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Abstract: Statistical analysis in modern scientific research nowadays has opportuni-

ties to utilize external summary information from similar studies to gain efficiency.

However, the population generating data for current study, referred to as internal

population, is typically different from the external population for summary infor-

mation, although they share some common characteristics that make efficiency im-

provement possible. The existing population heterogeneity is a challenging issue

especially when we have only summary statistics but not individual-level external

data. In this paper, we apply an empirical likelihood approach to estimating internal

population distribution, with external summary information utilized as constraints

for efficiency gain under population heterogeneity. We show that our approach pro-

duces an asymptotically more efficient estimator of internal population distribution

compared with the customary empirical likelihood without using any external in-

formation, under the condition that the external information is based on a dataset

with size larger than that of the dataset from internal population. Some simulation

results are given to supplement asymptotic theory. A real data example is also il-

lustrated.
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1. Introduction

Consider the estimation of a population distribution FX,Z defined on the k-

dimensional Euclidean space Rk, where X and Z are vectors with dimensions

l and k − l, respectively, based on a random sample {Xi, Zi, i = 1, ..., n}

from FX,Z . Nowadays we often also have information in the form of summary

statistics, not necessarily individual-level data, from external sources (such as

past similar studies), which can be utilized to increase statistical accuracy in

estimating FX,Z and its characteristics. Specifically, there is an external sam-

ple {XE
i , i = 1, ...,m}, independent of {Xi, Zi, i = 1, ..., n}, from an external

population distribution FE
X , where XE and X measure the same quantity and

have the same dimension l, but FE
X is not necessarily the same as FX , the

distribution of X. When l < k, the vector Z is not measured externally due

to progress of new technology and/or new scientific relevance or other prac-

tical reasons. In what follows, {Xi, Zi, i = 1, ..., n} and FX,Z are referred to

as internal data and internal population, respectively, to distinguish external

data {XE
i , i = 1, ...,m} and external population FE

X .

The purpose of our study is to develop estimation methodology using in-

ternal data and external summary statistics (functions of XE
1 , ..., X

E
m), when
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individual-level external data XE
1 , ..., X

E
m are not available due to some prac-

tical reasons. This problem has been studied in Chatterjee et al. (2016) and

Zhang et al. (2020) when FX,Z follows a parametric model, whereas we study

the estimation of FX,Z with the nonparametric empirical likelihood approach.

This research fits into a general framework of data integration (Merkouris,

2004; Lin and Zeng, 2010; Lohr and Raghunathan, 2017; Zhang et al., 2017;

Kundu et al., 2019; Yang et al., 2020; Yang and Kim, 2020; Kim et al., 2021;

Rao, 2021; Li et al., 2022; Tian and Feng, 2022).

Our research takes into consideration of the heterogeneity between inter-

nal and external populations FX and FE
X , although they share some common

part as a link that makes it possible to improve the estimation of FX,Z using

external information. To the best of our knowledge, population heterogeneity

is not well addressed in coupling internal data and external summary infor-

mation. For example, Chatterjee et al. (2016) and Zhang et al. (2020) assume

FX = FE
X , when only external summary statistic is available.

To present the main ideas, we focus on one external dataset, since ex-

tensions to multiple external datasets are straightforward. Our main method

is empirical likelihood using the external summary statistic in a constraint.

We establish asymptotic normality of estimators of FX,Z with explicit formu-

las of asymptotic covariance matrices, which can be used to compare their

asymptotic efficiency with the customary estimator without using any exter-
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nal information and to make inference on FX,Z or its characteristics. Some

simulation results are presented as complementary to asymptotic theory. A

real data sample is also illustrated.

2. Empirical Likelihood with External Infor-

mation

We follow the notation developed in Section 1. To link the internal and ex-

ternal populations FX and FE
X for the purpose of increasing the accuracy in

estimating FX,Z , where FX is the l-dimensional marginal of the k-dimensional

internal population FX,Z of interest, we assume that there is a p-dimensional

parameter vector θ shared by both FX and FE
X and defined by∫

u(x, θ)dFX(x) =

∫
u(x, θ)dFE

X (x) = 0, (2.1)

where u(·, ·) is a known vector function from Rl ×Rp to Rp with continuous

partial derivatives with respect to θ. For example, u(x, θ) = x − θ, in which

case p = l and θ is the common mean of FX and FE
X .

Let θ̂E be a p-dimensional estimator of θ in (2.1) based on external data

via a generalized estimation equation, i.e.,

1

m

m∑
i=1

u(XE
i , θ̂

E) = 0, (2.2)
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an empirical analog of
∫
u(x, θ)dFE

X (x) = 0 in (2.1) based on XE
i ’s. For

example, in the common mean example where u(x, θ) = x − θ, θ̂E is the

sample mean X̄E of XE
1 , ..., X

E
m. Note that in the current paper we only have

the value of θ̂E as external summary statistic (information), not individual-

level values XE
1 , ..., X

E
m.

To make use of external information θ̂E, we require that any estimate F̂X,Z

of FX,Z based on internal data has property∫
u(x, θ̂E)dF̂X(x) = 0, (2.3)

an empirical analog of
∫
u(x, θ)dFX(x) = 0 in (2.1), where F̂X is the l-

dimensional marginal of F̂X,Z for X. Using the method of empirical likelihood

(Owen, 1988, 2001; Qin and Lawless, 1994), we use (2.3) as a constraint in

the estimation of FX,Z based on internal data, treating θ̂E as known. That is,

we estimate FX,Z by F̂X,Z as a maximizer of

n∏
i=1

pi subject to pi > 0, i = 1, ..., n,
n∑
i=1

pi = 1,
n∑
i=1

piu(Xi, θ̂
E) = 0,

(2.4)

where pi is a point mass of any distribution whose support consists of n points

(Xi, Zi), i = 1, ..., n, and θ̂E is treated as fixed and known in maximization.

The resulting estimator F̂X,Z satisfies (2.3).

The customary estimator without using any external information, the

empirical distribution F̄X,Z putting mass n−1 at each (Xi, Zi), is a maxi-
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mizer of (2.4) only when u ≡ 0, because, when u 6≡ 0,
∫
u(x, θ̂E)dF̄X(x) =

n−1
∑n

i=1 u(Xi, θ̂
E) is typically not 0 although

∫
u(x, θ)dFE

X (x) = 0, where F̄X

is the l-dimensional marginal of F̄X,Z for X. This is the reason why F̂X,Z can

be more efficient than F̄X,Z .

Using the Lagrange multiplier method, we can show that the maximizer

of (2.4) is the distribution

F̂X,Z putting mass p̂i =
1

n{1 + λ>u(Xi, θ̂E)}
at each (Xi, Zi), (2.5)

where λ ∈ Rp is the Lagrange multiplier satisfying

n∑
i=1

p̂iu(Xi, θ̂
E) =

1

n

n∑
i=1

u(Xi, θ̂
E)

1 + λ>u(Xi, θ̂E)
= 0,

and a> denotes the transpose of vector a.

Note that

∂

∂λ

 1

n

n∑
i=1

log{1 + λ>u(Xi, θ̂
E)}

 =
1

n

n∑
i=1

u(Xi, θ̂
E)

1 + λ>u(Xi, θ̂E)

and

∂2

∂λ∂λ>

 1

n

n∑
i=1

log{1 + λ>u(Xi, θ̂
E)}

 = − 1

n

n∑
i=1

u(Xi, θ̂
E)u(Xi, θ̂

E)>

{1 + λ>u(Xi, θ̂E)}2
< 0

(negative definite) if u 6≡ 0. Hence, there is a unique sequence of {λ =

λ(X1, ..., Xn, θ̂
E), n = 1, 2, ...} such that

lim
n→∞

P

 1

n

n∑
i=1

u(Xi, θ̂
E)

1 + λ>u(Xi, θ̂E)
= 0

 = 1 and λ = op(1), (2.6)
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where op(1) denotes a term converging to 0 in probability as n→∞. There-

fore, with probability tending to 1, F̂X,Z is uniquely defined.

For any s fixed t1, ..., ts in Rk, we define F =
(
FX,Z(t1), ..., FX,Z(ts)

)>
,

F̂ =
(
F̂X,Z(t1), ..., F̂X,Z(ts)

)>
for estimator F̂X,Z in (2.5), and define F̄ =(

F̄X,Z(t1), ..., F̄X,Z(ts)
)>

for the empirical distribution F̄X,Z . Also, define ū =

n−1
∑n

i=1 u(Xi, θ), U = Var{u(X, θ)} (assumed to be non-singular), and W =(
W (t1), ...,W (ts)

)
, W (tj) = E{u(X, θ)I((XZ ) ≤ tj)}, where I(A) denotes the

indicator function of event A and a ≤ b for vectors a and b means that every

component of a is no larger than the corresponding component of b. Following

the argument in the proof of Theorem 5.4 in Shao (2003), we obtain that

√
n(F̂ − F) =

√
n(F̄ − F − ū>U−1W − ũ>M−>L>U−1W ) + op(1), (2.7)

where L =
∫
{∂u(x, θ)/∂θ}dFX(x), M =

∫
{∂u(x, θ)/∂θ}dFE

X (x) (assumed to

be non-singular), M−> = (M−1)>, ũ = m−1
∑m

j=1 u(XE
j , θ), and the equality

follows from

θ̂E − θ = −M−1ũ+m−1/2op(1) (2.8)

by (2.2) and Taylor’s expansion. The covariance matrix

nVar(F̄ − F − ū>U−1W − ũ>M−>L>U−1W )

= Λ−W>U−1W +m−1nW>U−1LM−1VM−>L>U−1W,

where Λ = nVar(F̄), the k × k matrix whose (i, j)th element is equal to

P
(
{(X>, Z>)> ≤ ti} ∩ {(X>, Z>)> ≤ tj}

)
− FX,Z(ti)FX,Z(tj), V =mVar(ũ),
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and the equality follows from

nVar(ū>U−1W ) = nCov(F̄ , ū>U−1W )

and

nVar(ũ>M−>L>U−1W ) = nW>U−1LM−1Var(ũ)M−>L>U−1W.

Consequently, by the central limit theorem, we obtain the following result.

Theorem 1. Assume (2.1), θ̂E defined by (2.2) satisfies (2.8) as m → ∞,

and matrices L, M , U , and V are non-singular. Then, for any s fixed distinct

t1, ..., ts in Rk, as n→∞ and m→∞,

√
n{
(
F̂X,Z(t1), ..., F̂X,Z(ts)

)> − (FX,Z(t1), ..., FX,Z(ts)
)>} d−→ N(0,Σ),

Σ = Λ−W>U−1W + rW>U−1LM−1VM−>L>U−1W,

(2.9)

where
d−→ denotes convergence in distribution, N(0,Σ) is the normal distribu-

tion with mean 0 and covariance matrix Σ, and r is the limit of n/m.

Result (2.9) indicates how statistical accuracy can be affected through us-

ing external information provided by θ̂E, since Λ is the asymptotic covariance

matrix for the customary empirical distribution F̄X,Z without using any exter-

nal information. If the sample size of external dataset m dominates the sample

size of internal dataset, i.e., r = 0, then Σ in (2.9) is Λ −W>U−1W , smaller

than Λ (in the order for nonnegative definite matrices) and, hence, F̂X,Z in
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(2.5) is asymptotically more efficient than F̄X,Z . If r > 0, then whether F̂X,Z is

better depends on the magnitude of the last two terms in Σ in (2.9) involving

the quality of external information. In the special case where L = M (e.g.,

when u(x, θ) = x− θ) and V = U , Σ in (2.9) reduces to Λ− (1− r)W>U−1W

and, thus, F̂X,Z is better than F̄X,Z if and only if r < 1 (the external dataset

has a large size than the internal dataset).

If we estimate a characteristic of FX,Z given as ψ(FX,Z), a functional of

FX,Z , then ψ(F̂X,Z) is asymptotically more efficient than ψ(F̄X,Z) when F̂X,Z

is more efficient than F̄X,Z . Specific examples are given in Section 4.

Result (2.9) is useful for large sample inference on characteristics of popu-

lation FX,Z . To make inference, we need to estimate the covariance matrix Σ

in (2.9), which requires some additional external information for the variabil-

ity of θ̂E. From (2.8) and V =mVar(ũ), the asymptotic covariance matrix for

√
m(θ̂E − θ) is Ξ = M−1VM−>. Assume that, together with θ̂E in (2.2), we

also have an external summary statistic Ξ̂ as a covariance matrix estimator

of Ξ for θ̂E. In the case where θ̂E is the sample mean X̄E of XE
1 , ..., X

E
m, for

example, Ξ̂ is the sample covariance matrix of XE
1 , ..., X

E
m. Assuming that the

sample size m of the external dataset is known, we can estimate r by n/m.

Matrices Λ, W , U , and L in (2.9) can all be estimated using internal data.

Therefore, Σ in (2.9) can be estimated by substitution.

When the estimator ψ(F̂X,Z) under consideration is complex, for example,
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a quantile of F̂X,Z , we may apply the following bootstrap method to estimate

the variance of ψ(F̂X,Z). Independently for b = 1, ..., B, let (X∗bi , Z
∗b
i ), i =

1, ..., n, be selected with replacement from (Xi, Zi), i = 1, ..., n, and let θ̂E∗b ∼

N(θ̂E, Ξ̂/m). Let ψ(F̂ ∗bX,Z) be ψ(F̂X,Z) with (Xi, Zi)’s and θ̂E replaced by

(X∗bi , Z
∗b
i )’s and θ̂E∗b, respectively. Then, the bootstrap variance estimator

for ψ(F̂X,Z) is the sample variance of ψ(F̂ ∗bX,Z), b = 1, ..., B. This bootstrap

method is used in the example presented in Section 6.

3. Guaranteed Efficiency Gain

It is interesting to know whether we can construct an estimator of FX,Z that

is almost always better than the empirical distribution F̄X,Z , i.e., utilizing ex-

ternal information has a guaranteed efficiency gain. The discussion in Section

2 indicates that F̂X,Z in (2.5) does not always achieve this, especially when

r ≥ 1, due to the uncertainty in external information.

To reach a guaranteed efficiency gain, we replace θ̂E in (2.2) by the follow-

ing shared parameter estimator that uses not only external information but

also internal data,

θ̃ =
nθ̂ +mθ̂E

n+m
, (3.1)

where θ̂ is a generalized estimation equation estimator of θ based on internal
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data,

1

n

n∑
i=1

u(Xi, θ̂ ) = 0. (3.2)

We define a new estimator of FX,Z as

F̃X,Z given by (2.5) with θ̂E replaced by θ̃ in (3.1)-(3.2). (3.3)

By the same argument in Section 2 we can show that

√
n(F̃−F) =

√
n(F̄−F− 1

r+1
ū>U−1W− 1

r+1
ũ>M−>L>U−1W )+op(1), (3.4)

where F̃ =
(
F̃X,Z(t1), ..., F̃X,Z(ts)

)>
, and

nVar(F̄ − F − 1
r+1

ū>U−1W − 1
r+1

ũ>M−>L>U−1W )

= Λ + W>U−1W
(r+1)2

− 2W>U−1W
r+1

+ nW>U−1LM−1VM−>L>U−1W
m(r+1)2

.

Consequently, we obtain the following result.

Theorem 2. Under the same conditions in Theorem 1 and (3.1)-(3.2),

√
n{
(
F̃X,Z(t1), ..., F̃X,Z(ts)

)> − (FX,Z(t1), ..., FX,Z(ts)
)>} d−→ N(0, Σ̃),

Σ̃ = Λ− 2r+1
(r+1)2

W>U−1W + r
(r+1)2

W>U−1LM−1VM−>L>U−1W,

(3.5)

as n→∞ and m→∞, for any s fixed distinct t1, ..., ts in Rk.

In the special case where L = M and V = U , Σ̃ in (3.5) is equal to

Λ− 1
r+1

W>U−1W , which means that F̃X,Z is always better than the empirical
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distribution F̄X,Z ; also, using θ̃ in (3.1)-(3.2) is better than using θ̂E in (2.2).

Note that V is the covariance matrix of u(XE, θ) under external population

whereas U is the covariance matrix of u(X, θ) under internal population. If

V = cU (the external u(XE, θ) is c times as variable as the internal u(X, θ))

and L = M , then Σ̃ in (3.5) is Λ − (2−c)r+1
(r+1)2

W>U−1W . Hence, whether F̃X,Z

is better than the empirical distribution F̄X,Z depends on the size of external

dataset and the variability in external data, i.e., on the sign of (2 − c)r + 1.

For large sample inference, result (3.5) can be used with Σ̃ estimated by

the same method as described in Section 2 for the estimation of Σ in (2.9).

4. Common Mean of X

In this section, we consider the case where u(X, θ) = X − θ, i.e., θ is the com-

mon mean vector shared by the internal and external populations. A specific

example is the situation where X is the vector of covariates and responses

under some treatments, and there are k − l > 0 new treatments in the study

of internal population resulting in Z-data, and these treatments and data are

not in the external study.

Since ∂u(X, θ)/∂θ = −I, where I is the identity matrix, L = M in (2.9)

or (3.5) and the result in Theorem 1 or 2 simplifies. Further, in Theorem 1

or 2, U = Var(X) and V = Var(XE), and U = V if the internal and external
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covariance matrices of X are the same, i.e., the shared parameter is not only

the mean but also the covariance matrix of X.

If we use (2.2), then θ̂E = X̄E, the sample mean of external XE
1 , ..., X

E
m,

although individual values of XE
1 , ..., X

E
m are not available. If we use θ̃ given

by (3.1)-(3.2), then

θ̃ =
n

n+m
X̄ +

m

n+m
X̄E, (4.1)

where X̄ is the sample mean of internal data Xi’s. It can be seen in this case

θ̃ is better than θ̂E.

4.1 Estimation of population means

Consider the estimation of population mean vector µ =
∫
tdFX,Z(t). The first

l components of µ is the shared parameter vector θ.

With FX,Z estimated by F̂X,Z in (2.5) and θ̂E = X̄E, µ is estimated by

µ̂ =

∫
tdF̂X,Z(t) =

n∑
i=1

p̂i

(
Xi

Zi

)
=

1

n

n∑
i=1

1

1 + λ>(Xi − X̄E)

(
Xi

Zi

)
.

From (2.6), with probability tending to 1,

0 =
1

n

n∑
i=1

Xi − X̄E

1 + λ>(Xi − X̄E)
=

n∑
i=1

p̂iXi −
n∑
i=1

p̂iX̄
E =

n∑
i=1

p̂iXi − X̄E,

since
∑n

i=1 p̂i = 1. This means that the first l components of µ̂ is X̄E, a

function of external data only, which may be fine if the external sample size m

is much larger than the internal sample size n, but is not very good otherwise.
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With FX,Z estimated by F̃X,Z in (3.3) with θ̃ given by (3.1)-(3.2), i.e.,

(4.1), µ is estimated by

µ̃ =

∫
tdF̃X,Z(t) =

1

n

n∑
i=1

1

1 + λ>(Xi − θ̃)

(
Xi

Zi

)
,

and the first l components of µ̃ is θ̃, which is a more reasonable estimator of

the first l components of µ, the shared parameter vector, especially when m

is not much larger than n. This supports the use of θ̃ in Section 3 to replace

θ̂E in Section 2.

The following result for the asymptotic normality of µ̂ and µ̃ can be shown

using the same argument in the derivation of Theorem 1 or 2, or applying the

mean functional to the result in Theorem 1 or 2.

Corollary 1. Assume the conditions in Theorem 2 with u(X, θ) = X − θ and

finiteness of the second-order moments of (X,Z). Then,

√
n(µ̂− µ)

d−→ N
(

0, Var(XZ )−H>U−1H + rH>U−1V U−1H
)
, (4.2)

√
n(µ̃− µ)

d−→ N
(

0, Var(XZ )− 2r+1
(r+1)2

H>U−1H + r
(r+1)2

H>U−1V U−1H
)
,

(4.3)

where r is the limit of n/m and H = E
{

(X − θ)(X>, Z>)
}

under the internal

population.

More details about the asymptotic covariance matrices in (4.2)-(4.3) can
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be obtained. Let D = Var(Z) and C = Cov(X,Z). Then

Var(T ) =

 U C

C> D

 , H =

(
U C

)
,

and, hence, the asymptotic covariance matrix of
√
n(µ̂− µ) in (4.2) is rV rV U−1C

rC>U−1V D − C>U−1C + rC>U−1V U−1C

 ,

and the asymptotic covariance matrix of
√
n(µ̃− µ) in (4.3) is r2

(r+1)2
U + r

(r+1)2
V r2

(r+1)2
C + r

(r+1)2
V U−1C

r2

(r+1)2
C> + r

(r+1)2
C>U−1V D − 2r+1

(r+1)2
C>U−1C + r

(r+1)2
C>U−1V U−1C

 .

For the estimation of the first l components of µ (the mean of X), the com-

parison between µ̂ and µ̃ is actually the comparison between θ̂E = X̄E and θ̃

in (4.1). If r = 0, then the result shows that the convergence rate of µ̂ and µ̃

is faster than 1/
√
n.

For estimating the last k − l components of µ, the convergence rate is

1/
√
n even if r = 0. The comparison between µ̂ and µ̃ is between two matrices

D−C>U−1C+rC>U−1V U−1C and D− 2r+1
(r+1)2

C>U−1C+ r
(r+1)2

C>U−1V U−1C,

which is similar to the comparison between Σ in (2.9) and Σ̃ in (3.5). In

particular, if V = U , then the former is D− (1− r)C>U−1C but the latter is

D − 1
r+1

C>U−1C and, hence, µ̃ is always better than µ̂ asymptotically.
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4.2 Estimation of population quantiles

Consider the estimation of quantile vector Q =
(
F−1(π1), ..., F

−1(πs)
)>

, where

F is a particular marginal of FX,Z , π1, ..., πs are s distinct known points

in (0, 1), and F−1(π) = inf{t : F (t) ≥ π}. If we do not use any exter-

nal information, then a customary estimator is the vector of sample quan-

tiles. If we estimate FX,Z by F̂X,Z or F̃X,Z , then our estimator is Q̂ =(
F̂−1(π1), ..., F̂

−1(πs)
)>

or Q̃ =
(
F̃−1(π1), ..., F̃

−1(πs)
)>

, where F̂ and F̃ are

the corresponding marginals of F̂X,Z and F̃X,Z , respectively. Using the same

argument in the proof of Bahadur’s representation (see, e.g., Theorem 5.11 of

Shao (2003)), we can show that

√
n(Q̂−Q) =

√
n
(
F (F−1(π1))−F̂ (F−1(π1))

f(F−1(π1))
, ..., F (F−1(πs))−F̂ (F−1(πs))

f(F−1(πs))

)>
+ op(1),

where f(F−1(πj)) is the derivative of F at F−1(πj) assumed to be positive,

j = 1, ..., s. The same result holds with (F̂ , Q̂ ) replaced by (F̃ , Q̃ ). This

representation together with result (2.9) or (3.5) show that Q̂ or Q̃ is typically

asymptotically more efficient than the sample quantile vector without using

external information.

For inference about quantiles, the bootstrap method introduced in the end

of Section 2 can be applied.
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5. Simulation

In this section we present some simulation results under the scenario in Section

4. Consider k = 3, l = 2, a two-dimensional X and a univariate Z, i.e.,

u(X, θ) = X − θ, and the mean of X, θ = E(X), is the two-dimensional

shared parameter vector for internal and external populations.

5.1 Simulation with a continuous Z

We consider the following four cases for internal and external populations.

A. For both internal and external populations, X is bivariate normal,

X ∼ N


 1

0

 ,

 1 0.3

0.3 1


 . (5.1)

For internal population, conditional on X, Z is normal with mean α +

β>X and variance 0.25. For external population, conditional on X, Z is

normal with the same mean as in the internal population but a different

variance = 1.

B. For internal and external populations, X is generated according to (5.1).

For internal population, conditional on X, Z is the same as that in

case A. For external population, conditional on X, Z has the double

exponential distribution with mean α + β>X and scale parameter 0.5.
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C. In internal population, X is generated according to (5.1). For external

population, X is generated according to (5.1) but with the covariance

matrix replaced by

 2 0.5

0.5 1

. Conditional on X, Z is generated the

same as in case B, for both internal and external populations.

D. X is generated the same as in case C. For internal population, conditional

on X, Z − α − β>X has a probability density f(t) that is the normal

density with mean 0 and variance 0.25 when t < 0, and is the double

exponential density with mean 0 and scale parameter 0.5 when t ≥ 0.

For external population, conditional on X, Z−α−β>X has probability

density f(−t).

In all cases, (α, β>) = (1.5, 0.4,−0.8). In cases A and B, the internal and

external populations of X are the same, whereas in cases C and D, the in-

ternal and external populations of X are different although they share the

same mean E(X). Conditional on X, the internal and external distributions

of Z are always different, normal distributions with difference variances in

case A, normal versus double exponential distributions in cases B and C, and

asymmetric distributions in case D.

We consider the estimation of two parameters in internal population, the

mean E(Z) andQ75 = the 0.75 quantile of Z, with internal sample size n = 100

and external sample size m = 100, 200, 500, 1000, and 10000, which ranges
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from comparable with n to much larger than n.

Based on 2000 simulation runs, Table 1 presents the simulation bias and

standard deviation (SD) of the following estimators.

1. Z̄ = the sample mean and Q̄75 = sample 0.75 quantile, based on internal

Z data without using any external information.

2. Z̃ = the mean and Q̃75 = the 0.75 quantile of the third marginal of

F̃X,Z in (3.3) (the estimated distribution of Z), where θ̃ =
n

n+m
X̄ +

m

n+m
X̄E, X̄ is the sample mean for internal data, and X̄E is the ex-

ternal summary statistic, the sample mean for external X-data.

3. Ẑ = the mean and Q̂75 = the 0.75 quantile of the third marginal of F̂X,Z

in (2.5), where θ̂ = X̄E is the external summary statistic.

The following is a summary of the results in Table 1 based on 2000 simulations.

1. All biases are negligible, even for the case with m = n = 100. For Z̄

and Q̄75 without using external information, the bias and SD have small

variations within each setting due to simulation error.

2. For the estimation of mean E(Z), the efficiency gain of using external

summary information is very substantial, when θ̃ in (3.1) is used. The

efficiency gain ranges from 18% to 43% when m ranges from 100 to 104

for cases A-C. The efficiency gain is slightly smaller for case D when the
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distribution of Z is asymmetric. When θ̂E in (2.2) is used, the efficiency

gain of using external summary information is negligible when m = 100,

becomes appreciable when m = 200, and is comparable with the use of

θ̃ when m ≥ 1000.

3. Although the shared parameter θ is the mean vector (of X), the quantile

estimation also has substantial gain when external summary information

is utilized. The efficiency gain for 0.75 quantile estimation can still be

between 10-20% for cases A-C and 7-17% for case D, when θ̃ in (3.1)

is used. When θ̂E in (2.2) is used, we need m ≥ 500 in order to see

substantial efficiency gain for quantile estimation.

5.2 Sensitivity of assumption (2.1)

Assumption (2.1) of shared parameter is a bridge between internal and ex-

ternal data for utilizing external information. If (2.1) is violated, then our

proposed estimators may be biased. Here, we perform a simulation under

case A of Section 5.1 to see the sensitivity of (2.1). Specifically, we add a

positive constant δ to the two mean values of X in (5.1) for the external pop-

ulation; that is, the internal X has mean vector (1, 0) but external XE has

mean vector (1− δ,−δ)>. The remaining parameters are unchanged.

Figures 1 and 2 present the root of mean squared error (RMSE) of mean

and quantile estimation based on the three different estimators considered in
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Section 5.1, with δ varying from 0 to 0.25. As expected, when δ increases, the

RMSE of the estimator using internal data only keeps stable; the RMSE of

two estimators using external information increases. It can be seen that the

proposed method using θ̃ still has much smaller RMSEs than the one using

internal data only unless δ > 0.2 and m = 500, and using θ̃ is better than

using θ̂.

5.3 Simulation with a binary Z

We consider a binary Z with X being a 15-dimensional multivariate nor-

mally distributed vector having mean (1, 0.5, 0, ..., 0)> and covariance matrix

whose diagonal elements are equal to 1 and off-diagonal elements are equal to

0.3, for both internal and external populations. Conditional on X, Z fol-

lows a Bernoulli distribution with probability π satisfying log π(1 − π) =

α + βTX, where (α, βT ) = (−0.5, 1,−1, 0.5, ..., 0.5) for the internal pop-

ulation and (α, βT ) = (−0.3, 1,−1, 0.5, ..., 0.5) for the internal population.

For this binary Z, we consider the estimation of mean E(Z) of the inter-

nal population with internal sample size n = 100 and external sample size

m = 100, 200, 500, 1, 000, and 10, 000. Based on 2000 simulation runs, Table

2 presents the simulation bias and standard deviation (SD) of the estimators

Z̄, Z̃, and Ẑ as defined in Section 5.1. Similar conclusions to those in Section

5.1 can be obtained from the simulation results in Table 2 .
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6. An Example

An important part of agriculture around the world, particularly in Turkey, is

about dry beans. The Turkish Standards Institution classifies dry beans ac-

cording to their physical features that can help farmers to identify dry beans

and monitor their quality. Two physical features are the major axis length

X, which is the length of longest straight line that can be drawn from a bean,

and the area Z of a bean. We consider a dataset available on the website

https://www.muratkoklu.com/datasets/ with two type of dry bean, BAR-

BUNYA and HOROZ. The dataset for BARBUNYA is used as the internal

dataset and the dataset for HOROZ is treated as the external dataset. Figure

3 shows the boxplots of areas and major axis lengths of two dry beans, and Ta-

ble 3 provides some basic statistics. It can be seen that these two types of dry

beans share almost the same major axis length, but their areas differ greatly.

We would like to estimate the mean, 0.25, 0.5, and 0.75 quantiles of the area

of BARBUNYA using information from major axis lengths of BARBUNYA

and HOROZ to improve efficiency.

For the mean E(Z), quantiles Q25, Q50, and Q75 of area of BARBUNYA,

we compute the following three types of estimates.

1. The sample mean and quantiles based on only internal data for dry bean

BARBUNYA.
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2. The mean and quantiles of last marginal of F̃X,Z in (3.3) using θ̃ =

n

n+m
X̄+

m

n+m
X̄E with X̄ = the sample mean of major axis length for

internal data, X̄E = the sample mean of major axis length for external

data (HOROZ), n = 1322, and m = 1928.

3. The mean and quantiles of last marginal of F̂X,Z in (2.5) using θ̂E = X̄E.

For each point estimate, we compute the bootstrap standard error as the

square root of the bootstrap variance estimator described in the end of Section

2 with B = 2000. The results are given in Table 4.

From Table 4, the point estimates for the same parameter are close to

each other. The estimates using external information with F̃X,Z in (3.3) and θ̃

in (3.1) have smaller standard errors than those using internal data only; the

relative efficiency to internal data only in terms of standard error is substantial

for the estimation of mean, Q50, and Q75, and is slight for the estimation of

Q25. Comparing two methods of using external information, we find that the

method using F̃X,Z in (3.3) is much better than the method using F̂X,Z in

(2.5); in fact the method using F̂X,Z in (2.5) is comparable with the method

without using external information as r = 0.686 is not very small. Thus,

using external information is worthwhile especially for the method using F̃X,Z

in (3.3).
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7. Discussion

Using external summary information, we improve the nonparametric empirical

distribution F̄X,Z based on internal data only by the nonparametric empirical

likelihood estimator F̃X,Z in (3.3) with θ̃ given by (3.1) using both internal

estimator θ̂ and external estimator θ̂E of the shared parameter θ defined by

(2.1).

If F̄X,Z is replaced by the semi-parametric empirical likelihood estimator

that maximizes

n∏
i=1

pi subject to pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pig(Xi, β) = 0

over pi’s and β, where g is a known vector function and β is an unknown

parameter vector with dimension smaller than the dimension of g, then our

method can be extended to F̃X,Z that maximizes

n∏
i=1

pi subject to pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pig(Xi, β) =
n∑
i=1

piu(Xi, θ̃) = 0

over pi’s and β. Properties of this F̃X,Z can be derived similarly.

An anonymous referee suggests an alternative to F̃X,Z in (3.3); that is,

F̌X,Z with mass

p̌i =
n

n+m
p̂EL,i +

m

n+m
p̂i

to each (Xi, Zi), i = 1, ..., n, where p̂i is given in (2.5) and p̂EL,i is the mass

of nonparametric empirical likelihood estimator without using any external
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information. Because the dimensions of u and θ are the same, p̂EL,i = n−1 for

all i and, hence,

F̌X,Z =
n

n+m
F̄X,Z +

m

n+m
F̂X,Z .

Define F̌ =
(
F̌X,Z(t1), ..., F̌X,Z(ts)

)>
. Following the notation in Sections 2-3,

we have

√
n(F̌ − F) =

√
n(F̄ − F) +

√
n

m

n+m
(F̂ − F̄)

=
√
n(F̄ − F)−

√
n

r + 1
ū>U−1W −

√
n

r + 1
ū>U−1W + op(1)

=
√
n(F̃ − F) + op(1),

where the second equality follows from (2.7) and r = the limit of n/m, and the

last equality follows from (3.4). Therefore, F̃X,Z and F̌X,Z are asymptotically

equivalent. This asymptotic result is confirmed by simulation not reported in

this paper.
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Table 1: Simulation results (2000 replications) for estimation of mean E(Z)

and 0.75 quantile Q75 when internal sample size n = 100

Case A estimation of E(Z) = 1.90 estimation of Q75 = 2.52

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias 0.0021 -0.0009 -0.0040 0.0064 0.0037 0.0038

SD 0.0941 0.0758 0.0917 0.1283 0.1158 0.1264

m = 200 bias 0.0017 -0.0002 -0.0011 -0.0018 -0.0031 -0.0026

SD 0.0917 0.0669 0.0744 0.1244 0.1091 0.1152

m = 500 bias 0.0008 0.0014 0.0016 0.0006 0.0029 0.0036

SD 0.0952 0.0601 0.0617 0.1272 0.1056 0.1059

m = 103 bias -0.0018 -0.0013 -0.0013 -0.0045 -0.0022 -0.0016

SD 0.0901 0.0549 0.0557 0.1240 0.1056 0.1059

m = 104 bias 0.0028 -0.0009 -0.0010 0.0014 -0.0014 -0.0012

SD 0.0938 0.0516 0.0516 0.1277 0.1012 0.1011

Case B estimation of E(Z) = 1.90 estimation of Q75 = 2.52

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias 0.0001 -0.0008 -0.0019 -0.0008 -0.0004 0.0016

SD 0.0914 0.0747 0.0932 0.1249 0.1124 0.1249

m = 200 bias -0.0001 0.0016 0.0024 -0.0026 0.0006 0.0019

SD 0.0896 0.0661 0.0738 0.1239 0.1091 0.1143

m = 500 bias -0.0008 -0.0012 -0.0013 0.0003 0.0025 0.0026

SD 0.0934 0.0605 0.0622 0.1242 0.1035 0.1047

m = 103 bias -0.0009 0.0002 0.0003 -0.0010 0.0015 0.0020

SD 0.0903 0.0546 0.0554 0.1256 0.1045 0.1047

m = 104 bias -0.0018 -0.0017 -0.0017 -0.0037 -0.0007 -0.0007

SD 0.0938 0.0526 0.0526 0.1266 0.1026 0.1026
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Table 1: continued

Case C estimation of E(Z) = 1.90 estimation of Q75 = 2.52

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias -0.0017 -0.0017 -0.0019 -0.0011 -0.0011 0.0015

SD 0.0911 0.0751 0.0955 0.1240 0.1122 0.1286

m = 200 bias 0.0018 0.0025 0.0029 -0.0004 0.0011 0.0037

SD 0.0919 0.0678 0.0750 0.1241 0.1091 0.1157

m = 500 bias 0.0001 -0.0010 -0.0012 -0.0051 -0.0037 -0.0031

SD 0.0934 0.0606 0.0629 0.1267 0.1047 0.1059

m = 103 bias 0.0011 0.0005 0.0004 -0.0002 0.0022 0.0024

SD 0.0914 0.0547 0.0555 0.1214 0.1008 0.1006

m = 104 bias 0.0007 -0.0019 -0.0019 0.0018 0.0025 0.0026

SD 0.0923 0.0525 0.0526 0.1230 0.1003 0.1003

Case D estimation of E(Z) = 1.95 estimation of Q75 = 2.58

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias 0.0005 0.0010 0.0016 -0.0031 -0.0011 0.0029

SD 0.0975 0.0816 0.1017 0.1342 0.1250 0.1417

m = 200 bias -0.0023 -0.0006 0.0002 -0.0075 -0.0050 -0.0008

SD 0.0991 0.0749 0.0810 0.1345 0.1222 0.1285

m = 500 bias 0.0002 0.0016 0.0018 -0.0021 0.0014 0.0032

SD 0.0995 0.0681 0.0693 0.1357 0.1152 0.1167

m = 103 bias 0.0015 0.0013 0.0013 0.0006 0.0030 0.0030

SD 0.0992 0.0653 0.0660 0.1367 0.1170 0.1184

m = 104 bias 0.0052 0.0015 0.0014 0.0053 0.0031 0.0030

SD 0.1000 0.0614 0.0614 0.1347 0.1118 0.1119
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Fi g ur e 2: T h e R M S E v al u es di ff er e nt δ o n t h e esti m ati o n of q u a ntil e u n d er
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Table 2: Simulation results (2000 replications) for estimation of mean E(Z)

for a Bernoulli variable Z

estimation of E(Z) = 0.5

Z̄ Z̃ Ẑ

m = 100 bias 0.0016 0.0014 0.0016

SD 0.0511 0.0448 0.0567

m = 200 bias 0.0008 -0.0005 -0.0012

SD 0.0484 0.0425 0.0494

m = 500 bias -0.0022 -0.0005 -0.0002

SD 0.0500 0.0410 0.0432

m = 103 bias 0.0001 -0.0010 -0.0012

SD 0.0497 0.0389 0.0390

m = 104 bias 0.0020 0.0006 0.0006

SD 0.0504 0.0380 0.0381

Figure 3: The boxplots of two types of dry beans
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Table 3: The basic information of two dry bean datasets

BARBUNYA HOROZ

Sample size 1322 1928

Sample mean of X (length) 370.0 372.6

Sample SD of X 32.3 30.2

Sample mean of Z (area) 69804.1 53648.5

Sample SD of Z 10265.4 7341.4

Correlation coefficient of Z and X 0.88 0.91

Table 4: The estimates of mean and quantiles for the area of BARBUNYA

with bootstrap SE

Estimate E(Z) Q25 Q50 Q75

Using internal data only 69804.1 62930.0 69580.0 76307.0

Bootstrap SE 286.7 386.1 323.9 383.7

Using F̃X,Z in (3.3) and θ̃ in (3.1) 70224.1 63357.0 69963.0 76729.0

Bootstrap SE 215.4 380.2 258.8 322.8

Relative efficiency to internal only 0.2487 0.0153 0.2010 0.1587

Using F̂X,Z in (2.5) and θ̂E in (2.3) 70512.7 63733.0 70135.0 76904.0

Bootstrap SE 264.4 383.4 313.7 391.6

Relative efficiency to internal only 0.0778 0.0070 0.0315 -0.021
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