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1;1 Abstract

16 In randomized clinical trials, adjustments for baseline covariates at both design
17 and analysis stages are highly encouraged by regulatory agencies. A recent trend
18 is to use a model-assisted approach for covariate adjustment to gain credibility and
;g efficiency while producing asymptotically valid inference even when the model is in-
21 correct. In this article we present three considerations for better practice when model-
22 assisted inference is applied to adjust for covariates under simple or covariate-adaptive
23 randomized trials: (1) guaranteed efficiency gain: a model-assisted method should of-
24 ten gain but never hurt efficiency; (2) wide applicability: a valid procedure should be
25 applicable, and preferably universally applicable, to all commonly used randomization
26 schemes; (3) robust standard error: variance estimation should be robust to model
27 misspecification and heteroscedasticity. To achieve these, we recommend a model-
;2 assisted estimator under an analysis of heterogeneous covariance working model that
30 includes all covariates utilized in randomization. Our conclusions are based on an
31 asymptotic theory that provides a clear picture of how covariate-adaptive random-
32 ization and regression adjustment alter statistical efficiency. Our theory is more
33 general than the existing ones in terms of studying arbitrary functions of response
34 means (including linear contrasts, ratios, and odds ratios), multiple arms, guaranteed
22 efficiency gain, optimality, and universal applicability.
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1 Introduction

Consider a clinical trial with patients randomized into one and only one of multiple treat-
ment arms according to fixed assignment proportions. Each patient has multiple potential
responses, one for each treatment, but only one response is observed depending on the
assigned treatment. Based on data collected from the trial, we would like to make statis-
tical inference on treatment effects defined as functions of the response means (e.g., linear
contrasts, ratios, or odds ratios). These unconditional treatment effects are discussed in a
recent Food and Drug Administration (FDA) draft guidance (FDA, 2021).

In clinical trials, we typically observe some baseline covariates for each patient, which
are measured prior to treatment assignments and, hence, are not affected by the treatment.
As emphasized in regulatory agency guidelines, baseline covariates are encouraged to be
utilized in the following two ways. (i) In the design stage, covariate-adaptive randomiza-
tion can be used to enforce the balance of treatment assignments across levels of discrete
baseline prognostic factors, such as institution, disease stage, prior treatment, gender, and
age group. “Balance of treatment groups with respect to one or more specific prognostic
covariates can enhance the credibility of the results of the trial” (EMA, 2015, European
Medicines Agency). (ii) In the analysis stage, baseline covariates can be used to gain ef-
ficiency. “Incorporating prognostic baseline factors in the primary statistical analysis of
clinical trial data can result in a more efficient use of data to demonstrate and quantify the
effects of treatment with minimal impact on bias or the Type I error rate” (FDA, 2021).
More specifically, the investigator is advised to “identify those covariates and factors ex-

2

pected to have an important influence on the primary variable(s)” and to specify “how to
account for them in the analysis in order to improve precision and to compensate for any
lack of balance between groups” (ICH E9, 1998).

For efficiency gain, one may apply a model-based approach using a model between po-

tential responses and covariates. However, the validity of a model-based approach requires
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a correct model specification, which is a possibly strong assumption. As emphasized in
FDA (2021), a method used for covariate adjustment “should provide valid inference under
approximately the same minimal statistical assumptions that would be needed for unad-
justed estimation in a randomized trial”. Consequently, model-assisted approaches, which
gain efficiency through a working model between responses and covariates and still produce
asymptotically valid inference even when the working model is misspecified, have become

considerably more popular.

1.1 Considerations in covariate adjustment

For better practice of covariate adjustment via model-assisted approaches, we present the
following three considerations.

1. Guaranteed efficiency gain. The working model should be chosen so that the re-
sulting model-assisted estimator often gains but never loses efficiency when compared to a
benchmark estimator that does not adjust for any covariate.

This consideration is important for model-assisted inference because covariate adjust-
ment based on a misspecified working model does not necessarily lead to efficiency gain over
the benchmark. One example is the customary analysis of covariance (ANCOVA) whose
working model does not include treatment-by-covariate interaction terms, which we refer
to as the homogeneous working model (§2.3). These interaction terms are often ignored or
even discouraged in practice because of two correct but incomplete perceptions: (i) even
if the homogeneous working model is misspecified, ANCOVA still provides valid inference
as it is model-assisted; (ii) a model without interaction terms has fewer coefficients to esti-
mate and may have better finite sample properties. However, when the treatment effect is
indeed heterogeneous, the ANCOVA estimator using the homogeneous working model may
be even less efficient than the benchmark analysis of variance (ANOVA) estimator that uses
no model assistance at all (Freedman, 2008a; Lin, 2013). This has led to confusion about

how covariate adjustment should be implemented, which can be seen from conflicting rec-
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ommendations by regulatory agencies: “The primary model should not include treatment
by covariate interactions.” (EMA, 2015); “The linear models may include treatment by
covariate interaction terms.” (FDA, 2021).

Is there a model-assisted method that achieves guaranteed efficiency gain? An affirma-
tive answer is provided in §1.2, followed by theoretical justifications in §3.

2. Wide applicability. The model-assisted inference procedure should be applicable to all
commonly used randomization schemes.

Covariate-adaptive randomization has been widely used in modern clinical trials to bal-
ance treatment assignments across important prognostic factors. According to a review
(Ciolino et al., 2019) of nearly 300 clinical trials published in two years, 2009 and 2014,
237 of them used covariate-adaptive randomization. The three most popular covariate-
adaptive randomization schemes are the stratified permuted block (Zelen, 1974), the strat-
ified biased coin (Shao et al., 2010; Kuznetsova and Johnson, 2017), and Pocock-Simon’s
minimization (Taves, 1974; Pocock and Simon, 1975; Han et al., 2009). Unlike simple ran-
domization, covariate-adaptive randomization generates a dependent sequence of treatment
assignments. As recognized by regulatory agencies (EMA, 2015; FDA, 2021), conventional
inference procedures developed under simple randomization are not necessarily valid under
covariate-adaptive randomization. Thus, the second consideration is whether the model-
assisted inference procedure is applicable to all commonly used randomization schemes.
3. Robust standard error. The model-assisted inference should use standard errors
robust against model misspecification and heteroscedasticity.

The use of robust standard error is a crucial step for valid model-assisted inference
(FDA, 2021). Although the asymptotic theory for heteroscedasticity-robust standard er-
rors was developed decades ago (Huber, 1967; White, 1980) and has been widely used in
econometrics, its usage in clinical trials is unfortunately scarce. Another issue is to take

into account covariate centering used in a model-assisted approach.
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1.2 Our contributions

In randomized clinical trials, whether and how to adjust for covariates is a long-standing
question, which has received revived attention due to influential papers by Yang and Tsiatis
(2001), Tsiatis et al. (2008), Freedman (2008a), Lin (2013), and many other publications
built upon those. For linear contrast of response means from two treatment arms, theoret-
ical results on efficiency and optimality of various covariate adjustment methods have been
developed under simple randomization (Tsiatis et al., 2008; Lin, 2013; Wang et al., 2019;
Liu and Yang, 2020, among others) or covariate-adaptive randomization (Shao et al., 2010;
Shao and Yu, 2013; Ma et al., 2015; Bugni et al., 2018; Ye, 2018; Ma et al., 2020a,b; Shao,
2021; Wang et al., 2021). Parallel results for linear contrasts of response means from mul-
tiple treatment arms under covariate-adaptive randomization are first obtained by Bugni
et al. (2019) and Ye et al. (2020) but optimality is not studied.

Given how frequently covariate adjustment is used in practice, it is important to have
a guideline regarding the three considerations in §1.1. For this purpose, we establish a
comprehensive theory for all aspects of guaranteed efficiency gain, optimality, universal
applicability, multiple treatment arms, and variance estimation, which provides insights on
how covariate-adaptive randomization and covariate adjustment alter statistical efficiency
and facilitates a better practice with clear recommendations for practitioners.

Our theory shows that a heterogeneous analysis of covariance working model including
all treatment-by-covariate interaction terms and all covariates utilized in covariate-adaptive
randomization should be favored over the customary ANCOVA because the former achieves
guaranteed efficiency gain, optimality, and wide applicability. To distinguish from the cus-
tomary ANCOVA that uses a homogeneous working model, we term the analysis of co-
variance using a heterogeneous working model as ANalysis of HEterogeneous COVAriance
(ANHECOVA). Note that ANHECOVA is not a new proposal and has a long history in the

literature with a recent resurgence of attention (Cassel et al., 1976; Yang and Tsiatis, 2001;
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Tsiatis et al., 2008; Lin, 2013; Wang et al., 2019; Liu and Yang, 2020; Li and Ding, 2020,
among others), but our recommendation of ANHECOVA is from a more comprehensive
perspective. Specifically, in §3.2-§3.3, we show that under mild and transparent assump-
tions, the recommended ANHECOVA estimator of the response mean vector is consistent,
asymptotically normal, and asymptotically more efficient than the benchmark ANOVA or
ANCOVA estimator; in fact, the ANHECOVA estimator is asymptotically optimal within
a wide class of linearly-adjusted estimators. A special case of this result for estimating the
difference of treatment means under a two-arm trial was obtained independently by Ma
et al. (2020b). In §3.1 we offer explanations of why the heterogeneous working model is
generally preferable over the homogeneous working model.

Besides guaranteed efficiency gain and wide applicability, our asymptotic theory in §3.2-
3.3 shows that the recommended ANHECOVA also enjoys a universality property, i.e., the
same inference procedure can be universally applied to all commonly used randomization
schemes including Pocock-Simon’s minimization whose asymptotic property is still not
well understood. This is because the asymptotic variance of the ANHECOVA estimator is
invariant to the randomization scheme, as long as the randomization scheme satisfies a very
mild condition (C2) stated in §2.2. The universality property is desirable for practitioners
as they do not need to derive a tailored standard error for each randomization scheme.

The standard heteroscedasticity-robust standard error formulas do not directly apply to
model-assisted inference for clinical trials because they do not take into account covariate
centering prior to model fitting. In §3.4, we develop a robust standard error formula that
can be used with the ANHECOVA estimator.

Finally, our investigation offers new insights on when the customary ANCOVA as a
model-assisted inference approach can achieve guaranteed efficiency gain over the bench-
mark ANOVA. For example, under two-arm trials, Lin (2013) and Ma et al. (2020b) showed
that ANCOVA has this desirable property if inference focuses on the linear contrast and the
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treatment allocation is balanced. However, our theory shows that this does not extend to
trials with more than two arms or inference on nonlinear functions of response means (such
as ratios or odds ratios), and is thus a peculiar property for ANCOVA. In addition, AN-
COVA is not widely applicable as its asymptotic normality requires an additional condition
(C3) on randomization, which is not satisfied by the popular Pocock-Simon’s minimization
method. Even when ANCOVA is applicable to a particular randomization scheme, it does
not have universality because its asymptotic variance varies with the randomization scheme
(Bugni et al., 2018).

After introducing the notation, basic assumptions, and working models in §2, we present
the methodology and theory in §3. Some numerical results are given in §4. The paper is
concluded with recommendations and discussions for clinical trial practice in §5. Technical

proofs can be found in the supplementary material.

2 Trial Design and Working Models
2.1 Sample

In a clinical trial with & treatment arms, let Y®) represent the potential (continuous or
discrete) response under treatment ¢, ¢t = 1,..., k, 6 be the k-dimensional vector whose tth
component is 0, = F (Y(t)), the unknown population mean of potential response Y® under
treatment t. We are interested in given functions of 6, such as a linear contrast 6, — 6, a
ratio 0; /0, or an odds ratio {6;/(1 —6;)}/{0s/(1 — 6,)} between two treatment arms t and
s. We use Z to denote the observed vector of discrete baseline covariates used in covariate-
adaptive randomization and X to denote the observed vector of baseline covariates used in
model-assisted inference. The vectors Z and X are allowed to share some common entries.

Suppose that a random sample of n patients is obtained from the population under inves-
tigation. For the ith patient, let Y;(l), e Y;(k), Z;, and X; be the realizations of YV .| Y(#)

7, and X, respectively. We impose the following mild condition.

7
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1) vV, ... Z, X;),i=1,...,n, are independent and identically distributed with
finite second order moments. The distribution of baseline covariates is not affected

by treatment and the covariance matrix Xx = var(X;) is positive definite.

Notice that neither a model between the potential responses and baseline covariates nor a

distributional assumption on potential responses is assumed.

2.2 Treatment assignments

Let m,...,m be the pre-specified treatment assignment proportions, 0 < 7 < 1, and
Zle m = 1. Let A; be the k-dimensional treatment indicator vector that equals a; if
patient ¢ receives treatment t, where a; denotes the k-dimensional vector whose tth com-
ponent is 1 and other components are 0. For patient i, only one treatment is assigned
according to A; after baseline covariates Z; and X; are observed. The observed response is
Y, = Yi(t) if and only if A; = a;. Once the treatments are assigned and the responses are
recorded, the statistical inference is based on the observed (Y;, Z;, X;, A;) for i =1, ....n.

The simple randomization scheme assigns patients to treatments completely at random,
under which A;’s are independent of (Yi(l), o Yi(k),Xi)’s and are independent and identi-
cally distributed with P(A; = a;) = m, t = 1,...,k. It does not make use of covariates
and, hence, may yield sample sizes that substantially deviate from the target assignment
proportions across levels of the prognostic factors.

To improve the credibility of the trial, it is often desirable to enforce the targeted treat-
ment assignment proportions across levels of Z by using covariate-adaptive randomiza-
tion. As introduced in Section 1, the three most popular covariate-adaptive randomization
schemes are the stratified permuted block and stratified biased coin, both of which use
all joint levels of Z as strata, and Pocock-Simon’s minimization, which aims to enforce
treatment assignment proportions across marginal levels of Z.

All these covariate-adaptive randomization schemes, as well as the simple randomiza-

tion, satisfy the following mild condition (Baldi Antognini and Zagoraiou, 2015).

8
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(C2) The discrete covariate Z used in randomization has finitely many joint levels in Z
and satisfies (i) given {Z;,i = 1,...,n}, {A;,i =1,...,n} is conditionally independent
of {(Yi(l), ...,Yi(k),Xi),i =1,..,n}; (ii) as n — oo, n(2)/n(z) — m almost surely,

where n(z) is the number of patients with Z = z and n,(z) is the number of patients

with Z = 2z and treatment ¢, z € Z, t =1, ..., k.

2.3 Working models

The ANOVA considered as benchmark throughout this paper does not model how the
potential responses Y;(l), e Y;(k) depend on the baseline covariate vector X;. It is based on
E(Y; | A) =0T A, (1)
where 9 is a k-dimensional unknown vector and ¢! denotes the row vector that is the
transpose of a column vector ¢. By Lemma 2 in the supplementary material, ¢ identifies
0 = (01,...,0,)7, where 6, = E(Y®) is the mean potential response under treatment ¢. In
the classical exact ANOVA inference, the responses are further assumed to have normal
distributions with equal variances. So a common perception is that ANOVA can only be
used for continuous responses. As normality is not necessary in the asymptotic theory, the
ANOVA and the other approaches introduced next can be used for non-normal or even
discrete responses when n is large.
To utilize baseline covariate vector X, the customary ANCOVA is based on the following

homogeneous working model,

E(Y; | A, Xi) = 9 A + #1(Xi — pix), (2)
where ¢ and # are unknown vectors having the same dimensions as A and X, respectively,
and pux = FE(X;). There is no treatment-by-covariate interaction terms in (2), which

is incorrect if patients with different covariates benefit differently from receiving the same

treatment, a scenario that often occurs in clinical trials. By Lemma 2 in the supplementary

material, E{Y; =97 A; — 7 (X; — ux)}? is minimized at (9, ) = (4, 5), where 8 = S35, 0,
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and 3 = Y3 cov(X;, Yi(t)). Thus, the ANCOVA estimator with working model (2) is model-
assisted (Theorems 1 and 3 in §3). Then, what is the impact of ignoring the treatment-
by-covariate interaction effect when it actually exists? The impact is that the ANCOVA
estimator may be even less efficient than the benchmark ANOVA estimator, as noted by
Freedman (2008a) with some examples.

To better adjust for X, we consider an alternative working model that includes the

treatment-by-covariate interactions:

k
E(Y; | A, Xi) = 0" A + > B (Xs — px)I(Ai = ay), (3)
t=1
where ¥, 1, . .., [}x are unknown vectors and /(-) is the indicator function. We call model (3)

the heterogeneous working model because it includes the interaction terms to accommodate
the treatment effect heterogeneity across covariates, i.e., patients with different covariate
values may benefit differently from treatment. By Lemma 2 in the supplementary material,
E{Y; =0T A, =5 #T(Xi— pux)I(A; = a,)}? is minimized at (9, f1, ..., fx) = (6, Br, ..., B,
where 8; = X cov(X;, Y;(t)), i.e., inference under working model (3) is also model-assisted.

To differentiate the method based on (3) from the ANCOVA based on (2), we refer to
the method based on (3) as ANHECOVA.

As a final remark, both working models (2) and (3) use the centered covariate X — px.
Centering is crucial to identify 6; the only non-trivial exception is when homogeneous
working model (2) is used and linear contrast 6; — 0, is estimated, as the covariate mean
px cancels out. When fitting the working models (2) and (3) with datasets, we can use
the least squares with px replaced by X, the sample mean of all X;’s. In other words, we
can center the baseline covariates before fitting the models. Since this step introduces non-
negligible variation to the estimation, it affects the asymptotic variance of model-assisted
estimator of # and its estimation for inference. Thus, we cannot assume that the data has

been centered in advance and px = 0 without loss of generality (see §3.4).

10
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3 Methodology and Theory

3.1 Estimation

We first describe the estimators of § under (1)-(3). The ANOVA estimator considered as

benchmark is
HAN - (YL ""Yk)Ty (4)
where Y, is the sample mean of the responses Y;’s from patients under treatment t. As

~

n — 00, 0, is consistent and asymptotically normal.

AN
Using the homogeneous working model (2), the ANCOVA estimator of 6 is the least
squares estimator of the coefficient vector ¥ in the linear model (2) with (A4;, X;) as regres-

sors. It has the following explicit formula,

) _ N 4 _ _ . _\T

e = (Vi = B7(X1 = %), Vi = BT = X)) (5)
where X, is the sample mean of X;’s from patients under treatment ¢, X is the sample
mean of all X;’s, and

B:{Z > (Xi—Xt><Xi—Xt>T} Yod Xi—X)Y, (6)

t=1 i:A;=a t=1 i:A;=a
is the least squares estimator of /# in (2). It is shown in Theorems 1 and 3 that 6, . is
consistent and asymptotically normal as n — oo regardless of whether working model (2)
is correct or not, i.e., ANCOVA is model-assisted.
The term 37(X, — X) in (5) is an adjustment for covariate X applied to the ANOVA
estimator Y;. However, it may not be the best adjustment in order to reduce the variance.
A better choice is to use heterogeneous working model (3). The ANHECOVA estimator of

0 is the least squares estimator of ¥ under model (3),

A

_ N _ _ _ N _ _ T
OANHC = (le _5{()(1_X)v-">Yk_6g(Xk_X)> ) (7)
where

B = { DX = X)X - Xt)T} Y (X - XY, (8)

’L'ZA,L'Zat ’L'ZA,L:at

11
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is the least squares estimator of f§; in (3) for each t. It is shown in Theorems 1-3 below

that the ANHECOVA estimator 6 is not only model-assisted, but also asymptotically

ANHC

at least as efficient as 0 . and 0 regardless of whether model (3) is correct or not.

ANC
The following heuristics reveal why the adjustment 37 (X, — X) in (7) is better than
the adjustment 37(X, — X) in (5), and why ANHECOVA often gains but never hurts
efficiency even if model (3) is wrong. As the treatment has no effect on X, both X; and X
estimate the same quantity and, hence, B;‘F (X; — X) is an “estimator” of zero. As n — oo,
3, converges to (3; = Y5 cov(X, Y®) in probability, regardless of whether (3) is correct or
not (Lemma 3 in the supplementary material). Hence, we can “replace” BtT (X; — X) by
BT(X; — X). Under simple randomization,
var{Y, — 8L (X, — X))} = var(V}) + var{B7 (X, — X)} — 2cov{Y}, 8L (X, — X)} 0
= var(Y;) — var{8/ (X, — X)}. ¥
Consequently, ¥; — 7(X; — X) has a smaller asymptotic variance than ¥;. Note that (9)
does not hold with [, replaced by other quantities. This explains why the adjustment
BT()_Q — X) in ANCOVA may lose efficiency, as B in (6) converges to w1y + -+ + TSk
The variance reduction technique by (9) can be found in the generalized regression
(GREG) approach in the survey sampling literature (Cassel et al., 1976; Sérndal et al.,
2003; Fuller, 2009; Shao and Wang, 2014; Ta et al., 2020). From the theory of GREG,
Bt in (7) may be replaced by any estimator that converges to f; in probability, without
affecting the asymptotic distribution of the GREG estimator. This motivates the following
potential improvement to (8), which utilizes the fact that X has the same covariance across
treatments and estimates the covariance matrix of X using all patients,

n -1

~ n _ _ _

b= {Z(Xi - X)X —X)T} (X - XY, (10)
t =1 it Aj=ay

where n; is the number of units under treatment ¢. This alternative estimator alleviates the

concern of using an unstable inverse in (8) when the sample size is small. In all numerical

results in §4, we apply (10) for ANHECOVA.

12
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3.2 Asymptotic theory under simple randomization

We consider asymptotic theory under simple randomization for a general class of estimators
of the form

. o _ o _\T
O( by, ... by) = <Y1 —BT(Xy = K)o, Vi — OF (K — X)) , (11)
where l;t’s have the same dimension as X and can either be fixed or depend on the trial

data. Note that class (11) contains all estimators we have discussed so far:

0,  ifb, =0 forallt
O(by,....bp) =< 0, ifb =pin (6) for all t (12)
9 if b, = /3, in (8) or (10) for all ¢

ANHC
Theorem 1. Assume (C1) and simple randomization for treatment assignment.

(i) Assume that b, — by in probability as n — oo, where by is a fived vector, t =1, ..., k.

Then, as n — 00,

Jn {é( by b) — 9} — N (0, Vsr(B)) in distribution, (13)
where
Vsr(B) = diag{m, var(Y) —bI'X)} + BTSxB + BTYx% — BTYxB,

diag(d;) denotes the k x k diagonal matriz with the tth diagonal element d,, B =
(B1, .-, Br), the matriz with columns By, ..., Bk, and B = (by,...,bg). In particular,
(13) holds for 0 and 0 as described by (12).

A

0

AN’ Y ANC? ANHC

(ii) (Optimality of ANHECOVA). Var(B) is minimized at B = 2% in the sense that
Vor(B) — Vsr(A) is positive semidefinite for all B.

We briefly describe the proof for part (ii) in Theorem 1 and defer other details to the

supplementary material. Notice that
Vsr(B) — Vsr(4%) = diag{?Tt_l(ﬁt - bt)TZX(ﬁt —b)} — (% — B)TEX(%7 - B).

13
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The positive semidefiniteness of this matrix follows from the following algebraic result with

M =3xV*(% - B).

Lemma 1. Let M be a matriz whose columns are mq, ...,my, and w1, ..., Tx be nonnegative

constants with 3¢ 7, = 1. Then diag(m; *mT'm;) — MTM ‘s positive semidefinite.

We would like to emphasize that Theorem 1(i) holds regardless of whether model (3) is
correct or not. Theorem 1(ii) shows that ANHECOVA not only has guaranteed efficiency
gain over ANOVA, but is also the most efficient estimator within the class of estimators
in (11) as it attains the optimal Vsr(#). Another consequence of Theorem 1(ii) is that
adjusting for more covariates in ANHECOVA does not lose and often gains asymptotic
efficiency, although adjusting for fewer covariates may have better performance when n is
small.

For the important scenario of estimating the linear contrast 6; — 6, with fixed ¢ and s,
the corresponding model-assisted estimator is cz;é, where 6 is given by (11) and ¢ is the k-
dimensional vector whose tth component is 1, sth component is —1, and other components
are 0. The following corollary provides an explicit comparison of the asymptotic variances
of ANOVA, ANCOVA, and ANHECOVA estimators of linear contrasts, showing that the

ANHECOVA estimator has strictly smallest asymptotic variance except for some very

special cases.
Corollary 1. Assume (C1) and simple randomization.

1) For any t and s, the difference between the asymptotic variances of y/nc ) =
F d he diff b h f T (0, — 0
and /nck (0, .. —0) is
Ts Ot TtPs X\TsPt Tt Ps — Tt — Ts t — Ms XMt = Ms
(w3 + miBs)" S (5B + bs) )(B: — Bs)"Ex (B — Bs)

T g (7Tt + 7Ts) T+ Ts

I

which is always > 0 with equality holds if and only if

B+ mfBs =0 and (B — Ps)(1 —m —ms) = 0. (14)

14
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(ii) For any t and s, the difference between the asymptotic variances of \/ﬁcz;(éANc —0)
and /nck(0, .o — 0) is
— B3\Ty _ . — B)TY . —
(ﬁt 5) X(ﬁt 5) + (5 5) X(B 6) _(ﬁt_/63>TEX(/Bt_BS)7

T Ts

which is always > 0 with equality holds if and only if
TPy + T Ds
/8 = % and (Bt - /83)(]- — T — 7T5) = 0. (15)

When k = 2, i.e., there are only two arms, (14) reduces to mf; + m1 82 = 0, and (15)
reduces to §; = B2 or m; = me = 1/2. The same conclusion was also obtained by Lin (2013)
under a different framework that only considers the randomness in treatment assignments.
Liu and Yang (2020) extended the result in Lin (2013) to stratified simple randomization.
This special result has led to a recommendation of ANCOVA over ANHECOVA under two
treatment arms with balanced allocation (Wang et al., 2019; Ma et al., 2020b).

However, when there are more than two arms (k > 2), (15) holds if and only if 8, =
Bs =P = Zle B, which is a peculiar case. Therefore, 5; = (3, or balanced allocation
is not enough for ANCOVA to be as efficient as ANHECOVA for estimating 6; — 6,. For
ANCOVA to have the same asymptotic efficiency as ANHECOVA in estimating 6, — 0, for
all pairs of t and s, all 3;’s must be the same.

In addition, it follows from Theorem 1 that inference based on ANHECOVA is asymp-
totically more efficient than that based on ANCOVA when functions of € other than linear
contrasts (such as a ratio or an odds ratio based on two components of ¢) are concerned,
even in the case of two arms with balanced treatment allocation.

When there are more than two treatment arms, the ANCOVA estimator may hurt
efficient compared with the benchmark ANOVA estimator, even under balanced treatment
allocation. This is also observed by Freedman (2008a) in some specific examples.

For the comparison of ANHECOVA with benchmark ANOVA, when k£ > 2, (14) holds
if and only if 8, = B, = 0, i.e., X is uncorrelated with Y® and Y'®.
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3.3 Asymptotic theory under covariate-adaptive randomization

We now consider the estimation of § under covariate-adaptive randomization as described
in §2.2. Specifically, we would like to provide answers to the following two questions: Is
there an estimator achieving wide applicability and universality, i.e., the estimator has an
asymptotic distribution invariant with respect to all commonly used randomization schemes
so that the same inference procedure can be constructed regardless of which randomization
scheme is used? Is there an estimator that is asymptotically the most efficient within the
class of estimators given by (11) under any covariate-adaptive randomization?

The answers to these two questions are affirmative, as established formally in Theorems
2 and 3, respectively. Importantly, the key to achieve wide applicability and universality

as well as guaranteed efficiency gain is using the ANHECOVA estimator 6 with all the

ANHC

joint levels of Z included in the covariate X.

Theorem 2. (Wide applicability and Universality of ANHECOVA). Assume (C1) and
(C2). If heterogeneous model (3) is used with X containing the dummy variables for all the
joint levels of Z as a sub-vector, then, regardless of whether working model (3) is correct

or not and which randomization scheme is used, as n — oo,
NG (éANHC - 0) — N(0,Vir()) in distribution, (16)
where Var(A) = diag{n; 'var(Y®) — 8T X)} + BTSx % and B = (B, ..., Br).

Theorem 2 also applies to rerandomization schemes with discrete baseline Z, as reran-
domization satisfies (C2) (Li et al., 2018). For two-armed trials under rerandomization,
results for model-assisted inference can also be found in Li and Ding (2020, Theorem 3).

Comparing Theorems 1 and 2, we see that the ANHECOVA estimator including all
levels of Z has exactly the same asymptotic variance in simple randomization and any
covariate-adaptive randomization satisfying (C2), since Vggr(#) is the same as Ver(B) in

(13) with B = #B. Therefore, this estimator achieves wide applicability and universality.
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As we show next, however, this is not true for ANOVA or ANCOVA using model (2), or
for ANHECOVA when Z is not fully included in the working model.
To answer the second question, we need a further condition on the randomization

scheme, mainly for estimators not using model (3) or not including all levels of Z in X.

(C3) There exist k x k matrices Q(z), z € Z, such that, as n — oo,

T
N (Zl(—(;)) s TR 72“(22)) — Tk, 2 € Z) | Z1,...,Z, — N (0,D) in distribution,

where D is a block diagonal matrix whose blocks are matrices Q(z)/P(Z; = z),z € Z.

Condition (C3) weakens Assumption 4.1(c) of Bugni et al. (2019) in which Q(z) takes
a more special form. For simple randomization, Q(z) = diag(r;) — 7w’ for all z, where
7= (m,...,m)". For stratified permuted block randomization and stratified biased coin
randomization, Q(z) = 0 for all z. Note that Pocock-Simon’s minimization scheme does
not satisfy (C3) because the treatment assignments are correlated across strata, although
some recent theoretical result has been obtained (Hu and Zhang, 2020). Thus, the following
result does not apply to Pocock-Simon’s minimization. However, our Theorem 2 applies to
minimization, as (C3) is not needed in Theorem 2.

The next theorem establishes the asymptotic distributions of estimators in class (11)

under covariate-adaptive randomization, based on which we show the optimality of the

ANHECOVA estimator.

Theorem 3. Assume (C1), (C2), and (C3). Consider class (11) of estimators and, without
loss of generality, we assume that all levels of Z are included in X, as the components of

by’s in (11) corresponding to levels of Z not in X may be set to 0.
(i) For é(?)l, ...,l;k) defined in (11) with b, — by in probability asn — oo, t = 1,..., k,
N {é( bi, ..., l;k) — 9} — N(O, V(B)) in distribution, (17)
where
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V(B) = Vsr(B) — E[R(B){Qsr — Z)}R(B)], (18)
Vsr(B) is giwen in (13), B = (by,...,bx), Qsg = diag(m;) — 7w, and R(B) =
diag(w;lE{Y;(t) — 0, — b (X; — px) | Z;}). Furthermore, R(%) = 0 and, hence,
V(#B) = Vsr(B), where B = (P, ..., Br).

(ii) (Optimality of ANHECOVA). V(B) is minimized at B = % in the sense that V(B) —
V(%) is positive semidefinite for all B.

The main technical challenge in the proofs of Theorem 2 and Theorem 3 is that the
treatment assignments A, ..., A, are not independent due to covariate-adaptive random-
ization, so we cannot directly apply the classical Linderberg central limit theorem. Instead,
we decompose é( 1317 e I;k) — ¢ into four terms and then apply a conditional version of the
Linderberg central limit theorem to handle the dependence. The details can be found in
the supplementary material.

A number of conclusions can be made from Theorem 3.

1. With Theorem 2 answering the first question in the beginning of §3.3, i.e., § anne With

all joint levels of Z included in model (3) achieves wide applicability and universality,

the second question is answered by Theorem 3(ii) showing that 6 is asymptotically

ANHC

the most efficient estimator compared with all estimators in class (11); in particular,

A

0

nne attains guaranteed efficiency gain under any covariate-adaptive randomization
satisfying (C2). Our optimality result in Theorem 3(ii) is about the joint estimation
of the vector 6, which is substantially more general than the existing one-dimensional
optimality results about linear contrasts. Furthermore, our conclusion made in §3.2,
i.e., ANHECOVA is asymptotically superior over ANCOVA except for the particular

case of estimating a linear contrast for two arms with balanced treatment allocation,

holds for all commonly used covariate-adaptive randomization schemes.

2. A price paid for not using model (3) or not including all levels of Z in (3) is that the

asymptotic validity of the resulting estimator requires condition (C3), which is not
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needed in Theorem 2. Furthermore, the resulting estimator not only is less efficient
according to the previous conclusion, but also has a more complicated asymptotic
covariance matrix depending on the randomization schemes (universality is not sat-
isfied), which requires extra handling in variance estimation for inference; see, for

example, Shao et al. (2010), Bugni et al. (2018), and Ma et al. (2020a).

. Under covariate-adaptive randomization satisfying (C2)-(C3), it is still true that the

ANCOVA estimator using model (2) may be asymptotically more efficient or less
efficient than the benchmark ANOVA estimator.

. From (18), the asymptotic covariance matrix V' (B) is invariant with respect to ran-

domization scheme if R(B) in (18) is 0, which is the case when B = 4, i.e., 0, .. is
used with all levels of Z included in X. If R(B) is not 0, such as the case of ANOVA,
ANCOVA, or ANHECOVA not adjusting for all joint levels of Z, then V(B) depends
on randomization scheme and, the smaller the €(z), the more efficient the estimator
is. Thus, the stratified permuted block or biased coin with Q(z) = 0 for all z is

preferred in this regard.

. The roles played by design and modeling can be understood through

V(B) = Vsr(0) = {Vsr(B) — Vsr(0)} — E [R(B){Qsr — (Z;) } R(B)}],

where Vggr(0) is the asymptotic variance of ANOVA estimator under simple random-
ization. As we vary the randomization scheme and the working model, the change in
the asymptotic variance is determined by two terms. The first term {Vsgr(B)—Vsr(0)}
arises from using a working model; the second term E [R(B){Qsr — Q(Z;)}R(B)] is
the reduction due to using a covariate-adaptive randomization scheme, which also
depends on the working model being used via R(B). Therefore, it is interesting to
note that although the primary reason of using covariate-adaptive randomization is
to achieve balance of treatment groups across prognostic factors, it also improves

statistical efficiency.
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Theorem 3 together with a further derivation leads to the following result.

Corollary 2 (Duality between design and analysis). Assume (C1)-(C3) and that X only
includes the dummy variables for all joint levels of Z. Then, for any B in (17), V(B) =
Vsr(#) + E{R(B)QZ;)R(B)}.

A direct consequence from Corollary 2 is that, if Q(z) = 0 for all z (e.g., stratified
permuted block or biased coin randomization is used) and X only includes all joint levels
of Z, then all estimators in class (11), including the benchmark ANOVA estimator, have
the same asymptotic efficiency as the ANHECOVA estimator under any randomization.
This shows the duality between design and analysis, i.e., modeling with all joint levels of

Z is equivalent to designing with Z.

3.4 Robust standard error

For model-assisted inference on a function of 8 based on Theorems 1-3, a crucial step is to
construct a consistent estimator of asymptotic variance. The customary linear model-
based variance estimation assuming homoscedasticity can be inconsistent, as criticized
by Freedman (2008a) and FDA (2021). Therefore, it is important that we use variance
estimators that are consistent regardless of whether the working model is correct or not
and whether heteroscedasticity is present or not.

Consider the ANHECOVA estimator 0, . in (7) using either (8) or (10), where co-
variate X includes all dummy variables for Z that is used in the randomization. There
exist formulas for heteroscedasticity-robust standard error (such as those provided in the
sandwich package in R). However, those formulas cannot be directly applied here, because
they do not account for the additional variation introduced by centering the covariate X as

required by the identification of §. In fact, the term %7 ¥.x% in the asymptotic variance

Ver(Z) in Theorem 2 arises from centering X.
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Instead, we should use the robust variance estimator based on Vgr(%), as described
next. Let 3y be the sample covariance matrix of X; based on the entire sample and S? (Bt)
be the sample variance of (V; — 87 X;)’s based on the patients in treatment arm ¢. Then

Ver(Z) in (16) can be estimated by
V = diag{m; 'S (5)} + B"Ex 2, (19)

where Z is B with B; replaced by Bt. This variance estimator is consistent as n — oo
regardless of whether the heterogeneous working model (3) or homoscedasticity holds or
not, and regardless of which randomization scheme is used. For estimation or inference
about a differentiable function of #, a robust variance estimator can be obtained based on
(19) and the delta method.

In many applications the primary analysis is about treatment effects in terms of the
linear contrast 0; — 6, = cL0 for one or several pairs of (¢,s). For large n, an asymptotic

level (1 — «) confidence interval of 8, — 0, is
(Cg;éANHc - ZO&/2SEt37 ctj;éANHC + Za/2SEtS> )

where SE2, = ;1 S2(8,) + 7, LS2(Bs) + (B — Bs)"Sx (B — ) and z, is the (1 —a) quantile
of the standard normal distribution. The same form of confidence interval can be used for
any linear contrast ¢Z0 (the sum of components of ¢ is 0) with ¢ZL0 and SEZ, replaced

by o

ANHC

e and SE2 = ¢TVe, respectively. Let € be the collection of all linear contrasts
with dimension k. An asymptotic level (1 —«) simultaneous confidence band of ¢I'6, ¢ € €,

can be obtained by Scheffé’s method,
(cTé —X SE,, 0 + SE ) ce®€
ANHC a,k—1Pe, ange T Xa,k—19L¢ | )

where x4 -1 is the square root of the (1 — a) quantile of the chi-square distribution with
(k — 1) degrees of freedom. Correspondingly, to test the hypothesis Hy : 61 = -+ = 0, an

asymptotic level a chi-square test rejects Hy if and only if

éT CT(CVCT)_lcéANHc > X?x,k—la

ANHC
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where C'is the (k — 1) X k matrix whose tth row is ¢4, t =1,....k — 1.

Inference procedures based on the ANOVA or ANCOVA estimator can be similarly
obtained using Theorems 1 and 3. However, as they do not achieve universality, a tailored
derivation is needed for each covariate-adaptive randomization scheme. For example, un-
der the stratified permuted block or biased coin randomization, the ANOVA or ANCOVA
estimator is asymptotically more efficient than the same estimator under simple random-
ization; thus, using variance estimators valid only under simple randomization may lead to
unduly conservative inference (FDA, 2021). To eliminate the conservativeness, modifica-
tions depending on covariate-adaptive randomization schemes have to be made (Shao et al.,
2010; Bugni et al., 2018). For Pocock-Simon’s minimization, however, how to derive the
tailored variance estimators for the ANOVA and ANCOVA estimators is not yet known as
the asymptotic properties of the minimization scheme is still not well established. This is

why we recommend ANHECOVA over the other model-assisted estimators for the practice.

4 Empirical Results

4.1 Simulation results

To examine the finite-sample properties of the model-assisted procedures, we perform a
simulation study based on the placebo arm of 481 patients in a clinical trial for rheumatoid
arthritis. We obtain from the trial a 2-dimensional continuous baseline covariate (U, W)
and a continuous response variable Y1) where U is the baseline disease activity score for
rheumatoid arthritis, W is patient’s tender joint count at 68 joints, and Y'") is the change of
disease activity score from baseline. The mean vector and covariance matrix of (Y, U, W)
based on 481 patients are given in the supplementary material. Note that we do not know
the true relationship between YV and (U, W). In fact, a linear model fit between Y® and
(U, W) based on 481 patients results in multiple and adjusted R-squares < 0.05. Thus,
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working models (2) and (3) are likely to be misspecified in our simulation.

We consider two simulation settings that are different in how the potential responses
Y® and Y@ of the other two treatment arms are generated, and how the treatment
assignment is randomized. Our first simulation compares the standard deviations of the
ANOVA, ANCOVA, and ANHECOVA estimators of #, — 6;, with X = U for ANCOVA
and ANHECOVA. The two additional potential responses are generated according to

Y =YW 4 (U = o)

(20)

v _y©
(01 = 03 = 05, i.e., no average treatment effect). The sample size is 481 (all data points are
sampled). Treatments are assigned by simple randomization according to three different
allocation proportions: 1:2:2, 1:1:1, and 2:1:1. Thus, the only randomness in the first
simulation is from treatment assignments. Since 3; = Xy cov(X;, Y;(t)), P2 = B3 = P + (.
The value of ; is —0.255 and the value of ( represents the magnitude of treatment-
by-covariate interaction. But ( does not affect the average treatment effect as it is the
coefficient in front of centered U — pyy. Although we only consider the estimation of 65 — 6,
data from the third arm is still used by ANCOVA and ANHECOVA.

Based on 10,000 simulations, all three estimators have negligible biases and their stan-
dard deviations are plotted in Figure 1 for different values of ( between —1 and 1. The
simulation result shows that, as predicted by our theory, ANHECOVA is generally more
efficient than the other two estimators, except when ( is nearly 0 where ANCOVA is com-
parable to ANHECOVA. Furthermore, the simulation with allocation 1:2:2 (left panel in
Figure 1) shows very clearly that there is no definite ordering of the variances of ANCOVA
and ANOVA. Our Corollary 1 suggests that a balanced allocation does not guarantee the
superiority of ANCOVA over ANOVA when there are multiple arms (in contrast with the
case of two arms), which can be seen from the simulations with allocation 1:1:1 (middle

panel in Figure 1).
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The second simulation setting is intended to examine the performance of estimators,
standard errors, and the proposed 95% asymptotic confidence intervals for linear contrasts
0y — 01 and 03 — 0, and ratios 05 /6; and 03/6;, under three randomizations schemes, simple
randomization, stratified permuted block, and Pocock-Simon’s minimization, with alloca-
tion 1:1:1 or 1:2:2. For each simulation, a random sample of size 400 is drawn from the 481
subjects’ (Y, U, W) with replacement, and Y® and Y® are generated according to

Y@ =-13+YW — 05U — py) — 0.01(U* — piy2) + 0.3(W — pw) .

Y® = —1+Y® 01U - py) = 0.01(U* = pig2) — 0.L(W — payy) 2
(0 = —1.031, 05 = —2.331, and 05 = —2.031). The magnitude of treatment-by-covariate
interaction is represented by the differences of Bi-values, where for X = (U, W), B, =
(—0.240, —0.001), B, = (—0.853,0.298)T, and B3 = (—0.453,—0.102)". Note that a
quadratic term U? — py2 appears in the data generating process (21) but is not adjusted
by ANCOVA or ANHECOVA. Thus, the models for Y® —Y® and Y® — Y™ are also
misspecified, in addition to the likely event that the model for Y (V) is misspecified.

The covariate Z used in randomization is composed of a three-level discretized W (with
proportions 0.24, 0.22, and 0.54) and a two-level discretized U (with proportions 0.77
and 0.23). These Z-categories are created according to the disease activity encoded by
covariates U and W. For stratified permuted block randomization, block sizes are 6 and
10 for treatment allocations 1:1:1 and 1:2:2, respectively. For minimization, we follow the
procedure in Pocock and Simon (1975), which assigns a patient with probability 0.8 to the
preferred arm minimizing the sum of assignment balance scores over marginal levels of Z.

For ANCOVA and ANHECOVA, we consider two working models with different choices
of X. One model includes the dummy variables for Z but not (U, W), motivated by the
fact that Z is a discretization of (U, W). The other model includes not only the dummy
variables for Z, but also U and W. The simulation results with n = 400 based on 10,000

simulations are shown in Tables 1 and 2 for linear contrasts and ratios, respectively. When

24

Page 24 of 61



Page 25 of 61

oNOYTULT D WN =

Journal of the American Statistical Association

ratio is considered, we apply the delta method to construct standard errors. Simulation

results with n = 200 are in the supplementary material.

Note that in the second simulation when covariate-adaptive randomization is used, for

ANOVA or ANCOVA, we employ the standard error derived under simple randomization

based on Theorem 1. According to our theory, it is expected that the standard errors

and the related confidence intervals based on ANOVA and ANCOVA are conservative; the

simulation can show how serious the conservativeness is.

The following is a summary of simulation results in Tables 1 and 2.

1.

2.

All estimators have negligible bias compared to their standard deviation.

ANHECOVA has the smallest standard deviation in all scenarios of our simulation.

This is consistent with our asymptotic theory.

There is no unambiguous ordering of the standard deviations of ANCOVA and
ANOVA. In particular, ANCOVA is better in estimating 65 — 6; but worse in es-
timating 03 — 6;. However, for allocation 1:2:2 and estimating of ratios, ANCOVA is
nearly the same or worse than ANOVA.

For ANHECOVA, including additional covariates U and W in the working model re-
sults in a smaller standard deviation, indicating that U and W carry more information

than their discretized values. But this is not always the case for ANCOVA.

From Tables 1 and 2, the performances of ANHECOVA are nearly the same under
simple randomization, stratified permuted block, and Pocock-Simon’s minimization.

This supports the universality results in our asymptotic theory.

Under simple randomization, the robust standard errors for all model-assisted estima-
tors are very close to their actual standard deviations, and confidence intervals have
nominal coverage in all settings. However, although this is still true for ANHECOVA
under stratified permuted block and Pocock-Simon’s minimization, it is not the case

for ANOVA and ANCOVA, i.e., standard errors valid under simple randomization
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appear to overestimate the actual standard deviations, so the confidence intervals are

conservative. This observation reflects the universality property of ANHECOVA.

4.2 A real data example

We further illustrate the different model-assisted procedures using a real data example.
Chong et al. (2016) conducted a randomized experiment to evaluate the impact of low
dietary iron intake on human capital attainment. They recruited students of age 11 to 19
in a rural area of Cajamarca, Peru, where many adolescents suffer from iron deficiency. The
goal of this randomized trial is to quantify the causal effect of reduced adolescent anemia
on school attainment. By using students’ school grade as covariate Z with five levels, a
stratified permuted block randomization with 1:1:1 allocation was applied to assign 219

students to one of the following three promotional videos:

Video 1: A popular soccer player is encouraging iron supplements to maximize energy;
Video 2: A physician is encouraging iron supplements for overall health;

Video 3: A dentist encouraging oral hygiene without mentioning iron at all.

Chong et al. (2016) investigated whether showing different promotional videos to the stu-
dents can improve their academic performance through increased iron intake. Video 3 is
treated as a “placebo”. After the treatment assignments, four students were excluded from
the analysis for various reasons, which we also ignore in our analysis. The dataset is avail-
able at https://www.openicpsr.org/openicpsr/project/113624/version/V1/view.
Chong et al. (2016) used various outcomes in their analysis; here we focus on one of
their primary outcomes—the academic achievement—as an example. In this trial, the
academic achievement is measured by a standardized average of the student’s grades in
math, foreign language, social sciences, science, and communications in a semester. For
the model-assisted approaches, we use the baseline anemia status as the covariate in working

models (2) and (3), which is believed to moderate the treatment effect (Chong et al., 2016).

26

Page 26 of 61



Page 27 of 61

oNOYTULT D WN =

Journal of the American Statistical Association

Table 3 reports the analysis results by using different model-assisted procedures. Like in
our simulation studies, the standard errors for ANOVA and ANCOVA are computed using
estimator based on Theorem 1 for simple randomization, even though the randomization
scheme here is covariate-adaptive. All the model-assisted estimators find similar effect sizes
for the two contrasts (physician versus placebo, soccer star versus placebo), and the two
ANHECOVA estimators have slightly smaller standard errors. Including baseline anemia
status in the working model is useful to reduce the standard error. Compared to the
placebo, the promotional video by the soccer player does not seem to have a positive
effect on the academic achievement. In contrast, the video of the physician promoting iron
supplements appears to have a positive effect. The difference between ANHECOVA and
ANOVA or ANCOVA, and between including and not including anemia can be seen from

the magnitude of the corresponding p-values.

5 Recommendation and Discussion

To improve its credibility and efficiency, we believe a clinical trial analysis can benefit from
the considerations outlined in §1.1 and discussed throughout §2-3.

Our theoretical investigation shows that the ANHECOVA with all joint levels of Z
included in heterogeneous working model (3), coupled with the robust variance estimator
given by (19), achieves guaranteed efficiency gain over benchmark ANOVA, asymptotic
optimality among a large class of estimators, wide applicability and universality to a wide
range of covariate-adaptive randomization schemes. Our theory is for the joint asymptotic
distribution in estimating 6 (the vector of mean responses), which can be readily used for
inference about linear or nonlinear functions of 6. Thus, we believe it deserves wider usage
in the clinical trial practice. In addition to all joint levels of Z, other baseline covariates
highly associated with the responses can also be included in the ANHECOVA working
model, following the guidance of FDA (2021). Our theory shows that using ANOVA,
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ANCOVA with model (2), or ANHECOVA that does not adjust for all joint levels of Z,
suffers from invalidity, inefficiency, or non-universality in the sense that the asymptotic
distribution of the estimator depends on a particular randomization scheme.

For discrete responses, although ANHECOVA and our theory can still be applied, it
is more common to perform covariate adjustment with generalized linear working models,
which is also known as the g-computation. Under simple randomization, extensive devel-
opments for g-computation can be found in Freedman (2008b), Moore and van der Laan
(2009), Rosenblum and van der Laan (2010), Steingrimsson et al. (2017), and Guo and
Basse (2021). Recently, Wang et al. (2021) obtained some general results under stratified
biased coin and permuted block randomization, including robust inference on a linear con-
trast of 6 using logistic regression as a working model. However, estimators from these
methods are not guaranteed to gain efficiency over the unadjusted estimator. We plan to
develop covariate adjustment methods with nonlinear working models that achieve all three
considerations as a future work.

Multiple treatment arms, which usually include a placebo, different doses (or regimens)
of a new treatment, and/or active controls, are common in clinical trials (Juszczak et al.,
2019) and are prevalent in some therapeutic areas such as immunology (Yates et al., 2021).
In some applications, the primary analysis may focus on comparing just two treatments,
even though the trial contains more than two treatment arms. A simple strategy is to
ignore the data from other arms and apply inference procedures to the two arms of inter-
est. For ANOVA, this is equivalent to using all the arms, since ANOVA does not borrow
strength from other arms through using covariates. However, using data from all arms is
recommended for ANHECOVA, because it utilizes covariate data from arms other than the
two arms of interest to gain efficiency (implied by Theorem 2). Regarding ANCOVA there
is no definite order of efficiency for using the whole dataset or data from two given arms,

since using more covariate data in ANCOVA may increase or decrease efficiency.
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As a final cautionary note, standard software does not produce asymptotically valid
standard errors for model-assisted inference. We implement an R package called RobinCar to
compute the model-assisted estimators and their robust standard errors, which is available

from the authors.
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1

2

3

4

5

6 L .

2 Table 1: Bias, standard deviation (SD), average standard error (SE), and coverage probability

g (CP) of 95% asymptotic confidence interval for linear contrasts under simple randomization (SR),

10 stratified permuted block randomization (PB), and Pocock-Simon’s minimization based on 10,000

1

12 simulations and setup in (21) with n = 400

13

14 0y — 61 05 — 60,

15

16 Allocation Randomization Method X Bias SD SE CP Bias SD SE CP

17 1:1:1 SR ANOVA 0.001  0.327 0.327 0.946 -0.001 0.201 0.201 0.949

18 ANCOVA Z 0.001 0.310 0.306 0.945 0.000 0.229 0.227 0.949

19 ANCOVA Z,UW -0.011 0.295 0.289 0.944 0.003 0.246 0.240 0.945

20 ANHECOVA Z -0.001 0.271 0.265 0.944 -0.002 0.169 0.167 0.949

21 ANHECOVA Z,U,W 0.000 0.226 0.224 0.947 -0.002 0.155 0.152 0.948

22 PB ANOVA 0.000 0.267 0.327 0.982 -0.001 0.166 0.201 0.982

23 ANCOVA Z 0.001 0.267 0.306 0.975 -0.001 0.166 0.227 0.992

24 ANCOVA Z,U,W -0.012 0.250 0.289 0.974 0.003 0.186 0.240 0.987

25 ANHECOVA Z 0.001 0.266 0.265 0.947 -0.001 0.165 0.167 0.950

26 ANHECOVA Z U, W 0.002 0.224 0.224 0.950 -0.001 0.152 0.152 0.948

27

28 Minimization ~ANOVA -0.002 0.268 0.327 0.982 0.000 0.168 0.201 0.980

29 ANCOVA A -0.002 0.267 0.306 0.974 0.000 0.168 0.227 0.992

30 ANCOVA Z, U W -0.013 0.250 0.289 0.974 0.005 0.189 0.240 0.987

31 ANHECOVA Z -0.002 0.267 0.265 0.948 0.000 0.167 0.167 0.949

32 ANHECOVA Z, U, W -0.001 0.225 0.223 0.946 0.000 0.154 0.152 0.944

33 1:2:2 SR ANOVA 0.001 0.311 0.312 0.951 0.000 0.205 0.204 0.951

34 ANCOVA A 0.001 0.298 0.294 0.947 0.001 0.241 0.239 0.950

35 ANCOVA Z,UW -0.013 0.286 0.281 0.945 0.003 0.262 0.257 0.947

36 ANHECOVA Z 0.000 0.268 0.268 0.949 0.001 0.182 0.180 0.948

37 ANHECOVA Z,U,W 0.001 0.237 0.238 0.949 0.002 0.171 0.169 0.944

38

39 PB ANOVA 0.002 0.265 0.312 0.977 0.001 0.180 0.204 0.975

40 ANCOVA Z 0.002 0.265 0.293 0.969 0.001 0.181 0.238 0.991
ANCOVA Z,U,W -0.012 0.253 0.280 0.967 0.005 0.207 0.256 0.986

41 ANHECOVA Z 0.002 0.264 0.267 0.950 0.001 0.179 0.179 0.949

42 ANHECOVA Z, U,W 0.001 0.234 0.238 0.951 0.002 0.170 0.168 0.946

43

44 Minimization ~ANOVA 0.000 0.265 0.311 0.979 0.002 0.181 0.204 0.971

45 ANCOVA Z -0.001 0.265 0.293 0.969 0.001 0.182 0.238 0.991

46 ANCOVA Z,U,W -0.013 0.253 0.280 0.970 0.006 0.208 0.256 0.985

47 ANHECOVA Z -0.001 0.265 0.267 0.951 0.001 0.181 0.179 0.947

48 ANHECOVA Z,U,W 0.001 0.233 0.238 0.956 0.002 0.172 0.168 0.945

49

50

51

52

53

54

55

56 33

57
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Table 2: Bias, standard deviation (SD), average standard error (SE), and coverage probability

(CP) of 95% asymptotic confidence interval for ratios under simple randomization (SR), strat-

Journal of the American Statistical Association

ified permuted block randomization

(PB), and Pocock-Simon’s minimization based on 10,000

simulations and setup in (21) with n = 400
92/91 03/01
Allocation Randomization Method X Bias SD SE CP Bias SD SE CP
1:1:1 SR ANOVA 0.022 0.379 0.378 0.955 0.020 0.259 0.258 0.952
ANCOVA Z 0.022 0.368 0.362 0.950 0.023 0.296 0.292 0.949
ANCOVA Z, U W 0.039 0.360 0.352 0.950 0.027 0.321 0.313 0.946
ANHECOVA ~Z 0.024 0.337 0.329 0.951 0.020 0.232 0.228 0.948
ANHECOVA Z,UW 0.022 0.304 0.298 0.948 0.019 0.221 0.215 0.947
PB ANOVA 0.021 0.331 0.377 0.978 0.018 0.228 0.257 0.973
ANCOVA Z 0.021 0.331 0.359 0.972 0.018 0.228 0.289 0.987
ANCOVA Z, U W 0.038 0.324 0.349 0.970 0.020 0.256 0.310 0.979
ANHECOVA Z 0.020 0.331 0.328 0.954 0.018 0.227 0.227 0.952
ANHECOVA Z,U,W 0.020 0.301 0.297 0.951 0.017 0.217 0.214 0.947
Minimization =~ ANOVA 0.026 0.327 0.378 0.981 0.021 0.232 0.258 0.972
ANCOVA Z 0.026 0.327 0.360 0.974 0.021 0.233 0.290 0.985
ANCOVA Z,U,W 0.041 0.321 0.350 0.972 0.022 0.262 0.310 0.980
ANHECOVA Z 0.026 0.326 0.329 0.958 0.021 0.231 0.228 0.951
ANHECOVA Z,UW 0.026 0.299 0.297 0.953 0.021 0.220 0.215 0.948
1:2:2 SR ANOVA 0.035 0.410 0.405 0.955 0.030 0.303 0.298 0.947
ANCOVA Z 0.042 0.422 0.409 0.949 0.042 0.366 0.353 0.947
ANCOVA Z,UW 0.070 0.435 0.419 0.948 0.054 0.406 0.389 0.945
ANHECOVA Z 0.036 0.383 0.373 0.950 0.029 0.285 0.277 0.942
ANHECOVA Z,U,W 0.034 0.362 0.352 0.948 0.027 0.278 0.266 0.940
PB ANOVA 0.033 0.373 0.403 0.969 0.028 0.279 0.296 0.962
ANCOVA Z 0.033 0.374 0.401 0.967 0.028 0.280 0.344 0.981
ANCOVA Z, U W 0.059 0.386 0.410 0.965 0.038 0.326 0.379 0.974
ANHECOVA ~Z 0.034 0.373 0.372 0.953 0.028 0.279 0.275 0.948
ANHECOVA Z,UW 0.034 0.354 0.350 0.949 0.027 0.272 0.265 0.945
Minimization =~ ANOVA 0.030 0.372 0.401 0.967 0.025 0.276 0.293 0.961
ANCOVA 7 0.039 0.374 0.401 0.966 0.033 0.281 0.344 0.982
ANCOVA Z,UW 0.062 0.390 0.408 0.963 0.040 0.330 0.377 0.973
ANHECOVA Z 0.035 0.372 0.371 0.952 0.029 0.276 0.274 0.950
ANHECOVA Z,U,W 0.036 0.352 0.349 0.950 0.028 0.269 0.264 0.947
34

Page 34 of 61



Page 35 of 61 Journal of the American Statistical Association

oNOYTULT D WN =

Table 3: Estimate, standard error (SE), and p-value in the real data example analysis

9 Physician versus placebo Soccer star versus placebo

Method X Difference  SE  p-value Difference  SE  p-value

12 ANOVA 0.386 0.211  0.067 -0.068 0.205 0.739

13 ANCOVA Grade 0.403 0.203  0.046 -0.052 0.203  0.799
Grade, Anemia status 0.437 0.199 0.028 -0.085 0.201  0.672

16 ANHECOVA Grade 0.409 0.200 0.041 -0.051 0.201  0.800
Grade, Anemia status 0.481 0.193  0.013 -0.046 0.195 0.815

18 Ratio SE  p-value Ratio SE  p-value

20 ANOVA 1.034 0.018  0.062 0.994 0.019  0.752

21 ANCOVA Grade 1.035 0.018 0.051 0.996 0.018  0.800
22 Grade, Anemia status 1.038 0.018 0.033 0.993 0.017  0.670

23 ANHECOVA  Grade 1.036  0.018  0.045 0.996  0.018 0.800
24 Grade, Anemia status 1.042  0.017 0.016 0.996  0.017 0.803

- ANOVA -- ANCOVA — ANHECOVA

31 allocation 1:2:2 allocation 1:1:1 allocation 2:1:1

0.16-

0.15-

standard deviation

43 0.13-

50 Figure 1: Standard deviations of ANOVA, ANCOVA, and ANHECOVA estimators of 6y — 6

52 based on 10,000 simulations and setup in (20)
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Supplementary Material: Toward Better
Practice of Covariate Adjustment in
Analyzing Randomized Clinical Trials

1 Additional Results on Simulation

The table below provides the mean vector and covariance matrix of (Y, U, W) in the real

clinical trial used in §4.1.

mean SD correlation
Yy 1031 1.126 YP andU —0.216
U 5684 0.953 Y and W —0.168
W 23222 13422 Uand W 0.744

The following Table S1-S2 are simulation results with n = 200 based on 10,000 simula-

tions for linear contrasts and ratios, respectively.
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1

2

3

4

5

6 . .1

2 Table S1: Bias, standard deviation (SD), average standard error (SE), and coverage probability

g (CP) of 95% asymptotic confidence interval under simple randomization (SR), stratified permuted

10 block randomization (PB), and Pocock-Simon’s minimization based on 10,000 simulations and

1

12 setup in (21) with n = 200

13

14 0y — 61 05 — 601

15

16 Allocation Randomization Method X Bias SD SE CP Bias SD SE CP

17 1:1:1 SR ANOVA -0.002 0.467 0.463 0.944 0.000 0.284 0.285 0.950

18 ANCOVA Z 0.000 0.445 0.433 0.941 -0.001 0.326 0.322 0.949

19 ANCOVA Z,U,W -0.023 0.428 0.407 0.933 0.009 0.351 0.339 0.942

20 ANHECOVA Z 0.000 0.384 0.372 0.939 0.003 0.238 0.235 0.943

21 ANHECOVA Z,U,W 0.000 0.325 0.315 0.943 0.001 0.220 0.213 0.941

22 PB ANOVA -0.002 0.380 0.462 0.980 -0.001 0.241 0.284 0.977

23 ANCOVA Z -0.002 0.379 0.432 0.972 -0.001 0.242 0.321 0.991

24 ANCOVA Z,UW -0.026 0.356 0.406 0.970 0.009 0.275 0.338 0.983

25 ANHECOVA Z -0.002 0.377 0.371 0.940 -0.001 0.240 0.234 0.940

26 ANHECOVA Z U, W -0.002 0.317 0.314 0.948 -0.001 0.220 0.213 0.941

27

28 Minimization ~ANOVA 0.003 0.378 0.463 0.980 0.002 0.236 0.284 0.981

29 ANCOVA A 0.003 0.378 0.432 0.972 0.002 0.237 0.321 0.991

30 ANCOVA Z,UW -0.021 0.356 0.406 0.968 0.012 0.270 0.338 0.985

31 ANHECOVA Z 0.002 0.376 0.372 0.946 0.002 0.236 0.234 0.947

32 ANHECOVA Z, U, W 0.002 0.319 0.314 0.945 0.003 0.217 0.213 0.943

33 1:2:2 SR ANOVA 0.001 0.446 0.441 0.946 0.003 0.289 0.289 0.949

34 ANCOVA A 0.004 0.430 0.417 0.942 0.002 0.347 0.339 0.946

35 ANCOVA Z,UW -0.019 0.420 0.398 0.934 0.012 0.380 0.365 0.943

36 ANHECOVA Z 0.003 0.386 0.382 0.945 0.004 0.257 0.256 0.947

37 ANHECOVA Z,U,W 0.004 0.345 0.342 0.949 0.006 0.247 0.241 0.942

38

39 PB ANOVA 0.002 0.379 0.441 0.977 0.000 0.254 0.289 0.971

40 ANCOVA Z 0.002 0.378 0.414 0.968 0.000 0.257 0.337 0.988
ANCOVA Z,U,W -0.024 0.365 0.395 0.961 0.008 0.296 0.362 0.982

41 ANHECOVA Z 0.001 0.377 0.381 0.951 0.000 0.253 0.255 0.948

42 ANHECOVA Z, U,W 0.002 0.336 0.341 0.948 0.001 0.243 0.240 0.944

43

44 Minimization ~ANOVA 0.003 0.384 0.441 0971 0.000 0.251 0.288 0.974

45 ANCOVA Z 0.001 0.383 0.414 0.961 -0.002 0.252 0.336 0.991

46 ANCOVA Z,UW -0.023 0.371 0.395 0.959 0.008 0.294 0.361 0.985

47 ANHECOVA Z 0.002 0.382 0.381 0.944 -0.001  0.250 0.254 0.950

48 ANHECOVA Z,U,W 0.000 0.338 0.341 0.952 -0.001 0.239 0.239 0.948

49

50

51

52

53

54

55

56 2

57

58

59




oNOYTULT D WN =

Table S2: Bias, standard deviation (SD), average standard error (SE), and coverage probability
(CP) of 95% asymptotic confidence interval under simple randomization (SR), stratified permuted

block randomization (PB), and Pocock-Simon’s minimization based on 10,000 simulations and

Journal of the American Statistical Association

setup in (21) with n = 200

62/61 63/64
Allocation Randomization Method X Bias SD SE CP Bias SD SE CP
1:1:1 SR ANOVA 0.046 0.556 0.547 0.958 0.037 0.377 0.373 0.949
ANCOVA A 0.048 0.546 0.526 0.952 0.049 0.440 0.427 0.948
ANCOVA Z, U W 0.084 0.555 0.518 0.954 0.054 0.490 0.460 0.942
ANHECOVA Z 0.047 0.494 0.473 0.951 0.034 0.340 0.328 0.944
ANHECOVA Z,U,W 0.047 0.455 0.427 0.945 0.035 0.328 0.308 0.941
PB ANOVA 0.048 0.483 0.544 0.980 0.038 0.339 0.371 0.969
ANCOVA 7Z 0.048 0.483 0.518 0.972 0.038 0.340 0.418 0.983
ANCOVA Z, U, W 0.083 0.480 0.509 0.972 0.043 0.393 0.451 0.973
ANHECOVA 7 0.048 0.481 0.471 0.955 0.038 0.338 0.327 0.942
ANHECOVA Z,U,W 0.048 0.438 0.426 0.950 0.037 0.324 0.307 0.942
Minimization ~ANOVA 0.046 0.480 0.543 0.979 0.036 0.333 0.370 0.969
ANCOVA Z 0.046 0.479 0.517 0.971 0.036 0.335 0.417 0.981
ANCOVA Z,U,W 0.080 0.480 0.507 0.972 0.041 0.384 0.449 0.972
ANHECOVA 7 0.046 0.478 0.470 0.952 0.036 0.332 0.326 0.944
ANHECOVA Z, U W 0.044 0.440 0.424 0.948 0.034 0.322 0.306 0.940
1:2:2 SR ANOVA 0.074 0.617 0.596 0.952 0.062 0.457 0.439 0.941
ANCOVA 4 0.095 0.678 0.621 0.940 0.094 0.605 0.540 0.933
ANCOVA Z, U W 0.150 0.754 0.656 0.938 0.117 0.717 0.611 0.927
ANHECOVA Z 0.079 0.594 0.556 0.944 0.062 0.446 0.412 0.938
ANHECOVA Z,U,W 0.079 0.578 0.526 0.937 0.062 0.447 0.397 0.930
PB ANOVA 0.073 0.562 0.593 0.968 0.062 0.423 0.437 0.956
ANCOVA Z 0.074 0.562 0.592 0.963 0.063 0.426 0.509 0.973
ANCOVA Z, U W 0132 0.626 0.624 0.962 0.088 0.531 0.576 0.963
ANHECOVA Z 0.074 0.561 0.550 0.955 0.063 0.423 0.408 0.943
ANHECOVA Z,U,W 0.075 0.543 0.521 0.948 0.062 0.421 0.394 0.938
Minimization ~ ANOVA 0.068 0.562 0.586 0.965 0.057 0.415 0.429 0.956
ANCOVA Z 0.083 0.572 0.589 0.962 0.071 0.430 0.505 0.974
ANCOVA Z,UW 0.137 0.635 0.618 0.958 0.093 0.532 0.569 0.966
ANHECOVA Z 0.077 0.565 0.546 0.949 0.064 0.416 0.403 0.945
ANHECOVA Z U W 0.077 0549 0.516 0.945 0.065 0.418 0.389 0.937
3
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2 Two Lemmas

Lemma 2. Assume (C1), (C2), and that P(A; = a; | Zy,...,Z,) =7 forallt =1,...,k
and 1 =1,...,n. We have the following conclusions.

(i) For any integrable function f,
E{f(0, X)) = B(f(Y;, X)) | Ai = @)

and

B{AOGY, X) | Xi} = B(F(Yi X) | X, Ai = a0)
(ii) Let 0 = (BE(YW .., E(Y®))T be the potential response mean vector, B = Zle e,
and B = S5 cov(X;, Y,"), t = 1,..,k. Then

(6,5) = arg in [{Yi —0TA — BT(Xi ux>}2]

(0,8
and
X 2
0,B1,...,B,) =arg min E [{Y;—0TA — Zﬁ:(XZ —pux)I(A; = ay)
(ﬁyﬁl 7777 ﬁk) t=1
The condition P(A; = a; | Z1,...,Z,) = m for all t and i holds for most covariate-

adaptive randomization schemes. Note that it does not exclude the possibility that the set
of random variables {A4;,7 = 1,...,n} is dependent of {Z;,i = 1,...,n}, which is indeed
the case for covariate-adaptive randomization schemes. We impose this condition only in
Lemma 2 to facilitate understanding the working models. This additional assumption is

not needed for our asymptotic theory in §3, as condition (C2) is sufficient.

Proof. (i) We focus on proving the second result; the first result can be shown similarly. For
simple randomization, this result immediately follows (C2) (i) as (Y;.(l), . ,Yi(k), X, A;) are
independent and identically distributed. For covariate-adaptive randomization, we remark

that the property of conditional independence (Dawid, 1979, Lemma 4.3), (C2) (i) and

4



oNOYTULT D WN =

Journal of the American Statistical Association

the third condition in Lemma 2 imply that A; is independent of {(Y;(l), - Yi(k), X, Zi),i =
1,...,n}. Then, it can be shown that

E{f(Ye X)) | X A= ) = B (Y, X) | X A= a)}
= Y B X) | Xi A= 4, G} P(Go | Xy A = a)

= B{f(,", X3) | X},

where G, is the event that {Z; = z,i = 1,...,n}, and the equalities follow from the
consistency of potential responses, the law of iterated expectation, (C2) (i), and the remark
above.

(ii) We only prove the first result. The second result can be proved similarly. Let (6, 3) be

the optimality points satisfying the following estimation equations:

E[I(A; = a){Yi— 0" A, — BT (X; — ux)}] =0, for any t (S1)
E[(X; — px){Y; — 074, — BT (X; — ux)}] = 0. (S2)
From Lemma 2(i), (S1) implies that for any ¢,
E[Y, —0TA, - B7(X; —px) | Ay =] = BE[Y," =0, — B7(X, — ux)] = EY, — 6] =0
and, thus, 0; = E(Yi(t)), t =1,...,k. Then (S2) implies that

0 =E[(X, — px){Y; — 07 A, — BT (X, — x)}]

= > B[I(A = a)(Xi = px) (¥ = 07 4 = 5T (X, — ux))}]

K
:ZE[(Xz’ —pux){Yi =0T A = B7(Xi — pux)} | Ai = ay]my
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k

> B[(Xs = )Y = 0 = 87(X; = )}
(X, ;")

3 [Cov X, Y1) — 938 7

t=1

— Z cov(X;, Yi(t))ﬂ't —Xxp

t=1

and, thus, g = 231 S5 COV(XZ,Y )7Tt =S b O
Lemma 3. Under conditions (C1)-(C2), fort =1,... k, B, = Bi+o0,(1) and 8 = B+o,(1);

Proof. (i) We prove the result for Bt. The proof for B is analogous and omitted. Notice
that

1 n
— Z (X; — XY, ZI —atXY—n—tZ] in_t;](A:

’LA =at

Let A={Ay,..., A} and F ={Z,,...,Z,}. Note that

{ ZI —atXY|A.7:} Z[ i =a)E z’Yi(t)‘AJ:)
=—ZI i=a)EXY" | Z),

where the second line holds because E(XY | A, F) = E(X,»Yi(t) | F) = E(XiYi(t) | Z;)
from (C1) and (C2) (i). Moreover, n=* Y " | I(A; = at)XiY;(t) is an average of independent
random variables once conditional on {A, F}. From the existence of second moment of
XY® and the weak law of large numbers for independent random variables, we conclude

that, for any € > 0,

nlLHOlOP< ZI i =a)X ZI x| z,)

Ze|.,4,.7:>:()
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From the bounded convergence theorem, the above equation also holds unconditionally. In

other words,

—ZI i =a) XY — = Z[ i =a)BXY | Z) = 0,(1).

Furthermore,

—ZI i =a)EX,Y" | Z) = ZZI = a)E(X,Y\" | Z, = 2)
:—ZEXY ‘Z—Z ZI —at>

= ZE(XZY; | Zi = 2)n(2)

=Y B | 2= %) ny(2) n(z)
=Y EXY" | Z = 2)mP(Z: = 2) + 0,(1)
= mE(X;Y,") + 0,(1)
This together with the fact that n,/n =) _n(2)/{>_, n(2)} = m + 0p(1), we have
nit zn: I(A; = a)X;Y; = B(X;Y") + 0,(1)
Similarly, we can show the result with X,Y; replaced by X; or Y; also holds, i.e.,

n—ZI )Xi = E(X;) + op(1)

—Z[ )Y = BV 4 0,(1)
The denominator of Bt can be treated similarly, which leads to

— Z{X X HX — X3 =2x +0,(1).
ZA—at

The proof is completed by using the definition of ;.
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3 Technical Proofs

3.1 Proof of (9)

Under simple randomization, A1, ..., A, are independent with other variables. Let X_; =

(n—mng)™t > icita, Xi- Then X;— X =n"t(n—ny)(X; — X_;). Note that X; and X_; are
uncorrelated conditional on A = (A, ..., 4,), as

n n

cov(Xy, Xy | A) = =) ZZI = a)[(A; # a)cov(X;, X; | A) =0,

i=1 j=1
where the last equality is from cov(X;, X; | A) = cov(X;, X;) = 0 for ¢ # j. Similarly, we
can show that Y; and X _; are uncorrelated conditional on A.

Then,

con{F (X - X), %} = o (P - PR )
_ ;E{cov<"‘”txt,m|«4)}
B )
idmar iAimar
ol 5ok
el

} cov Xl, Y( )>

- { }ﬁim
nng

where the second equality is from cov(X_;,Y; | A) = 0, E(Y; | A) = E(Y®) and the
identity that cov(X,Y) = E{cov(X,Y | Z)} + cov{E(X | Z), E(Y | Z)}. Also note that

var (5] (%, = %) = 6w (2006 - X)) 6
_§TE <Mvar(Xt N A)) 8,

n2
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:@E<@%$Xmm&\m+wmxtum)@
:@E<m—fm{wmxy+mm&q>&

n Tt n — ng

=E{”‘”t}ﬁizxﬁt

nng

where the second equality uses the identity that var(X) = E{var(X | Z)}+var{E(X | Z)},
and B (X, — X_; | A) = E(X;) — E(X;) =0.

3.2 Proof of Lemma 1

For any fixed k-dimensional vector £ = (¢1,..., )", we have
¢ {diag(m; 'm, m;) — MM}
k k k
= Zwt_%?m:mt = {Zﬁtmj} {Z Etmt}
t=1 t=1 t=1
= EQ'Q)-BEQEQ)

= {E(QQ")} - t{E(Q)EWQ")}
0,

v

where tr denotes the trace of a matrix, () denotes a p-dimensional random vector that takes
value 7; '¢;m, with probability 7, t = 1,...,k, and the last equality follows from the fact
that the covariance matrix var(Q) = F(QQ") — E(Q)E(Q") is positive semidefinite.

3.3 Proof of Theorem 1

(i) First, from X, — X = O,(n""/?) and b, = b, + 0,(1), we have

~

O(by,....bx) = 0(by,....bp) +{(X1 = X)(by —by), ..., (X — X) (b — b))} "

= O(by,...,by) + 0,(n"'?).
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Write the sample average as E,[u(X)] =n~t D" | u(X;). Then,

oNOYTULT D WN =

n k
9 X =30 - ST = a) (X~ ) = 30 Ba[1(A = a)(X — ux)]

t=1 =1 t=1

and

1 n
21 zﬁfng[(Ai:at){Yi—et—(Xi_MX)Tbt}
i=1

5431 + (2 L1 Ean(A =a) {Y;i— 6, — (X ) "o}
M - 7 t 7 t % Hx t

nt/n Tt

> = By (A= a){Y = 0, — (X — ux) "bi}] + 0, (n™'/?),

30 where the last equality holds because E, [I(A = a){Y — 0, — (X — pux) b} = Op(n=1/?)
from the central limit theorem, and n/n; — 7; ' = 0,(1) from condition (C2) (ii). Hence,

we can decompose 0(by, ..., by) as

~

36 O(by, ..., bx) — 0

38 Vi—61— (X1 —px) by bi (X — px)

42 Yk — O — (Xk - MX)Tbk bE(X' - MX)

44 7B [1(A = a){Y = 01 — (X — jix) Ty }] b S B [I(A = a))(X — pix)]

48 T B [1(A = ai){Y = 6, — (X — px) "0y }] bl S By [1(A = a0) (X — ix)]

N J/

49 M Mo

51 +0p(n"1/2)

10
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E, [[(A=a)(Y —6)]
mta] b O; 0}
_ E, [[(A=ap)(Y — 0)]
_ _ E, [[(A=a1)(X — pux)]
meag 0y Op e mmih o (k-+kp) :
E, [I(A = ap)(X — px)]
V(k;i;ﬁxl
o7 b7 ... o] B, [1(A = a)(X — )]
T : +o,(n1?),
T T T _ _

where a; denotes the k-dimensional vector whose tth component is 1 and other components
are 0, p is the dimension of X, 0, denotes a p-dimensional vector of zeros. From the central
limit theorem, we have that the random vector \/nV is asymptotically normal with mean
0. This implies that \/n{A(by, ... b,) — 0} is asymptotically normal with mean 0 from the
Cramér-Wold device.

It remains to calculate the asymptotic variance of \/n{0(by, . .., by)—0}. In the following,
we consider M; and M, separately.

Consider M;, where the tth component equals
My =7, 'En [I(A=a){Y — 0 — (X — pux) "be}] -
We have that (My,t =1,..., k) are mutually independent and
var(My,) = (nm) var{Y® — X Tp,},

Hence, var(M;) is a diagonal matrix, with the diagonal elements being var(My;),t =

1,..., k. That is, nvar(M,) = diag{r; 'var(Y® — XTp,)}.

11
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Next, consider My, which can be reformulated as

oNOYTULT D WN =

; b7 S By [1(A = a))(X - px)

12 bl S B 1A = a) (X — px)]

13 kx (kp) (kp)x1

15 whose variance can be easily derived as nvar(M,) = B'Yx B.
Finally, consider cov(M;7, M) whose (, s) element equals

2 cov {w{lEn [[(A=a){Y — 0, — (X — pux) "be}],b) ZEn [1(A=a)(X — ux)]}

t=1

22 = cov {m "B, [I(A = a){Y — 0, — (X — px) "bi}] b [T(A = a) (X — pux)]}
24 =n"tr eov {I(A = a,)(Y — X Tb)}, b, (A =a,)(X — px)}

26 =n'm ' E{I(A=a)(Y — XTb)b] (X — px)}

28 =n"E{(Y" - XTb)b] (X — px)}

30 =nt {COV(Y(t), by X) — cov(X "by, b] X)}

32 =n"HB Lxb, — b Lxbs}

34 = n_l(ﬁt — bt)TEXbS.

37 Thus, ncov(M;, My) = (8 — B)"SxB and ncov(My, M;) = B'Yx(% — B). Combining
39 the above results, we conclude that /n{0(bs, ..., b;) — 0} is asymptotically normal with

41 mean 0 and variance Vsg(B),

43 Ver(B) = diag{m, 'var(Y" — X"b,)} +(# - B)'SxB + B'Sx(%# — B) + B'SxB

= diag{m; var(Y® — X"b)} + Z'SxB + B"Sx% — B"YxB.
48 (ii) Note that

51 var(Y® — b X) =var(Y¥ — 8] X + 8/ X — b X)

53 zvar{Y(t) — BtTX} + var{(5; — bt)TX} + 2COV{Y(t) — ﬁtTX, (B — bt)TX}

12
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=var{Y'" — BT X} + (B, — br) "Sx (B — by).

Then simple algebra shows that

Vsr(B) — Vsr(%)

= diag{r; 'var(Y) —b] X)} — diag{r; 'var(Y¥ — 8] X)} — (% — B)"Sx(% — B)

= diag{m, (8, — b)) "x (8 — 1)} — (# — B) ' Sx(% — B).

The rest follows from applying Lemma 1 with M = Z%Q(%’ — B).

3.4 Proof of Corollary 1

From Lemma 3, we know that 3 = B+0,(1) and B, = Bito,(1),t =1,...,k Let 03,0

respectively be the asymptotic variance of v/1c 0, \uor V70150,ne and /nc/ 0, ., where from

Theorem 1,
y® — X7 Y — X T5,
o2 :Var( Bt) i var Bs) i
Tt Ts
, var(Y® — XT8)  var(Y® — XTB)
Tt Ts
ar(Y'® Yy )
o v (Y N var(Y®)
Tt Ts

The results in Corollary 1(i) follows from

oh = op

B[ Sx B — 2cov(X B, YD) N BIYxBs — 2cov(X B, Y )

(Bt - ﬁs)TZX(ﬁt - Bs)

Tt Ts
_ B Sx B — 28] Tx By N BT xBs — 28, TxPs
Tt Tg
B/ ExB B ExBs

= + {8 — BS}TEX{Bt — Bs}

T Ts

. {ﬂ-sﬁt + 71-tﬁs}TzX{ﬂ-sﬁt + 71-t/Bs}

+ {ﬂt - BS}TZX{ﬁt - ﬁs}

1—m — 7y
= - {ﬁt - 53}T2X{5t - Bs} <m>

T T (7Tt + ﬂ-s)

13
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where the second equality follows from [, = Z;{lcov(X ,Y®). This also proves that 0% <
0%, because Yx is positive definite and m + 7, < 1. If 0% = o}, then we must have
sy + mBs =0 and (1 —m — we){B — Bs} = 0.
To show the results in Corollary 1(ii), notice that
var{Y® — X5, + X8, — X3} N var{Y®) — X8, + X3, — X}
Ty Ts

:Var{Y(t) — X8} +var{X 3, — X3} N var{Y®) — XT3} + var{X 3, — X5}

Uv’ Ts

2 _
UB_

where the second equality holds because

cov{Y®W — T X BTX — BTX} = cov{YW — 5] X, X}{3, — B}

= {cov(YD, X) - 8/ 8x HB — B} =0

Then,

- {ﬁt \ v ﬁ}TZX{ﬁt - ﬁ} - {Bs - B}TE{BS - 6}

t s

o4 —op = {6 — B} Ex{B — B}

In order to show that 0% — 0% < 0, we prove a stronger statement: it is true that for any

B?

{8 = BYSx {8 = B} {8 =B} Sx{B - B}

t Ts

{525 - ﬁs}TzX{ﬂt - 65} - S 0. (S?))

As a consequence, setting Basf = Zle 710, the statement in (S3) also holds. This proves
o4 — 0% <0.

In what follows, we prove the claim in (S3). Note that the gradient of the left hand side
of (S3) is

o[BS {B- BTy

Ty s

Y

which equals zero when 3 = {msB + 7B}/ (7 + 7). This is also the unique solution from

the positive definiteness of Y x. It is also easy to see that the Hessian of the left hand side

14
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of (S3) is negative definite, which means that B = {msBy + mBs}/ (M + 7s) is the global and
unique maximizer of the left hand side of (S3). The statement in (S3) is true because when

evaluated at 3 = {m,f; + mBs}/(m + ), the left hand side of (S3) equals

{Bt - ﬁs}TzX{ﬁt - ﬂs}
- {Bt . 7T5/3t + 71-tﬁs }T ZX {Bt - 7"-sﬁt + 7T-tﬁs} i

T + Ty Ty + T e

71-sﬁt + 7Ttﬁs i 7T5/3t + 71-tﬁs ]-

- BS yF - _ 2)( /BS - - -
Ty + T T + T Ts

=~ {Bi(2) = ()} Sx{Bi(2) - ()} (u) <0

T + Ty
This completes the proof for 04 < 0%, where the equality holds if and only if {3; — 3, }(1 —
Ty — 7T8) =0 and Zle 7Ttﬁt = {ﬂ-sﬁt + 7"-tﬁs}/(’n‘t + 7'[‘5).

3.5 Proof of Theorem 2

First, from X; — X = O,(n""/?) and f, = f;+0,(1) from Lemma 3, we have 0(51, ..., B) =
0(B1, ..., Br) + 0,(n"/2). By using the definition £, = L3 cov (X, Y;(t)), we have

E[XT{YY =0, = (X; = px) T B,}] = cov(X;, V) = cov(X;, V) = 0.

Because Z; is discrete and X; contains all joint levels of Z; as a sub-vector, according to

the estimation equations from the least squares, we have that
B [I<Zi = )Y =6, — (X, - MX)Tﬁt}} =0, Vz e Z,
and thus,
E {Yi(t) — 0, — (Xi — px) By | Zi} ~ 0, as.. (S4)
Moreover, recall that A ={A;,...,A,} and F ={Z,...,Z,}, then

n o (t) _
E{Y = X[ | A F} =E{Z“](AZ_GM attl |A,f}

Uz

15
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S (A= ) E{Y = X7 6|

_ _ T
= =0 — pxfi, as.
Tt

oNOYTULT D WN =

10 This implies that V; — 0, — (X; —ux) "B =Y, — X, 8, — E(Y, — X' 3, | A, F) as..
12 We decompose é(ﬁl, ..., Br) as

14 Yy — 0 — (Xl - MX)T@I BI(X — jix)

16 é(ﬁl,,ﬁk)—ez +

18 Vi — 0 — (Xi — p1x) " Br B (X — pix)

20 Yi— 0 — (X1 —pux)" B BIX - E(X | A F)) BIE(X | A F) — pix)

i Vi — 0 — (Xi - 1x) B BI(X — B(X | A, F)) BI(E(X | A F) - px)
25 p? p e

27 Yi—-E(Y, | AF)

Xl_E(Xl | Aaf)

36 Xi— E(Xi | A F)

-~

38 v

40 B n~inil, n7tnol, ... nTlingd, X, - E(X,|AF)

+ : : : : + Maa.
43 B n~tnil, ntnol, ... nTingl, X, —E(Y, | A F)

45 -
46 Conditioned on A, F, every component in V is an average of independent terms.

48 We verify at the end of this section that Lindeberg’s condition holds for (Y; — E(Y; |
49 A, F), X, — E(X," | A, F))c for any (p+ 1)-dimensional real-valued vector ¢. From Linde-
51 berg’s Central Limit Theorem, as n — oo, /n(Y; — E(Y; | A, F), X,” — E(X,] | A, F))c is

53 asymptotically normal with mean 0 conditional on A, F. From the Cramér-Wold device,

16
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we have that /n(Y; — BE(Y; | A, F),X,] — BE(X,” | A, F))" is asymptotically normal with
mean 0 conditional on A, F. As {(Y; — E(Y; | A, F), X —EX] | AF) ,t=1,....k}
are mutually independent conditional on A, F, it immediately follows that \/ﬁf/ and thus
Vn(My + My;) are asymptotically normal with mean 0 conditional on A, F.

Next, we calculate the variance. For M, the variance of its tth component is

nvar(My | A, F) = —Var{ Z Y(t) = px) B | A,f}
i:Aj=ay
.
. o 7
nt z.AZ—at Var{ Z MX) Bt | Z}

_ n2z S Var{Y() (Xz-—,uX)Tﬁt|Zi:z}

z ©Aj=ar,Zi=z

= %Z %f)var {Y;(t) — (Xi—px) B | Zi = Z}
- — Z P(Z; = z)var {Y(t) —(Xs —px) "B | Z; = Z} +0p(1)
— iE [var {Y;(t) — (Xi = px) "B | Zz}] +0p(1),

Ty

where the second line and the fifth line are respectively from (C2) (i) and (C2) (ii). More-

over, My; and M, are independent conditional on A, F, for ¢t # s. Hence,
var(v/nM; | A, F) = diag {W{lE [Var{Y;(t) — (Xi — px) B | ZZ}} } +0,(1), (S5)
which does not depend on the randomization scheme. For M, we have that
nvar(X — E(X | A, F) | A, F) = Zvar (X; | Z)) = BE{var(X; | Zi)} + 0,(1)
nvar(My | A, F) = B E{var(X; | Z;,)}% + 0,(1).
For the covariance, consider ncov(My, Ms; | A, F) whose (t, s) element equals
ncov(My, X8, | A, F) (56)

17
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k
g ncov (}/; _XJBMZ%X]T/BS | A;f)

J=1

= ncov (Y} — XtTﬁt, %X}Tﬁs | A, ]:)

1
= — Z cov <Y;(t) — X B, X, Bs | Zz‘)
Uz

it A;=at

|
- = 3 Y12 = z)cov (y;(t) X7 B, X B, | Z; = z)
Uz

i:Ai:at Z€EZ
= Z nu(2) cov <Y;(t) — X' B, X[ B | Zi = Z)
ez
= 3P =2)eov (YO = XT3, X 5| Z = =) + 0,(1)
z€EZ
= F {cov (Yi(t) — X B, X/ 5 | Zz)} +0p(1)
= Op(1)7

where the last equality holds because £ (Y;(t)—XZ-T Bi | Z;) = 0;— . B: and, thus, cov{E (Y;(t)—
XTB | Z),B(X]B, | Z)} = 0 and E{cov(Y," — X8, X[ B, | Z)} = cov(¥" —
X."B;, X;' B,) = 0 according to the definition of f3;.

Combining the above derivations and from the Slutsky’s theorem, we have shown that
Vn(My + My) | A, F
4N (O,diag {ﬂ't_lE [var{Yi(t) — (Xi — px) ' B | Z,}] } + BT E{var(X; | ZJ}%’) .
From the bounded convergence theorem, this result also holds unconditionally, i.e.,
V(M + M)
4N (0, diag {wglE [Var{Yi(t) (X — ) B | Zi}] } + BT B{var(X, | Zi)}%’) .

Moreover, since E(X | A, F) is an average of identically and independently distributed

terms, by the central limit theorem,

VILE(X | A, F) = px} =n? Y {E(X; | Z) = pux} 5 N(0,var(E(X; | Z)),

i=1

18
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and
VM % N(0, B var(E(X; | Z:))B).

Next, we show that (\/n(M; + May), /nMas) LN (&1,&2), where (&1, &) are mutually

independent. This can be seen from

P(V/n(My + Myy) < ty,/nMay < t5)

= E{I(v/n(My + M) < t1)I(v/nMos < t5)}

= E{P(V/n(Mi + M) < t1 | A, F)I(VnMay < o)}

= E{{P(Vn(M + M) < t1 | A, F) = P(& < t)H (VnMap < t5)}
+ P(& < 1) P(v/nMay < t5)

— P(& < 4h)P(& < ta),

where the last step follows from the bounded convergence theorem.

Finally, from /n{0(51, ..., Bx) — 0} = /r(M; + My, + M), we have

V0B, .., By) — 0}
4N (o, diag {W;IE [var{Y;(t) (X — px) 7B | Zi}] } + %TZX%) .

Note that we have also shown that the asymptotic distribution of \/ﬁ{é (Bi,...,0k)—0}
is invariant under randomization schemes satisfying (C2). The above asymptotic distribu-
tion of \/n{0(B1, - . ., Br)—0} is the same as (16) because E{Y;(t)—et—(Xi—,uX)Tﬁt | Z;} =0
a.s., and thus, E[var{Y;") — (X; — ux) "8, | Z:}] = var(Y" — X7 8,).

We conclude the proof by verifing the Lindeberg’s condition for (Y;— E(Y; | A, F), X, —

E(X; | A, F))c conditional on A, F, which we rearrange and write as

- 1
> K, where K; = —I(A; = a) (Y, — BV | Z,), X[ — B(X] | Z)))e.
Uz

=1

19
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From E(K; | A, F) =0 and

1
var(K; | A, F) = PI(Ai = a;)c' var ((Yi(t),XiT)T | Zi) c.

t
Then, the Lindeberg’s condition holds with probability 1 because for any € > 0,

K? K?
27 {var@:;l KA {var@:;l KAF) } 4 f]

=1

- n var(K; | A, F) K? { K? } ]

- zzl var(y_L K | A, ]:)E [Vaf(Ki | A, .7'")] var(DoL, Ki | A, F) g AT
K? K? var(Y", K; | A, F)

_mZaXE |:Var(KZ,’_A"/T_')I{Var(Ki’A’f) > € V&I"(Ki’.A,JT") }|A,./T":|

=o(1)

where the third line is because ) .  var(K; | A,F) = var(> .. | K; | A, F), and the

last line is because K;/+/var(K; | A, F) has zero expectation and unit variance, and that
max; var(K; | A, F)/var(3; K; | A, F) < Cmax({ni(2)} ', 2 € Z) = o(1) with proba-

bility 1, where C' is a generic constant.

3.6 Proof of Theorem 3

(i) First, from X;—X = O,(n~"/2) and b, = by40,(1), we have A(b1, ..., by) = 0(by, ..., by)+
0,(n~1/%). Also note that

E<Yt -0, — (X, — MX)Tbt | A, F)

5 (z;f;l I =) (0" =6~ (X p)0) | f>

Uz

S (A = ap) — m) BV — 0, — (X — pux) by | Z5)

U2

* % Y BV =60 — (X = px) T | Z)
b1

- Z (nt(Z) - 7Tt> E(Y;(t) — 0, — (Xi - NX)Tbt ’ Zi = z)n(z)

2 \no 2
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e
+ =N B — 60— (X — ux) "0 | Z0)
t

- Z (nt(Z) - Wt) E(Yi(t) 0 = (Xi —px) b | Zi = 2)P(Z = 2)m; !

1
+ = STEWY — 0, — (X0 — pux) b | Z) + 0y (n7V),

where the last equality is from n(z)/n = P(Z = z)+0,(1), ni/n = m+0,(1), (2’5((:)) - 7rt> =

O,(n~Y/%) due to condition (C3), and n=* >, E(Y;(t)—Qt—(Xi—,uX)Tbt | Z;) = O,(n=4/2).

Thus, we can decompose é(bl, oo, be) as

O(by,...,bx) — 0
Yi— 01— (X1 —px) b b (X — pix)

— +
Vi — O — (Xy — pix) "bi by (X — pix)

= +
Vi — E(Yy | A, F) — (X — BE(Xy | A, F)) by b (X — E(X | A, F))

]V}; ]\/};1 ]

Soez (28— m) BOCY = 00— (Xi — )by | Zi = 2)P(Z = 2)m!

N
Soez (28 = m) B = 0 — (X — i) i | Zi = 2)P(Z = )7
n S BV — 00— (X — px) b | Z0) n"t b E(X: — x| Z)
+ +
n U B = 0 — (X — px) The | Z2) n U b E(X — px | Z)
+ 0,(n~1/?)
21
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10 oo Vi - E(; | A F)

T T T T Xl_E(leAa‘F)
13 ap 0, 0, - =b

15 Xk_E(Xk|AaF)

17 N

19 b} n~'nil, ntnol, ... nTlngl, X, —E(X,|AF)

23 by n~tnil, ntnol, ... nTingd, X, —EY, | A F)

25 + Mo +M31 +M32—|—0p(n_1/2).

Conditioned on A, F, every component in Vi is an average of independent terms. From
29 the Lindeberg’s Central Limit Theorem, as n — oo, \/ﬁf/l is asymptotically normal with
31 mean 0 conditional on A, F, which combined with the Cramér-Wold device implies that
33 Vn(Miy + May) is asymptotically normal with mean 0 conditional on A, F. Following the

35 same steps as in the proof of Theorem 2, we have that

37 V(M + M) | A, F 5

20 N (0, diag {wglE[var{Yﬁ) — X, b, | Z,-}]} + BT E{var(X; | Z;)}B
42 + (B — B)'E{var(X; | Z:)}B + BT E{var(X; | Z;)}(# — B)),
45 and

piA V(Mg + Myy) %

50 N <o, diag {W;IE[var{Y;(t) — X, 'b, | ZZ-}]} + BT E{var(X; | Z))}B
+ (% — B)"E{var(X; | Z;,)}B + BT E{var(X; | Z;)}(# — B)).
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Next, notice that \/nMj, is asymptotically normal conditional on F with mean 0 from
condition (C3). Let wys(2) be the (t,s) element in the matrix €(z), then the conditional
variance of \/nMjig,, the tth component of \/nMj,, equals

Var(\/ﬁMm | .F)

= Z _E {Yi(t) — 0, — (X; —px) b | Z = z} } QP(Zi = z)var { n(2) ;(Zt)”(z) | ]:}

z L

= m° Z E {Yi(t) — 0, — (X;—ux) b | Z; = Z}rP(Zi = 2)wu(2) + 0p(1)

z L

= 2B [0 2)[BEY = 00— (X — ) b | Z]] + 0,(1),

and the conditional covariance between /nMis; and /nMis, equals

COV(\/_M12t,\/_M125 | ]'—)
- Z H E{ (Xi—MX)Tbm!Z:z}P(Z,-:z)

TTs

z me{t,s}
oy J (2) —mn(2) ny(2) — mon(2) o
{ J__, Vf_ wﬂ+A>
_ Wlﬂ [Wts \E {Y@(t) — 1)y | Zi} E {Yi(s) — 0, — (X; — pux) by | Zz}]

+o0,(1).
Therefore, from the Slutsky’s theorem,
VM | F 5 N(0, E{R(B)Z)R(B)}).

Moreover, Mz; + Mso only involves sums of identically and independently distributed
terms, and E(Ms; + Mss) = 0. Again using the Cramér-Wold device similarly to the proof
of M1+ Msy, we have that /n(Ms;+ Msy) is asymptotically normal. Let 7 = (m1,...,m) ",

it is easy to show that
var(v/nMs,) = var{ R(B)n} = E{R(B)rr" R(B)}, var(v/nMsy) = B var{E(X; | Z;)}B

23
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and the (¢, s) component of cov(y/nMsy, /nMss) is

cov(y/m Mz, ViMaz,) = cov [E {Y;(t) (X — ) Th | Zi} JE(XTby | Z)

= (B — by) "var(E(X; | Z;))bs
Hence,

var(v/n(Msz + Ms,))
= E{R(B)r7"R(B)} + B'var{E(X; | Z)}B + (% — B) 'var(E(X, | Z;))B
+ B'var(E(X; | Z,))(% — B).

Therefore,

Vn(Msy + Msy) (S7)

4N <o, E{R(B)rn"R(B)} + B"var{E(X; | Z)}B + (% — B) "var(E(X; | Z;))B

+ B'var(E(X; | Z)) (% — B)) :

Next, we ShOW that (\/E(MH +M21), \/ﬁMlg, \/H(M31+M32)) i) <€M1a gMQ, €M3)7 Where

(&nr1s Enrz, Ears) are mutually independent. This can be seen from

P(Vn(My + May) < 1, v/nMyy < ty, v/n(Mz 4 Msy) < t3)
=E {I(v/n(My1 + M) < t1)I1(v/nMa < t2)1(v/n(Msy + Msy) < t3)}
=E{P(v/n(My1 + Mz) <t | A, F)I(VnMiy < t2)I(v/n(Ms + Mss) < ts)}
=E [{P(v/n(Myy + My) <ty | A, F) — P(Eany < t1) 1 (VnMyy < t2)1(v/n(Msy + Msy) < t3)]
+ P(&n < t)E{I(v/nMyy < t5)1(v/n(Msy + Msy) < t3)}
=E [{P(v/n(My + My) < t1 | A, F) — P(&an < 1) HI (VMg < t2)1(v/n(Msy + Mss) < t3)]
+ P(én <t)E{[P(VnMiz <ty | F) = P(émz < t2)] I(Vn( Mz + Myp) < t3)}

+ P(&an < t1)P(Enz < o) P(v/n(May + Msz) < t3)
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— P& < 1) P(Ene < ta) P(Eurs < t3),

where the last step follows from the bounded convergence theorem.

Finally, from /n{0(by,. .., by) — 0} = v/n(Myy + Myy + Myg + My + Mss) + 0,(n~"/?),

we conclude that \/n(6(by,...,bx) — ) is asymptotically normal with mean 0 and variance

diag {W[lE{var(Y;(t) —Xb, | Zi)}} + E{R(B)Z)R(B)} + E {R(B)x= R(B)}
+B"YxB+ (% —B)'SxB+ B'Yx(% — B)

= diag {wglE{var(YP — X, b, | Zi)}} + E{R(B)Q(Z)R(B)} + E {R(B)rw R(B)}
~B'YxB+%"YxB+ B'Yx%

= diag {m; var(Y® — b] X)} — diag {Wt_lvar{E(Y;(t) —Xb, | Zi)}}
+E{R(B)Q(Z)R(B)} + E{R(B)rt'R(B)} — B'SxB+ %'XxB+ B'Yx%

= Ver(B) — diag {wglvar{E(xg(t> — X/'b, | Zi)}} + E [R(B){QUZ;) + nr " }R(B)]
= Vir(B) — diag {R(B)diag(m)R(B)} + E [R(B){Q(Z;) + nn ' } R(B)]

= Vir(B) — E [R(B){diag(m;) — 77" — Q(Z;)}R(B)]

= Vsr(B) — E[R(B){Qsr — Q(Z;)} R(B)].

(ii) By using the definition 8; = X3 cov(Xj, Y;(t)), we have E[XiT{Yi(t) —0,— B (X —ux)}] =
cov(Xi,Y;(t)) — cov(Xi,Y;(t)) = 0. Because X; contains all dummy variables for the joint
levels of Z;, we have E{Y;(t) — 0, — B (X; — px) | Z;} = 0. Hence R(#) = 0 and
R(B) = diag{m; "(8; — b)) "E(X; — pux | Z;)}. Consequently, the difference in asymptotic
variance is
V(B) = V(%) =V(B) — Vsr(#) = V(B) — Vsr(B) + Vsr(B) — Vsr(%)

=diag{m; ' (B = b) "Sx (B — 0)} — (£ — B) 'Tx(# — B) — E[R(B){Qsr — AZ)}R(B)}]
>diag{m; (B — b) ' Ex (8 —br)} — (Z — B)'Sx(# — B) — E[R(B)Qsr R(B)}]
=diaglm;" (B — b)) E{var(X | Z)}(B, — b)] = (# — B)" E{var(X | Z)}(# — B),

25

Page 60 of 61



Page 61 of 61 Journal of the American Statistical Association

where M > M’ means M — M’ is positive semidefinite for two square matrices M and

oNOYTULT D WN =

M’ of the same dimension, and the last line follows from Qsgr = diag(m) — 7', the
10 expression for R(B), and the identity Yy = F{var(X | Z)}+var{ E(X | Z)}. The positive
semidefiniteness of the right hand side is from applying Lemma 1 with M = [E{var(X |
13 2042 - B).

17 3.7 Proof of Corollary 2

When X only contains the dummy variables for the joint levels of Z, R(B) = diag{n; '(8;—
21 b:)"(X; — pux)}. Then, it follows from the proof of Theorem 3(ii) that

24 V(B) — Vsr(#)

26 =diag{m; ' (B; — b) ' Ex (8 —b)} — (Z = B)'Sx(# — B) — E[R(B)Qsr R(B)}]

28 + E[R(B)Q(Z;)R(B)}]

30 =diag{7, '(B; — b) ' Ex (8 — br)} — (Z — B)"Sx(# — B) — E[R(B)diag(m) R(B)}]
32 + E [R(B)rr"R(B)}]| + E[R(B)(Z;)R(B)}]

> =E[R(B)SUZ;)R(B)]
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