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Abstract: With advancements in data collection and storage technology, data analysis in modern

scientific research and practice has shifted from analyzing single data sets to coupling several data sets.

Here, we consider a nonparametric kernel regression in an internal data set analysis, using constraints

for auxiliary information from an external data set with summary statistics. Under several conditions,

we show that the proposed constrained kernel regression estimator is asymptotically normal, and

outperforms the standard kernel regression without external information in terms of the asymptotic

mean integrated square error. Furthermore, we consider the situation in which the internal and external

data have different populations. Simulation results confirm our theory and quantify the improvements

from using external data. Lastly, we demonstrate the proposed method using a real-data example.
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1. Introduction

With advancements in data collection and storage technology, many modern statistical anal-

yses have access to both primary individual-level data and information from independent

external data sets, which typically may be large, but often contain relatively crude infor-

mation, such as summary statistics, owing to practical and ethical reasons. Sources of

external data sets include those from a population-based census, administrative data sets,

and databases from past investigations. In what follows, primary individual-level data are

referred to as internal data. An internal data set addresses specific scientific questions, and so

may contain additional measured covariates from each sampled subject and, consequently, is

much smaller than external data sets, owing to cost considerations. Thus, there is a growing

need for internal data analysis that also uses summary information from external data sets.

This line of research fits into a more general framework of data integration Kim et al. (2021);

Lohr and Raghunathan (2017); Merkouris (2004); Rao (2021); Yang and Kim (2020); Zhang

et al. (2017); Zieschang (1990), and differs from traditional meta-analysis, which is based

on multiple data sets with summary statistics, without an internal individual-level data set

possibly containing additional covariates.

Here, we examine a regression between a univariate response variable Y and a covariate

vector U , based on an internal individual-level data set in which both Y andU are measured,

and an external data set with summary statistics on Y and X, where X is a part of the

vector U , that is, U = (X,Z), with Z being the part of U not measured in the external

data set, owing to the high cost of measuring Z or the progress of new technology and/or
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new scientific relevance related to measuring Z.

Under the same setting and a parametric model between the response Y and covariate

vector U , Chatterjee et al. (2016) propose a constrained maximum likelihood estimation by

using the summary information from an external data set in the form of constraints added to

the observed likelihood for the internal data. Other parametric or semiparametric approaches

using information from external data sets include those of (Breslow and Holubkov, 1997;

Chen and Chen, 2000; Deville and Särndal, 1992; Kim et al., 2021; Lawless et al., 1999; Qin

et al., 2015; Scott and Wild, 1997; Wu and Sitter, 2001).

We focus on nonparametric kernel regression Bierens (1987); Wand and Jones (1994);

Wasserman (2006), a well-established approach that does not require assumptions on the

regression function between Y and U , except for some smoothness conditions. Because of the

well-known curse of dimensionality for kernel-type methods, we focus on a low-dimensional

covariate U . A discussion on how to handle a large-dimensional U is given in Section 5.

To use summary information from an external data set, we propose a two-step con-

strained kernel (CK) regression method. In the first step, we apply a constrained optimiza-

tion procedure to obtain a fitted regression value µ̂i at each observed Ui in the internal data

set, with sample size n, i = 1, ..., n, subject to constraints constructed using the summary

information from the external data set. As a prediction, µ̂i is usually better than the fitted

value at Ui from the standard kernel regression, because it uses external information. In the

second step, we apply the standard kernel regression, treating µ̂i as the observed Y -values,

to obtain the entire estimated regression function.

To measure the performance of nonparametric regression methods, Fan and Gijbels
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(1992) propose the asymptotic mean integrated square error (AMISE). Using the AMISE,

we conduct both theoretical and empirical studies on the performance of the proposed CK.

The results show that when the sample size of the external data set is at least comparable

with that of the internal data set, under some conditions, the CK improves on the standard

kernel method that does not use external information. Moreover, the improvement can be

substantial.

The remainder of the paper is organized as follows. Section 2 describes the methodology,

and establishes the asymptotic normality of the CK estimator and its superiority over the

standard kernel estimator in terms of the AMISE. We begin with the internal and external

data sharing the same population, and then study the robustness of the proposed method

and some extensions to heterogeneous populations. Section 3 presents our simulation results,

and Section 4 discusses an example. Section 5 concludes the paper. All technical details are

provided in the Supplementary Material.

2. Methodology and Theory

2.1 Two-step CK estimation

The internal data set contains individual-level observations (Yi,Ui), for i = 1, ..., n, indepen-

dent and identically distributed (i.i.d.) from the population of (Y,U ), where Y is a univariate

response of interest, U is a p-dimensional vector of continuous covariates associated with Y ,

n is the sample size of internal data set, and p is a fixed integer smaller than n and does not
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vary with n. We wish to estimate the regression function

µ(u) = E(Y | U = u), (2.1)

the conditional expectation of Y given U = u, for any u ∈ U, the range of U .

Let κ(u) be a given kernel function on Rp, where throughout this paper, Rd denotes

the d-dimensional Euclidean space. We assume that U is standardized so that the same

bandwidth b > 0 is used for every component of U in the kernel regression. The standard

kernel regression estimator of µ(u) in (2.1), for any fixed u ∈ U, based on the internal data

set is

µ̂K(u) = arg min
µ

n∑
i=1

κb(u−Ui)(Yi − µ)2

=
n∑
i=1

Yiκb(u−Ui)

/ n∑
i=1

κb(u−Ui),

(2.2)

where κb(a) = b−pκ(a/b), a ∈ Rp.

The external data set is another i.i.d. sample of size m from the population of (Y,X),

independent of the internal sample, where X is a q-dimensional sub-vector of U , for q ≤ p.

We consider the scenario in which only some summary statistics are available from the

external data set. Specifically, the external data set provides a vector β̂g of least squares

estimates of β based on external data under a working model E(Y |X) = β>g(X) (not

necessarily correct), where a> denotes the transpose of the vector a throughout, and g is a

function from Rq to Rk with a fixed k. The form of g is known, and given as part of the

external information. For example, g(X) = (1,X>)>.

Regardless of whether the working model is correct, the asymptotic limit of β̂g is βg =

Σ−1g E{g(X)Y }, under some moment conditions, where Σg = E{g(X)g(X)>} is assumed
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to be finite and positive definite. From E(Y |X) = E{E(Y |U )|X} = E{µ(U )|X}, we obtain

that
E{β>g g(X)g(X)>} = E{Y g(X)>}Σ−1g E{g(X)g(X)>}

= E{E(Y |X)g(X)>}

= E[E{µ(U )|X}g(X)>]

= E{µ(U )g(X)>}.

Hence, the summary information from external data can be used through the constraint

E[{β>g g(X)− µ(U )}g(X)>] = 0. (2.3)

In (2.3), the external information β>g g(X) can be viewed as a projection of µ(U ) into the

linear space of g(X). Because µ(U ) is directly involved in constraint (2.3), this constraint

is particularly useful for kernel regression. It differs from the constraint in Chatterjee et al.

(2016), which is useful for parametric likelihood analysis with internal data, but not for

kernel regression.

We propose a two-step procedure. In the first step, we use (2.3) and the external

information to obtain predicted values µ̂1, ..., µ̂n of µ(U1), ..., µ(Un), respectively, to im-

prove µ̂K(U1), ..., µ̂K(Un) from the standard kernel regression. To achieve this, we estimate

µ = (µ(U1), ..., µ(Un))> using the n-dimensional vector µ̂ = (µ̂1, ..., µ̂n)> that is the solution

to the following constrained minimization:

µ̂ = arg min
(µ1,...,µn)>∈Rn

n∑
i=1

n∑
j=1

κl(Ui −Uj)(Yj − µi)2
/ n∑

k=1

κl(Ui −Uk) (2.4)

subject to
n∑
i=1

{β̂>g g(Xi)− µi}g(Xi)
> = 0, (2.5)

where the constraint in (2.5) is an empirical analog of (2.3) for the estimation of µ based on
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the internal data, and l in (2.4) is a bandwidth that may differ from b in (2.2). We discuss

selecting a bandwidth in Section 2.3.

To motivate the objective function in (2.4) being minimized, note that

n∑
j=1

κl(Ui −Uj){Yj − µ(Ui)}2
/ n∑

k=1

κl(Ui −Uk) ≈ E[{Y − µ(U )}2|U = Ui]

for each i and, hence, the objective function in (2.4), divided by n, approximates

1

n

n∑
i=1

E[{Y − µ(U )}2|U = Ui] ≈ E[{Y − µ(U )}2].

To derive an explicit form of µ̂ in (2.4), let G be the n × n matrix with the ith row

equal to g(Xi)
>, and let ĥ and µ̂K be n-dimensional vectors with ith components equal to

β̂>g g(Xi) and µ̂K(Ui), respectively, with µ̂K defined by (2.2). Then, solving (2.4)−(2.5) is

the same as solving

µ̂ = arg min
ν∈Rn

(ν>ν − 2ν>µ̂K), subject to G>(ν − ĥ) = 0.

From the Lagrange multiplier L(ν,λ) = ν>ν − 2ν>µ̂K + 2λ>G>(ν − ĥ) and ∇νL(ν,λ)

= 2ν − 2µ̂K + 2Gλ, we obtain that µ̂ = µ̂K −Gλ. From the constraint, G>ĥ = G>µ̂ =

G>µ̂K − G>Gλ. Solving for λ, we obtain that λ = (G>G)−1G>µ̂K − (G>G)−1G>ĥ.

Hence, µ̂ has the explicit form

µ̂ = µ̂K +G(G>G)−1G>(ĥ− µ̂K). (2.6)

This estimator adds an adjustment term to µ̂K , the estimator in (2.2) from the standard

kernel regression. The adjustment involves the difference ĥ− µ̂K and the projection matrix

G(G>G)−1G>. Because the additional information from the external data set is used in
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constraint (2.5), µ̂ in (2.6) is expected to be better than µ̂K , which does not use external

information, when the sample size of the external data set is at least comparable with that

of the internal data set. Proposition 1 in Section 2.2 quantifies this improvement.

To obtain an improved estimator of the entire regression function µ(u) defined by (2.1),

not just the function µ(u) at U1, ...,Un, we propose a second step , in which we apply the

standard kernel regression, with the responses Y1, ..., Yn replaced with µ̂1, ..., µ̂n, respectively.

Specifically, our proposed CK estimator of µ(u) is

µ̂CK(u) =
n∑
i=1

µ̂iκb(u−Ui)

/ n∑
i=1

κb(u−Ui), (2.7)

where b is the same bandwidth as in (2.2).

2.2 Asymptotic theory

We now establish the asymptotic normality of µ̂CK(u) in (2.7) for a fixed u, as the sample

size n of the internal data set increases to infinity. All technical proofs for this section are

given in the Supplementary Material.

Theorem 1. Assume the following conditions:

(A1) The response Y has a finite E|Y |s, with s > 2 + p/2, and Σg = E{g(X)g(X)>} is

positive definite. The covariate vector U has a compact support U ⊂ Rp. The density

of U is bounded away from infinity and zero on U, and has bounded second-order

derivatives.

(A2) The functions µ(u) = E(Y |U = u), σ2(u) = E[{Y − µ(U )}2|U = u], and g(x) are
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Lipschitz-continuous; µ(u) has bounded third-order derivatives; and E(|Y |s|U = u) is

bounded.

(A3) The kernel κ is a positive, bounded, and Lipschitz-continuous density with mean zero

and finite sixth moments.

(A4) The bandwidths b in (2.2) and l in (2.4) satisfy b → 0, l → 0, l/b → r ∈ (0,∞),

nbp →∞, and nb4+p → c ∈ [0,∞), as the internal sample size n→∞.

(A5) The external sample size m satisfies n = O(m), that is, n/m is bounded by a fixed

constant.

Then, for any fixed u ∈ U,

√
nbp{µ̂CK(u)− µ(u)} d−→ N

(
BCK(u), VCK(u)

)
,

where
d−→ denotes convergence in distribution as n→∞,

BCK(u) = c1/2[(1 + r2)A(u)− r2g(x)>Σ−1g E{g(X)A(U )}],

A(u) =

∫
κ(v)

{
1
2
v>∇2µ(u)v + v>∇ log fU(u)∇µ(u)>v

}
dv, (2.8)

VCK(u) =
σ2(u)

fU(u)

∫ {∫
κ(v − rw)κ(w)dw

}2

dv,

and fU is the density of U .

(A1) is stronger than the usual condition in the theory of kernel regression, which requires

only that s > 2 and the density fU is positive on U. It is a sufficient condition in our proof

of the efficiency of µ̂ in (2.6) in the first step.
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From the theory of standard kernel regression (Opsomer, 2000), under (A1)−(A4), the

kernel estimator µ̂K(u) in (2.2) also satisfies

√
nbp{µ̂K(u)− µ(u)} d−→ N

(
BK(u)VK(u)

)
,

BK(u) = c1/2A(u), VK(u) = σ2(u)
fU (u)

∫
{κ(v)}2dv.

(2.9)

Theorem 1 and (2.9) indicate that using external information does not improve the

convergence rate 1/
√
nbp when estimating µ(u), regardless of the value of m, for the following

reasons: (i) the summary information from the external data is not in the form of a kernel

regression, and (ii) the estimation of µ(u) involves Z = z, which is not in the external data

set.

Using external information does affect the asymptotic bias or variance in a kernel estima-

tion of µ(u). We now compare the asymptotic performance of the proposed estimator (2.7)

with that of the standard kernel estimator (2.2), which does not use external information,

although they have the same convergence rate.

Our first result relates to predicting µ = (µ(U1), ..., µ(Un))>. For the standard kernel

(2.2), µ is predicted as µ̂K = (µ̂K(U1), ..., µ̂K(Un))>; for the proposed estimator (2.7), µ is

predicted as µ̂ in (2.6). The following result shows that, with probability tending to one as

n→∞, ‖µ̂K − µ‖2 ≥ ‖µ̂− µ‖2, where ‖a‖2 = a>a, for a vector a.

Proposition 1. Under the conditions in Theorem 1 and nb4 →∞,

‖µ̂K − µ‖2 − ‖µ̂− µ‖2

nb4
p−→ E{A(U )g(X)>}Σ−1g E{A(U )g(X)},

where
p−→ denotes convergence in probability as n→∞, and A(u) is defined in (2.8).

This result shows the usefulness of constraint (2.3) from external information. Even
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when there is no covariate in the external data set, that is, g ≡ 1 and βg = E(Y ), constraint

(2.3) is still useful, because it becomes E(Y ) = E{µ(U )}, with E(Y ) estimated using the

external information β̂g =, which is equal to the sample mean of Y in the external data set,

to help with the estimation of µ using the internal data.

For any kernel estimator µ̂(u) satisfying
√
nbp{µ̂(u) − µ(u)} d−→ N

(
B(u), V (u)

)
, we

consider the AMISE, a measure of accuracy often used in the literature (Fan and Gijbels,

1992):

AMISE(µ̂) = E[{B(U )}2 + V (U )].

We now compare the proposed µ̂CK in (2.7) with the standard µ̂K in (2.2) in terms of the

AMISE. From (2.8) and (2.9),

E{VK(U )− VCK(U )} = {ρ(0)− ρ(r)}E{σ2(U )/fU(U )},

where r is given in (A4) and

ρ(r) =

∫ {∫
κ(w − rv)κ(v)dv

}2

dw. (2.10)

Under mild conditions (e.g., Example 1 and Proposition 2), ρ(0)−ρ(r) ≥ 0 and, hence, using

external information reduces the variability in the kernel estimation. On the other hand, if

we define Ag(X) = g(X)>Σ−1g E{g(X)A(U )}, then E[{A(U ) − Ag(X)}Ag(X)] = 0 and,

consequently,

E{BCK(U )}2 = cE[A(U ) + r2{A(U )− Ag(X)}]2

= cE{A(U )}2 + c r2(2 + r2)E{A(U )− Ag(X)}2

= E{BK(U )}2 + c r2(2 + r2)E{A(U )− Ag(X)}2,
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where c and r are given in (A4). This indicates that the expected squared asymptotic bias of

µ̂CK is larger than that of µ̂K , where the difference is measured as E{A(U )−Ag(X)}2, that

is, how good is Ag(X) as an approximation to A(U ) using external information. If external

information is very useful so that E{A(U )−Ag(X)}2 is close to zero, then E{BCK(U )}2 is

close to E{BK(U )}2.

Combining the results for the expected asymptotic variance and squared asymptotic bias,

we conclude that, in terms of the AMISE, the proposed µ̂CK is better than the standard µ̂K

if and only if (see the proof of Proposition 2 in the Supplementary Material)

c < τ
ρ(0)− ρ(r)

r2(2 + r2)
, τ =

E{σ2(U )/fU(U )}
E{A(U )− Ag(X)}2

. (2.11)

The value of τ in (2.11) can be viewed as a bias−variance trade-off when using external

information. In practice, the bandwidth b (and thus its limit c = limn→∞ nb
4+p) is often

chosen in relation to the variability. For example, when σ2(u) = σ2 does not depend on u,

Theorem 4.2 in Eubank (1999) shows that the optimal bandwidth is the one with c = c0σ
2,

for a constant c0 > 0. Thus, if external information is useful and τ is large, then a c satisfying

the inequality in (2.11) can be achieved, and µ̂CK is better than µ̂K in terms of the AMISE.

On the other hand, if τ is small, we may not be able to choose a c satisfying the inequality

in (2.11) to achieve a meaningful/reasonable improvement.

Example 1 (Gaussian kernels). The Gaussian kernel κ(u) = (2π)−p/2e−‖u‖
2/2 is the density

of a p-dimensional normal distribution N(0, Ip), where Ip is the identity matrix of order p.

For this kernel,
∫
κ(w− rv)κ(v)dv is the density of N(0, (1 + r2)Ip) and, thus, the function



KERNEL REGRESSION WITH CONSTRAINTS 13

in (2.10) is

ρ(r) =

∫ [
{2π(1 + r2)}−p/2e−‖w‖2/2

]2
dw = (2

√
π)−p{(1 + r2)}−p/2.

Hence, ρ(0) − ρ(r) = {1 − (1 + r2)−p/2}/(2
√
π)p > 0, for any r > 0 and, in terms of the

AMISE, µ̂CK is better than µ̂K if and only if

c < τ
{1− (1 + r2)−p/2}
(2
√
π)p r2(2 + r2)

.

The result in Example 1 can be extended to non-Gaussian kernels, as summarized in the

following result.

Proposition 2. Assume the conditions in Theorem 1 with r ≤ 1. Assume further that the

function in (2.10) has continuous second-order derivative ρ′′(s) < 0, for 0 < s < 1. Then,

AMISE(µ̂CK) < AMISE(µ̂K) if and only if

c < τ
−
∫ 1

0
(1− t)2ρ′′(rt)dt
2(2 + r2)

.

2.3 Bandwidth selection

(A4) in Theorem 1 provides the rates of the bandwidths l and b for µ̂CK . In practice, we

need to choose l and b with a given sample size n. To do so, we can apply the following

k-fold cross-validation (CV), as described in Györfi et al. (2002). Let G1, ...,Gk be a random

partition of the internal data set with approximately equal size n/k, and let µ̂
(−j)
CK (u) be the

estimator in (2.7) with bandwidths l and b, but without using data {(Yi,Ui), i ∈ Gj}, for

j = 1, ..., k. Then, over a reasonable range, we select (l, b) that minimizes

CV(l, b) =
k∑
j=1

∑
i∈Gj

{µ̂(−j)
CK (Ui)− Yi}2. (2.12)
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When n is not very large, there may not be enough validation terms in (2.12), in which case,

we can apply the following repeated sub-sampling cross-validation (RSCV) as an alternative.

We independently create G1, ...,GB, where each Gj is a subset of the internal data set with

size n0, and n − n0 is comparable with n. Then, we select (l, b) that minimizes CV(l, b) in

(2.12), with k replaced with B. Note that B can be a large number, not like the restricted

k in the k-fold CV.

2.4 Confidence intervals

Numerous works have studied confidence intervals for µ(u), at a fixed u, based on a kernel

estimation (Fan and Gijbels, 1996; Eubank, 1999; Wasserman, 2006). The main technical

difficulty is how to handle the bias in the kernel estimator of µ(u), regardless whether or not

we use external information. Note that the asymptotic bias BK(u) for the standard kernel

estimation and BCK(u) for the proposed CK estimation are not zero unless c = 0, and c > 0

leads to the best convergence rate for any kernel estimation.

If we can successfully estimate BK(u) or BCK(u), then we can apply confidence intervals

based on a kernel estimation with bias correction. However, bias estimation is difficult (Hall,

1992; Wasserman, 2006). here, we suggest using under-smoothing (Hall, 1992; Wasserman,

2006), that is, we choose bandwidths smaller than those chosen using CV (Section 2.3) for

the confidence intervals. Specifically, if b and l are selected using CV for the CK method,

then we calculate µ̂CK(u) using the under-smoothing bandwidths cll and cbb in the first and

second stages, respectively, where 0 < cl ≤ 1 and 0 < cb ≤ 1 are under-smoothing constants.

Then we set a confidence interval [ µ̂CK(u) − zαV̂
1/2
CK (u), µ̂CK(u) + zαV̂

1/2
CK (u)] for µ(u),



KERNEL REGRESSION WITH CONSTRAINTS 15

where V̂CK is the variance estimator given by (2.8),

V̂CK(u) =
σ̂2
CK(u)

f̂U(u)

∫ {∫
κ(v − rw)κ(w)dw

}2

dv,

f̂U is the kernel density estimator of fU , and

σ̂2
CK(u) =

n∑
i=1

{Yi − µ̂CK(Ui)}2κb̃(u−Ui)

/ n∑
i=1

κb̃(u−Ui),

for some bandwidth b̃. When σ2(u) does not depend on u, a simplified estimator is

σ̂2
CK =

1

n

n∑
i=1

{Yi − µ̂CK(Ui)}2.

Similarly, if we apply the standard kernel without using external information, then the under-

smoothing bandwidth is cbb for µ̂K , and the confidence interval is obtained by replacing

µ̂CK(u) with µ̂K(u) and V̂CK(u) with

V̂K(u) =
σ̂2
K(u)

f̂U(u)

∫
{κ(v)}2dv.

The performance of this confidence interval is examined using a simulation in Section

3.2.

2.5 Robustness against heterogeneity in populations and extensions

Here, we consider the situation in which the populations of the internal and external data

are different. Let R be the indicator for internal and external data. Let (Yi,Ui, Ri), for

i = 1, ..., N , be i.i.d. with total sample size N , where (Yi,Ui) with Ri = 1 are the observed

internal data, and (Yi,Xi) with Ri = 0 are the external data, but only summary statistics

based on the external data are available. Our interest is to estimate the regression function
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for the population of the internal data, that is,

µ1(u) = E(Y | U = u, R = 1), (2.13)

which reduces to µ(u) in (2.1) when the internal and external populations are the same.

The results obtained thus far hold when the internal and external populations are ho-

mogeneous, that is, (Y,X,Z) ⊥ R, where A ⊥ B denotes that A and B are independent.

To what extent are the results robust against a violation of (Y,X,Z) ⊥ R?

With R = 1 and R = 0 indicating the internal and external data, respectively, constraint

(2.3) is replaced with

E[{β>g g(X)− µ1(U )}g(X)>|R = 1] = 0, (2.14)

where

βg = [E{g(X)g(X)>|R = 0}]−1E{g(X)Y |R = 0}, (2.15)

because constraint (2.14) is used to estimate µ1(u) in (2.13) using the internal data (condi-

tioning on R = 1), whereas βg in (2.15) is the limit of the estimator β̂g based on the external

data (conditioning on R = 0). That is, if (2.14) holds, then all derived results hold after we

replace (2.3) with (2.14) and constraint (2.5) with

N∑
i=1

Ri{β̂>g g(Xi)− µi}g(Xi)
> = 0.

We now show that (2.14) holds under the condition

E(Y |X, R = 1) = E(Y |X, R = 0) and X ⊥ R. (2.16)
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Under (2.16), βg in (2.15) is equal to [E{g(X)g(X)>|R = 1}]−1E{g(X)Y |R = 1} (see the

Supplementary Material) and, consequently,

E{β>g g(X)g(X)>|R = 1} = E{Y g(X)>|R = 1}

= E[E{Y g(X)>|X, R = 1}|R = 1]

= E[E{Y |X, R = 1}g(X)>|R = 1]

= E[E{µ1(U )|X, R = 1}g(X)>|R = 1]

= E{µ1(U )g(X)>|R = 1},

that is, (2.14) holds.

Therefore, the derived results so far are robust, as long as (2.16) holds. Note that (2.16)

is still much weaker than (Y,X,Z) ⊥ R, because the first equality in (2.16) involves only

the moment instead of the distribution, and (2.16) is actually implied by (Y,X) ⊥ R.

Without (2.16), constraint (2.14) may not be satisfied, and thus the derived results may

not hold. Extensions may be possible if we have individual-level external data. Suppose

that the first equality in (2.16) holds, and estimates of ĥ(x) of h(x) = E(Y | X = x) are

available as external information. Then, we may extend our method by replacing constraint

(2.5) with
N∑
i=1

Ri{µi − ĥ(Xi)}g(Xi)
> = 0. (2.17)

Note that ĥ can be obtained if we have individual-level external data.

Finally, we consider an extension from a different direction. In Section 2.1, we consider

only summary-level external information from a linear regression. We can generalize this

to any generalized estimating equation (GEE), such as a logistic regression for a discrete
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response Y . Assume that the summary-level statistic β̂ is a solution of the following GEE

based on external data:

N∑
i=1

(1−Ri)H(β̂, Yi,Xi) = 0,

where H is a known k-dimensional function. As an analogy of (2.5), the following constraint

for GEE summary-level information can be used:

N∑
i=1

RiH(β̂, µi,Xi) = 0.

3. Simulation Results

In this section, we present simulation results to examine the performance of our proposed

CK estimator (2.7), and to compare it with that of the standard kernel estimator (2.2) that

does not use external information.

We consider univariate covariates X = X and Z = Z (p = 2 and q = 1) in two cases:

(i) bounded covariates: X = BW1 + (1 − B)W2 and Z = BW1 + (1 − B)W3, where W1,

W2, and W3 are identically distributed as uniform on [−1, 1], B is uniform on [0, 1],

and W1, W2, W3, and B are independent;

(ii) normal covariates: (X,Z) is bivariate normal with means zero, variances one, and

correlation 0.5.

Conditioned on (X,Z), the response Y is normal with mean µ(X,Z) and variance one, where

µ(X,Z) follows one of the following four models:

M1. µ(X,Z) = X/2− Z2/4;
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M2. µ(X,Z) = cos(2X)/2 + sin(Z);

M3. µ(X,Z) = cos(2XZ)/2 + sin(Z);

M4. µ(X,Z) = X/2− Z2/4 + cos(XZ)/4.

Note that all four models are nonlinear in (X,Z); M1−M2 are additive models, and M3−M4

are nonadditive.

The internal and external data are generated according to the following two settings:

S1. The internal and external data sets are sampled independently from the same popula-

tion of (Y,X,Z) with sizes n = 200 and m = 1, 000, respectively.

S2. A total of N = 1, 200 data are generated from the population of (Y,X,Z). The internal

and external data are indicated by R = 1 and R = 0, respectively, and given (Y,X,Z),

R is generated according to P(R = 1 | Y,X,Z) = 1/ exp(1 + 2|X|). Under this setting,

the unconditional P(R = 1) is between 10% and 15%.

Note that S2 is for the scenario in Section 2.5.

3.1 Mean integrated square error

First, we examine performance of the kernel estimators in terms of the mean integrated

square error (MISE). The following measure is calculated by simulation with S replications:

MISE =
1

S

S∑
s=1

1

T

T∑
t=1

{µ̂(s)
1 (Us,t)− µ1(Us,t)}2, (3.1)

where {Us,t : t = 1, ..., T} are test data for each simulation replication s, the simulation is

repeated independently for s = 1, ..., S, µ1 is defined by (2.13), and µ̂
(s)
1 is an estimator of
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µ1, using a method described previously based on internal and external data, independent

of the test data. We consider two ways of generating test data Us,t. The first is to use

T = 121 fixed grid points on [−1, 1] × [−1, 1] with equal space. The second is to take a

random sample of T = 121, without replacement, from the covariate U of the internal data

set, for each fixed s = 1, ..., S and independently across s. Hence, the simulated nbp×MISE

approximates the AMISE.

To show the benefit of using external information, we calculate the improvement in

efficiency as follows:

IMP = 1− min{MISE(µ̂CK) over all CK methods}
MISE(µ̂K)

. (3.2)

In all cases, we use the Gaussian kernel introduced in Example 1. The bandwidths b and

l in (2.7) affect the performance of the kernel methods. We consider two types of bandwidths

in the simulation. The first is “the best bandwidth”; for each method, we evaluate the MISE

in a pool of bandwidths, and display the one with the minimal MISE. This shows the best

we can achieve in terms of bandwidth, but it cannot be used in practice. The second is to

select a bandwidth from a pool of bandwidths using 10-fold CV (2.12), which produces a

decent bandwidth that can be applied to real data.

In practice, we cannot choose g in constraint (2.5), because it is given as part of the

external information. In our simulation, we try different g to determine the effect on the CK

method. Under setting S1, we consider four choices of g: g(X) = 1, (1, X)>, (1, ĥ(X))>,

and (1, X, ĥ(X))>, where ĥ is a kernel estimator of h(x) = E(Y |X = x).

The simulated MISE defined in (3.1) based on S = 500 replications is presented in Table
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1 for setting S1. Note that, for the case of g(X) = 1 or (1, X)>, the results in Table 1 for

the CK estimator apply to both external summary statistics and external individual-level

data. We also calculate the integrated bias by simulation, which is given by (3.1), with

{µ̂(s)
1 (Us,t) − µ1(Us,t)}2 replaced with µ̂

(s)
1 (Us,t) − µ1(Us,t). The results are shown in Table

A1 of the Supplementary Material.

From Table 1, the proposed CK estimator may be substantially better (in terms of the

MISE) than the standard kernel estimator that does not use external information. The

improvement in efficiency, IMP, defined in (3.2), is often over 10%, and can be as high as

72%. The bandwidths selected using CV work well, although they may not achieve the best

efficiency gain. The three choices of g functions in constraint (2.5), that is, g(X) = (1, X)>,

(1, ĥ(X))>, and (1, X, ĥ(X))>, work well and have comparable performance, but none show

any definite superiority. Thus, g(X) = (1, X)> is recommended for its simplicity.

Under setting S2, our main interest is to evaluate the performance of the CK estimator

with a fixed choice g(X) = (1, X)> when the internal and external populations are different,

as described in Section 2.5. We study two CK estimators: µ̂CK , with constraint (2.5),

which is incorrect because (2.16) does not hold, and µ̂CK , with constraint (2.17), which is

asymptotically valid (Section 2.5). The simulated MISE based on S = 500 replications is

shown in Table 2.

From Table 2, the estimator using constraint (2.17) is correct and more efficient than are

estimators that do not use external information. The CK estimator using constraint (2.5) is

biased, because (2.16) does not hold, and its performance depends on the magnitude of the

bias. In some cases, it can be much worse than the others, and in other cases, it is as good
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as the CK estimator using constraint (2.17).

Overall, the simulation results support our asymptotic theory, and show that the CK

estimator outperforms the kernel estimators that do not use external information.

3.2 Confidence intervals at some covariate values

The second part of the simulation examines the performance of the approximate 95% con-

fidence intervals described in Section 2.4 by applying the CK and standard kernel with

under-smoothing. We consider setting 1, with simulation size S = 1, 000. Table 3 shows

the simulated coverage probability (CP) and length of the confidence intervals and the bias

of the kernel estimators at some values of u. Note that the length is proportional to the

simulation average of the estimation squared error, and thus it indicates the efficiency of the

kernel estimator and the confidence interval. The values of the under-smoothing scales cb

and cl (see Section 2.4) and the true µ(u) are also included in Table 3.

From Table 3, when the covariates are bounded, all confidence intervals perform well in

terms of the CP. The intervals based on the CK method have much shorter lengths than

those based on the standard kernel without external information. For normally distributed

covariates, the intervals do not have a very good CP in a few cases, indicating that the

asymptotic theory does not yet apply, although, in general, the CK interval is shorter than

the interval based on the standard kernel.
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4. Application: An Example

We apply the proposed method to the University of Queensland Vital Signs Dataset (UQVSD)

for intensive care patients (Liu et al., 2012), which we use as the internal data set. The re-

sponse Y under consideration is the systolic blood pressure, a critical biomarker for health

conditions. We are interested in how Y is affected by two covariates, collected using a

sensor-gas analysis, namely, the inspired oxygen (inO2) and the end-tidal oxygen (etO2)

concentration. In addition, we consider three other covariates, namely, heart rate, respi-

ratory rate, and blood oxygen saturation. Because the sample size is only n = 32, it is

important that we seek assistance from external data.

We use the Medical Information Mart for Intensive Care III (MIMIC-III) (Johnson et al.,

2016) as the external data set with a large sample size of 54,060. This data set is a freely

available digital health record database with information of patients needing critical care.

Because both data sets study intensive care units, they can be considered as samples from

the same population, or from similar populations. However, the external data set MIMIC-III

does not have covariates inO2 and etO2, although both data sets share the same response

Y and covariates heart rate, respiratory rate, and blood oxygen saturation. Thus, inO2 and

etO2 are considered two components of Z.

Because the sample size for the internal data set is only 32, we use a kernel regression

with a lower dimension and, thus, consider a linear combination of heart rate, respiratory

rate, and blood oxygen saturation as a one-dimensional covariate X. The coefficients of

this linear combination are from the first eigenvector of the well-known sufficient dimension
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reduction algorithm SAVE (Cook and Weisberg, 1991; Shao et al., 2007), from which the

first eigenvector provides more than 94% of the variability. Therefore, the kernel regression

uses a three-dimensional covariate U .

Because we have all external individual-level data, we use them in two ways. The first

uses constraint (2.5), in which g> = (1, X) and β̂g is the least squares estimator under a

linear regression between Y and the covariate X. The second considers constraint (2.17)

to allow the populations from the two data sets to be different. For comparison, we also

include the standard kernel estimator (2.2). All bandwidths are selected using the RSCV,

with B = 100 and n0 = 3 (Section 2.3).

Figures 1−2 show plots of the fitted kernel regression of Y to the three covariates, X,

inO2, and etO2, using the three kernel methods described previously. Because we cannot

produce a four-dimensional figure for Y and the three covariates, Figure 1 shows the rela-

tionship betweenY , X, and etO2 when inO2 is fixed at three quartiles, namely, 61.2, 67.7,

and 77.9. Figure 2 shows the relationship between Y , X, and inO2 when etO2 is fixed at

three quartiles, namely, 56.3, 63.7, and 72.0. Table 4 shows the 95% confidence intervals

for systolic blood pressure under selected covariate values with the under-smoothing scale

cb = 0.8, cl = 1 and simplified variance estimator σ̂2
CK in Section 2.4.

It can be seen that the CK provides a clean pattern for the relationship between Y and

the covariates, whereas the standard kernel regression without external information provides

vague and flat regressions. Furthermore, the CK provides shorter confidence intervals.
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5. Discussion

The curse of dimensionality is a well-known problem for nonparametric methods. Thus, the

proposed CK method in Section 2 is intended for a low-dimensional covariate U , that is, p is

small. If p is not small, then we should reduce the dimension of U prior to applying the CK,

or any kernel methods. For example, consider a single-index model assumption (Li, 1991),

that is, µ(U ) in (2.1) is assumed to be

µ(U ) = µ(η>U ), (5.1)

where η is an unknown p-dimensional vector. The well-known SIR technique (Li, 1991)

can be applied to obtain a consistent and asymptotically normal estimator η̂ of η in (5.1).

Once η is replaced with η̂, the kernel method can be applied, with U replaced with the

one-dimensional “covariate” η̂>U . We can also apply other dimension-reduction techniques

developed under assumptions weaker than (5.1) (Cook and Weisberg, 1991; Li and Wang,

2007; Shao et al., 2007; Xia et al., 2002; Ma and Zhu, 2012). In fact, we reduce the dimension

using the method in Cook and Weisberg (1991) and Shao et al. (2007) in the example (Section

4).

We turn to the dimension of X in the external data set. When (2.16) holds, constraint

(2.5) can be used and the least square-type estimator β̂g is not seriously affected by the

dimension of X, unless the dimension of X is ultra-high in the sense that the dimension

of X over the size of the external data set does not tend to zero. If the dimension of X is

ultra-high, then we may consider the following approach. Instead of using constraint (2.5),
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we use the component-wise constraints

n∑
i=1

{µi − ĥ(k)(X(k)
i )}gk(X(k)

i )> = 0, k = 1, ..., q, (5.2)

where X
(k)
i is the kth component of Xi, gk(X

(k)) is a function of X(k), and ĥ(k)(X
(k)
i ) is

equal to β̂>gkgk(X
(k)) when (2.5) is used. Additional constraints are involved in (5.2), but

the estimation involves only the one-dimensional X(k), for k = 1, ..., q.

The kernel κ we adopted in (2.2), (2.4), and (2.7) is called the second-order kernel,

such that the convergence rate of µ̂CK(u) − µ(u) is n−2/(4+p). A dth-order kernel with

d ≥ 2, as defined by Bierens (1987), may be used to achieve a convergence rate of n−d/(2d+p).

Alternatively, we may also apply other nonparametric smoothing techniques, such as the

local polynomial Fan et al. (1997), to achieve a convergence rate of n−d/(2d+p), for d ≥ 2.

Our results can be extended to scenarios in which several external data sets are available.

Because each external source may provide different covariate variables, we may need to apply

component-wise constraints (5.2) by estimating ĥ(k) by combining all external sources that

collect covariate X(k). If the populations of the external data sets are different, then we may

have to apply a combination of the methods described in Section 2.5.

Supplementary Material

The online Supplementary Material contains all technical lemmas and proofs, as well as some

additional numerical results.
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Györfi, L., M. Kohler, A. Krzyżak, and H. Walk (2002). A Distribution-Free Theory of

Nonparametric Regression. Springer, New York.

Hall, P. (1992). Effect of Bias Estimation on Coverage Accuracy of Bootstrap Confidence

Intervals for a Probability Density. The Annals of Statistics 20 (2), 675 – 694.

Johnson, A. E. W., T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi,

B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark (2016). Mimic-iii, a freely

accessible critical care database. Scientific Data 3 (1), 160035.

Kim, H. J., Z. Wang, and J. K. Kim (2021). Survey data integration for regression analysis

using model calibration. arXiv 2107.06448 .



KERNEL REGRESSION WITH CONSTRAINTS 29

Lawless, J., J. Kalbfleisch, and C. Wild (1999). Semiparametric methods for response-

selective and missing data problems in regression. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 61 (2), 413–438.

Li, B. and S. Wang (2007). On directional regression for dimension reduction. Journal of

the American Statistical Association 102 (479), 997–1008.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American

Statistical Association 86 (414), 316–327.

Liu, D., M. Görges, and S. A. Jenkins (2012). University of queensland vital signs dataset:

Development of an accessible repository of anesthesia patient monitoring data for research.

Anesthesia & Analgesia 114 (3).

Lohr, S. L. and T. E. Raghunathan (2017). Combining survey data with other data sources.

Statistical Science 32 (2), 293–312.

Ma, Y. and L. Zhu (2012). A semiparametric approach to dimension reduction. Journal of

the American Statistical Association 107 (497), 168–179.

Merkouris, T. (2004). Combining independent regression estimators from multiple surveys.

Journal of the American Statistical Association 99 (468), 1131–1139.

Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators. Journal of Multi-

variate Analysis 73 (2), 166–179.

Qin, J., H. Zhang, P. Li, D. Albanes, and K. Yu (2015). Using covariate-specific disease



KERNEL REGRESSION WITH CONSTRAINTS 30

prevalence information to increase the power of case-control studies. Biometrika 102 (1),

169–180.

Rao, J. (2021). On making valid inferences by integrating data from surveys and other

sources. Sankhya B 83 (1), 242–272.

Scott, A. J. and C. J. Wild (1997). Fitting regression models to case-control data by maxi-

mum likelihood. Biometrika 84 (1), 57–71.

Shao, Y., R. D. Cook, and S. Weisberg (2007). Marginal tests with sliced average variance

estimation. Biometrika 94 (2), 285–296.

Wand, M. P. and M. C. Jones (1994, December). Kernel Smoothing. Number 60 in Chapman

& Hall/CRC Monographs on Statistics & Applied Probability. Boca Raton, FL, U.S.:

Chapman & Hall.

Wasserman, L. (2006). All of Nonparametric Statistics. Springer, New York.

Wu, C. and R. R. Sitter (2001). A model-calibration approach to using complete auxiliary

information from survey data. Journal of the American Statistical Association 96 (453),

185–193.

Xia, Y., H. Tong, W. K. Li, and L.-X. Zhu (2002). An adaptive estimation of dimension

reduction space. Journal of the Royal Statistical Society. Series B (Statistical Methodol-

ogy) 64 (3), 363–410.



KERNEL REGRESSION WITH CONSTRAINTS 31

Yang, S. and J. K. Kim (2020). Statistical data integration in survey sampling: a review.

Japanese Journal of Statistics and Data Science 3 (2), 625–650.

Zhang, Y., Z. Ouyang, and H. Zhao (2017). A statistical framework for data integration

through graphical models with application to cancer genomics. The Annals of Applied

Statistics 11 (1), 161.

Zieschang, K. D. (1990). Sample weighting methods and estimation of totals in the consumer

expenditure survey. Journal of the American Statistical Association 85 (412), 986–1001.



KERNEL REGRESSION WITH CONSTRAINTS 32

Table 1: Simulated MISE (3.1) and IMP (3.2) with S = 500 under setting S1

µ̂CK (2.7) with constraint (2.5), g =

Covariate Model Test data b, l µ̂K (2.2) 1 (1, X) (1,ĥ) (1, X, ĥ) IMP %

Bounded M1 Sample Best 0.021 0.018 0.006 0.007 0.009 72.27

CV 0.030 0.026 0.014 0.015 0.018 51.41

Grid Best 0.046 0.043 0.018 0.019 0.024 61.12

CV 0.067 0.063 0.040 0.040 0.046 40.59

M2 Sample Best 0.046 0.037 0.036 0.033 0.029 36.30

CV 0.051 0.046 0.044 0.043 0.040 22.27

Grid Best 0.122 0.099 0.097 0.094 0.081 33.67

CV 0.134 0.123 0.122 0.125 0.110 18.16

M3 Sample Best 0.042 0.033 0.030 0.030 0.030 29.69

CV 0.046 0.041 0.039 0.039 0.039 15.95

Grid Best 0.101 0.088 0.086 0.088 0.081 20.20

CV 0.120 0.110 0.110 0.113 0.107 10.51

M4 Sample Best 0.022 0.018 0.007 0.008 0.009 67.20

CV 0.030 0.027 0.016 0.015 0.018 47.53

Grid Best 0.049 0.046 0.022 0.022 0.027 54.87

CV 0.073 0.068 0.045 0.044 0.050 39.36

Normal M1 Sample Best 0.067 0.060 0.050 0.049 0.062 27.57

CV 0.077 0.069 0.061 0.061 0.076 21.10

Grid Best 0.034 0.028 0.019 0.017 0.019 49.38

CV 0.035 0.031 0.025 0.023 0.026 35.66

M2 Sample Best 0.080 0.079 0.078 0.074 0.072 10.08

CV 0.087 0.088 0.086 0.086 0.084 3.96

Grid Best 0.053 0.053 0.052 0.051 0.049 8.10

CV 0.063 0.065 0.063 0.069 0.066 -0.00

M3 Sample Best 0.090 0.090 0.088 0.091 0.092 2.36

CV 0.099 0.098 0.097 0.102 0.102 2.05

Grid Best 0.053 0.051 0.050 0.053 0.051 6.33

CV 0.061 0.061 0.060 0.066 0.063 2.73

M4 Sample Best 0.072 0.068 0.058 0.056 0.063 22.64

CV 0.077 0.072 0.065 0.065 0.074 15.92

Grid Best 0.034 0.030 0.024 0.021 0.021 39.89

CV 0.036 0.034 0.029 0.026 0.028 27.44
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Table 2: Simulated MISE(3.1) and IMP (3.2) with S = 500 under setting S2

µ̂CK (2.7) with

constraint

Covariate Model Test data b, l µ̂K (2.2) (2.5) (2.17) IMP %

Bounded M1 Sample Best 0.021 0.014 0.006 72.77

CV 0.028 0.015 0.015 48.49

Grid Best 0.047 0.028 0.018 61.67

CV 0.062 0.040 0.039 36.67

M2 Sample Best 0.046 0.041 0.035 24.33

CV 0.053 0.044 0.044 17.16

Grid Best 0.123 0.103 0.095 23.29

CV 0.136 0.123 0.124 9.23

M3 Sample Best 0.042 0.036 0.030 27.89

CV 0.045 0.039 0.038 15.45

Grid Best 0.099 0.091 0.085 14.38

CV 0.120 0.111 0.112 7.06

M4 Sample Best 0.022 0.015 0.007 67.85

CV 0.030 0.015 0.015 50.65

Grid Best 0.049 0.032 0.022 54.14

CV 0.070 0.044 0.043 38.58

Normal M1 Sample Best 0.069 0.057 0.050 27.07

CV 0.075 0.060 0.059 21.81

Grid Best 0.034 0.024 0.019 44.34

CV 0.035 0.025 0.024 29.56

M2 Sample Best 0.082 0.082 0.079 3.15

CV 0.087 0.086 0.087 0.72

Grid Best 0.056 0.057 0.053 5.73

CV 0.062 0.062 0.063 -0.97

M3 Sample Best 0.092 0.092 0.089 3.26

CV 0.101 0.10 0.100 1.31

Grid Best 0.054 0.054 0.050 7.34

CV 0.061 0.060 0.059 3.00

M4 Sample Best 0.070 0.062 0.057 17.69

CV 0.079 0.068 0.067 14.96

Grid Best 0.033 0.027 0.024 27.32

CV 0.035 0.029 0.029 17.58

For CK estimator under all constraints, g(X) = (1, X).
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Table 3: Simulated coverage probability (CP), length of confidence internals, bias of kernel

estimator at some values of u (S = 1, 000 under setting S1), and values of µ(u) and under

smoothing scales cb and cl.

Covariate Model µ̂K (2.2) µ̂CK (2.7) µ̂K (2.2) µ̂CK (2.7) µ̂K (2.2) µ̂CK (2.7)

Bounded M1 CP 0.94 0.95 0.95 0.95 0.94 0.96

length 0.94 0.38 0.81 0.42 0.94 0.37

bias 0.02 -0.01 -0.01 -0.02 -0.02 0.00

cb 0.30 0.50 0.30 0.80 0.30 0.50

cl 1.00 0.30 1.00

µ(u) µ(−0.5,−0.5) = −0.31 µ(0, 0) = 0 µ(0.5, 0.5) = 0.19

M2 CP 0.95 0.95 0.94 0.95 0.93 0.95

length 0.86 0.58 0.75 0.63 0.86 0.52

bias 0.03 0.04 -0.03 -0.04 -0.00 -0.04

cb 0.50 0.80 0.50 0.30 0.50 0.80

cl 0.80 0.80 1.00

µ(u) µ(−0.5,−0.5) = −0.21 µ(0, 0) = 0.5 µ(0.5, 0.5) = 0.75

M3 CP 0.94 0.95 0.94 0.95 0.95 0.95

length 0.82 0.60 0.70 0.52 1.17 0.62

bias 0.02 0.03 -0.01 -0.01 -0.00 -0.02

cb 0.50 1.00 0.50 0.30 0.30 0.10

cl 0.30 1.00 1.00

µ(u) µ(−0.5,−0.5) = −0.04 µ(0, 0) = 0.5 µ(0.5, 0.5) = 0.92

M4 CP 0.95 0.96 0.94 0.95 0.95 0.95

length 0.93 0.38 0.82 0.43 0.93 0.48

bias 0.01 -0.01 -0.01 -0.02 -0.03 -0.04

cb 0.30 0.50 0.30 0.80 0.30 0.80

cl 1.00 0.30 0.30

µ(u) µ(−0.5,−0.5) = −0.07 µ(0, 0) = 0.25 µ(0.5, 0.5) = 0.43
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Table 3: continued.

Covariate Model µ̂K (2.2) µ̂CK (2.7) µ̂K (2.2) µ̂CK (2.7) µ̂K (2.2) µ̂CK (2.7)

Normal M1 CP 0.91 0.91 0.90 0.92 0.91 0.93

length 1.59 1.06 0.66 0.52 0.62 0.50

bias 0.11 0.15 -0.01 -0.03 -0.04 -0.03

cb 0.50 0.30 0.50 0.80 0.80 0.80

cl 1.00 0.30 1.00

µ(u) µ(−1, 1) = −0.75 µ(0, 0) = 0 µ(1, 1) = 0.25

M2 CP 0.95 0.94 0.87 0.85 0.91 0.93

length 1.03 1.04 0.73 0.67 0.59 0.59

bias 0.01 -0.01 -0.05 -0.06 -0.00 -0.02

cb 1.00 1.00 0.50 0.50 1.00 0.80

cl 0.80 0.50 1.00

µ(u) µ(−1, 1) = 0.63 µ(0, 0) = 0.5 µ(1, 1) = 0.63

M3 CP 0.91 0.91 0.89 0.91 0.89 0.89

length 1.03 0.96 0.72 0.58 0.98 0.68

bias 0.18 0.13 -0.00 -0.01 0.05 0.08

cb 1.00 1.00 1.00 0.80 0.50 0.30

cl 0.50 0.30 1.00

µ(u) µ(−1, 1) = 0.63 µ(0, 0) = 0.5 µ(1, 1) = 0.63

M4 CP 0.91 0.90 0.89 0.91 0.90 0.94

length 1.69 1.32 0.69 0.54 0.66 0.53

bias 0.15 0.20 -0.02 -0.03 -0.02 -0.02

cb 0.50 0.80 0.50 0.80 0.80 1.00

cl 0.30 0.30 0.80

µ(u) µ(−1, 1) = −0.62 µ(0, 0) = 0.25 µ(1, 1) = 0.39
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Figure 1: Plot of the fitted kernel regression of systolic blood pressure (Y ) to etO2 and X,

given inO2 equals to its first, second, and third quartiles.
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Figure 2: Plot of the fitted kernel regression of systolic blood pressure (Y ) to inO2 and X,

given etO2 equals to its first, second, and third quartiles.
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Table 4: 95% confidence intervals of systolic blood pressure under selected covariate points

with under smoothing scale cb = 0.8, cl = 1.

Covariate value 95% confidence interval

X inO2 etO2 Method lower upper length

-99.5 61.2 56.3 µ̂CK (2.7) 121.12 124.40 3.28

µ̂CK (2.17) 121.68 125.00 3.32

µ̂K (2.2) 109.88 113.97 4.08

-99.0 67.7 63.7 µ̂CK (2.7) 116.67 123.68 7.01

µ̂CK (2.17) 117.05 124.13 7.08

µ̂K (2.2) 106.08 114.80 8.72

-99.5 77.9 72.0 µ̂CK (2.7) 118.09 122.26 4.17

µ̂CK (2.17) 118.48 122.70 4.22

µ̂K (2.2) 105.81 111.00 5.19
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