SE(3)-group to G= T,G = (h,Rx + t) and input it into the autoencoders. Since the encoding function is
invariant, we have £(G) = £(G), and thus the reconstructed geometry however will still be G = D(£(G)) instead of G. This
is problematic because we couldn’t calculate the reconstruction error based on G and G, and a natural solution is that we
need an additional function 1) to extract the group action g. Then after decoding, we can apply the group action on generated
G to recover G, thereby solving the problem

Formally, the explanation is that all elements can be expressed in terms of coordinates with respect to a given basis. So we
should consider a canonical basis for all orbits, and learn the equivariant function v to indicate to which orbit elements are
decoded as “canonical”. For detailed theoretical analysis, we refer readers to Winter et al. (2022).

B. Formal Statements and Proofs

B.1. Relationship to SE(3)-invariant Likelihood: Theorem 4.2

First, recall the informal theorem we provide in Section 4.2, which builds the connection between GEOLDM'’s objective and
SE(3)-invariant maximum likelihood:

Theorem 4.2. (informal) Let L := Locon + Lrpy. With certain weights w(t), L is an SE(3)-invariant variational lower
bound to the log-likelihood, i.e., for any geometries (x,h), we have:

L(x,h) > —E,,..[logps.¢(x,h)], and 11
L(x,h) = L(Rx +t,h), V rotation R and translation t, (12)

where pg ¢(2x, 2n) = Ep, (2, ,2,)P¢ (X, h|2x, 21) is the marginal distribution of (x, h) under GEOLDM model.

Before providing the proof, we first present a formal version of the theorem:
Theorem B.1. (formal) For predefined valid {3;} X o, {c;}_o, and {p;} £, let w(t) satisfy:

Bt
© 2p7(1 = B)(1 — of)

Let L(x,1;0,0,€) := Lyocon(X, 150, &) + Lipp(2x, zn; 0). Then given the geometries (x,h) € RNXG+d) e haye:

w(t)

,vte(l,---,T], and w(0)=-—1. (13)

‘C(Xv h) > 7Epdam [logpe,é (Xa h)]a and (14)
L(x,h) = L(Rx + t,h), V rotation R and translation t, (15)

P0.¢(2x, Zn) = Ep, (5,,2)Pe (X, D2y, 24) is the marginal distribution of (X, h) under GEOLDM model.

As shown in the theorem, the conclusion is composed of two statements, i.e., Equation (14) and Equation (15). The first
equation states that £ is a variational lower bound of the log-likelihood, and the second equation shows that the objective £
is further SE(3)-invariant, i.e., invariant to any rotational and translational transformations. Here, we provide the full proofs
of the two statements separately. We first present the proof for Equation (14):

Proof of Theorem 4.2 (Equation (14)). For analyzing the variational lower bound in Equation (14), we don’t need to consider

the different geometric properties of x and h. Therefore, in this part, we use G to denote (zyx, zy), and zg to denote (zy, zy,).

Besides, we interchangeably use zg and z(go) to denote the “clean” latent variables at timestep 0, and use z(gT) to denote the

“noisy” latent variables at timestep 7. Then we have that:

Bpian 0108206 0)] = By 108 | pe(xlagn(ac)
zg

, . . 16

> Epgoia(6),05(2619) [log pe(Glzg) + logpe(zg) — logqe(zg|G)] Jensen’s inequality (16)

= Epa(6),00(z010) 108 P (Gl2g)] — Dx1(q4(261G)|pe(zg))- KL divergence

13
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Compared with the objective £ for GEOLDM that:
£(g, 97 ¢7 g) = ‘Cr(’CUn(g; ¢7 6) + ['LDM(ZQ; 9)

a7
= Epiaia(9).00(2019) 108 e (Gl26)] + Liom(2g; 0),
it is clear that we can complete the proof if we have:
Lipm(zg;0) = Dx(q¢(2619)[pe(zg)) (18)
= —H(qy(29|9)) — Eq, (2g/0)[log Po(2g)]
or since the Shannon entropy term H (g, (2zg|G)) is never negative, we can equivalently prove:
Lipm(zg;0) > —Eqy(z010) [log pe(zg)] (19)

Now we prove the inequality by analyzing the right side of the inequality. We first apply variational inference with an

inference model q( (1) |z(go) ). Note that, now we change the notation of “clean” latent variable from zg to zg ), to highlight

the timestep 1nformat10n of the latent diffusion model:

]Eq (Z(O)lg)[Inge( 9 ))]

T

T -1
By 107108 / (po(2§") [T vy~ 125)]
g

T
- t 20
> B on llogpo(a)) + D log () V1)) ~ loga(a§ ™) 20
t=1
T
-1 1 1
> E, o [ logpa(af ) — loga(zy125") = 3 Diwla(z 12,25 po(z " 2) +logpa(zy |2 )],

t=2
t—1
['il)M )

where we factorize log pg into a sequence of KL divergences between q(z(g )|zg ,z(g )) and py (zg |zg ). Now, for

t > 2, let us consider transitions g and pg with the form in Equations (1) and (2) respectively, which are both Gaussian
distributions with fixed variances. Then we can just set the standard deviation of po(x=1|x(") to be the same as that of

q(x®D|x® x())). With this parameterization, the KL divergence for i LDM ) is between two Gaussians with the same
standard deviations and thus can be simply calculated as a weighted Euclidean distance between the means. Using the
derivation results from in Section 3.3 that pg(x¢,t) := Be —€9(xy, 1)), we have that:

—a?

11—,3t (Xt - \/1

2 2
LEDZF, bi € — ezt 1)
LDM 0, (0,I) 2p§(1 _ 5t)(1 _ a%) H ( g )HQ
which gives us the weights of w(t) fort = 1,--- ,T. For pg(Z(go) |z(gl)), we can directly analyze it in the Gaussian form with
mean 0 0
) 7' —o1€9(zg ;1)
1) = .
Ho (Zg ) ) aq
And with
(0) Z(gl) — Op€
z; = —F4—
aq
we have that:
2
log po (2’ |zG)) = ~log 27 + |le — ea(zg, 1), = —Lipy (22)

with the normalization constant Z. This distribution gives us the weight of w(0). Besides, we have:

E, o [log po(z5) — q(25"125)) = 0 (23)

14
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since zg ~ N (0, I) for both pg and ¢. Therefore, without the constants, we have that:

t—1 t 0 t—1 t 0 1
E,, g log 0o (25 ZDK (zg V125,28 (2§~ 125))) — log po (2 |25
Ll (24)

T
> = Lo’ = LiDy = —Liom
t=2
which completes our proof. O

Proof of Theorem 4.2 (Equation (15)). Here we show that our derived lower bound is an SE(3)-invariant lower bound.
Recall the objective function:

L(x,150,0,8) = Ep,..(G).00 (2. /x.h) [ 108 Pe (X, hlzy, zn)] +

Lyecon(x,;0,8)

T
_ (25)
t—1 t 0 t—1 t 0 1

S Drila(ag 2y 28 Ipe(zgV12y))) — logpe (2]’ |2) .

t=2

L1pm(2x,2n;0)

Note that, we have ¢,(zx,2zn|G) and logpe(x,h|zy,z,) are equivariant distributions, i.e., g4(Razx,zn|Rx,h) and
log pe (Rx, h|Rzy, z,) for all orthogonal R.. Then for £,.con(x, h), we have:

Erecon (RX, h) = Epdata(g),q(ﬁ(zx,zh\Rx,h) [log be (RX7 h|ZX7 Zh)]

= / 4o (2x, zn|Rx, h) log pe (Rx, h|zy, z3)

g

= / q¢(RR_1zX, zn|Rx, h) log pe (Rx, h|RR ™'z, z,) Multiply by RR™! =
g

= / qs(R™ 'z, z3|x, h) log pe (x, h|R ™2y, 21,) Equivariance & Invariance ~ (20)
g

= /g 45 (¥,2n|x, h) log pe(x, hly,zp) - det R Change of Variables y = R™'z

=1
= Epy0a(0).05 (v ) [ 108 e (x, By, 2n)]
£ ewn(x h)

which shows that L,.con(x, h) is invariant. And for Lypy(2x,2n), given that q(zg (t=1) \z(gt), z(go)) and py(z¢ (= 1)|z(t)) are

equivariant distributions, we have that:

T

Loom(Rz,2") =Ep,.)| D Dirla(z{ 0,2 V1) 2 Rl 2 po(2$ 0, 2V lald), 2(0)
t=2
—logpo(Rz{), 2 2, z()")
(28 20D 50 0 R0 40y
s 24 X 148p > X 5 4p - (0) (0) (1) (1) i|
/ [Zlog o ( = D\z(f) (t))) logpg(Rzy ", 2y, |2y 24, )

/ XT:IOg RR ( )’ (t— 1)|RR—1 (t) Zg),R (0) ZS)))
v s(RR-1z (t 1) (t 1)|RR 1Z§<t)’z£1t)))
—log pQ(RZxO),Z )|z§} ,RR*lz“)) (Multiply by RR™ =T 27)

/ Zl J(R- z§f D ZD|R-150, 70 50 50
0g
2o o(R~1z “ 2 7y VR z;>,z§f>))

15



Geometric Latent Diffusion Models for 3D Molecule Generation

— log pe (2, (O)|R_1z§(1),z§11))} (Equivariance & Invariance)

Epm@[ZDKL (¥ Vg V02 20 ) e (vl 2 v, m))
t=2

—logpo (2,2 |y V), 2 ))}

=Lion(2, 2,")

)

which shows that ﬂLDM(RZ)((()), zk(lo)) is invariant. Furthermore, since we operate on the zero-mean subspace, the objectives
are naturally also translationally invariant. Thus, we finish the proof. O

B.2. Invariant Marginal Distribution: Proposition 4.3

We also include proofs for key properties of the equivariant probabilistic diffusion model here to be self-contained (Xu et al.,
2022; Hoogeboom et al., 2022). Note that, since here we are interested in the equivariant properties, we omit the trivial
scalar inputs h and focus on analyzing tensor features z. The proof shows that when the the initial distribution p(z(T)) is

invariant and transition distributions p(z,(f*l) \z,(f)) are equivariant, then the marginal distributions p(z)(f)) will be invariant,

importantly including p(zx © )) Similarly, with decoder p(x|z( )) also being equivariant, we can further have that our induced

distribution p(x) is invariant.

Proof. The justification formally can be derived as follow:
Condition: We are given that p(z!) = A(0, 1) is invariant with respect to rotations, i.e., p(zl ) = p(Rzl).

Derivation: Fort € {1,---,T}, let p(zi~!|z!) be equivariant distribution, i.e., p(z!~!|z!) = p(Rz!"!|Rz!) for all
orthogonal R. Assume p(z ) to be invariant distribution, i.e., p(z!) = p(Rz!) for all orthogonal R, then we have:

p(Rzl™!) = / p(RzL ™z )p(z) Chain Rule

= / p(Rz! ' RR'z!)p(RR'2) Multiply by RR™! =1

= / p(zl MR 2h)p(R1z2h) Equivariance & Invariance

t—1 ; —1,t

/yp(zX ly)p(y) de_th Change of Variablesy = R
= p(ziil)a

and therefore p(zL~1) is invariant. By induction, p(z! ~1),...,p(z?) are all invariant. Furthermore, since the decoder
x|zx ) is also equivariant, with the same derivation we also have that our induced distribution p(x) is invariant. O

C. Model Architecture Details

In our implementation, all models are parameterized with EGNNs (Satorras et al., 2021b) as backbone. EGNNs are a
class of Graph Neural Network that satisfies the equivariance property in Equations (5) and (9). In this work, we consider
molecular geometries as point clouds, without specifying the connecting bonds. Therefore, in practice, we take the point
clouds as fully connected graph GG and model the interactions between all atoms v; € V. Each node v, is embedded with
coordinates x; € R? and atomic features h; € R?. Then, EGNNs are composed of multiple Equivariant Convolutional
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Layers x'*1 h*! = EGCLI[x!, h!], with each single layer defined as:
m;; = ¢e (hia hév d?ja aij) )

bt = gn(hf, > éimy),
g (28)
o

l
1+1 I Z — X 14l
J#i

where [ denotes the layer index. €;; = ¢ r(m;;) acts as the attention weights to reweight messages passed from different
edges. d;; = |x! — xg ||2 represents the pairwise distance between atoms v; and v;, and a,; are optional edge features.
We follow previous work (Satorras et al., 2021a; Hoogeboom et al., 2022) to normalize the relative directions xé — xz in
Equation (28) by d;; + 1, which empirically improved model stability. All learnable functions, i.e., ¢, ¢n, ¢, and ¢;y, ¢, are
parameterized by Multi Layer Perceptrons (MLPs). Then a complete EGNN model can be realized by stacking L EGCL
layers such that x*, h = EGNN[x?, h®], which can satisfy the required equivariant constraint in Equations (5) and (9).

D. Featurization and Implementation Details

We use the open-source software RDKIT (Landrum, 2016) to preprocess molecules. For QM9 we take atom types (H, C, N,
O, F) and integer-valued atom charges as atomic features, while for Drugs we only use atom types. The results reported in
Sections 5.2 and 5.3 are based on the ES-reg regularization strategy (Section 4.3), where the encoder is only optimized with
1000 iterations of warm-up training and then fixed. For the diffusion process (Equation (1)), we use the polynomial noise
schedule (Hoogeboom et al., 2022; Wu et al., 2022), where « linearly decays from 103 /T to 0 w.rt. time step ¢. And for the

denoising process (Equation (2)), the variances are defined as p; = U;—;l By.

All neural networks used for the encoder, latent diffusion, and decoder are implemented with EGNNs (Satorras et al., 2021b)
by PyTorch (Paszke et al., 2017) package, as introduced in Appendix C. We set the dimension of latent invariant features k
to 1 for QM9 and 2 for DRUG, which extremely reduces the atomic feature dimension. For the training of latent denoising
network €g: on QM9, we train EGNNs with 9 layers and 256 hidden features with a batch size 64; and on GEOM-DRUG,
we train EGNNs with 4 layers and 256 hidden features, with batch size 64. For the autoencoders, we parameterize the
decoder D, in the same way as €y, but implement the encoder £, with a 1 layer EGNN. The shallow encoder in practice
constrains the encoding capacity and helps regularize the latent space. All models use SiLU activations. We train all the
modules until convergence. For all the experiments, we choose the Adam optimizer (Kingma & Ba, 2014) with a constant
learning rate of 10~# as our default training configuration. The training on QMO takes approximately 2000 epochs, and on
DRUG takes 20 epochs.

E. Ablation Studies

In this section, We provide additional experimental results on QMO to justify the effect of several model designs. Specifically,
we perform ablation studies on two key model designs: autoencoder regularization method and latent space dimension k.
The results are reported in Table 3.

Table 3. Results of ablation study with different model designs. Metrics are calculated with 10000 samples generated from each setting.

# Metrics ‘ Atom Sta (%) Mol Sta (%)  Valid (%) Valid & Unique (%)
GEOLDM (k = 1, KL-reg)* 95.45 40.7 83.7 83.5
GEOLDM (k = 16, ES-reg) 98.6 86.0 924 92.2
GEOLDM (k = 8, ES-reg) 98.7 87.1 92.1 92.0
GEOLDM (k = 4, ES-reg) 98.8 87.4 92.6 92.5
GEOLDM (k = 1, ES-reg) 98.9 + 0.1 894+05 93.8+04 92.7 £ 0.5

*Note that this reported result is already the best result we achieved for KL-reg.

We first discuss the effect of different autoencoder regularization methods, i.e., KL-reg and ES-reg (see details in 4.1), with
the latent invariant feature dimension fixed as 1. Following previous practice in latent diffusion models of image and point
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clouds domains (Rombach et al., 2022; Zeng et al., 2022), for KL-reg, we also weight the KL term with a small factor 0.01.
However, during our initial experiments where we naturally first try the KL-reg method, we observed unexpected failure
with extremely poor performance, as shown in the first row in Table 3. Note that, this reported result is already the best
result we achieved for KL-reg, with searching over a large range of KL term weights and latent space dimension. In practice,
we even notice the KL-reg is unstable for training, which often suffers from numerical errors during training. Our closer
observation of the experimental results suggests that the equivariant latent feature part always tends to converge to highly
scattered means and extremely small variances, which leads to the numerical issue for calculating KL term and also is not
suitable for LDM training. Therefore, we turned to constraining the encoder, more precisely, constraining the value scale of
encoded latent features, by early stopping the training encoder. This easy strategy turned out to work pretty well in practice
as shown in Table 3, and we leave the further study of KL-reg as future work in this area.

We further study the effect of latent invariance feature dimension k&, and the results are also reported in Table 3. As shown
in the table, we observe that generally GEOLDM shows better performance with lower k. This phenomenon verifies our
motivation that a lower dimensionality can alleviate the generative modeling complexity and benefit the training of LDM.
Specifically, the performances of GEOLDM on QM9 with £ set as 1 or 2 are very similar, so we only report &£ = 1 as
representative in Table 3. In practice, we set k as 1 for QM9 dataset and 2 for DRUG which contains more atom types.

F. More Visualization Results

In this section, we provide more visualizations of molecules generated from GEOLDM. Samples drawn from models trained
on QM9 and DRUG are provided in Figure 4 and Figure 5 respectively. These examples are randomly generated without any
cherry pick. Therefore, the generated geometries might be difficult to see in some figures due to imperfect viewing direction.

As shown in the two figures, the model is always able to generate realistic molecular geometries for both small and
large size molecules. An outlier case is that the model occasionally generates disconnected components, as shown in the
rightest column of Figure 5, which happens more often when trained on the large molecule DRUG dataset. However, this
phenomenon actually is not a problem and is common in all non-autoregressive molecule generative models (Zang & Wang,
2020; Jo et al., 2022), and can be easily fixed by just filtering the smaller components.

Figure 4. Molecules generated from GEOLDM trained on QM9.
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Figure 5. Molecules generated from GEOLDM trained on DRUG.
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