
For Peer Review Only
Toward Better Practice of Covariate Adjustment in 

Analyzing Randomized Clinical Trials

Journal: Journal of the American Statistical Association

Manuscript ID JASA-T&M-2020-0750.R3

Manuscript Type: Article – Theory & Methods

Keywords: Heteroscedasticity, Model-assisted, Multiple treatment arms, Treatment-
by-covariate interaction, Covariate-adaptive randomization

 

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. 
 You must view these files (e.g. movies) online.

VANCOVA_v2.R

Journal of the American Statistical Association



For Peer Review Only

Toward better practice of Covariate
Adjustment in Analyzing Randomized

Clinical Trials

Abstract

In randomized clinical trials, adjustments for baseline covariates at both design
and analysis stages are highly encouraged by regulatory agencies. A recent trend
is to use a model-assisted approach for covariate adjustment to gain credibility and
efficiency while producing asymptotically valid inference even when the model is in-
correct. In this article we present three considerations for better practice when model-
assisted inference is applied to adjust for covariates under simple or covariate-adaptive
randomized trials: (1) guaranteed efficiency gain: a model-assisted method should of-
ten gain but never hurt efficiency; (2) wide applicability: a valid procedure should be
applicable, and preferably universally applicable, to all commonly used randomization
schemes; (3) robust standard error: variance estimation should be robust to model
misspecification and heteroscedasticity. To achieve these, we recommend a model-
assisted estimator under an analysis of heterogeneous covariance working model that
includes all covariates utilized in randomization. Our conclusions are based on an
asymptotic theory that provides a clear picture of how covariate-adaptive random-
ization and regression adjustment alter statistical efficiency. Our theory is more
general than the existing ones in terms of studying arbitrary functions of response
means (including linear contrasts, ratios, and odds ratios), multiple arms, guaranteed
efficiency gain, optimality, and universal applicability.

Keywords: Analysis of covariance; Covariate-adaptive randomization; Efficiency; Het-
eroscedasticity; Model-assisted; Multiple treatment arms; Treatment-by-covariate inter-
action.
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1 Introduction

Consider a clinical trial with patients randomized into one and only one of multiple treat-

ment arms according to fixed assignment proportions. Each patient has multiple potential

responses, one for each treatment, but only one response is observed depending on the

assigned treatment. Based on data collected from the trial, we would like to make statis-

tical inference on treatment effects defined as functions of the response means (e.g., linear

contrasts, ratios, or odds ratios). These unconditional treatment effects are discussed in a

recent Food and Drug Administration (FDA) draft guidance (FDA, 2021).

In clinical trials, we typically observe some baseline covariates for each patient, which

are measured prior to treatment assignments and, hence, are not affected by the treatment.

As emphasized in regulatory agency guidelines, baseline covariates are encouraged to be

utilized in the following two ways. (i) In the design stage, covariate-adaptive randomiza-

tion can be used to enforce the balance of treatment assignments across levels of discrete

baseline prognostic factors, such as institution, disease stage, prior treatment, gender, and

age group. “Balance of treatment groups with respect to one or more specific prognostic

covariates can enhance the credibility of the results of the trial” (EMA, 2015, European

Medicines Agency). (ii) In the analysis stage, baseline covariates can be used to gain ef-

ficiency. “Incorporating prognostic baseline factors in the primary statistical analysis of

clinical trial data can result in a more efficient use of data to demonstrate and quantify the

effects of treatment with minimal impact on bias or the Type I error rate” (FDA, 2021).

More specifically, the investigator is advised to “identify those covariates and factors ex-

pected to have an important influence on the primary variable(s)” and to specify “how to

account for them in the analysis in order to improve precision and to compensate for any

lack of balance between groups” (ICH E9, 1998).

For efficiency gain, one may apply a model-based approach using a model between po-

tential responses and covariates. However, the validity of a model-based approach requires
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a correct model specification, which is a possibly strong assumption. As emphasized in

FDA (2021), a method used for covariate adjustment “should provide valid inference under

approximately the same minimal statistical assumptions that would be needed for unad-

justed estimation in a randomized trial”. Consequently, model-assisted approaches, which

gain efficiency through a working model between responses and covariates and still produce

asymptotically valid inference even when the working model is misspecified, have become

considerably more popular.

1.1 Considerations in covariate adjustment

For better practice of covariate adjustment via model-assisted approaches, we present the

following three considerations.

1. Guaranteed efficiency gain. The working model should be chosen so that the re-

sulting model-assisted estimator often gains but never loses efficiency when compared to a

benchmark estimator that does not adjust for any covariate.

This consideration is important for model-assisted inference because covariate adjust-

ment based on a misspecified working model does not necessarily lead to efficiency gain over

the benchmark. One example is the customary analysis of covariance (ANCOVA) whose

working model does not include treatment-by-covariate interaction terms, which we refer

to as the homogeneous working model (§2.3). These interaction terms are often ignored or

even discouraged in practice because of two correct but incomplete perceptions: (i) even

if the homogeneous working model is misspecified, ANCOVA still provides valid inference

as it is model-assisted; (ii) a model without interaction terms has fewer coefficients to esti-

mate and may have better finite sample properties. However, when the treatment effect is

indeed heterogeneous, the ANCOVA estimator using the homogeneous working model may

be even less efficient than the benchmark analysis of variance (ANOVA) estimator that uses

no model assistance at all (Freedman, 2008a; Lin, 2013). This has led to confusion about

how covariate adjustment should be implemented, which can be seen from conflicting rec-
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ommendations by regulatory agencies: “The primary model should not include treatment

by covariate interactions.” (EMA, 2015); “The linear models may include treatment by

covariate interaction terms.” (FDA, 2021).

Is there a model-assisted method that achieves guaranteed efficiency gain? An affirma-

tive answer is provided in §1.2, followed by theoretical justifications in §3.

2. Wide applicability. The model-assisted inference procedure should be applicable to all

commonly used randomization schemes.

Covariate-adaptive randomization has been widely used in modern clinical trials to bal-

ance treatment assignments across important prognostic factors. According to a review

(Ciolino et al., 2019) of nearly 300 clinical trials published in two years, 2009 and 2014,

237 of them used covariate-adaptive randomization. The three most popular covariate-

adaptive randomization schemes are the stratified permuted block (Zelen, 1974), the strat-

ified biased coin (Shao et al., 2010; Kuznetsova and Johnson, 2017), and Pocock-Simon’s

minimization (Taves, 1974; Pocock and Simon, 1975; Han et al., 2009). Unlike simple ran-

domization, covariate-adaptive randomization generates a dependent sequence of treatment

assignments. As recognized by regulatory agencies (EMA, 2015; FDA, 2021), conventional

inference procedures developed under simple randomization are not necessarily valid under

covariate-adaptive randomization. Thus, the second consideration is whether the model-

assisted inference procedure is applicable to all commonly used randomization schemes.

3. Robust standard error. The model-assisted inference should use standard errors

robust against model misspecification and heteroscedasticity.

The use of robust standard error is a crucial step for valid model-assisted inference

(FDA, 2021). Although the asymptotic theory for heteroscedasticity-robust standard er-

rors was developed decades ago (Huber, 1967; White, 1980) and has been widely used in

econometrics, its usage in clinical trials is unfortunately scarce. Another issue is to take

into account covariate centering used in a model-assisted approach.
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1.2 Our contributions

In randomized clinical trials, whether and how to adjust for covariates is a long-standing

question, which has received revived attention due to influential papers by Yang and Tsiatis

(2001), Tsiatis et al. (2008), Freedman (2008a), Lin (2013), and many other publications

built upon those. For linear contrast of response means from two treatment arms, theoret-

ical results on efficiency and optimality of various covariate adjustment methods have been

developed under simple randomization (Tsiatis et al., 2008; Lin, 2013; Wang et al., 2019;

Liu and Yang, 2020, among others) or covariate-adaptive randomization (Shao et al., 2010;

Shao and Yu, 2013; Ma et al., 2015; Bugni et al., 2018; Ye, 2018; Ma et al., 2020a,b; Shao,

2021; Wang et al., 2021). Parallel results for linear contrasts of response means from mul-

tiple treatment arms under covariate-adaptive randomization are first obtained by Bugni

et al. (2019) and Ye et al. (2020) but optimality is not studied.

Given how frequently covariate adjustment is used in practice, it is important to have

a guideline regarding the three considerations in §1.1. For this purpose, we establish a

comprehensive theory for all aspects of guaranteed efficiency gain, optimality, universal

applicability, multiple treatment arms, and variance estimation, which provides insights on

how covariate-adaptive randomization and covariate adjustment alter statistical efficiency

and facilitates a better practice with clear recommendations for practitioners.

Our theory shows that a heterogeneous analysis of covariance working model including

all treatment-by-covariate interaction terms and all covariates utilized in covariate-adaptive

randomization should be favored over the customary ANCOVA because the former achieves

guaranteed efficiency gain, optimality, and wide applicability. To distinguish from the cus-

tomary ANCOVA that uses a homogeneous working model, we term the analysis of co-

variance using a heterogeneous working model as ANalysis of HEterogeneous COVAriance

(ANHECOVA). Note that ANHECOVA is not a new proposal and has a long history in the

literature with a recent resurgence of attention (Cassel et al., 1976; Yang and Tsiatis, 2001;
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Tsiatis et al., 2008; Lin, 2013; Wang et al., 2019; Liu and Yang, 2020; Li and Ding, 2020,

among others), but our recommendation of ANHECOVA is from a more comprehensive

perspective. Specifically, in §3.2-§3.3, we show that under mild and transparent assump-

tions, the recommended ANHECOVA estimator of the response mean vector is consistent,

asymptotically normal, and asymptotically more efficient than the benchmark ANOVA or

ANCOVA estimator; in fact, the ANHECOVA estimator is asymptotically optimal within

a wide class of linearly-adjusted estimators. A special case of this result for estimating the

difference of treatment means under a two-arm trial was obtained independently by Ma

et al. (2020b). In §3.1 we offer explanations of why the heterogeneous working model is

generally preferable over the homogeneous working model.

Besides guaranteed efficiency gain and wide applicability, our asymptotic theory in §3.2-

3.3 shows that the recommended ANHECOVA also enjoys a universality property, i.e., the

same inference procedure can be universally applied to all commonly used randomization

schemes including Pocock-Simon’s minimization whose asymptotic property is still not

well understood. This is because the asymptotic variance of the ANHECOVA estimator is

invariant to the randomization scheme, as long as the randomization scheme satisfies a very

mild condition (C2) stated in §2.2. The universality property is desirable for practitioners

as they do not need to derive a tailored standard error for each randomization scheme.

The standard heteroscedasticity-robust standard error formulas do not directly apply to

model-assisted inference for clinical trials because they do not take into account covariate

centering prior to model fitting. In §3.4, we develop a robust standard error formula that

can be used with the ANHECOVA estimator.

Finally, our investigation offers new insights on when the customary ANCOVA as a

model-assisted inference approach can achieve guaranteed efficiency gain over the bench-

mark ANOVA. For example, under two-arm trials, Lin (2013) and Ma et al. (2020b) showed

that ANCOVA has this desirable property if inference focuses on the linear contrast and the
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treatment allocation is balanced. However, our theory shows that this does not extend to

trials with more than two arms or inference on nonlinear functions of response means (such

as ratios or odds ratios), and is thus a peculiar property for ANCOVA. In addition, AN-

COVA is not widely applicable as its asymptotic normality requires an additional condition

(C3) on randomization, which is not satisfied by the popular Pocock-Simon’s minimization

method. Even when ANCOVA is applicable to a particular randomization scheme, it does

not have universality because its asymptotic variance varies with the randomization scheme

(Bugni et al., 2018).

After introducing the notation, basic assumptions, and working models in §2, we present

the methodology and theory in §3. Some numerical results are given in §4. The paper is

concluded with recommendations and discussions for clinical trial practice in §5. Technical

proofs can be found in the supplementary material.

2 Trial Design and Working Models

2.1 Sample

In a clinical trial with k treatment arms, let Y (t) represent the potential (continuous or

discrete) response under treatment t, t = 1, . . . , k, θ be the k-dimensional vector whose tth

component is θt = E(Y (t)), the unknown population mean of potential response Y (t) under

treatment t. We are interested in given functions of θ, such as a linear contrast θt − θs, a

ratio θt/θs, or an odds ratio {θt/(1− θt)}/{θs/(1− θs)} between two treatment arms t and

s. We use Z to denote the observed vector of discrete baseline covariates used in covariate-

adaptive randomization and X to denote the observed vector of baseline covariates used in

model-assisted inference. The vectors Z and X are allowed to share some common entries.

Suppose that a random sample of n patients is obtained from the population under inves-

tigation. For the ith patient, let Y
(1)
i , ..., Y

(k)
i , Zi, and Xi be the realizations of Y (1), ..., Y (k),

Z, and X, respectively. We impose the following mild condition.

7
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(C1) (Y
(1)
i , . . . , Y

(k)
i , Zi, Xi), i = 1, . . . , n, are independent and identically distributed with

finite second order moments. The distribution of baseline covariates is not affected

by treatment and the covariance matrix ΣX = var(Xi) is positive definite.

Notice that neither a model between the potential responses and baseline covariates nor a

distributional assumption on potential responses is assumed.

2.2 Treatment assignments

Let π1, . . . , πk be the pre-specified treatment assignment proportions, 0 < πt < 1, and∑k
t=1 πt = 1. Let Ai be the k-dimensional treatment indicator vector that equals at if

patient i receives treatment t, where at denotes the k-dimensional vector whose tth com-

ponent is 1 and other components are 0. For patient i, only one treatment is assigned

according to Ai after baseline covariates Zi and Xi are observed. The observed response is

Yi = Y
(t)
i if and only if Ai = at. Once the treatments are assigned and the responses are

recorded, the statistical inference is based on the observed (Yi, Zi, Xi, Ai) for i = 1, ..., n.

The simple randomization scheme assigns patients to treatments completely at random,

under which Ai’s are independent of (Y
(1)
i , ..., Y

(k)
i , Xi)’s and are independent and identi-

cally distributed with P (Ai = at) = πt, t = 1, ..., k. It does not make use of covariates

and, hence, may yield sample sizes that substantially deviate from the target assignment

proportions across levels of the prognostic factors.

To improve the credibility of the trial, it is often desirable to enforce the targeted treat-

ment assignment proportions across levels of Z by using covariate-adaptive randomiza-

tion. As introduced in Section 1, the three most popular covariate-adaptive randomization

schemes are the stratified permuted block and stratified biased coin, both of which use

all joint levels of Z as strata, and Pocock-Simon’s minimization, which aims to enforce

treatment assignment proportions across marginal levels of Z.

All these covariate-adaptive randomization schemes, as well as the simple randomiza-

tion, satisfy the following mild condition (Baldi Antognini and Zagoraiou, 2015).
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(C2) The discrete covariate Z used in randomization has finitely many joint levels in Z

and satisfies (i) given {Zi, i = 1, ..., n}, {Ai, i = 1, ..., n} is conditionally independent

of {(Y (1)
i , ..., Y

(k)
i , Xi), i = 1, ..., n}; (ii) as n → ∞, nt(z)/n(z) → πt almost surely,

where n(z) is the number of patients with Z = z and nt(z) is the number of patients

with Z = z and treatment t, z ∈ Z, t = 1, ..., k.

2.3 Working models

The ANOVA considered as benchmark throughout this paper does not model how the

potential responses Y
(1)
i , ..., Y

(k)
i depend on the baseline covariate vector Xi. It is based on

E(Yi | Ai) = ϑTAi, (1)

where ϑ is a k-dimensional unknown vector and cT denotes the row vector that is the

transpose of a column vector c. By Lemma 2 in the supplementary material, ϑ identifies

θ = (θ1, ..., θk)
T , where θt = E(Y (t)) is the mean potential response under treatment t. In

the classical exact ANOVA inference, the responses are further assumed to have normal

distributions with equal variances. So a common perception is that ANOVA can only be

used for continuous responses. As normality is not necessary in the asymptotic theory, the

ANOVA and the other approaches introduced next can be used for non-normal or even

discrete responses when n is large.

To utilize baseline covariate vector X, the customary ANCOVA is based on the following

homogeneous working model,

E(Yi | Ai, Xi) = ϑTAi + β/T (Xi − µX), (2)

where ϑ and β/ are unknown vectors having the same dimensions as A and X, respectively,

and µX = E(Xi). There is no treatment-by-covariate interaction terms in (2), which

is incorrect if patients with different covariates benefit differently from receiving the same

treatment, a scenario that often occurs in clinical trials. By Lemma 2 in the supplementary

material, E{Yi−ϑTAi−β/T (Xi−µX)}2 is minimized at (ϑ, β/) = (θ, β), where β =
∑k

t=1 πtβt

9
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and βt = Σ−1
X cov(Xi, Y

(t)
i ). Thus, the ANCOVA estimator with working model (2) is model-

assisted (Theorems 1 and 3 in §3). Then, what is the impact of ignoring the treatment-

by-covariate interaction effect when it actually exists? The impact is that the ANCOVA

estimator may be even less efficient than the benchmark ANOVA estimator, as noted by

Freedman (2008a) with some examples.

To better adjust for X, we consider an alternative working model that includes the

treatment-by-covariate interactions:

E(Yi | Ai, Xi) = ϑTAi +
k∑
t=1

β/Tt (Xi − µX)I(Ai = at), (3)

where ϑ, β/1, . . . , β/k are unknown vectors and I(·) is the indicator function. We call model (3)

the heterogeneous working model because it includes the interaction terms to accommodate

the treatment effect heterogeneity across covariates, i.e., patients with different covariate

values may benefit differently from treatment. By Lemma 2 in the supplementary material,

E{Yi−ϑTAi−
∑k

t=1 β/
T
t (Xi−µX)I(Ai = at)}2 is minimized at (ϑ, β/1, ..., β/k) = (θ, β1, ..., βk),

where βt = Σ−1
X cov(Xi, Y

(t)
i ), i.e., inference under working model (3) is also model-assisted.

To differentiate the method based on (3) from the ANCOVA based on (2), we refer to

the method based on (3) as ANHECOVA.

As a final remark, both working models (2) and (3) use the centered covariate X −µX .

Centering is crucial to identify θ; the only non-trivial exception is when homogeneous

working model (2) is used and linear contrast θt − θs is estimated, as the covariate mean

µX cancels out. When fitting the working models (2) and (3) with datasets, we can use

the least squares with µX replaced by X̄, the sample mean of all Xi’s. In other words, we

can center the baseline covariates before fitting the models. Since this step introduces non-

negligible variation to the estimation, it affects the asymptotic variance of model-assisted

estimator of θ and its estimation for inference. Thus, we cannot assume that the data has

been centered in advance and µX = 0 without loss of generality (see §3.4).
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3 Methodology and Theory

3.1 Estimation

We first describe the estimators of θ under (1)-(3). The ANOVA estimator considered as

benchmark is

θ̂
AN

= (Ȳ1, ..., Ȳk)
T , (4)

where Ȳt is the sample mean of the responses Yi’s from patients under treatment t. As

n→∞, θ̂
AN

is consistent and asymptotically normal.

Using the homogeneous working model (2), the ANCOVA estimator of θ is the least

squares estimator of the coefficient vector ϑ in the linear model (2) with (Ai, Xi) as regres-

sors. It has the following explicit formula,

θ̂
ANC

=
(
Ȳ1 − β̂T (X̄1 − X̄), ..., Ȳk − β̂T (X̄k − X̄)

)T
, (5)

where X̄t is the sample mean of Xi’s from patients under treatment t, X̄ is the sample

mean of all Xi’s, and

β̂ =

{
k∑
t=1

∑
i:Ai=at

(Xi − X̄t)(Xi − X̄t)
T

}−1 k∑
t=1

∑
i:Ai=at

(Xi − X̄t)Yi (6)

is the least squares estimator of β/ in (2). It is shown in Theorems 1 and 3 that θ̂
ANC

is

consistent and asymptotically normal as n → ∞ regardless of whether working model (2)

is correct or not, i.e., ANCOVA is model-assisted.

The term β̂T (X̄t − X̄) in (5) is an adjustment for covariate X applied to the ANOVA

estimator Ȳt. However, it may not be the best adjustment in order to reduce the variance.

A better choice is to use heterogeneous working model (3). The ANHECOVA estimator of

θ is the least squares estimator of ϑ under model (3),

θ̂
ANHC

=
(
Ȳ1 − β̂T1 (X̄1 − X̄), ..., Ȳk − β̂Tk (X̄k − X̄)

)T
, (7)

where

β̂t =

{ ∑
i:Ai=at

(Xi − X̄t)(Xi − X̄t)
T

}−1 ∑
i:Ai=at

(Xi − X̄t)Yi (8)
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is the least squares estimator of β/t in (3) for each t. It is shown in Theorems 1-3 below

that the ANHECOVA estimator θ̂
ANHC

is not only model-assisted, but also asymptotically

at least as efficient as θ̂
AN

and θ̂
ANC

, regardless of whether model (3) is correct or not.

The following heuristics reveal why the adjustment β̂Tt (X̄t − X̄) in (7) is better than

the adjustment β̂T (X̄t − X̄) in (5), and why ANHECOVA often gains but never hurts

efficiency even if model (3) is wrong. As the treatment has no effect on X, both X̄t and X̄

estimate the same quantity and, hence, β̂Tt (X̄t − X̄) is an “estimator” of zero. As n→∞,

β̂t converges to βt = Σ−1
X cov(X, Y (t)) in probability, regardless of whether (3) is correct or

not (Lemma 3 in the supplementary material). Hence, we can “replace” β̂Tt (X̄t − X̄) by

βTt (X̄t − X̄). Under simple randomization,

var{Ȳt − βTt (X̄t − X̄)} = var(Ȳt) + var{βTt (X̄t − X̄)} − 2cov{Ȳt, βTt (X̄t − X̄)}

= var(Ȳt)− var{βTt (X̄t − X̄)}.
(9)

Consequently, Ȳt − β̂Tt (X̄t − X̄) has a smaller asymptotic variance than Ȳt. Note that (9)

does not hold with βt replaced by other quantities. This explains why the adjustment

β̂T (X̄t − X̄) in ANCOVA may lose efficiency, as β̂ in (6) converges to π1β1 + · · ·+ πkβk.

The variance reduction technique by (9) can be found in the generalized regression

(GREG) approach in the survey sampling literature (Cassel et al., 1976; Särndal et al.,

2003; Fuller, 2009; Shao and Wang, 2014; Ta et al., 2020). From the theory of GREG,

β̂t in (7) may be replaced by any estimator that converges to βt in probability, without

affecting the asymptotic distribution of the GREG estimator. This motivates the following

potential improvement to (8), which utilizes the fact that X has the same covariance across

treatments and estimates the covariance matrix of X using all patients,

β̂t =
n

nt

{
n∑
i=1

(Xi − X̄)(Xi − X̄)T

}−1 ∑
i:Ai=at

(Xi − X̄t)Yi, (10)

where nt is the number of units under treatment t. This alternative estimator alleviates the

concern of using an unstable inverse in (8) when the sample size is small. In all numerical

results in §4, we apply (10) for ANHECOVA.
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3.2 Asymptotic theory under simple randomization

We consider asymptotic theory under simple randomization for a general class of estimators

of the form

θ̂( b̂1, ..., b̂k) =
(
Ȳ1 − b̂T1 (X̄1 − X̄)..., Ȳk − b̂Tk (X̄k − X̄)

)T
, (11)

where b̂t’s have the same dimension as X and can either be fixed or depend on the trial

data. Note that class (11) contains all estimators we have discussed so far:

θ̂( b̂1, ..., b̂k) =


θ̂
AN

if b̂t = 0 for all t

θ̂
ANC

if b̂t = β̂ in (6) for all t

θ̂
ANHC

if b̂t = β̂t in (8) or (10) for all t

(12)

Theorem 1. Assume (C1) and simple randomization for treatment assignment.

(i) Assume that b̂t → bt in probability as n→∞, where bt is a fixed vector, t = 1, ..., k.

Then, as n→∞,

√
n
{
θ̂( b̂1, ..., b̂k)− θ

}
→ N (0, VSR(B)) in distribution, (13)

where

VSR(B) = diag{π−1
t var(Y (t) − bTt X)}+ BTΣXB +BTΣXB − BTΣXB,

diag(dt) denotes the k × k diagonal matrix with the tth diagonal element dt, B =

(β1, ..., βk), the matrix with columns β1, ..., βk, and B = (b1, ..., bk). In particular,

(13) holds for θ̂
AN

, θ̂
ANC

, and θ̂
ANHC

as described by (12).

(ii) (Optimality of ANHECOVA). VSR(B) is minimized at B = B in the sense that

VSR(B)− VSR(B) is positive semidefinite for all B.

We briefly describe the proof for part (ii) in Theorem 1 and defer other details to the

supplementary material. Notice that

VSR(B)− VSR(B) = diag{π−1
t (βt − bt)TΣX(βt − bt)} − (B − B)TΣX(B − B).
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The positive semidefiniteness of this matrix follows from the following algebraic result with

M = Σ
1/2
X (B − B).

Lemma 1. Let M be a matrix whose columns are m1, ...,mk, and π1, ..., πk be nonnegative

constants with
∑k

t=1 πt = 1. Then diag(π−1
t mT

t mt)−MTM is positive semidefinite.

We would like to emphasize that Theorem 1(i) holds regardless of whether model (3) is

correct or not. Theorem 1(ii) shows that ANHECOVA not only has guaranteed efficiency

gain over ANOVA, but is also the most efficient estimator within the class of estimators

in (11) as it attains the optimal VSR(B). Another consequence of Theorem 1(ii) is that

adjusting for more covariates in ANHECOVA does not lose and often gains asymptotic

efficiency, although adjusting for fewer covariates may have better performance when n is

small.

For the important scenario of estimating the linear contrast θt − θs with fixed t and s,

the corresponding model-assisted estimator is cTtsθ̂, where θ̂ is given by (11) and cts is the k-

dimensional vector whose tth component is 1, sth component is −1, and other components

are 0. The following corollary provides an explicit comparison of the asymptotic variances

of ANOVA, ANCOVA, and ANHECOVA estimators of linear contrasts, showing that the

ANHECOVA estimator has strictly smallest asymptotic variance except for some very

special cases.

Corollary 1. Assume (C1) and simple randomization.

(i) For any t and s, the difference between the asymptotic variances of
√
ncTts(θ̂AN

− θ)

and
√
ncTts(θ̂ANHC

− θ) is

(πsβt + πtβs)
TΣX(πsβt + πtβs)

πtπs(πt + πs)
+

(1− πt − πs)(βt − βs)TΣX(βt − βs)
πt + πs

,

which is always ≥ 0 with equality holds if and only if

πsβt + πtβs = 0 and (βt − βs)(1− πt − πs) = 0. (14)
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(ii) For any t and s, the difference between the asymptotic variances of
√
ncTts(θ̂ANC

− θ)

and
√
ncTts(θ̂ANHC

− θ) is

(βt − β)TΣX(βt − β)

πt
+

(βs − β)TΣX(βs − β)

πs
− (βt − βs)TΣX(βt − βs),

which is always ≥ 0 with equality holds if and only if

β =
πsβt + πtβs
πt + πs

and (βt − βs)(1− πt − πs) = 0. (15)

When k = 2, i.e., there are only two arms, (14) reduces to π2β1 + π1β2 = 0, and (15)

reduces to β1 = β2 or π1 = π2 = 1/2. The same conclusion was also obtained by Lin (2013)

under a different framework that only considers the randomness in treatment assignments.

Liu and Yang (2020) extended the result in Lin (2013) to stratified simple randomization.

This special result has led to a recommendation of ANCOVA over ANHECOVA under two

treatment arms with balanced allocation (Wang et al., 2019; Ma et al., 2020b).

However, when there are more than two arms (k > 2), (15) holds if and only if βt =

βs = β =
∑k

t=1 πtβt, which is a peculiar case. Therefore, βt = βs or balanced allocation

is not enough for ANCOVA to be as efficient as ANHECOVA for estimating θt − θs. For

ANCOVA to have the same asymptotic efficiency as ANHECOVA in estimating θt− θs for

all pairs of t and s, all βt’s must be the same.

In addition, it follows from Theorem 1 that inference based on ANHECOVA is asymp-

totically more efficient than that based on ANCOVA when functions of θ other than linear

contrasts (such as a ratio or an odds ratio based on two components of θ) are concerned,

even in the case of two arms with balanced treatment allocation.

When there are more than two treatment arms, the ANCOVA estimator may hurt

efficient compared with the benchmark ANOVA estimator, even under balanced treatment

allocation. This is also observed by Freedman (2008a) in some specific examples.

For the comparison of ANHECOVA with benchmark ANOVA, when k > 2, (14) holds

if and only if βt = βs = 0, i.e., X is uncorrelated with Y (t) and Y (s).

15

Page 15 of 61 Journal of the American Statistical Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

3.3 Asymptotic theory under covariate-adaptive randomization

We now consider the estimation of θ under covariate-adaptive randomization as described

in §2.2. Specifically, we would like to provide answers to the following two questions: Is

there an estimator achieving wide applicability and universality, i.e., the estimator has an

asymptotic distribution invariant with respect to all commonly used randomization schemes

so that the same inference procedure can be constructed regardless of which randomization

scheme is used? Is there an estimator that is asymptotically the most efficient within the

class of estimators given by (11) under any covariate-adaptive randomization?

The answers to these two questions are affirmative, as established formally in Theorems

2 and 3, respectively. Importantly, the key to achieve wide applicability and universality

as well as guaranteed efficiency gain is using the ANHECOVA estimator θ̂
ANHC

with all the

joint levels of Z included in the covariate X.

Theorem 2. (Wide applicability and Universality of ANHECOVA). Assume (C1) and

(C2). If heterogeneous model (3) is used with X containing the dummy variables for all the

joint levels of Z as a sub-vector, then, regardless of whether working model (3) is correct

or not and which randomization scheme is used, as n→∞,

√
n
(
θ̂
ANHC

− θ
)
→ N

(
0, VSR(B)

)
in distribution, (16)

where VSR(B) = diag{π−1
t var(Y (t) − βTt X)}+ BTΣXB and B = (β1, ..., βk).

Theorem 2 also applies to rerandomization schemes with discrete baseline Z, as reran-

domization satisfies (C2) (Li et al., 2018). For two-armed trials under rerandomization,

results for model-assisted inference can also be found in Li and Ding (2020, Theorem 3).

Comparing Theorems 1 and 2, we see that the ANHECOVA estimator including all

levels of Z has exactly the same asymptotic variance in simple randomization and any

covariate-adaptive randomization satisfying (C2), since VSR(B) is the same as VSR(B) in

(13) with B = B. Therefore, this estimator achieves wide applicability and universality.
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As we show next, however, this is not true for ANOVA or ANCOVA using model (2), or

for ANHECOVA when Z is not fully included in the working model.

To answer the second question, we need a further condition on the randomization

scheme, mainly for estimators not using model (3) or not including all levels of Z in X.

(C3) There exist k × k matrices Ω(z), z ∈ Z, such that, as n→∞,

√
n
(
n1(z)
n(z)
− π1, . . . , nk(z)

n(z)
− πk, z ∈ Z

)T
| Z1, . . . , Zn → N (0, D) in distribution,

where D is a block diagonal matrix whose blocks are matrices Ω(z)/P (Zi = z), z ∈ Z.

Condition (C3) weakens Assumption 4.1(c) of Bugni et al. (2019) in which Ω(z) takes

a more special form. For simple randomization, Ω(z) = diag(πt) − ππT for all z, where

π = (π1, . . . , πk)
T . For stratified permuted block randomization and stratified biased coin

randomization, Ω(z) = 0 for all z. Note that Pocock-Simon’s minimization scheme does

not satisfy (C3) because the treatment assignments are correlated across strata, although

some recent theoretical result has been obtained (Hu and Zhang, 2020). Thus, the following

result does not apply to Pocock-Simon’s minimization. However, our Theorem 2 applies to

minimization, as (C3) is not needed in Theorem 2.

The next theorem establishes the asymptotic distributions of estimators in class (11)

under covariate-adaptive randomization, based on which we show the optimality of the

ANHECOVA estimator.

Theorem 3. Assume (C1), (C2), and (C3). Consider class (11) of estimators and, without

loss of generality, we assume that all levels of Z are included in X, as the components of

b̂t’s in (11) corresponding to levels of Z not in X may be set to 0.

(i) For θ̂( b̂1, ..., b̂k) defined in (11) with b̂t → bt in probability as n→∞, t = 1, ..., k,

√
n
{
θ̂( b̂1, ..., b̂k)− θ

}
→ N

(
0, V (B)

)
in distribution, (17)

where
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V (B) = VSR(B)− E [R(B){ΩSR − Ω(Zi)}R(B)] , (18)

VSR(B) is given in (13), B = (b1, ..., bk), ΩSR = diag(πt) − ππT , and R(B) =

diag
(
π−1
t E{Y (t)

i − θt − bTt (Xi − µX) | Zi}
)
. Furthermore, R(B) = 0 and, hence,

V (B) = VSR(B), where B = (β1, ..., βk).

(ii) (Optimality of ANHECOVA). V (B) is minimized at B = B in the sense that V (B)−

V (B) is positive semidefinite for all B.

The main technical challenge in the proofs of Theorem 2 and Theorem 3 is that the

treatment assignments A1, . . . , An are not independent due to covariate-adaptive random-

ization, so we cannot directly apply the classical Linderberg central limit theorem. Instead,

we decompose θ̂( b̂1, ..., b̂k)− θ into four terms and then apply a conditional version of the

Linderberg central limit theorem to handle the dependence. The details can be found in

the supplementary material.

A number of conclusions can be made from Theorem 3.

1. With Theorem 2 answering the first question in the beginning of §3.3, i.e., θ̂
ANHC

with

all joint levels of Z included in model (3) achieves wide applicability and universality,

the second question is answered by Theorem 3(ii) showing that θ̂
ANHC

is asymptotically

the most efficient estimator compared with all estimators in class (11); in particular,

θ̂
ANHC

attains guaranteed efficiency gain under any covariate-adaptive randomization

satisfying (C2). Our optimality result in Theorem 3(ii) is about the joint estimation

of the vector θ, which is substantially more general than the existing one-dimensional

optimality results about linear contrasts. Furthermore, our conclusion made in §3.2,

i.e., ANHECOVA is asymptotically superior over ANCOVA except for the particular

case of estimating a linear contrast for two arms with balanced treatment allocation,

holds for all commonly used covariate-adaptive randomization schemes.

2. A price paid for not using model (3) or not including all levels of Z in (3) is that the

asymptotic validity of the resulting estimator requires condition (C3), which is not
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needed in Theorem 2. Furthermore, the resulting estimator not only is less efficient

according to the previous conclusion, but also has a more complicated asymptotic

covariance matrix depending on the randomization schemes (universality is not sat-

isfied), which requires extra handling in variance estimation for inference; see, for

example, Shao et al. (2010), Bugni et al. (2018), and Ma et al. (2020a).

3. Under covariate-adaptive randomization satisfying (C2)-(C3), it is still true that the

ANCOVA estimator using model (2) may be asymptotically more efficient or less

efficient than the benchmark ANOVA estimator.

4. From (18), the asymptotic covariance matrix V (B) is invariant with respect to ran-

domization scheme if R(B) in (18) is 0, which is the case when B = B, i.e., θ̂
ANHC

is

used with all levels of Z included in X. If R(B) is not 0, such as the case of ANOVA,

ANCOVA, or ANHECOVA not adjusting for all joint levels of Z, then V (B) depends

on randomization scheme and, the smaller the Ω(z), the more efficient the estimator

is. Thus, the stratified permuted block or biased coin with Ω(z) = 0 for all z is

preferred in this regard.

5. The roles played by design and modeling can be understood through

V (B)− VSR(0) = {VSR(B)− VSR(0)} − E [R(B){ΩSR − Ω(Zi)}R(B)}] ,

where VSR(0) is the asymptotic variance of ANOVA estimator under simple random-

ization. As we vary the randomization scheme and the working model, the change in

the asymptotic variance is determined by two terms. The first term {VSR(B)−VSR(0)}

arises from using a working model; the second term E [R(B){ΩSR − Ω(Zi)}R(B)] is

the reduction due to using a covariate-adaptive randomization scheme, which also

depends on the working model being used via R(B). Therefore, it is interesting to

note that although the primary reason of using covariate-adaptive randomization is

to achieve balance of treatment groups across prognostic factors, it also improves

statistical efficiency.
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Theorem 3 together with a further derivation leads to the following result.

Corollary 2 (Duality between design and analysis). Assume (C1)-(C3) and that X only

includes the dummy variables for all joint levels of Z. Then, for any B in (17), V (B) =

VSR(B) + E{R(B)Ω(Zi)R(B)}.

A direct consequence from Corollary 2 is that, if Ω(z) = 0 for all z (e.g., stratified

permuted block or biased coin randomization is used) and X only includes all joint levels

of Z, then all estimators in class (11), including the benchmark ANOVA estimator, have

the same asymptotic efficiency as the ANHECOVA estimator under any randomization.

This shows the duality between design and analysis, i.e., modeling with all joint levels of

Z is equivalent to designing with Z.

3.4 Robust standard error

For model-assisted inference on a function of θ based on Theorems 1-3, a crucial step is to

construct a consistent estimator of asymptotic variance. The customary linear model-

based variance estimation assuming homoscedasticity can be inconsistent, as criticized

by Freedman (2008a) and FDA (2021). Therefore, it is important that we use variance

estimators that are consistent regardless of whether the working model is correct or not

and whether heteroscedasticity is present or not.

Consider the ANHECOVA estimator θ̂
ANHC

in (7) using either (8) or (10), where co-

variate X includes all dummy variables for Z that is used in the randomization. There

exist formulas for heteroscedasticity-robust standard error (such as those provided in the

sandwich package in R). However, those formulas cannot be directly applied here, because

they do not account for the additional variation introduced by centering the covariate X as

required by the identification of θ. In fact, the term BTΣXB in the asymptotic variance

VSR(B) in Theorem 2 arises from centering X.
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Instead, we should use the robust variance estimator based on VSR(B), as described

next. Let Σ̂X be the sample covariance matrix of Xi based on the entire sample and S2
t (β̂t)

be the sample variance of (Yi − β̂Tt Xi)’s based on the patients in treatment arm t. Then

VSR(B) in (16) can be estimated by

V̂ = diag{π−1
t S2

t (β̂t)}+ B̂T Σ̂XB̂, (19)

where B̂ is B with βt replaced by β̂t. This variance estimator is consistent as n → ∞

regardless of whether the heterogeneous working model (3) or homoscedasticity holds or

not, and regardless of which randomization scheme is used. For estimation or inference

about a differentiable function of θ, a robust variance estimator can be obtained based on

(19) and the delta method.

In many applications the primary analysis is about treatment effects in terms of the

linear contrast θt − θs = cTtsθ for one or several pairs of (t, s). For large n, an asymptotic

level (1− α) confidence interval of θt − θs is(
cTtsθ̂ANHC

− zα/2SEts, c
T
tsθ̂ANHC

+ zα/2SEts

)
,

where SE2
ts = π−1

t S2
t (β̂t) +π−1

s S2
s (β̂s) + (β̂t− β̂s)T Σ̂X(β̂t− β̂s) and zα is the (1−α) quantile

of the standard normal distribution. The same form of confidence interval can be used for

any linear contrast cT θ (the sum of components of c is 0) with cTtsθ̂ANHC
and SE2

ts replaced

by cT θ̂
ANHC

and SE2
c = cT V̂ c, respectively. Let C be the collection of all linear contrasts

with dimension k. An asymptotic level (1−α) simultaneous confidence band of cT θ, c ∈ C ,

can be obtained by Scheffé’s method,(
cT θ̂

ANHC
− χα,k−1 SEc, c

T θ̂
ANHC

+ χα,k−1 SEc

)
, c ∈ C ,

where χα,k−1 is the square root of the (1 − α) quantile of the chi-square distribution with

(k − 1) degrees of freedom. Correspondingly, to test the hypothesis H0 : θ1 = · · · = θk, an

asymptotic level α chi-square test rejects H0 if and only if

θ̂T
ANHC

CT (CV̂ CT )−1Cθ̂
ANHC

> χ2
α,k−1,
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where C is the (k − 1)× k matrix whose tth row is cTtk, t = 1, ..., k − 1.

Inference procedures based on the ANOVA or ANCOVA estimator can be similarly

obtained using Theorems 1 and 3. However, as they do not achieve universality, a tailored

derivation is needed for each covariate-adaptive randomization scheme. For example, un-

der the stratified permuted block or biased coin randomization, the ANOVA or ANCOVA

estimator is asymptotically more efficient than the same estimator under simple random-

ization; thus, using variance estimators valid only under simple randomization may lead to

unduly conservative inference (FDA, 2021). To eliminate the conservativeness, modifica-

tions depending on covariate-adaptive randomization schemes have to be made (Shao et al.,

2010; Bugni et al., 2018). For Pocock-Simon’s minimization, however, how to derive the

tailored variance estimators for the ANOVA and ANCOVA estimators is not yet known as

the asymptotic properties of the minimization scheme is still not well established. This is

why we recommend ANHECOVA over the other model-assisted estimators for the practice.

4 Empirical Results

4.1 Simulation results

To examine the finite-sample properties of the model-assisted procedures, we perform a

simulation study based on the placebo arm of 481 patients in a clinical trial for rheumatoid

arthritis. We obtain from the trial a 2-dimensional continuous baseline covariate (U,W )

and a continuous response variable Y (1), where U is the baseline disease activity score for

rheumatoid arthritis, W is patient’s tender joint count at 68 joints, and Y (1) is the change of

disease activity score from baseline. The mean vector and covariance matrix of (Y (1), U,W )

based on 481 patients are given in the supplementary material. Note that we do not know

the true relationship between Y (1) and (U,W ). In fact, a linear model fit between Y (1) and

(U,W ) based on 481 patients results in multiple and adjusted R-squares ≤ 0.05. Thus,
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working models (2) and (3) are likely to be misspecified in our simulation.

We consider two simulation settings that are different in how the potential responses

Y (2) and Y (3) of the other two treatment arms are generated, and how the treatment

assignment is randomized. Our first simulation compares the standard deviations of the

ANOVA, ANCOVA, and ANHECOVA estimators of θ2 − θ1, with X = U for ANCOVA

and ANHECOVA. The two additional potential responses are generated according to

Y (2) = Y (1) + ζ(U − µU)

Y (3) = Y (2)
(20)

(θ1 = θ2 = θ3, i.e., no average treatment effect). The sample size is 481 (all data points are

sampled). Treatments are assigned by simple randomization according to three different

allocation proportions: 1:2:2, 1:1:1, and 2:1:1. Thus, the only randomness in the first

simulation is from treatment assignments. Since βt = Σ−1
X cov(Xi, Y

(t)
i ), β2 = β3 = β1 + ζ.

The value of β1 is −0.255 and the value of ζ represents the magnitude of treatment-

by-covariate interaction. But ζ does not affect the average treatment effect as it is the

coefficient in front of centered U−µU . Although we only consider the estimation of θ2−θ1,

data from the third arm is still used by ANCOVA and ANHECOVA.

Based on 10,000 simulations, all three estimators have negligible biases and their stan-

dard deviations are plotted in Figure 1 for different values of ζ between −1 and 1. The

simulation result shows that, as predicted by our theory, ANHECOVA is generally more

efficient than the other two estimators, except when ζ is nearly 0 where ANCOVA is com-

parable to ANHECOVA. Furthermore, the simulation with allocation 1:2:2 (left panel in

Figure 1) shows very clearly that there is no definite ordering of the variances of ANCOVA

and ANOVA. Our Corollary 1 suggests that a balanced allocation does not guarantee the

superiority of ANCOVA over ANOVA when there are multiple arms (in contrast with the

case of two arms), which can be seen from the simulations with allocation 1:1:1 (middle

panel in Figure 1).

23

Page 23 of 61 Journal of the American Statistical Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

The second simulation setting is intended to examine the performance of estimators,

standard errors, and the proposed 95% asymptotic confidence intervals for linear contrasts

θ2− θ1 and θ3− θ1 and ratios θ2/θ1 and θ3/θ1, under three randomizations schemes, simple

randomization, stratified permuted block, and Pocock-Simon’s minimization, with alloca-

tion 1:1:1 or 1:2:2. For each simulation, a random sample of size 400 is drawn from the 481

subjects’ (Y (1), U,W ) with replacement, and Y (2) and Y (3) are generated according to

Y (2) = −1.3 + Y (1) − 0.5(U − µU)− 0.01(U 2 − µU2) + 0.3(W − µW )

Y (3) = −1 + Y (1) − 0.1(U − µU)− 0.01(U 2 − µU2)− 0.1(W − µW )
(21)

(θ1 = −1.031, θ2 = −2.331, and θ3 = −2.031). The magnitude of treatment-by-covariate

interaction is represented by the differences of βt-values, where for X = (U,W )T , β1 =

(−0.240,−0.001)T , β2 = (−0.853, 0.298)T , and β3 = (−0.453,−0.102)T . Note that a

quadratic term U2 − µU2 appears in the data generating process (21) but is not adjusted

by ANCOVA or ANHECOVA. Thus, the models for Y (2) − Y (1) and Y (3) − Y (1) are also

misspecified, in addition to the likely event that the model for Y (1) is misspecified.

The covariate Z used in randomization is composed of a three-level discretized W (with

proportions 0.24, 0.22, and 0.54) and a two-level discretized U (with proportions 0.77

and 0.23). These Z-categories are created according to the disease activity encoded by

covariates U and W . For stratified permuted block randomization, block sizes are 6 and

10 for treatment allocations 1:1:1 and 1:2:2, respectively. For minimization, we follow the

procedure in Pocock and Simon (1975), which assigns a patient with probability 0.8 to the

preferred arm minimizing the sum of assignment balance scores over marginal levels of Z.

For ANCOVA and ANHECOVA, we consider two working models with different choices

of X. One model includes the dummy variables for Z but not (U,W ), motivated by the

fact that Z is a discretization of (U,W ). The other model includes not only the dummy

variables for Z, but also U and W . The simulation results with n = 400 based on 10,000

simulations are shown in Tables 1 and 2 for linear contrasts and ratios, respectively. When
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ratio is considered, we apply the delta method to construct standard errors. Simulation

results with n = 200 are in the supplementary material.

Note that in the second simulation when covariate-adaptive randomization is used, for

ANOVA or ANCOVA, we employ the standard error derived under simple randomization

based on Theorem 1. According to our theory, it is expected that the standard errors

and the related confidence intervals based on ANOVA and ANCOVA are conservative; the

simulation can show how serious the conservativeness is.

The following is a summary of simulation results in Tables 1 and 2.

1. All estimators have negligible bias compared to their standard deviation.

2. ANHECOVA has the smallest standard deviation in all scenarios of our simulation.

This is consistent with our asymptotic theory.

3. There is no unambiguous ordering of the standard deviations of ANCOVA and

ANOVA. In particular, ANCOVA is better in estimating θ2 − θ1 but worse in es-

timating θ3 − θ1. However, for allocation 1:2:2 and estimating of ratios, ANCOVA is

nearly the same or worse than ANOVA.

4. For ANHECOVA, including additional covariates U and W in the working model re-

sults in a smaller standard deviation, indicating that U and W carry more information

than their discretized values. But this is not always the case for ANCOVA.

5. From Tables 1 and 2, the performances of ANHECOVA are nearly the same under

simple randomization, stratified permuted block, and Pocock-Simon’s minimization.

This supports the universality results in our asymptotic theory.

6. Under simple randomization, the robust standard errors for all model-assisted estima-

tors are very close to their actual standard deviations, and confidence intervals have

nominal coverage in all settings. However, although this is still true for ANHECOVA

under stratified permuted block and Pocock-Simon’s minimization, it is not the case

for ANOVA and ANCOVA, i.e., standard errors valid under simple randomization

25

Page 25 of 61 Journal of the American Statistical Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

appear to overestimate the actual standard deviations, so the confidence intervals are

conservative. This observation reflects the universality property of ANHECOVA.

4.2 A real data example

We further illustrate the different model-assisted procedures using a real data example.

Chong et al. (2016) conducted a randomized experiment to evaluate the impact of low

dietary iron intake on human capital attainment. They recruited students of age 11 to 19

in a rural area of Cajamarca, Peru, where many adolescents suffer from iron deficiency. The

goal of this randomized trial is to quantify the causal effect of reduced adolescent anemia

on school attainment. By using students’ school grade as covariate Z with five levels, a

stratified permuted block randomization with 1:1:1 allocation was applied to assign 219

students to one of the following three promotional videos:

Video 1: A popular soccer player is encouraging iron supplements to maximize energy;

Video 2: A physician is encouraging iron supplements for overall health;

Video 3: A dentist encouraging oral hygiene without mentioning iron at all.

Chong et al. (2016) investigated whether showing different promotional videos to the stu-

dents can improve their academic performance through increased iron intake. Video 3 is

treated as a “placebo”. After the treatment assignments, four students were excluded from

the analysis for various reasons, which we also ignore in our analysis. The dataset is avail-

able at https://www.openicpsr.org/openicpsr/project/113624/version/V1/view.

Chong et al. (2016) used various outcomes in their analysis; here we focus on one of

their primary outcomes—the academic achievement—as an example. In this trial, the

academic achievement is measured by a standardized average of the student’s grades in

math, foreign language, social sciences, science, and communications in a semester. For

the model-assisted approaches, we use the baseline anemia status as the covariate in working

models (2) and (3), which is believed to moderate the treatment effect (Chong et al., 2016).
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Table 3 reports the analysis results by using different model-assisted procedures. Like in

our simulation studies, the standard errors for ANOVA and ANCOVA are computed using

estimator based on Theorem 1 for simple randomization, even though the randomization

scheme here is covariate-adaptive. All the model-assisted estimators find similar effect sizes

for the two contrasts (physician versus placebo, soccer star versus placebo), and the two

ANHECOVA estimators have slightly smaller standard errors. Including baseline anemia

status in the working model is useful to reduce the standard error. Compared to the

placebo, the promotional video by the soccer player does not seem to have a positive

effect on the academic achievement. In contrast, the video of the physician promoting iron

supplements appears to have a positive effect. The difference between ANHECOVA and

ANOVA or ANCOVA, and between including and not including anemia can be seen from

the magnitude of the corresponding p-values.

5 Recommendation and Discussion

To improve its credibility and efficiency, we believe a clinical trial analysis can benefit from

the considerations outlined in §1.1 and discussed throughout §2-3.

Our theoretical investigation shows that the ANHECOVA with all joint levels of Z

included in heterogeneous working model (3), coupled with the robust variance estimator

given by (19), achieves guaranteed efficiency gain over benchmark ANOVA, asymptotic

optimality among a large class of estimators, wide applicability and universality to a wide

range of covariate-adaptive randomization schemes. Our theory is for the joint asymptotic

distribution in estimating θ (the vector of mean responses), which can be readily used for

inference about linear or nonlinear functions of θ. Thus, we believe it deserves wider usage

in the clinical trial practice. In addition to all joint levels of Z, other baseline covariates

highly associated with the responses can also be included in the ANHECOVA working

model, following the guidance of FDA (2021). Our theory shows that using ANOVA,
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ANCOVA with model (2), or ANHECOVA that does not adjust for all joint levels of Z,

suffers from invalidity, inefficiency, or non-universality in the sense that the asymptotic

distribution of the estimator depends on a particular randomization scheme.

For discrete responses, although ANHECOVA and our theory can still be applied, it

is more common to perform covariate adjustment with generalized linear working models,

which is also known as the g-computation. Under simple randomization, extensive devel-

opments for g-computation can be found in Freedman (2008b), Moore and van der Laan

(2009), Rosenblum and van der Laan (2010), Steingrimsson et al. (2017), and Guo and

Basse (2021). Recently, Wang et al. (2021) obtained some general results under stratified

biased coin and permuted block randomization, including robust inference on a linear con-

trast of θ using logistic regression as a working model. However, estimators from these

methods are not guaranteed to gain efficiency over the unadjusted estimator. We plan to

develop covariate adjustment methods with nonlinear working models that achieve all three

considerations as a future work.

Multiple treatment arms, which usually include a placebo, different doses (or regimens)

of a new treatment, and/or active controls, are common in clinical trials (Juszczak et al.,

2019) and are prevalent in some therapeutic areas such as immunology (Yates et al., 2021).

In some applications, the primary analysis may focus on comparing just two treatments,

even though the trial contains more than two treatment arms. A simple strategy is to

ignore the data from other arms and apply inference procedures to the two arms of inter-

est. For ANOVA, this is equivalent to using all the arms, since ANOVA does not borrow

strength from other arms through using covariates. However, using data from all arms is

recommended for ANHECOVA, because it utilizes covariate data from arms other than the

two arms of interest to gain efficiency (implied by Theorem 2). Regarding ANCOVA, there

is no definite order of efficiency for using the whole dataset or data from two given arms,

since using more covariate data in ANCOVA may increase or decrease efficiency.
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As a final cautionary note, standard software does not produce asymptotically valid

standard errors for model-assisted inference. We implement an R package called RobinCar to

compute the model-assisted estimators and their robust standard errors, which is available

from the authors.
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Table 1: Bias, standard deviation (SD), average standard error (SE), and coverage probability

(CP) of 95% asymptotic confidence interval for linear contrasts under simple randomization (SR),

stratified permuted block randomization (PB), and Pocock-Simon’s minimization based on 10,000

simulations and setup in (21) with n = 400

θ2 − θ1 θ3 − θ1

Allocation Randomization Method X Bias SD SE CP Bias SD SE CP

1:1:1 SR ANOVA 0.001 0.327 0.327 0.946 -0.001 0.201 0.201 0.949
ANCOVA Z 0.001 0.310 0.306 0.945 0.000 0.229 0.227 0.949
ANCOVA Z,U,W -0.011 0.295 0.289 0.944 0.003 0.246 0.240 0.945
ANHECOVA Z -0.001 0.271 0.265 0.944 -0.002 0.169 0.167 0.949
ANHECOVA Z,U,W 0.000 0.226 0.224 0.947 -0.002 0.155 0.152 0.948

PB ANOVA 0.000 0.267 0.327 0.982 -0.001 0.166 0.201 0.982
ANCOVA Z 0.001 0.267 0.306 0.975 -0.001 0.166 0.227 0.992
ANCOVA Z,U,W -0.012 0.250 0.289 0.974 0.003 0.186 0.240 0.987
ANHECOVA Z 0.001 0.266 0.265 0.947 -0.001 0.165 0.167 0.950
ANHECOVA Z,U,W 0.002 0.224 0.224 0.950 -0.001 0.152 0.152 0.948

Minimization ANOVA -0.002 0.268 0.327 0.982 0.000 0.168 0.201 0.980
ANCOVA Z -0.002 0.267 0.306 0.974 0.000 0.168 0.227 0.992
ANCOVA Z,U,W -0.013 0.250 0.289 0.974 0.005 0.189 0.240 0.987
ANHECOVA Z -0.002 0.267 0.265 0.948 0.000 0.167 0.167 0.949
ANHECOVA Z,U,W -0.001 0.225 0.223 0.946 0.000 0.154 0.152 0.944

1:2:2 SR ANOVA 0.001 0.311 0.312 0.951 0.000 0.205 0.204 0.951
ANCOVA Z 0.001 0.298 0.294 0.947 0.001 0.241 0.239 0.950
ANCOVA Z,U,W -0.013 0.286 0.281 0.945 0.003 0.262 0.257 0.947
ANHECOVA Z 0.000 0.268 0.268 0.949 0.001 0.182 0.180 0.948
ANHECOVA Z,U,W 0.001 0.237 0.238 0.949 0.002 0.171 0.169 0.944

PB ANOVA 0.002 0.265 0.312 0.977 0.001 0.180 0.204 0.975
ANCOVA Z 0.002 0.265 0.293 0.969 0.001 0.181 0.238 0.991
ANCOVA Z,U,W -0.012 0.253 0.280 0.967 0.005 0.207 0.256 0.986
ANHECOVA Z 0.002 0.264 0.267 0.950 0.001 0.179 0.179 0.949
ANHECOVA Z,U,W 0.001 0.234 0.238 0.951 0.002 0.170 0.168 0.946

Minimization ANOVA 0.000 0.265 0.311 0.979 0.002 0.181 0.204 0.971
ANCOVA Z -0.001 0.265 0.293 0.969 0.001 0.182 0.238 0.991
ANCOVA Z,U,W -0.013 0.253 0.280 0.970 0.006 0.208 0.256 0.985
ANHECOVA Z -0.001 0.265 0.267 0.951 0.001 0.181 0.179 0.947
ANHECOVA Z,U,W 0.001 0.233 0.238 0.956 0.002 0.172 0.168 0.945
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Table 2: Bias, standard deviation (SD), average standard error (SE), and coverage probability

(CP) of 95% asymptotic confidence interval for ratios under simple randomization (SR), strat-

ified permuted block randomization (PB), and Pocock-Simon’s minimization based on 10,000

simulations and setup in (21) with n = 400

θ2/θ1 θ3/θ1

Allocation Randomization Method X Bias SD SE CP Bias SD SE CP

1:1:1 SR ANOVA 0.022 0.379 0.378 0.955 0.020 0.259 0.258 0.952
ANCOVA Z 0.022 0.368 0.362 0.950 0.023 0.296 0.292 0.949
ANCOVA Z,U,W 0.039 0.360 0.352 0.950 0.027 0.321 0.313 0.946
ANHECOVA Z 0.024 0.337 0.329 0.951 0.020 0.232 0.228 0.948
ANHECOVA Z,U,W 0.022 0.304 0.298 0.948 0.019 0.221 0.215 0.947

PB ANOVA 0.021 0.331 0.377 0.978 0.018 0.228 0.257 0.973
ANCOVA Z 0.021 0.331 0.359 0.972 0.018 0.228 0.289 0.987
ANCOVA Z,U,W 0.038 0.324 0.349 0.970 0.020 0.256 0.310 0.979
ANHECOVA Z 0.020 0.331 0.328 0.954 0.018 0.227 0.227 0.952
ANHECOVA Z,U,W 0.020 0.301 0.297 0.951 0.017 0.217 0.214 0.947

Minimization ANOVA 0.026 0.327 0.378 0.981 0.021 0.232 0.258 0.972
ANCOVA Z 0.026 0.327 0.360 0.974 0.021 0.233 0.290 0.985
ANCOVA Z,U,W 0.041 0.321 0.350 0.972 0.022 0.262 0.310 0.980
ANHECOVA Z 0.026 0.326 0.329 0.958 0.021 0.231 0.228 0.951
ANHECOVA Z,U,W 0.026 0.299 0.297 0.953 0.021 0.220 0.215 0.948

1:2:2 SR ANOVA 0.035 0.410 0.405 0.955 0.030 0.303 0.298 0.947
ANCOVA Z 0.042 0.422 0.409 0.949 0.042 0.366 0.353 0.947
ANCOVA Z,U,W 0.070 0.435 0.419 0.948 0.054 0.406 0.389 0.945
ANHECOVA Z 0.036 0.383 0.373 0.950 0.029 0.285 0.277 0.942
ANHECOVA Z,U,W 0.034 0.362 0.352 0.948 0.027 0.278 0.266 0.940

PB ANOVA 0.033 0.373 0.403 0.969 0.028 0.279 0.296 0.962
ANCOVA Z 0.033 0.374 0.401 0.967 0.028 0.280 0.344 0.981
ANCOVA Z,U,W 0.059 0.386 0.410 0.965 0.038 0.326 0.379 0.974
ANHECOVA Z 0.034 0.373 0.372 0.953 0.028 0.279 0.275 0.948
ANHECOVA Z,U,W 0.034 0.354 0.350 0.949 0.027 0.272 0.265 0.945

Minimization ANOVA 0.030 0.372 0.401 0.967 0.025 0.276 0.293 0.961
ANCOVA Z 0.039 0.374 0.401 0.966 0.033 0.281 0.344 0.982
ANCOVA Z,U,W 0.062 0.390 0.408 0.963 0.040 0.330 0.377 0.973
ANHECOVA Z 0.035 0.372 0.371 0.952 0.029 0.276 0.274 0.950
ANHECOVA Z,U,W 0.036 0.352 0.349 0.950 0.028 0.269 0.264 0.947
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Table 3: Estimate, standard error (SE), and p-value in the real data example analysis

Physician versus placebo Soccer star versus placebo

Method X Difference SE p-value Difference SE p-value

ANOVA 0.386 0.211 0.067 -0.068 0.205 0.739

ANCOVA Grade 0.403 0.203 0.046 -0.052 0.203 0.799
Grade, Anemia status 0.437 0.199 0.028 -0.085 0.201 0.672

ANHECOVA Grade 0.409 0.200 0.041 -0.051 0.201 0.800
Grade, Anemia status 0.481 0.193 0.013 -0.046 0.195 0.815

Ratio SE p-value Ratio SE p-value

ANOVA 1.034 0.018 0.062 0.994 0.019 0.752

ANCOVA Grade 1.035 0.018 0.051 0.996 0.018 0.800
Grade, Anemia status 1.038 0.018 0.033 0.993 0.017 0.670

ANHECOVA Grade 1.036 0.018 0.045 0.996 0.018 0.800
Grade, Anemia status 1.042 0.017 0.016 0.996 0.017 0.803

Figure 1: Standard deviations of ANOVA, ANCOVA, and ANHECOVA estimators of θ2 − θ1

based on 10,000 simulations and setup in (20)
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Supplementary Material: Toward Better
Practice of Covariate Adjustment in
Analyzing Randomized Clinical Trials

1 Additional Results on Simulation

The table below provides the mean vector and covariance matrix of (Y (1), U,W ) in the real

clinical trial used in §4.1.

mean SD correlation

Y (1) −1.031 1.126 Y (1) and U −0.216

U 5.684 0.953 Y (1) and W −0.168

W 23.222 13.422 U and W 0.744

The following Table S1-S2 are simulation results with n = 200 based on 10,000 simula-

tions for linear contrasts and ratios, respectively.
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Table S1: Bias, standard deviation (SD), average standard error (SE), and coverage probability

(CP) of 95% asymptotic confidence interval under simple randomization (SR), stratified permuted

block randomization (PB), and Pocock-Simon’s minimization based on 10,000 simulations and

setup in (21) with n = 200

θ2 − θ1 θ3 − θ1

Allocation Randomization Method X Bias SD SE CP Bias SD SE CP

1:1:1 SR ANOVA -0.002 0.467 0.463 0.944 0.000 0.284 0.285 0.950
ANCOVA Z 0.000 0.445 0.433 0.941 -0.001 0.326 0.322 0.949
ANCOVA Z,U,W -0.023 0.428 0.407 0.933 0.009 0.351 0.339 0.942
ANHECOVA Z 0.000 0.384 0.372 0.939 0.003 0.238 0.235 0.943
ANHECOVA Z,U,W 0.000 0.325 0.315 0.943 0.001 0.220 0.213 0.941

PB ANOVA -0.002 0.380 0.462 0.980 -0.001 0.241 0.284 0.977
ANCOVA Z -0.002 0.379 0.432 0.972 -0.001 0.242 0.321 0.991
ANCOVA Z,U,W -0.026 0.356 0.406 0.970 0.009 0.275 0.338 0.983
ANHECOVA Z -0.002 0.377 0.371 0.940 -0.001 0.240 0.234 0.940
ANHECOVA Z,U,W -0.002 0.317 0.314 0.948 -0.001 0.220 0.213 0.941

Minimization ANOVA 0.003 0.378 0.463 0.980 0.002 0.236 0.284 0.981
ANCOVA Z 0.003 0.378 0.432 0.972 0.002 0.237 0.321 0.991
ANCOVA Z,U,W -0.021 0.356 0.406 0.968 0.012 0.270 0.338 0.985
ANHECOVA Z 0.002 0.376 0.372 0.946 0.002 0.236 0.234 0.947
ANHECOVA Z,U,W 0.002 0.319 0.314 0.945 0.003 0.217 0.213 0.943

1:2:2 SR ANOVA 0.001 0.446 0.441 0.946 0.003 0.289 0.289 0.949
ANCOVA Z 0.004 0.430 0.417 0.942 0.002 0.347 0.339 0.946
ANCOVA Z,U,W -0.019 0.420 0.398 0.934 0.012 0.380 0.365 0.943
ANHECOVA Z 0.003 0.386 0.382 0.945 0.004 0.257 0.256 0.947
ANHECOVA Z,U,W 0.004 0.345 0.342 0.949 0.006 0.247 0.241 0.942

PB ANOVA 0.002 0.379 0.441 0.977 0.000 0.254 0.289 0.971
ANCOVA Z 0.002 0.378 0.414 0.968 0.000 0.257 0.337 0.988
ANCOVA Z,U,W -0.024 0.365 0.395 0.961 0.008 0.296 0.362 0.982
ANHECOVA Z 0.001 0.377 0.381 0.951 0.000 0.253 0.255 0.948
ANHECOVA Z,U,W 0.002 0.336 0.341 0.948 0.001 0.243 0.240 0.944

Minimization ANOVA 0.003 0.384 0.441 0.971 0.000 0.251 0.288 0.974
ANCOVA Z 0.001 0.383 0.414 0.961 -0.002 0.252 0.336 0.991
ANCOVA Z,U,W -0.023 0.371 0.395 0.959 0.008 0.294 0.361 0.985
ANHECOVA Z 0.002 0.382 0.381 0.944 -0.001 0.250 0.254 0.950
ANHECOVA Z,U,W 0.000 0.338 0.341 0.952 -0.001 0.239 0.239 0.948
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Table S2: Bias, standard deviation (SD), average standard error (SE), and coverage probability

(CP) of 95% asymptotic confidence interval under simple randomization (SR), stratified permuted

block randomization (PB), and Pocock-Simon’s minimization based on 10,000 simulations and

setup in (21) with n = 200

θ2/θ1 θ3/θ1

Allocation Randomization Method X Bias SD SE CP Bias SD SE CP

1:1:1 SR ANOVA 0.046 0.556 0.547 0.958 0.037 0.377 0.373 0.949
ANCOVA Z 0.048 0.546 0.526 0.952 0.049 0.440 0.427 0.948
ANCOVA Z,U,W 0.084 0.555 0.518 0.954 0.054 0.490 0.460 0.942
ANHECOVA Z 0.047 0.494 0.473 0.951 0.034 0.340 0.328 0.944
ANHECOVA Z,U,W 0.047 0.455 0.427 0.945 0.035 0.328 0.308 0.941

PB ANOVA 0.048 0.483 0.544 0.980 0.038 0.339 0.371 0.969
ANCOVA Z 0.048 0.483 0.518 0.972 0.038 0.340 0.418 0.983
ANCOVA Z,U,W 0.083 0.480 0.509 0.972 0.043 0.393 0.451 0.973
ANHECOVA Z 0.048 0.481 0.471 0.955 0.038 0.338 0.327 0.942
ANHECOVA Z,U,W 0.048 0.438 0.426 0.950 0.037 0.324 0.307 0.942

Minimization ANOVA 0.046 0.480 0.543 0.979 0.036 0.333 0.370 0.969
ANCOVA Z 0.046 0.479 0.517 0.971 0.036 0.335 0.417 0.981
ANCOVA Z,U,W 0.080 0.480 0.507 0.972 0.041 0.384 0.449 0.972
ANHECOVA Z 0.046 0.478 0.470 0.952 0.036 0.332 0.326 0.944
ANHECOVA Z,U,W 0.044 0.440 0.424 0.948 0.034 0.322 0.306 0.940

1:2:2 SR ANOVA 0.074 0.617 0.596 0.952 0.062 0.457 0.439 0.941
ANCOVA Z 0.095 0.678 0.621 0.940 0.094 0.605 0.540 0.933
ANCOVA Z,U,W 0.150 0.754 0.656 0.938 0.117 0.717 0.611 0.927
ANHECOVA Z 0.079 0.594 0.556 0.944 0.062 0.446 0.412 0.938
ANHECOVA Z,U,W 0.079 0.578 0.526 0.937 0.062 0.447 0.397 0.930

PB ANOVA 0.073 0.562 0.593 0.968 0.062 0.423 0.437 0.956
ANCOVA Z 0.074 0.562 0.592 0.963 0.063 0.426 0.509 0.973
ANCOVA Z,U,W 0.132 0.626 0.624 0.962 0.088 0.531 0.576 0.963
ANHECOVA Z 0.074 0.561 0.550 0.955 0.063 0.423 0.408 0.943
ANHECOVA Z,U,W 0.075 0.543 0.521 0.948 0.062 0.421 0.394 0.938

Minimization ANOVA 0.068 0.562 0.586 0.965 0.057 0.415 0.429 0.956
ANCOVA Z 0.083 0.572 0.589 0.962 0.071 0.430 0.505 0.974
ANCOVA Z,U,W 0.137 0.635 0.618 0.958 0.093 0.532 0.569 0.966
ANHECOVA Z 0.077 0.565 0.546 0.949 0.064 0.416 0.403 0.945
ANHECOVA Z,U,W 0.077 0.549 0.516 0.945 0.065 0.418 0.389 0.937
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2 Two Lemmas

Lemma 2. Assume (C1), (C2), and that P (Ai = at | Z1, . . . , Zn) = πt for all t = 1, . . . , k

and i = 1, . . . , n. We have the following conclusions.

(i) For any integrable function f ,

E{f(Y
(t)
i , Xi)} = E(f(Yi, Xi) | Ai = at)

and

E{f(Y
(t)
i , Xi) | Xi} = E(f(Yi, Xi) | Xi, Ai = at).

(ii) Let θ = (E(Y (1), ..., E(Y (k)))> be the potential response mean vector, β =
∑k

t=1 πtβt,

and βt = Σ−1X cov(Xi, Y
(t)
i ), t = 1, ..., k. Then

(θ, β) = arg min
(ϑ,β/)

E
[{
Yi − ϑ>Ai − β/>(Xi − µX)

}2]
and

(θ, β1, . . . , βk) = arg min
(ϑ,β/1,...,β/k)

E

{Yi − ϑ>Ai − k∑
t=1

β/>t (Xi − µX)I(Ai = at)

}2
 .

The condition P (Ai = at | Z1, . . . , Zn) = πt for all t and i holds for most covariate-

adaptive randomization schemes. Note that it does not exclude the possibility that the set

of random variables {Ai, i = 1, . . . , n} is dependent of {Zi, i = 1, . . . , n}, which is indeed

the case for covariate-adaptive randomization schemes. We impose this condition only in

Lemma 2 to facilitate understanding the working models. This additional assumption is

not needed for our asymptotic theory in §3, as condition (C2) is sufficient.

Proof. (i) We focus on proving the second result; the first result can be shown similarly. For

simple randomization, this result immediately follows (C2) (i) as (Y
(1)
i , . . . , Y

(k)
i , Xi, Ai) are

independent and identically distributed. For covariate-adaptive randomization, we remark

that the property of conditional independence (Dawid, 1979, Lemma 4.3), (C2) (i) and
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the third condition in Lemma 2 imply that Ai is independent of {(Y (1)
i , ..., Y

(k)
i , Xi, Zi), i =

1, . . . , n}. Then, it can be shown that

E{f(Yi, Xi) | Xi, Ai = at} = E{f(Y
(t)
i , Xi) | Xi, Ai = at}

=
∑

z1,...,zn∈Z

E{f(Y
(t)
i , Xi) | Xi, Ai = at, Gn}P (Gn | Xi, Ai = at)

=
∑

z1,...,zn∈Z

E{f(Y
(t)
i , Xi) | Xi, Gn}P (Gn | Xi, Ai = at)

=
∑

z1,...,zn∈Z

E{f(Y
(t)
i , Xi) | Xi, Gn}P (Gn | Xi)

= E{f(Y
(t)
i , Xi) | Xi},

where Gn is the event that {Zi = zi, i = 1, ..., n}, and the equalities follow from the

consistency of potential responses, the law of iterated expectation, (C2) (i), and the remark

above.

(ii) We only prove the first result. The second result can be proved similarly. Let (θ, β) be

the optimality points satisfying the following estimation equations:

E
[
I(Ai = at){Yi − θ>Ai − β>(Xi − µX)}

]
= 0, for any t (S1)

E
[
(Xi − µX){Yi − θ>Ai − β>(Xi − µX)}

]
= 0. (S2)

From Lemma 2(i), (S1) implies that for any t,

E
[
Yi − θ>Ai − β>(Xi − µX) | Ai = at

]
= E

[
Y

(t)
i − θt − β>(Xi − µX)

]
= E[Y

(t)
i − θt] = 0

and, thus, θt = E(Y
(t)
i ), t = 1, ..., k. Then (S2) implies that

0 =E
[
(Xi − µX){Yi − θ>Ai − β>(Xi − µX)}

]
=

k∑
t=1

E
[
I(Ai = at)(Xi − µX){Yi − θ>Ai − β>(Xi − µX)}

]
=

k∑
t=1

E
[
(Xi − µX){Yi − θ>Ai − β>(Xi − µX)} | Ai = at

]
πt

5
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=
k∑
t=1

E
[
(Xi − µX){Y (t)

i − θt − β>(Xi − µX)}
]
πt

=
k∑
t=1

[
cov(Xi, Y

(t)
i )− ΣXβ

]
πt

=
k∑
t=1

cov(Xi, Y
(t)
i )πt − ΣXβ

and, thus, β = Σ−1X
∑k

t=1 cov(Xi, Y
(t)
i )πt =

∑k
t=1 πtβt.

Lemma 3. Under conditions (C1)-(C2), for t = 1, . . . , k, β̂t = βt+op(1) and β̂ = β+op(1);

Proof. (i) We prove the result for β̂t. The proof for β̂ is analogous and omitted. Notice

that

1

nt

∑
i:Ai=at

(Xi − X̄t)Yi =
1

nt

n∑
i=1

I(Ai = at)XiYi −
1

nt

n∑
i=1

I(Ai = at)Xi
1

nt

n∑
i=1

I(Ai = at)Yi

Let A = {A1, . . . , An} and F = {Z1, . . . , Zn}. Note that

E

{
1

n

n∑
i=1

I(Ai = at)XiYi | A,F

}
=

1

n

n∑
i=1

I(Ai = at)E(XiY
(t)
i | A,F)

=
1

n

n∑
i=1

I(Ai = at)E(XiY
(t)
i | Zi),

where the second line holds because E(XiY
(t)
i | A,F) = E(XiY

(t)
i | F) = E(XiY

(t)
i | Zi)

from (C1) and (C2) (i). Moreover, n−1
∑n

i=1 I(Ai = at)XiY
(t)
i is an average of independent

random variables once conditional on {A,F}. From the existence of second moment of

XY (t), and the weak law of large numbers for independent random variables, we conclude

that, for any ε > 0,

lim
n→∞

P

(∣∣∣∣ 1n
n∑
i=1

I(Ai = at)XiYi −
1

n

n∑
i=1

I(Ai = at)E(XiY
(t)
i | Zi)

∣∣∣∣ ≥ ε | A,F

)
= 0

6
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From the bounded convergence theorem, the above equation also holds unconditionally. In

other words,

1

n

n∑
i=1

I(Ai = at)XiYi −
1

n

n∑
i=1

I(Ai = at)E(XiY
(t)
i | Zi) = op(1).

Furthermore,

1

n

n∑
i=1

I(Ai = at)E(XiY
(t)
i | Zi) =

1

n

∑
z

n∑
i=1

I(Zi = z)I(Ai = at)E(XiY
(t)
i | Zi = z)

=
1

n

∑
z

E(XiY
(t)
i | Zi = z)

n∑
i=1

I(Zi = z)I(Ai = at)

=
1

n

∑
z

E(XiY
(t)
i | Zi = z)nt(z)

=
∑
z

E(XiY
(t)
i | Zi = z)

nt(z)

n(z)

n(z)

n

=
∑
z

E(XiY
(t)
i | Zi = z)πtP (Zi = z) + op(1)

= πtE(XiY
(t)
i ) + op(1)

This together with the fact that nt/n =
∑

z nt(z)/{
∑

z n(z)} = πt + op(1), we have

1

nt

n∑
i=1

I(Ai = at)XiYi = E(XiY
(t)
i ) + op(1)

Similarly, we can show the result with XiYi replaced by Xi or Yi also holds, i.e.,

1

nt

n∑
i=1

I(Ai = at)Xi = E(Xi) + op(1)

1

nt

n∑
i=1

I(Ai = at)Yi = E(Y
(t)
i ) + op(1)

The denominator of β̂t can be treated similarly, which leads to

1

nt

∑
i:Ai=at

{Xi − X̄t}{Xi − X̄t}> = ΣX + op(1).

The proof is completed by using the definition of βt.
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3 Technical Proofs

3.1 Proof of (9)

Under simple randomization, A1, . . . , An are independent with other variables. Let X̄−t =

(n− nt)−1
∑

i:Ai 6=at Xi. Then X̄t − X̄ = n−1(n− nt)(X̄t − X̄−t). Note that X̄t and X̄−t are

uncorrelated conditional on A = (A1, ..., An), as

cov(X̄t, X̄−t | A) =
1

(n− nt)nt

n∑
i=1

n∑
j=1

I(Ai = at)I(Aj 6= at)cov(Xi, Xj | A) = 0,

where the last equality is from cov(Xi, Xj | A) = cov(Xi, Xj) = 0 for i 6= j. Similarly, we

can show that Ȳt and X̄−t are uncorrelated conditional on A.

Then,

cov{β>t (X̄t − X̄), Ȳt} = β>t cov

(
n− nt
n

X̄t −
n− nt
n

X̄−t, Ȳt

)
= β>t E

{
cov

(
n− nt
n

X̄t, Ȳt | A
)}

= β>t E

{
n− nt
nn2

t

cov

( ∑
i:Ai=at

Xi,
∑

i:Ai=at

Yi | A

)}

= β>t E

{
n− nt
nn2

t

∑
i:Ai=at

cov
(
Xi, Y

(t)
i

)}

= β>t E

{
n− nt
nnt

}
cov

(
Xi, Y

(t)
i

)
= E

{
n− nt
nnt

}
β>t ΣXβt

where the second equality is from cov(X̄−t, Ȳt | A) = 0, E(Ȳt | A) = E(Y (t)) and the

identity that cov(X, Y ) = E{cov(X, Y | Z)}+ cov{E(X | Z), E(Y | Z)}. Also note that

var{β>t (X̄t − X̄)} = β>t var

(
n− nt
n

(X̄t − X̄−t)
)
βt

= β>t E

(
(n− nt)2

n2
var(X̄t − X̄−t | A)

)
βt

8
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= β>t E

(
(n− nt)2

n2
{var(X̄t | A) + var(X̄−t | A)}

)
βt

= β>t E

(
(n− nt)2

n2

{
var(Xi)

nt
+

var(Xi)

n− nt

})
βt

= E

{
n− nt
nnt

}
β>t ΣXβt

where the second equality uses the identity that var(X) = E{var(X | Z)}+var{E(X | Z)},

and E
(
X̄t − X̄−t | A

)
= E(Xi)− E(Xi) = 0.

3.2 Proof of Lemma 1

For any fixed k-dimensional vector ` = (`1, . . . , `k)
>, we have

`>{diag(π−1t m>t mt)−M>M}`

=
k∑
t=1

π−1t `2tm
>
t mt −

{
k∑
t=1

`tm
>
t

}{
k∑
t=1

`tmt

}
= E(Q>Q)− E(Q>)E(Q)

= tr{E(QQ>)} − tr{E(Q)E(Q>)}

≥ 0,

where tr denotes the trace of a matrix, Q denotes a p-dimensional random vector that takes

value π−1t `tmt with probability πt, t = 1, . . . , k, and the last equality follows from the fact

that the covariance matrix var(Q) = E(QQ>)− E(Q)E(Q>) is positive semidefinite.

3.3 Proof of Theorem 1

(i) First, from X̄t − X̄ = Op(n
−1/2) and b̂t = bt + op(1), we have

θ̂(b̂1, . . . , b̂k) = θ̂(b1, . . . , bk) + {(X̄1 − X̄)(b1 − b̂1), . . . , (X̄k − X̄)(bk − b̂k)}>

= θ̂(b1, . . . , bk) + op(n
−1/2).

9
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Write the sample average as En[µ(X)] = n−1
∑n

i=1 µ(Xi). Then,

X̄ − µX =
k∑
t=1

1

n

n∑
i=1

I(Ai = at)(Xi − µX) =
k∑
t=1

En [I(A = at)(X − µX)] ,

and

Ȳt − θt − (X̄t − µX)>bt

=
1

nt

n∑
i=1

I(Ai = at)
{
Yi − θt − (Xi − µX)>bt

}
= π−1t

1

n

n∑
i=1

I(Ai = at)
{
Yi − θt − (Xi − µX)>bt

}
+

(
1

nt/n
− 1

πt

)
1

n

n∑
i=1

I(Ai = at)
{
Yi − θt − (Xi − µX)>bt

}
= π−1t En

[
I(A = at){Y − θt − (X − µX)>bt}

]
+ op(n

−1/2),

where the last equality holds because En
[
I(A = at){Y − θt − (X − µX)>bt}

]
= Op(n

−1/2)

from the central limit theorem, and n/nt − π−1t = op(1) from condition (C2) (ii). Hence,

we can decompose θ̂(b1, . . . , bk) as

θ̂(b1, . . . , bk)− θ

=


Ȳ1 − θ1 − (X̄1 − µX)>b1

...

Ȳk − θk − (X̄k − µX)>bk

+


b>1 (X̄ − µX)

...

b>k (X̄ − µX)



=


π−11 En

[
I(A = a1){Y − θ1 − (X − µX)>b1}

]
...

π−1k En
[
I(A = ak){Y − θk − (X − µX)>bk}

]


︸ ︷︷ ︸
M1

+


b>1
∑k

t=1 En [I(A = at)(X − µX)]
...

b>k
∑k

t=1 En [I(A = at)(X − µX)]


︸ ︷︷ ︸

M2

+ op(n
−1/2)

10
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=


π−11 a>1 −π−11 b>1 0>p · · · 0>p

...
...

...
. . .

...

π−1k a>k 0>p 0>p · · · −π−1k b>k


k×(k+kp)



En [I(A = a1)(Y − θ1)]
...

En [I(A = ak)(Y − θk)]

En [I(A = a1)(X − µX)]
...

En [I(A = ak)(X − µX)]


︸ ︷︷ ︸

V(k+kp)×1

+


b>1 b>1 . . . b>1
...

...
. . .

...

b>k b>k . . . b>k


k×(kp)


En [I(A = a1)(X − µX)]

...

En [I(A = ak)(X − µX)]


(kp)×1

+ op(n
−1/2),

where at denotes the k-dimensional vector whose tth component is 1 and other components

are 0, p is the dimension of X, 0p denotes a p-dimensional vector of zeros. From the central

limit theorem, we have that the random vector
√
nV is asymptotically normal with mean

0. This implies that
√
n{θ̂(b1, . . . , bk)− θ} is asymptotically normal with mean 0 from the

Cramér-Wold device.

It remains to calculate the asymptotic variance of
√
n{θ̂(b1, . . . , bk)−θ}. In the following,

we consider M1 and M2 separately.

Consider M1, where the tth component equals

M1t = π−1t En
[
I(A = at){Y − θt − (X − µX)>bt}

]
.

We have that (M1t, t = 1, . . . , k) are mutually independent and

var(M1t) = (nπt)
−1var{Y (t) −X>bt},

Hence, var(M1) is a diagonal matrix, with the diagonal elements being var(M1t), t =

1, . . . , k. That is, nvar(M1) = diag{π−1t var(Y (t) −X>bt)}.

11
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Next, consider M2, which can be reformulated as

M2 =


b>1

. . .

b>k


k×(kp)


∑k

t=1 En [I(A = at)(X − µX)]

· · ·∑k
t=1 En [I(A = at)(X − µX)]


(kp)×1

whose variance can be easily derived as nvar(M2) = B>ΣXB.

Finally, consider cov(M1,M2) whose (t, s) element equals

cov

{
π−1t En

[
I(A = at){Y − θt − (X − µX)>bt}

]
, b>s

k∑
t=1

En [I(A = at)(X − µX)]

}
= cov

{
π−1t En

[
I(A = at){Y − θt − (X − µX)>bt}

]
, b>s En [I(A = at)(X − µX)]

}
= n−1π−1t cov

{
I(A = at)(Y −X>bt)}, b>s I(A = at)(X − µX)

}
= n−1π−1t E

{
I(A = at)(Y −X>bt)b>s (X − µX)

}
= n−1E

{
(Y (t) −X>bt)b>s (X − µX)

}
= n−1

{
cov(Y (t), b>s X)− cov(X>bt, b

>
s X)

}
= n−1{β>t ΣXbs − b>t ΣXbs}

= n−1(βt − bt)>ΣXbs.

Thus, ncov(M1,M2) = (B − B)>ΣXB and ncov(M2,M1) = B>ΣX(B − B). Combining

the above results, we conclude that
√
n{θ̂(b1, . . . , bk) − θ} is asymptotically normal with

mean 0 and variance VSR(B),

VSR(B) = diag{π−1t var(Y (t) −X>bt)}+ (B − B)>ΣXB +B>ΣX(B − B) + B>ΣXB

= diag{π−1t var(Y (t) −X>bt)}+ B>ΣXB +B>ΣXB − B>ΣXB.

(ii) Note that

var(Y (t) − b>t X) =var(Y (t) − β>t X + β>t X − b>t X)

=var{Y (t) − β>t X}+ var{(βt − bt)>X}+ 2cov{Y (t) − β>t X, (βt − bt)>X}

12
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=var{Y (t) − β>t X}+ (βt − bt)>ΣX(βt − bt).

Then simple algebra shows that

VSR(B)− VSR(B)

= diag{π−1t var(Y (t) − b>t X)} − diag{π−1t var(Y (t) − β>t X)} − (B − B)>ΣX(B − B)

= diag{π−1t (βt − bt)>ΣX(βt − bt)} − (B − B)>ΣX(B − B).

The rest follows from applying Lemma 1 with M = Σ
1/2
X (B − B).

3.4 Proof of Corollary 1

From Lemma 3, we know that β̂ = β+op(1) and β̂t = βt+op(1), t = 1, . . . , k. Let σ2
A, σ

2
B, σ

2
U

respectively be the asymptotic variance of
√
nc>tsθ̂ANHC

,
√
nc>tsθ̂ANC

and
√
nc>tsθ̂AN

, where from

Theorem 1,

σ2
A =

var(Y (t) −X>βt)
πt

+
var(Y (s) −X>βs)

πs
+ (βt − βs)>ΣX(βt − βs)

σ2
B =

var(Y (t) −X>β)

πt
+

var(Y (s) −X>β)

πs

σ2
U =

var(Y (t))

πt
+

var(Y (s))

πs

The results in Corollary 1(i) follows from

σ2
A − σ2

U

=
β>t ΣXβt − 2cov(X>βt, Y

(t))

πt
+
β>s ΣXβs − 2cov(X>βs, Y

(s))

πs
+ {βt − βs}>ΣX{βt − βs}

=
β>t ΣXβt − 2β>t ΣXβt

πt
+
β>s ΣXβs − 2β>s ΣXβs

πs
+ {βt − βs}>ΣX{βt − βs}

= − β>t ΣXβt
πt

− β>s ΣXβs
πs

+ {βt − βs}>ΣX{βt − βs}

= − {πsβt + πtβs}>ΣX{πsβt + πtβs}
πtπs(πt + πs)

− {βt − βs}>ΣX{βt − βs}
(

1− πt − πs
πt + πs

)
13
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where the second equality follows from βt = Σ−1X cov(X, Y (t)). This also proves that σ2
A ≤

σ2
U , because ΣX is positive definite and πt + πs ≤ 1. If σ2

A = σ2
U , then we must have

πsβt + πtβs = 0 and (1− πt − πs){βt − βs} = 0.

To show the results in Corollary 1(ii), notice that

σ2
B =

var{Y (t) −X>βt +X>βt −X>β}
πt

+
var{Y (s) −X>βs +X>βs −X>β}

πs

=
var{Y (t) −X>βt}+ var{X>βt −X>β}

πt
+

var{Y (s) −X>βs}+ var{X>βs −X>β}
πs

where the second equality holds because

cov{Y (t) − β>t X, β>t X − β>X} = cov{Y (t) − β>t X,X}{βt − β}

= {cov(Y (t), X)− β>t ΣX}{βt − β} = 0

Then,

σ2
A − σ2

B = {βt − βs}>ΣX{βt − βs} −
{βt − β}>ΣX{βt − β}

πt
− {βs − β}

>Σ{βs − β}
πs

In order to show that σ2
A − σ2

B ≤ 0, we prove a stronger statement: it is true that for any

β̃,

{βt − βs}>ΣX{βt − βs} −
{βt − β̃}>ΣX{βt − β̃}

πt
− {βs − β̃}

>ΣX{βs − β̃}
πs

≤ 0. (S3)

As a consequence, setting β̃ as β =
∑k

t=1 πtβt, the statement in (S3) also holds. This proves

σ2
A − σ2

B ≤ 0.

In what follows, we prove the claim in (S3). Note that the gradient of the left hand side

of (S3) is

−2

[
{β̃ − βt}>ΣX

πt
+
{β̃ − βs}>ΣX

πs

]
,

which equals zero when β̃ = {πsβt + πtβs}/(πt + πs). This is also the unique solution from

the positive definiteness of ΣX . It is also easy to see that the Hessian of the left hand side

14
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of (S3) is negative definite, which means that β̃ = {πsβt +πtβs}/(πt +πs) is the global and

unique maximizer of the left hand side of (S3). The statement in (S3) is true because when

evaluated at β̃ = {πsβt + πtβs}/(πt + πs), the left hand side of (S3) equals

{βt − βs}>ΣX{βt − βs}

−
{
βt −

πsβt + πtβs
πt + πs

}>
ΣX

{
βt −

πsβt + πtβs
πt + πs

}
1

πt

−
{
βs −

πsβt + πtβs
πt + πs

}>
ΣX

{
βs −

πsβt + πtβs
πt + πs

}
1

πs

=− {βt(z)− βs(z)}>ΣX{βt(z)− βs(z)}
(

1− πt − πs
πt + πs

)
≤ 0

This completes the proof for σ2
A ≤ σ2

B, where the equality holds if and only if {βt−βs}(1−

πt − πs) = 0 and
∑k

t=1 πtβt = {πsβt + πtβs}/(πt + πs).

3.5 Proof of Theorem 2

First, from X̄t−X̄ = Op(n
−1/2) and β̂t = βt+op(1) from Lemma 3, we have θ̂(β̂1, . . . , β̂k) =

θ̂(β1, . . . , βk) + op(n
−1/2). By using the definition βt = Σ−1X cov(Xi, Y

(t)
i ), we have

E
[
X>i {Y

(t)
i − θt − (Xi − µX)>βt}

]
= cov(Xi, Y

(t)
i )− cov(Xi, Y

(t)
i ) = 0.

Because Zi is discrete and Xi contains all joint levels of Zi as a sub-vector, according to

the estimation equations from the least squares, we have that

E
[
I(Zi = z){Y (t)

i − θt − (Xi − µX)>βt}
]

= 0, ∀z ∈ Z,

and thus,

E
{
Y

(t)
i − θt − (Xi − µX)>βt | Zi

}
= 0, a.s.. (S4)

Moreover, recall that A = {A1, . . . , An} and F = {Z1, . . . , Zn}, then

E
{
Ȳt − X̄>t βt | A,F

}
= E

{∑n
i=1 I(Ai = at)(Y

(t)
i −X>i βt)

nt
| A,F

}

15
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=

∑n
i=1 I(Ai = at)E

{
Y

(t)
i −X>i βt | Zi

}
nt

= θt − µ>Xβt, a.s..

This implies that Ȳt − θt − (X̄t − µX)>βt = Ȳt − X̄>t βt − E(Ȳt − X̄>t βt | A,F) a.s..

We decompose θ̂(β1, . . . , βk) as

θ̂(β1, . . . , βk)− θ =


Ȳ1 − θ1 − (X̄1 − µX)>β1

· · ·

Ȳk − θk − (X̄k − µX)>βk

+


β>1 (X̄ − µX)

· · ·

β>k (X̄ − µX)



=


Ȳ1 − θ1 − (X̄1 − µX)>β1

· · ·

Ȳk − θk − (X̄k − µX)>βk


︸ ︷︷ ︸

M1

+


β>1 (X̄ − E(X̄ | A,F))

· · ·

β>k (X̄ − E(X̄ | A,F))


︸ ︷︷ ︸

M21

+


β>1 (E(X̄ | A,F)− µX)

· · ·

β>k (E(X̄ | A,F)− µX)


︸ ︷︷ ︸

M22

=


a>1 −β>1 0>p · · · 0>p
...

...
...

. . .
...

a>k 0>p 0>p · · · −β>k





Ȳ1 − E(Ȳ1 | A,F)

· · ·

Ȳk − E(Ȳk | A,F)

X̄1 − E(X̄1 | A,F)

· · ·

X̄k − E(X̄k | A,F)


︸ ︷︷ ︸

Ṽ

+


β>1

. . .

β>k




n−1n1Ip n−1n2Ip . . . n−1nkIp
...

...
. . .

...

n−1n1Ip n−1n2Ip . . . n−1nkIp




X̄1 − E(X̄1 | A,F)
...

X̄k − E(Ȳk | A,F)

+M22.

Conditioned on A,F , every component in Ṽ is an average of independent terms.

We verify at the end of this section that Lindeberg’s condition holds for (Ȳt − E(Ȳt |

A,F), X̄>t −E(X̄>t | A,F))c for any (p+ 1)-dimensional real-valued vector c. From Linde-

berg’s Central Limit Theorem, as n→∞,
√
n(Ȳt − E(Ȳt | A,F), X̄>t − E(X̄>t | A,F))c is

asymptotically normal with mean 0 conditional on A,F . From the Cramér-Wold device,
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we have that
√
n(Ȳt − E(Ȳt | A,F), X̄>t − E(X̄>t | A,F))> is asymptotically normal with

mean 0 conditional on A,F . As {(Ȳt − E(Ȳt | A,F), X̄>t − E(X̄>t | A,F))>, t = 1, . . . , k}

are mutually independent conditional on A,F , it immediately follows that
√
nṼ and thus

√
n(M1 +M21) are asymptotically normal with mean 0 conditional on A,F .

Next, we calculate the variance. For M1, the variance of its tth component is

nvar(M1t | A,F) =
n

n2
t

var

{ ∑
i:Ai=at

Y
(t)
i − (Xi − µX)>βt | A,F

}
=

n

n2
t

∑
i:Ai=at

var
{
Y

(t)
i − (Xi − µX)>βt | Zi

}
=

n

n2
t

∑
z

∑
i:Ai=at,Zi=z

var
{
Y

(t)
i − (Xi − µX)>βt | Zi = z

}
=

n

nt

∑
z

nt(z)

nt
var
{
Y

(t)
i − (Xi − µX)>βt | Zi = z

}
=

1

πt

∑
z

P (Zi = z)var
{
Y

(t)
i − (Xi − µX)>βt | Zi = z

}
+ op(1)

=
1

πt
E
[
var
{
Y

(t)
i − (Xi − µX)>βt | Zi

}]
+ op(1),

where the second line and the fifth line are respectively from (C2) (i) and (C2) (ii). More-

over, M1t and M1s are independent conditional on A,F , for t 6= s. Hence,

var(
√
nM1 | A,F) = diag

{
π−1t E

[
var
{
Y

(t)
i − (Xi − µX)>βt | Zi

}]}
+ op(1), (S5)

which does not depend on the randomization scheme. For M21, we have that

nvar(X̄ − E(X̄ | A,F) | A,F) =
1

n

n∑
i=1

var(Xi | Zi) = E{var(Xi | Zi)}+ op(1)

nvar(M21 | A,F) = B>E{var(Xi | Zi)}B + op(1).

For the covariance, consider ncov(M1,M21 | A,F) whose (t, s) element equals

ncov(M1t, X̄
>βs | A,F) (S6)
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= ncov

(
Ȳt − X̄>t βt,

k∑
j=1

nj
n
X̄>j βs | A,F

)
= ncov

(
Ȳt − X̄>t βt,

nt
n
X̄>t βs | A,F

)
=

1

nt

∑
i:Ai=at

cov
(
Y

(t)
i −X>i βt, X>i βs | Zi

)
=

1

nt

∑
i:Ai=at

∑
z∈Z

I(Zi = z)cov
(
Y

(t)
i −X>i βt, X>i βs | Zi = z

)
=

∑
z∈Z

nt(z)

nt
cov

(
Y

(t)
i −X>i βt, X>i βs | Zi = z

)
=

∑
z∈Z

P (Z = z)cov
(
Y

(t)
i −X>i βt, X>i βs | Zi = z

)
+ op(1)

= E
{

cov
(
Y

(t)
i −X>i βt, X>i βs | Zi

)}
+ op(1)

= op(1),

where the last equality holds because E(Y
(t)
i −X>i βt | Zi) = θt−µ>Xβt and, thus, cov{E(Y

(t)
i −

X>i βt | Zi), E(X>i βs | Zi)} = 0 and E{cov(Y
(t)
i − X>i βt, X

>
i βs | Zi)} = cov(Y

(t)
i −

X>i βt, X
>
i βs) = 0 according to the definition of βt.

Combining the above derivations and from the Slutsky’s theorem, we have shown that

√
n(M1 +M21) | A,F
d−→ N

(
0, diag

{
π−1t E

[
var
{
Y

(t)
i − (Xi − µX)>βt | Zi

}]}
+ B>E{var(Xi | Zi)}B

)
.

From the bounded convergence theorem, this result also holds unconditionally, i.e.,

√
n(M1 +M21)

d−→ N
(

0, diag
{
π−1t E

[
var
{
Y

(t)
i − (Xi − µX)>βt | Zi

}]}
+ B>E{var(Xi | Zi)}B

)
.

Moreover, since E(X̄ | A,F) is an average of identically and independently distributed

terms, by the central limit theorem,

√
n{E(X̄ | A,F)− µX} = n−1/2

n∑
i=1

{E(Xi | Zi)− µX}
d−→ N(0, var(E(Xi | Zi))),
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and

√
nM22

d−→ N(0,B>var(E(Xi | Zi))B).

Next, we show that (
√
n(M1 + M21),

√
nM22)

d−→ (ξ1, ξ2), where (ξ1, ξ2) are mutually

independent. This can be seen from

P (
√
n(M1 +M21) ≤ t1,

√
nM22 ≤ t2)

= E{I(
√
n(M1 +M21) ≤ t1)I(

√
nM22 ≤ t2)}

= E{P (
√
n(M1 +M21) ≤ t1 | A,F)I(

√
nM22 ≤ t2)}

= E{{P (
√
n(M1 +M21) ≤ t1 | A,F)− P (ξ1 ≤ t1)}I(

√
nM22 ≤ t2)}

+ P (ξ1 ≤ t1)P (
√
nM22 ≤ t2)

→ P (ξ1 ≤ t1)P (ξ2 ≤ t2),

where the last step follows from the bounded convergence theorem.

Finally, from
√
n{θ̂(β1, . . . , βk)− θ} =

√
n(M1 +M21 +M22), we have

√
n{θ̂(β1, . . . , βk)− θ}
d−→ N

(
0, diag

{
π−1t E

[
var
{
Y

(t)
i − (Xi − µX)>βt | Zi

}]}
+ B>ΣXB

)
.

Note that we have also shown that the asymptotic distribution of
√
n{θ̂(β1, . . . , βk)−θ}

is invariant under randomization schemes satisfying (C2). The above asymptotic distribu-

tion of
√
n{θ̂(β1, . . . , βk)−θ} is the same as (16) because E{Y (t)

i −θt−(Xi−µX)>βt | Zi} = 0

a.s., and thus, E[var{Y (t)
i − (Xi − µX)>βt | Zi}] = var(Y

(t)
i −X>i βt).

We conclude the proof by verifing the Lindeberg’s condition for (Ȳt−E(Ȳt | A,F), X̄>t −

E(X̄>t | A,F))c conditional on A,F , which we rearrange and write as

n∑
i=1

Ki, where Ki =
1

nt
I(Ai = at)

(
Y

(t)
i − E(Y

(t)
i | Zi), X>i − E(X>i | Zi)

)
c.
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From E(Ki | A,F) = 0 and

var(Ki | A,F) =
1

n2
t

I(Ai = at)c
>var

(
(Y

(t)
i , X>i )> | Zi

)
c.

Then, the Lindeberg’s condition holds with probability 1 because for any ε > 0,

n∑
i=1

E

[
K2
i

var(
∑n

i=1Ki | A,F)
I

{
K2
i

var(
∑n

i=1Ki | A,F)
> ε

}
| A,F

]
=

n∑
i=1

var(Ki | A,F)

var(
∑n

i=1Ki | A,F)
E

[
K2
i

var(Ki | A,F)
I

{
K2
i

var(
∑n

i=1Ki | A,F)
> ε

}
| A,F

]
≤ max

i
E

[
K2
i

var(Ki | A,F)
I

{
K2
i

var(Ki | A,F)
> ε

var(
∑n

i=1Ki | A,F)

var(Ki | A,F)

}
| A,F

]
= o(1)

where the third line is because
∑n

i=1 var(Ki | A,F) = var(
∑n

i=1Ki | A,F), and the

last line is because Ki/
√

var(Ki | A,F) has zero expectation and unit variance, and that

maxi var(Ki | A,F)/var(
∑n

i=1Ki | A,F) ≤ C max({nt(z)}−1, z ∈ Z) = o(1) with proba-

bility 1, where C is a generic constant.

3.6 Proof of Theorem 3

(i) First, from X̄t−X̄ = Op(n
−1/2) and b̂t = bt+op(1), we have θ̂(b̂1, . . . , b̂k) = θ̂(b1, . . . , bk)+

op(n
−1/2). Also note that

E(Ȳt − θt − (X̄t − µX)>bt | A,F)

= E

(∑n
i=1 I(Ai = at)(Y

(t)
i − θt − (Xi − µX)>bt)

nt
| A,F

)

=

∑n
i=1(I(Ai = at)− πt)E(Y

(t)
i − θt − (Xi − µX)>bt | Zi)
nt

+
πt
nt

n∑
i=1

E(Y
(t)
i − θt − (Xi − µX)>bt | Zi)

=
∑
z∈Z

(
nt(z)

n(z)
− πt

)
E(Y

(t)
i − θt − (Xi − µX)>bt | Zi = z)

n(z)

nt
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+
πt
nt

n∑
i=1

E(Y
(t)
i − θt − (Xi − µX)>bt | Zi)

=
∑
z∈Z

(
nt(z)

n(z)
− πt

)
E(Y

(t)
i − θt − (Xi − µX)>bt | Zi = z)P (Z = z)π−1t

+
1

n

n∑
i=1

E(Y
(t)
i − θt − (Xi − µX)>bt | Zi) + op(n

−1/2),

where the last equality is from n(z)/n = P (Z = z)+op(1), nt/n = πt+op(1),
(
nt(z)
n(z)
− πt

)
=

Op(n
−1/2) due to condition (C3), and n−1

∑n
i=1E(Y

(t)
i −θt−(Xi−µX)>bt | Zi) = Op(n

−1/2).

Thus, we can decompose θ̂(b1, . . . , bk) as

θ̂(b1, . . . , bk)− θ

=


Ȳ1 − θ1 − (X̄1 − µX)>b1

· · ·

Ȳk − θk − (X̄k − µX)>bk

+


b>1 (X̄ − µX)

· · ·

b>k (X̄ − µX)



=


Ȳ1 − E(Ȳ1 | A,F)− (X̄1 − E(X̄1 | A,F))>b1

· · ·

Ȳk − E(Ȳk | A,F)− (X̄k − E(X̄k | A,F))>bk


︸ ︷︷ ︸

M11

+


b>1 (X̄ − E(X̄ | A,F))

· · ·

b>k (X̄ − E(X̄ | A,F))


︸ ︷︷ ︸

M21

+


∑

z∈Z

(
n1(z)
n(z)
− π1

)
E(Y

(1)
i − θ1 − (Xi − µX)>b1 | Zi = z)P (Z = z)π−11

· · ·∑
z∈Z

(
nk(z)
n(z)
− πk

)
E(Y

(k)
i − θk − (Xi − µX)>bk | Zi = z)P (Z = z)π−1k


︸ ︷︷ ︸

M12

+


n−1

∑n
i=1E(Y

(1)
i − θ1 − (Xi − µX)>b1 | Zi)

· · ·

n−1
∑n

i=1E(Y
(k)
i − θk − (Xi − µX)>bk | Zi)


︸ ︷︷ ︸

M31

+


n−1

∑n
i=1 b

>
1 E(Xi − µX | Zi)

· · ·

n−1
∑n

i=1 b
>
k E(Xi − µX | Zi)


︸ ︷︷ ︸

M32

+ op(n
−1/2)
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=


a>1 −b>1 0>p · · · 0>p
...

...
...

. . .
...

a>k 0>p 0>p · · · −b>k





Ȳ1 − E(Ȳ1 | A,F)

· · ·

Ȳk − E(Ȳk | A,F)

X̄1 − E(X̄1 | A,F)

· · ·

X̄k − E(X̄k | A,F)


︸ ︷︷ ︸

Ṽ1

+


b>1

. . .

b>k




n−1n1Ip n−1n2Ip . . . n−1nkIp
...

...
. . .

...

n−1n1Ip n−1n2Ip . . . n−1nkIp




X̄1 − E(X̄1 | A,F)
...

X̄k − E(Ȳk | A,F)


+M12 +M31 +M32 + op(n

−1/2).

Conditioned on A,F , every component in Ṽ1 is an average of independent terms. From

the Lindeberg’s Central Limit Theorem, as n → ∞,
√
nṼ1 is asymptotically normal with

mean 0 conditional on A,F , which combined with the Cramér-Wold device implies that
√
n(M11 +M21) is asymptotically normal with mean 0 conditional on A,F . Following the

same steps as in the proof of Theorem 2, we have that

√
n(M11 +M21) | A,F

d−→

N

(
0, diag

{
π−1t E[var{Y (t)

i −X>i bt | Zi}]
}

+B>E{var(Xi | Zi)}B

+ (B − B)>E{var(Xi | Zi)}B +B>E{var(Xi | Zi)}(B − B)

)
,

and

√
n(M11 +M21)

d−→

N

(
0, diag

{
π−1t E[var{Y (t)

i −X>i bt | Zi}]
}

+B>E{var(Xi | Zi)}B

+ (B − B)>E{var(Xi | Zi)}B +B>E{var(Xi | Zi)}(B − B)

)
.
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Next, notice that
√
nM12 is asymptotically normal conditional on F with mean 0 from

condition (C3). Let ωts(z) be the (t, s) element in the matrix Ω(z), then the conditional

variance of
√
nM12t, the tth component of

√
nM12, equals

var(
√
nM12t | F)

= π−2t
∑
z

[
E
{
Y

(t)
i − θt − (Xi − µX)>bt | Z = z

}]2
P (Zi = z)var

{
nt(z)− πtn(z)√

n(z)
| F

}
+op(1)

= π−2t
∑
z

[
E
{
Y

(t)
i − θt − (Xi − µX)>bt | Zi = z

}]2
P (Zi = z)ωtt(z) + op(1)

= π−2t E
[
ωtt(Z)

[
E{Y (t)

i − θt − (Xi − µX)>bt | Zi}
]2]

+ op(1),

and the conditional covariance between
√
nM12t and

√
nM12s equals

cov(
√
nM12t,

√
nM12s | F)

=
1

πtπs

∑
z

∏
m∈{t,s}

E
{
Y

(m)
i − θi − (Xi − µX)>bm | Z = z

}
P (Zi = z)

cov

{
nt(z)− πtn(z)√

n(z)
,
ns(z)− πsn(z)√

n(z)
| F

}
+ op(1)

=
1

πtπs
E
[
ωts(Z)E

{
Y

(t)
i − θt − (Xi − µX)>bt | Zi

}
E
{
Y

(s)
i − θs − (Xi − µX)>bs | Zi

}]
+op(1).

Therefore, from the Slutsky’s theorem,

√
nM12 | F

d−→ N
(
0, E {R(B)Ω(Zi)R(B)}

)
.

Moreover, M31 + M32 only involves sums of identically and independently distributed

terms, and E(M31 +M32) = 0. Again using the Cramér-Wold device similarly to the proof

of M11+M21, we have that
√
n(M31+M32) is asymptotically normal. Let π = (π1, . . . , πk)

>,

it is easy to show that

var(
√
nM31) = var{R(B)π} = E{R(B)ππ>R(B)}, var(

√
nM32) = B>var{E(Xi | Zi)}B,
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and the (t, s) component of cov(
√
nM31,

√
nM32) is

cov(
√
nM31t,

√
nM32s) = cov

[
E
{
Y

(t)
i − (Xi − µX)>bt | Zi

}
, E(X>i bs | Zi)

]
= (βt − bt)>var(E(Xi | Zi))bs.

Hence,

var(
√
n(M31 +M32))

= E{R(B)ππ>R(B)}+B>var{E(Xi | Zi)}B + (B − B)>var(E(Xi | Zi))B

+B>var(E(Xi | Zi))(B − B).

Therefore,

√
n(M31 +M32) (S7)

d−→ N

(
0, E{R(B)ππ>R(B)}+B>var{E(Xi | Zi)}B + (B − B)>var(E(Xi | Zi))B

+B>var(E(Xi | Zi))(B − B)

)
.

Next, we show that (
√
n(M11+M21),

√
nM12,

√
n(M31+M32))

d−→ (ξM1, ξM2, ξM3), where

(ξM1, ξM2, ξM3) are mutually independent. This can be seen from

P (
√
n(M11 +M21) ≤ t1,

√
nM12 ≤ t2,

√
n(M31 +M32) ≤ t3)

=E
{
I(
√
n(M11 +M21) ≤ t1)I(

√
nM12 ≤ t2)I(

√
n(M31 +M32) ≤ t3)

}
=E

{
P (
√
n(M11 +M21) ≤ t1 | A,F)I(

√
nM12 ≤ t2)I(

√
n(M31 +M32) ≤ t3)

}
=E

[{
P (
√
n(M11 +M21) ≤ t1 | A,F)− P (ξM1 ≤ t1)

}
I(
√
nM12 ≤ t2)I(

√
n(M31 +M32) ≤ t3)

]
+ P (ξM1 ≤ t1)E

{
I(
√
nM12 ≤ t2)I(

√
n(M31 +M32) ≤ t3)

}
=E

[{
P (
√
n(M11 +M21) ≤ t1 | A,F)− P (ξM1 ≤ t1)

}
I(
√
nM12 ≤ t2)I(

√
n(M31 +M32) ≤ t3)

]
+ P (ξM1 ≤ t1)E

{[
P (
√
nM12 ≤ t2 | F)− P (ξM2 ≤ t2)

]
I(
√
n(M31 +M32) ≤ t3)

}
+ P (ξM1 ≤ t1)P (ξM2 ≤ t2)P (

√
n(M31 +M32) ≤ t3)
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→P (ξM1 ≤ t1)P (ξM2 ≤ t2)P (ξM3 ≤ t3),

where the last step follows from the bounded convergence theorem.

Finally, from
√
n{θ̂(b1, . . . , bk)− θ} =

√
n(M11 +M21 +M12 +M31 +M32) + op(n

−1/2),

we conclude that
√
n(θ̂(b1, . . . , bk)− θ) is asymptotically normal with mean 0 and variance

diag
{
π−1t E{var(Y

(t)
i −X>i bt | Zi)}

}
+ E {R(B)Ω(Zi)R(B)}+ E

{
R(B)ππ>R(B)

}
+B>ΣXB + (B − B)>ΣXB +B>ΣX(B − B)

= diag
{
π−1t E{var(Y

(t)
i −X>i bt | Zi)}

}
+ E {R(B)Ω(Zi)R(B)}+ E

{
R(B)ππ>R(B)

}
−B>ΣXB + B>ΣXB +B>ΣXB

= diag
{
π−1t var(Y (t) − b>t X)

}
− diag

{
π−1t var{E(Y

(t)
i −X>i bt | Zi)}

}
+E {R(B)Ω(Zi)R(B)}+ E

{
R(B)ππ>R(B)

}
− B>ΣXB + B>ΣXB +B>ΣXB

= VSR(B)− diag
{
π−1t var{E(Y

(t)
i −X>i bt | Zi)}

}
+ E

[
R(B){Ω(Zi) + ππ>}R(B)

]
= VSR(B)− diag {R(B)diag(πt)R(B)}+ E

[
R(B){Ω(Zi) + ππ>}R(B)

]
= VSR(B)− E

[
R(B){diag(πt)− ππ> − Ω(Zi)}R(B)

]
= VSR(B)− E [R(B){ΩSR − Ω(Zi)}R(B)] .

(ii) By using the definition βt = Σ−1X cov(Xi, Y
(t)
i ), we have E[X>i {Y

(t)
i −θt−β>t (X−µX)}] =

cov(Xi, Y
(t)
i ) − cov(Xi, Y

(t)
i ) = 0. Because Xi contains all dummy variables for the joint

levels of Zi, we have E{Y (t)
i − θt − β>t (Xi − µX) | Zi} = 0. Hence R(B) = 0 and

R(B) = diag{π−1t (βt − bt)>E(Xi − µX | Zi)}. Consequently, the difference in asymptotic

variance is

V (B)− V (B) = V (B)− VSR(B) = V (B)− VSR(B) + VSR(B)− VSR(B)

=diag{π−1t (βt − bt)>ΣX(βt − bt)} − (B − B)>ΣX(B − B)− E [R(B){ΩSR − Ω(Zi)}R(B)}]

≥diag{π−1t (βt − bt)>ΣX(βt − bt)} − (B − B)>ΣX(B − B)− E [R(B)ΩSRR(B)}]

=diag[π−1t (βt − bt)>E{var(X | Z)}(βt − bt)]− (B − B)>E{var(X | Z)}(B − B),
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where M ≥ M ′ means M − M ′ is positive semidefinite for two square matrices M and

M ′ of the same dimension, and the last line follows from ΩSR = diag(πt) − ππ>, the

expression for R(B), and the identity ΣX = E{var(X | Z)}+ var{E(X | Z)}. The positive

semidefiniteness of the right hand side is from applying Lemma 1 with M = [E{var(X |

Z)}]1/2(B − B).

3.7 Proof of Corollary 2

When X only contains the dummy variables for the joint levels of Z, R(B) = diag{π−1t (βt−

bt)
>(Xi − µX)}. Then, it follows from the proof of Theorem 3(ii) that

V (B)− VSR(B)

=diag{π−1t (βt − bt)>ΣX(βt − bt)} − (B − B)>ΣX(B − B)− E [R(B)ΩSRR(B)}]

+ E [R(B)Ω(Zi)R(B)}]

=diag{π−1t (βt − bt)>ΣX(βt − bt)} − (B − B)>ΣX(B − B)− E [R(B)diag(πt)R(B)}]

+ E
[
R(B)ππ>R(B)}

]
+ E [R(B)Ω(Zi)R(B)}]

=E[R(B)Ω(Zi)R(B)]
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