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Abstract

Because of advances in data collection and storage, statistical analysis in modern

scientific research and practice now has opportunities to utilize external information

such as summary statistics from similar studies. A likelihood approach based on a

parametric model assumption has been developed in the literature to utilize external

summary information when the populations for external data and the main internal

data are assumed to be the same. In this article we instead consider the generalized

estimation equation (GEE) approach for statistical inference, which is semiparametric

or nonparametric, and show how to utilize external summary information even when

internal and external data populations are not the same. Our approach is coupling

the internal data and external summary information to form additional estimation

equations, and then applying the generalized method of moments (GMM). We show

that the proposed GMM estimator is asymptotically normal and, under some con-

ditions, is more efficient than the GEE estimator without using external summary

information. Estimators of asymptotic covariance matrix of the GMM estimators are

also proposed. Simulation results are obtained to confirm our theory and to quan-

tify the improvements from utilizing external data. An example is also included for

illustration.
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1 Introduction

In modern statistical analyses we have not only primary individual-level data (referred

to as the internal data in what follows) carefully collected from a population of interest

but also summary or aggregated information from some independent external datasets, for

example, population-based census, administrative datasets, and data from past investiga-

tions or other similar studies. Due to various practical reasons, individual-level data from

external sources are not available. For simplicity of notation, we consider a single external

dataset, since extensions to multiple external datasets are straightforward. In both internal

and external datasets, Y denotes a univariate response of interest and X is an associated

covariate vector. The internal dataset contains an additional covariate vector Z (not in

external dataset) because of new technology and/or new scientific relevance. The growing

need for research in internal data analysis utilizing external information fits into the general

framework of data integration (Merkouris, 2004; Chatterjee et al., 2016; Lohr and Raghu-

nathan, 2017; Zhang et al., 2017; Yang et al., 2020; Yang and Kim, 2020; Zhang et al.,

2020; Kim et al., 2021; Li et al., 2021; Rao, 2021; Tian and Feng, 2022) and is different

from the meta-analysis, e.g., Lin and Zeng (2010), He et al. (2016), Kundu et al. (2019), Li

et al. (2022), in which the analysis focuses on the same parameter in multiple datasets with

summary statistics or individual data, not on a parameter in an internal individual-level

dataset with an additional covariate Z. Our goal is to couple the internal data and external

summary information to improve estimation efficiency over the analysis using internal data

only.

A distinction of our work from the existing papers in the literature is that we consider

situations where only external summary statistics (not individual-level data) are available

and Z is measured in internal dataset only but not external dataset, except for Chatterjee

et al. (2016) and Zhang et al. (2020) whose difference with our work is described next.

To analyze internal data with additional covariate Z and external summary statistics,
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Chatterjee et al. (2016) proposed a constrained maximum likelihood estimation under the

following two key assumptions:

The internal and external data have the same population:

f(y,x, z |D = 1) = f(y,x, z |D = 0).
(A1)

The internal population has a correctly specified parametric model

f(y |x, z, D = 1) = fθ(y |x, z),
(B1)

where D is a binary indicator with D = 1 for internal datum and D = 0 for external

datum, f( · | · ) is a generic notation for conditional probability density, θ is a vector of

unknown parameters, and fθ is known when θ is known. Their approach is to maximize

the parametric likelihood based on fθ(y |x, z) and internal data, subject to the constraint

0 =

∫∫∫
u(y,x,ϕ)fθ(y |x, z)f(x, z |D = 0) dydxdz, (C1)

where u( · ) is a known function (based on a working model for external data) and ϕ is an

unknown parameter vector. Under assumption (A1), conditioning D = 0 in (C1) can be

ignored. To use (C1) as a constraint, we replace all integrals by empirical integrals based

on internal data and ϕ by an estimate ϕ̂ available as a summary statistic based on external

data independent of internal data. Zhang et al. (2020) developed an improved approach,

under basically the same setting and assumptions (A1) and (B1).

The first purpose of our paper is to relax the strong parametric model assumption (B1).

We consider the generalized estimation equation (GEE) for estimating a parameter β of

interest in the internal data population f(y,x, z |D = 1). In the last three decades, the

GEE approach has shown its great success in analysis without a fully parametric likeli-

hood assumption. Our main effort is to derive a constraint relating the external summary

information to the estimation of β in GEE (B2) specified in Section 2, which serves as a

replacement of (C1) as (C1) depends on (B1). Details are presented in Section 2.

Since heterogeneity often exists among datasets, especially when internal data are col-
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lected under a carefully designed study whereas external data are from past or different

studies, it is crucial to relax assumption (A1) for a wider scope of application, which is the

second purpose of our paper. It is challenging to do data coupling with different internal

and external populations, similar to the problem with missing data in which the population

of completed data may be different from the population of incomplete data (i.e., missingness

is not at random), especially when we do not have external individual-level data. Chatter-

jee et al. (2016) and Yang et al. (2020) discussed the population heterogeneity, but assumed

that individual-level external data are available. In Section 3 we start with a discussion

on what is the assumption really needed for the success of method assuming (A1), i.e.,

the robustness against violation of (A1). We then relax assumption (A1) in two different

ways, by linking the internal and external data with techniques in treating missing data

(although data coupling has a different study goal from analysis with incomplete data).

This link enables us to derive some constraints based on external summary statistics that

can be utilized in the GEE for β with internal data.

In Section 4, some simulation results are presented to illustrate finite sample perfor-

mance of the proposed method. We also illustrate our method using a real data example.

2 GMM under Homogeneous Data Populations

We start with a description of data, following the notation in Section 1. Consider two

scenarios different in whether the internal and external sample sizes are random or non-

random. In the first scenario, we have a random sample of size n (a known nonrandom

integer), (Yi,Xi,Zi, Di), i = 1, ..., n, where (Yi,Xi,Zi, Di) ∼ (Y,X,Z, D) with probability

density f(y,x, z, d), Di = 1 indicates the observed internal data, and Di = 0 indicates the

unavailable external data, i = 1, ..., n. Although Zi is not measured in the external dataset,

we still include it as a potentially observable quantity. In this scenario, the observed in-

ternal sample size is n1 =
∑n

i=1Di, which is random with expectation πn, π = P (D = 1),
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and the external sample size is n0 = n − n1. In the second scenario, the internal dataset

is a random sample (Yi,Xi,Zi, Di = 1), i = 1, ..., πn, with a known nonrandom size πn

and (Yi,Xi,Zi) ∼ f(y,x, z |D = 1), the external dataset is another independent random

sample (Yi,Xi,Zi, Di = 0), i = 1, ..., (1 − π)n, (Yi,Xi,Zi) ∼ f(y,x, z |D = 0), and the

total sample size is n. In any scenario, we consider large sample analysis with n → ∞, in

which π and n1 depend on n but the subscript n is omitted for simplicity. We focus on the

situation where the dimension of W = (X>,Z>)> is fixed (does not depend on n) and

less than n, where A> denotes the transpose A. A discussion about high-dimensional W

is given in the end of this section.

In this section, we assume (A1), i.e., the internal population f(y,x, z |D = 1) and the

external population f(y,x, z |D = 0) are the same, but we replace the parametric model

assumption (B1) with the following GEE to estimate an unknown parameter vector β of

interest:

0 = E
[
{Y − φ

(
W>β

)
}W |D = 1

]
, (B2)

where φ is a known function and 0 denotes a vector of all zeros with an appropriate

order. Conditioning D = 1 can be ignored in (B2) since (A1) is assumed but it is kept for

extensions to the case without (A1) considered in Section 3.

This GEE approach is actually nonparametric as the expectation E in (B2) is jointly on

(Y,W ) so that β is almost always defined. A semi-parametric GEE assumes a conditional

mean model E(Y |W ) = φ(W>β), which is stronger than (B2) but still much weaker than

the parametric likelihood assumption (B1) described in Section 1, since it only specifies the

conditional mean model.

Consider the use of external summary statistic, a function of (Yi,Xi) with Di = 0 for

all i. The question is how to derive a constraint that relates the external information to the

estimation of β via GEE (B2). From the description in Section 1, constraint (C1) relates

external information to θ through the correctly specified parametric likelihood fθ(y |x, z)
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under (B1), which we cannot use since fθ(y |x, z) is not available without (B1).

Suppose that the external summary statistic is an estimate γ̂ of an unknown parameter

vector γ, using GEE

0 = E[{Y − ψ(X>γ)}X |D = 0] (1)

derived under a working model (not necessarily correct) based on external data without

Z, where ψ is a known function. We only have the value of γ̂ and knowledge about

(1), not the individual-level external data. Ignoring the condition D = 0 in (1) as (A1)

is assumed in this section, we obtain E(YX) = E{ψ(X>γ)X}, which together with

E(YX) = E{φ(W>β)X} from (B2) show that (B2)-(1) is equivalent to (B2) and

0 = E[{ψ(X>γ)− φ(W>β)}X |D = 1], (C2)

where the condition D = 1 can be ignored in this section but it is kept for extensions in

Section 3. Note that (C2) relates external information to the estimation of β in GEE (B2).

Thus, we replace assumptions (B1)-(C1) by (B2)-(C2) and apply GEE utilizing external

summary information γ̂ and (1). Using internal data (Yi,Wi, Di = 1), i = 1, ..., n, and

(C2) as a constraint in GEE (B2), we propose the following GEE estimator β̂ of β, which

is a solution to ḡ(γ̂,β) = 0, where

ḡ(γ,β) =
1

n1

n∑
i=1

Di g(Yi,Wi,γ,β),

g(y,w,γ,β) =

 g1(y,w,β)

g2(w,γ,β)

 =

 {y − φ(w>β)}w

{ψ(x>γ)− φ(w>β)}x

 ,

(2)

w = (xz), and n1 is the internal sample size. The number of equations in ḡ(γ̂,β) = 0 is the

dimension of W plus the dimension of X, more than the dimension of β that is the same

as the dimension of W . Thus, no single β̂ satisfies ḡ(γ̂, β̂) = 0. We therefore apply the

two-step generalized method of moments (GMM) (Hansen, 1982) to obtain an estimator β̂
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as

β̂ = arg min
β

{
ḡ(γ̂,β)>Σ̂−1ḡ(γ̂,β)

}
, (3)

where ḡ(γ,β) is defined in (2),

Σ̂ =
1

n1

n∑
i=1

Di g(Yi,Wi, γ̂, β̂
(1))g(Yi,Wi, γ̂, β̂

(1))>,

and β̂(1) = arg min
β
{ḡ(γ̂,β)>ḡ(γ̂,β)}.

The following result establishes the asymptotic normality of GMM estimator β̂ in (3)

and provides an explicit form of its asymptotic covariance matrix. The proof is given in

the Appendix.

Theorem 1. Assume (A1) and (B2). Suppose that the true value (γ∗,β∗) of the parameter

(γ,β) defined in (B2) and (C2) is an interior point of the parameter space, the function

g(x,w,γ,β) defined in (2) is continuously differentiable in (γ,β) in a neighborhood N

of (γ∗,β∗), Σ = E{g(Y,W ,γ∗,β∗)g(Y,W ,γ∗,β∗)
>} exists and is positive definite, M =

E{∇β g(Y,W ,γ∗,β∗)} exists and is of full rank, and E{sup(γ,β)∈N ‖∇γ,β g(Y,W ,γ,β)‖} <

∞, where ∇ξ denotes the vector of partial derivatives with respect to ξ and ‖C‖2 =

trace(CC>). Assume that the internal sample size n1 →∞ and the internal and external

size ratio n1/n0 → r ∈ [0,∞) almost surely as n → ∞. Assume further that the external

summary statistic γ̂ is a GEE estimator using (1), Λ = E[{Y − ψ(X>γ∗)}2XX>] exists

and is positive definite, the function ψ( · ) is continuously differentiable with derivative ψ′,

E{ψ′(X>γ∗)XX>} exists and is of full rank, and E{supγ∈Nγ∗ ‖ψ
′(X>γ)XX>‖} < ∞,

where Nγ∗ is a neighborhood of γ∗. Then, for the estimator β̂ defined by (3),

√
n1 (β̂ − β∗)

d−→ N
(
0,V

)
, (4)

where
d−→ denotes convergence in distribution as n→∞,

V = (M>Σ−1M )−1 + r (M>Σ−1M )−1M>Σ−1
(0 0

0 Λ

)
Σ−1M (M>Σ−1M )−1, (5)

and 0 denotes a vector or matrix of all zeros with an appropriate order.
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When the size of external data is much larger than the size of internal data, i.e., the ratio

n1/n0 → r = 0, the asymptotic covariance matrix of
√
n1(β̂ − β∗) is V = (M>Σ−1M )−1

and the asymptotic distribution of β̂ is not affected by the estimation of γ. If r > 0, then

the second term on the right side of (5) is the price for estimating γ by γ̂.

The GEE estimator without using external information, denoted as β̂I , has the following

asymptotic distribution,

√
n1 (β̂I − β∗)

d−→ N
(
0, (M>

1 Σ−11 M1)
−1), (6)

where Σ1 = E{g1(Y,W ,β∗)g1(Y,W ,β∗)
>}, M1 = E{∇β g1(Y,W ,β∗)}, and g1 is defined

in (2). It can be seen from (4) and (6) that β̂ does not improve β̂I in terms of convergence

rate, i.e., they both have convergence rate n
−1/2
1 . This is due to the fact that (i) we do not

have external individual-level data but have only summary statistics not necessary in the

form for estimating β and/or (ii) we do not have external information from Z which may

be useful in estimating β.

In the following we show that

M>Σ−1M −M>
1 Σ−11 M1 is semi-positive definite, (7)

i.e., the GMM estimator β̂ in (3) is asymptotically more efficient than β̂I when r = 0,

although the convergence rates of β̂ and β̂I are the same. From the definition of Σ and g1

and g2 in (2),

Σ =

 Σ1 Σ12

Σ>12 Σ2

 ,

where Σ12 =E{g1(Y,W ,β∗)g2(W ,γ∗,β∗)
>} and Σ2 =E{g2(W ,γ∗,β∗)g2(W ,γ∗,β∗)

>}.

From the partition of Σ, we obtain that

Σ−1 =

 Σ−11 + Σ−11 Σ12(Σ2 −Σ>12Σ
−1
1 Σ12)

−1Σ>12Σ
−1
1 −Σ−11 Σ12(Σ2 −Σ>12Σ

−1
1 Σ12)

−1

−(Σ2 −Σ>12Σ
−1
1 Σ12)

−1Σ>12Σ
−1
1 (Σ2 −Σ>12Σ

−1
1 Σ12)

−1

 .
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Note that M> = (M>
1 ,M

>
2 ), where M2 = E{∇β g2(W ,γ∗,β∗)}. Then

M>Σ−1M = M>
1 Σ−11 M1 +A>A+B>B −A>B −B>A,

where A = (Σ2 − Σ>12Σ
−1
1 Σ12)

−1/2Σ>12Σ
−1
1 M1 and B = (Σ2 − Σ>12Σ

−1
1 Σ12)

−1/2M2, and

result (7) follows because A>A+B>B −A>B −B>A is semi-positive definite. In fact,

for any vector c with the same dimension as β,

c>(A>A+B>B −A>B −B>A)c = (Ac−Bc)2 ≥ 0,

with the equality holding if and only if Ac = Bc, i.e., (Σ>12Σ
−1
1 M1 −M2)c = 0.

For assessing accuracy or statistical inference, we need a consistent (as n → ∞) esti-

mator of the covariance matrix V in (5). Using substitution based on (5) and assuming

the conditions in Theorem 1, we obtain the following consistent estimator,

V̂ = (M̂>Σ̂−1M̂ )−1 + n1

n0
(M̂>Σ̂−1M̂ )−1M̂>Σ̂−1

(0 0

0 Λ̂

)
Σ̂−1M̂ (M̂>Σ̂−1M̂ )−1,

where Σ̂ is given by (3) with β̂(1) replaced by β̂,

M̂ =
1

n1

n∑
i=1

Di∇β g(Yi,Wi, γ̂, β̂) and Λ̂ =
1

n1

n∑
i=1

Di{Yi − ψ(X>i γ̂)}2XiX
>
i .

The matrix Λ can also be estimated by an accuracy measure for γ̂ if it is provided as

external summary information.

We end this section with a discussion about the extension to situation where the di-

mension of W depends on n and is high, which often occurs in modern statistical studies.

When the dimension of W diverges as n→∞, we can apply penalized GMM (Caner, 2009;

Liao, 2013) instead of the non-penalized GMM defined by (3), i.e., we obtain estimators

β̂λn = arg min
β

{
ḡ(γ̂,β)>Σ̂−1ḡ(γ̂,β) + λn(β)

}
,

β̂
(1)
λn

= arg min
β

{
ḡ(γ̂,β)>ḡ(γ̂,β) + λn(β)

}
,
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where λn(β) is a suitably chosen penalty such as LASSO, SCAD, or MCP (Caner, 2009;

Liao, 2013). Asymptotic results for the penalized GMM estimator β̂λn can be established

under some conditions along the lines of Caner (2009), Liao (2013), He et al. (2016), Li

et al. (2021), and Tian and Feng (2022), which will be our future research.

3 GMM under Heterogeneous Data Populations

We focus on W with a dimension not varying with n. The extension to high dimensional

W is as discussed in the end of Section 2.

3.1 Robustness of GMM (3)

When (A1) may not hold, i.e., the internal and external distributions are possibly different,

we still consider GEE (B2) for internal data and GEE (1) for external data.

Our first question is whether the GMM estimator β̂ given by (3) is robust against

assumption (A1). Consider the following assumption weaker than (A1),

E(Y |X, D = 1) = E(Y |X, D = 0) and f(x |D = 1) = f(x |D = 0). (A2)

Note that the first condition in (A2) is on conditional means and is implied by the condition

f(y |x, D = 1) = f(y |x, D = 0). Also, (A2) is implied by f(y,x |D = 1) = f(y,x |D = 0),

which is still weaker than (A1). By the second condition in (A2),

E{ψ(X>γ)X |D = 0} = E{ψ(X>γ)X |D = 1}.

Also,

E(YX |D = 0) = E{E(Y |X, D = 0)X |D = 0}

= E{E(Y |X, D = 1)X |D = 0}

= E{E(Y |X, D = 1)X |D = 1}

= E(YX |D = 1),
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where the second equality is from the first condition in (A2) and the third equality follows

from the second condition in (A2) as E(Y |X, D = 1)X is a function of X. This together

with (B2) imply that (C2) in Section 2 holds even when internal and external populations

are different. Consequently, under (A2), we can use constraint (C2) in GEE (B2) and apply

the GMM in (3) as it involves internal data only, and the result in Section 2 still holds.

A similar argument shows that (C2) is satisfied and the result in Section 2 holds under

the following alternative assumption,

E(Y |W , D = 1) = E(Y |W , D = 0) and f(w |D = 1) = f(w |D = 0). (A2′)

Note that there is no definite relationship between the first conditions in (A2) and (A2′),

although both (A2) and (A2′) are weaker than (A1).

This shows that the GMM estimator β̂ in (3) is robust against (A1) to some extent.

3.2 Results under weaker assumptions on populations

We next consider extensions when neither (A2) nor (A2′) holds. Can a valid estimator

using external summary information be derived under only the first condition in (A2)?

The following analysis indicates that we need some additional conditions.

As in the previous argument, we still just need to consider (1) to derive an appropriate

constraint for GEE (B2). From (1),

0 = E
[
E{YX − ψ(X>γ)X |X, D = 0}|D = 0

]
= E

[
{E(Y |X, D = 0)− ψ(X>γ)}X |D = 0

]
= E

[
{E(Y |X, D = 1)− ψ(X>γ)}X |D = 0

]
=

∫
{E(Y |X = x, D = 1)− ψ(x>γ)}xf(x |D = 0)dx

=

∫
κ(x){E(Y |X = x, D = 1)− ψ(x>γ)}xf(x |D = 1)dx

= E{κ(X)Y X |D = 1} − E{κ(X)ψ(X>γ)X |D = 1},
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where the third equality follows from the first condition in (A2), the fifth equality is from

κ(x) =
f(x |D = 0)

f(x |D = 1)
, (8)

and κ( · ) is typically an unknown function. In the scenario where Di’s are random as

described in the beginning of Section 2, we have

κ(x) =
P (D = 0 |x)

P (D = 1 |x)

P (D = 1)

P (D = 0)
. (9)

However, E{κ(X)YX |D = 1} is not directly related with β in (B2) because of the extra

κ(X). If we strengthen (B2) to

E[κ(X){Y − φ(W>β)}X |D = 1] = 0, (B2+)

which holds if the semiparametric mean model E(Y |W , D = 1) = φ(W>β) is correct,

then E{κ(X)YX |D = 1} = E{κ(X)φ(W>β)X |D = 1} and we obtain that

0 = E[κ(X){ψ(X>γ)− φ(W>β)}X |D = 1], (C3)

which can be used as a constraint replacing (C2). We can view κ(x) as an adjustment for

the difference in internal and external populations, in order to use the external information.

The idea here is similar to the use of propensity score in dealing with missing data, although

κ(x) is an odds ratio of propensities in view of (9).

It remains to estimate κ(x) in (8), as it is unknown. If we have external individual-

level data, then the estimation of κ(x) in (8) is simple. As we only have external summary

statistics, we need another condition to estimate κ(x). Assume that

κ(X)=q(X>η), q(·) is known, η is an unknown parameter vector, and

there is a vector function S of X with dimension≥ the dimension of η

such that the sample mean of S is provided as an external summary

statistic or the population mean vector E(S) is known.

(10)

As an example, components of S can be the vector of indicators of gender and age group

with the number of groups ≥ the dimension of η. If X = X is continuous and univariate,
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then S can be the vector whose jth component is Xj, j = 0, 1, ..., l − 1 with l ≥ the

dimension of η.

We propose to estimate η by using GEE or GMM with estimation equation

1

n1

n∑
i=1

Di q(X
>
i η)Si = S̄0, (11)

where S̄0 is the available sample mean of Si’s in external dataset and n1 is the internal

sample size. This is supported by the fact that, under the law of large numbers, the left

side of (11) converges in probability to E{κ(X)S |D = 1} = E(S |D = 0) and the right

side of (11) converges in probability to E(S |D = 0). The situation where the population

mean of S is known can be treated similarly.

If the second condition in (A2) holds, then κ(x) ≡ 1 and (10) automatically holds with

S to be a constant. Thus, we consider the following assumption weaker than (A2),

E(Y |X, D = 1) = E(Y |X, D = 0) and (10) holds. (A3)

Under conditions (A3) and (B2+), we use (C3) as a constraint to obtain the GMM estimator(
β̂

η̂

)
= arg min

β,η

{
ḡ(γ̂, S̄0,β,η)> Σ̂−1+ ḡ(γ̂, S̄0,β,η)

}
, (12)

where

ḡ(γ, ς,β,η) =
1

n1

n∑
i=1

Di g(Yi,Wi,γ, ς,β,η),

g(y,w,γ, ς,β,η) =


{y − φ(w>β)}w

q(x>η) s− ς

q(x>η) {ψ(x>γ)− φ(w>β)}x

 ,

(13)

Σ̂+ =
1

n1

n∑
i=1

Di g(Yi,Wi, γ̂, S̄0, β̂
(1), η̂(1))g(Yi,Wi, γ̂, S̄0, β̂

(1), η̂(1))>,

ς denotes E(S |D = 0), and (β̂(1), η̂(1))> = arg min
β,η
{ḡ(γ̂,β,η)>ḡ(γ̂,β,η)}.

The following theorem establishes the asymptotic distribution of β̂ and η̂ in (12). The

proof is in the Appendix.
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Theorem 2. Assume (A3) and (B2+). Suppose that the true value (γ∗, ς∗,β∗,η∗) of the

parameter (γ, ς,β,η) is an interior point of the parameter space, g(x,w,γ, ς,β,η) defined

in (13) is continuously differentiable in (γ, ς,β,η) in a neighborhood N of the true value

(γ∗, ς∗,β∗,η∗), Σ+ = E{g(Y,W ,γ∗, ς∗,β∗,η∗)g(Y,W ,γ∗, ς∗,β∗,η∗)
> |D = 1} exists and

is positive definite, M+ = E{∇β,η g(Y,W ,γ∗, ς∗,β∗,η∗) |D = 1} exists and is of full rank,

and E{sup(γ,ς,β,η)∈N ‖∇γ,ς,β,η g(Y,W ,γ, ς,β,η)‖ |D = 1} < ∞. Assume that n1 → ∞

and the ratio n1/n0 → r ∈ [0,∞) almost surely as n→∞. Assume further that the exter-

nal summary statistic γ̂ is a GEE estimator using (1), Λ0 = E[{Y − ψ(X>γ∗)}2XX> |

D = 0] exists and is positive definite, the function ψ( · ) is continuously differentiable

with derivative ψ′, H0 = E{ψ′(X>γ∗)XX> | D = 0} exists and is of full rank, and

E{supγ∈Nγ∗ ‖ψ
′(X>γ)XX>‖ |D = 0} <∞, where Nγ∗ is a neighborhood of γ∗. Then,

√
n1

(
β̂ − β∗
η̂ − η∗

)
d−→ N

(
0,V+

)
,

where

V+ = (M>
+Σ−1+ M+)−1+r (M>

+Σ−1+ M+)−1M>
+Σ−1+

(
0 0 0

0 C0 C>
01

0 C01 Λ0

)
Σ−1+ M+(M>

+Σ−1+ M+)−1,

C0 = E{(S − ς∗)(S − ς∗)> |D = 0}, and C01 = E[{ψ(X>γ∗)− Y }X(S − ς∗)> |D = 0].

As an alternative to (A3), we consider the following different relaxation of (A2′). If

E(Y |W , D = 1) = E(Y |W , D = 0), then

E(XY |D = 0) = E{XE(Y |W , D = 0) |D = 0}

= E{XE(Y |W , D = 1) |D = 0}

= E{κ(W )E(XY |W , D = 1) |D = 1}

= E{κ(W )XY |D = 1},

where the third equality follows from

κ(w) =
f(w |D = 0)

f(w |D = 1)
. (14)
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Under (B2+) with κ(X) replaced by κ(W ), we obtain constraint

0 = E[κ(W )X{ψ(X>γ)− φ(W>β)}|D = 1],

which can be used to replace (C3) and obtain the GMM estimator (12), if κ(w) in (14)

can be estimated. Note that κ(w) in (14) plays the same role as κ(x) in (8). To estimate

κ(w), we apply (11) with X replaced by W .

Thus, we consider the following assumption weaker than (A2′):

E(Y |W , D = 1) = E(Y |W , D = 0) and (10) holds with κ(W )=q(W>η). (A3′)

Note that (A3′) does not have a definite relationship with (A3), because E(Y |W , D = 1) =

E(Y |W , D = 0) has no definite relationship with E(Y |X, D = 1) = E(Y |X, D = 0).

Under (A3′) and (B2+), we can apply the GMM estimator in (12). A result similar to

Theorem 2 can be established for the asymptotic normality of this GMM estimator.

To end this subsection we provide the following diagram of the relationships among

different assumptions on populations, where ⇒ indicates “stronger than”:

(A1)⇒


(A2)⇒ (A3),

(A2′)⇒ (A3′).

3.3 Estimation of covariance matrix V+

The asymptotic covariance matrix of β̂ is the first diagonal sub-matrix of V+ in Theorem 2

with dimension the same as that of β. A consistent estimator of V+ can be obtained by sub-

stituting Σ+, M+, Λ0, C0, and C01 in V+ by consistent estimators. Matrices Σ+ and M+

can be consistently estimated by Σ̂+ and M̂+ = n−11

∑n
i=1Di∇β,η g(Yi,Wi, γ̂, S̄0, β̂, η̂),
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respectively. Matrices Λ0, C0, and C01 can be estimated by consistent estimators

Λ̂0 =
1

n1

n∑
i=1

Di q(W
>
i η̂){Yi − ψ(X>i γ̂)}2XiX

>
i ,

Ĉ0 =
1

n1

n∑
i=1

Di q(W
>
i η̂)(Si − S̄0)(Si − S̄0)

>,

Ĉ01 =
1

n1

n∑
i=1

Di q(W
>
i η̂){ψ(X>i γ̂)− Yi}Xi(Si − S̄0)

>,

respectively, where Wi can be replaced by Xi under (A3). The consistency of Ĉ0 and Ĉ01

follows from the law of large numbers, (A3) or (A3′), and the fact that E{κ(W )(S−ς∗)(S−

ς∗)
> |D = 1} = E{(S−ς∗)(S−ς∗)> |D = 0} = C0 and E[κ(W ){ψ(X>γ∗)−Y }XS> |D =

1] = E[{ψ(X>γ∗)−Y }XS> |D = 0] = C01. For Λ0, the consistency of Λ̂0 is shown in the

Appendix under an additional minor condition that E(Y 2 |X, D = 1) = E(Y 2 |X, D = 0).

Although the substitution estimator of V+ is consistent, it often underestimates vari-

ances (MacKinnon and White, 1985). Thus, we consider a bootstrap procedure (Efron and

Tibshirani, 1993) as an alternative to the substitution method. Internal bootstrap data

(Y ∗i ,W
∗
i ), i = 1, ..., n1, are generated as a simple random sample with replacement from

(Yi,Wi), i = 1, ..., n1. Since we do not have external individual level data, we generate

bootstrap analog of S̄0 and γ̂ using S̄∗0

γ̂∗

 ∼ N

 S̄0

γ̂

 ,
1

n0

 Ĉ0 −Ĉ>01Ĥ−11

−Ĥ−11 Ĉ01 Ĥ−11 Λ̂0Ĥ
−1
1

 ,

where Ĉ0, Ĉ01 and Λ̂0 are the same as previously defined and

Ĥ1 =
1

n1

n∑
i=1

Diq(X
>
i η̂)ψ′(X>i γ̂)XiX

>
i .

The bootstrap GMM estimator (β̂∗, η̂∗) is calculated according to (12) based on bootstrap

internal data and S̄∗0 and γ̂∗. This bootstrap procedure is repeated independently B (e.g.,

100) times and the bootstrap variance estimator for β̂ is the sample variance of B β̂∗’s.
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Note that this bootstrap method requires extra repeated computations. Thus, when φ

in (B2) is nonlinear, we suggest a linearized bootstrap calculating

β̂∗ − β̂
η̂∗ − η̂

 = −(M̂ ∗>
+ Σ̂∗−1+ M̂ ∗

+)−1M̂ ∗>
+ Σ̂∗−1+

ḡ
∗(γ̂, S̄0, β̂, η̂)+


0

−(S̄∗0 − S̄0)

Ĥ∗1 (γ̂∗ − γ̂)


 ,

where ḡ∗(γ̂, S̄0, β̂, η̂), Ĥ∗1 , Σ̂∗+, and M̂ ∗
+ are ḡ(γ̂, S̄0, β̂, η̂), Ĥ1, Σ̂+, and M̂+, respectively,

with (Yi,Wi)’s replaced by (Y ∗i ,W
∗
i )’s.

4 Empirical Results

4.1 Simulations

We first present some simulation results to examine the finite-sample performance of the

proposed GMM estimators (3) and (12) and to compare them with the GEE estimator with-

out using external summary information. Also, our simulation studies the performance of

variance estimators described in Section 3.3 and the related asymptotic confidence intervals

for components of β in (B2).

We consider a 4-dimensional normally distributed covariate vector
U1

U2

U3

U4

 ∼ N




1

0

1

0

 ,


1 −0.4 0.4 0.3

−0.4 1 0.3 0.4

0.4 0.3 1 0.4

0.3 0.4 0.4 1



 .

Following the notation in Sections 2-3, in internal analysis we use W = (X>,Z>)> with

X = (1, U1, U2, U3)
> and Z = (U4, U1U2, U1U4)

>. In the external dataset, we only have X,

not Z, where Z contains not only U4, but also the cross-products U1U2 and U1U4.

Two GEE models (B2) are considered in internal analysis.
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(i) Linear model E(Y |W ) = W>β, where β = (β0, β1, β2, β3, β4, β5, β6)
> = (−1.6, 0.7, 0.4,

0.5, 0.4, 0.4, 0.4)> is a 7-dimensional parameter vector and Y |W is normally dis-

tributed but we do not use the normality information in analysis.

(ii) Logistic model with binary Y and P (Y = 1 |W ) = 1/{1 + exp(W>β)}, where β is

the 7-dimensional parameter vector in (i).

For the external data, we consider GEE (1) with ψ(t) = t for linear model and ψ(t) =

1/{1 + exp(t)} for the logistic setting. Although the model for internal data is correct,

the model for external data is wrong because, under the logistic setting, P (Y = 1 |X) =

E{P (Y = 1 |W ) |X} is no longer logistic and, under the linear model setting, the product

terms U1U2 and U1U4 in W are nonlinear.

To generate internal and external data, we consider random D with

P (D = 1 |X,Z, Y ) =
1

1 + exp(η0 + η1U1 + η2U4)
.

Consequently,

q(W>η) = exp (log r + η0 + η1U1 + η2U4) ,

where r = P (D = 1)/P (D = 0). Three sets of η’s are considered; (1) η0 = 2.3, η1 = η2 = 0;

(2) η0 = 3.6, η1 = −1, η2 = 0; (3) η0 = 3.8, η1 = −1, η2 = 1. These values are chosen so

that r ≈ 0.1. When η2 = 0, q(W>η) = q(X>η). Throughout, we consider S = X.

We consider the total sample size n = 5, 500. Since r ≈ 0.1, the internal sample size n1

is around 500 and the external sample size n0 is around 5, 000.

Based on 1,000 simulation runs, Tables 1-2 provide the bias, standard deviation (SD),

average standard error (SE), and coverage probability (CP) of 95% asymptotic confidence

interval for the estimation of βj’s under the linear and logistic model settings (i)-(ii), re-

spectively. The SE of GEE estimator using internal data only is based on substitution.

The SE of GMM (12) is computed using both the substitution and bootstrap described in

Section 3.3. The SE of GMM (3) is computed using the substitution; the bootstrap is used
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only in the case where η1 = η2 = 0, because the GMM (3) is incorrect when either η1 or η2

is nonzero.

The following is a summary of the results in Tables 1-2.

1. The empirical results confirm our asymptotic theory, i.e., using external summary

information substantially improves efficiency and the confidence intervals based on

asymptotic theory work well. The SD of GMM (12), or GMM (3) when it is correct,

is much smaller than the SD of GEE without using external information, for the

estimation of β-coefficients in front of X. The improvement in many cases is over

50%. Although in some cases using internal data only leads to a CP closer to 95%,

this advantage is built on a much longer confidence interval. For estimation of β-

coefficients in front of Z, the GMM does not improve or has a slight improvement,

because Z-information is not in the external data.

2. If the heterogeneity between internal and external populations exists and is not well

addressed, the use of external information may create a non-negligible bias of GMM

(3) leading to a very low CP. It also affects the convergence of GMM (3), for example,

the SD of GMM (3) is extremely large in some cases under the logistic setting. On

the other hand, the correctness of GMM (12) is not affected by whether heterogeneity

in population exists or not, and two GMM estimators have comparable performance

when populations are homogeneous.

3. For GMM (12), the SE based on substitution may underestimate, especially when η1

or η2 is not 0. When this occurs, the SE based on bootstrap is better, although the

bootstrap SE sometimes leads to a conservative CP.

4.2 An example

We illustrate our approach with data from the National Health and Nutrition Examination

Survey (CDCP, 2018), a program collecting the health and nutritional status of nationally
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representative adults and children across the United States. The internal dataset consists of

500 sampled units from 2017-2018 survey cycle, in which the response Y is the systolic blood

pressure and associated covariates of interest are gender, age, total cholesterol (mmol/L)

and triglycerides (mmol/L). The external dataset contains results from 6,755 sampled units

in the 2015-2016 survey with systolic blood pressure, gender, age, and total cholesterol, but

not triglycerides. With the notation in Section 2, X = (1, gender, age, total cholesterol)>

and Z = triglycerides. We only use the summary information from the external dataset,

i.e., the mean values of components of X and the GEE estimates of the parameters in a

working linear model between Y and X.

We compute three estimates of β in (B2) with β = (β0, β1, β2, β3, β4)
> and W =

(X>, Z)>, which are the GEE estimate with internal data only, the GMM (3) using ex-

ternal summary information but assuming identical internal and external populations, and

the GMM (12) with possibly heterogeneous internal and external populations. The esti-

mates together with standard errors (SE) calculated by substitution are shown in Table

3. Both GMM estimates (3) and (12) have considerably smaller standard errors than the

GEE estimate using internal data only, except for the estimation of β4 for triglycerides as

the external dataset has no information about triglycerides. The two GMM estimates are

not significantly different in the estimation of β-coefficients in front of gender, age, and

triglycerides, but they are different in the estimation of intercept β0 and β3 for choles-

terol, which indicates that the assumption of identical internal and external populations is

questionable.

Supplementary Material

The supplementary material contains computer codes.
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Appendix

Proof of Theorem 1. Since β̂ is a solution to (3),

0 = ∇β ḡ(γ̂, β̂)>Σ̂−1ḡ(γ̂, β̂).

From Taylor’s expansion of ḡ(γ,β) at β = β∗ and γ = γ∗,

ḡ(γ̂, β̂) = ḡ(γ∗,β∗) +∇β ḡ(γ̃, β̃)(β̂ − β∗) +∇γ ḡ(γ̃, β̃)(γ̂ − γ∗),

where β̃ is between β∗ and β̂, and γ̃ is between γ∗ and γ̂. Combining the two equations

we obtain that

β̂ − β∗ =−
{
∇β ḡ(γ̂, β̂)>Σ̂−1∇β ḡ(γ̃, β̃)

}−1
∇β ḡ(γ̂, β̂)>Σ̂−1

{
ḡ(γ∗,β∗)+∇γ ḡ(γ̃, β̃)(γ̂ − γ∗)

}
.

Under the assumed conditions in Theorem 1,
√
n0(γ̂ − γ∗) |n0

d−→ N(0,H−1ΛH−1), where

n0 = n − n1 and H = E{ψ′(X>γ∗)XX>}. Hence,
√
n1H(γ̂ − γ∗)

d−→ N(0, rΛ) since

n1/n0 → r. Further, under the assumed conditions, Σ̂−1
p−→ Σ−1, ∇β ḡ(γ̂, β̂)

p−→ M ,

∇β ḡ(γ̃, β̃)
p−→ M , and ∇γ ḡ(γ̃, β̃)

p−→ E{∇γ ḡ(γ∗,β∗)} =
(

0
H

)
, where

p−→ denotes conver-

gence in probability. Hence,

√
n1(β̂ − β∗) = −

√
n1(M

>Σ−1M )−1M>Σ−1{ḡ(γ∗,β∗) +
( 0

H(γ̂−γ∗)

)
}+ op(1),
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where op(1) denotes a term converging to 0 in probability. From the central limit theorem,
√
n1 ḡ(γ∗,β∗)

d−→ N(0,Σ). Then the result follows from the independence between γ̂ and

internal data and

√
n1

(
0

H(γ̂ − γ∗)

)
d−→ N

0, r

 0 0

0 Λ

 .

In the previous argument, we use the following result repeatedly to handle the case where

n1 is random. If a quantity Qn satisfies
√
n1Qn | n1

d−→ N(0,Ω) for some fixed matrix Ω

not depending on n, then unconditionally we also have
√
n1Qn

d−→ N(0,Ω).

Proof of Theorem 2. Following the proof of Theorem 1, we obtain that

√
n1

β̂ − β∗
η̂ − η∗

 = −
√
n1(M

>
+Σ−1+ M+)−1M>

+Σ−1+

ḡ(γ∗, ς∗,β∗,η∗)+


0

−(S̄0 − ς∗)

H1(γ̂ − γ∗)


+op(1),

where H1 = E[q(X>η∗)ψ
′(X>γ∗)XX

> | D = 1] = H0 under (A3). Then the result

follows from the independence between (γ̂, S̄0) and internal data and

√
n1


0

−(S̄0 − ς∗)

H1(γ̂ − γ∗)

 d−→ N

0, r


0 0 0

0 C0 C>01

0 C01 Λ0


 .

Proof of the consistency of Λ̂0 in Section 3.3. Under the assumed conditions and the

law of large numbers, Λ̂0 converges in probability to

E[κ(W ){Y − ψ(X>γ∗)}2XX> |D = 1]

= E
{
κ(W )E[{Y − ψ(X>γ∗)}2XX> |X, D = 1] |D = 1

}
= E

{
E[{Y − ψ(X>γ∗)}2XX> |X, D = 1] |D = 0

}
= E

{
E[{Y − ψ(X>γ∗)}2XX> |X, D = 0] |D = 0

}
= E[{Y − ψ(X>γ∗)}2XX> |D = 0]

= Λ0.
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Table 1. Bias, standard deviation (SD), average standard error (SE), and coverage proba-

bility (CP) of 95% asymptotic confidence interval based on 1,000 simulations under linear

model setting

substitution bootstrap

η0 η1 η2 estimand method bias SD SE CP SE CP

2.3 0 0 β0 GEE (internal) -0.001 0.167 0.169 0.950

GMM (12) -0.007 0.111 0.110 0.954 0.110 0.965

GMM (3) -0.011 0.110 0.112 0.954 0.114 0.957

β1 GEE (internal) 0.005 0.147 0.144 0.951

GMM (12) 0.004 0.096 0.097 0.958 0.100 0.966

GMM (3) 0.006 0.096 0.099 0.965 0.100 0.970

β2 GEE (internal) 0.008 0.166 0.170 0.955

GMM (12) 0.008 0.138 0.134 0.941 0.142 0.954

GMM (3) 0.010 0.136 0.136 0.945 0.140 0.951

β3 GEE (internal) -0.003 0.123 0.122 0.947

GMM (12) 0.004 0.065 0.062 0.932 0.064 0.940

GMM (3) 0.004 0.064 0.062 0.942 0.062 0.938

β4 GEE (internal) -0.010 0.150 0.154 0.951

GMM (12) -0.011 0.153 0.153 0.955 0.161 0.963

GMM (3) -0.011 0.150 0.153 0.952 0.157 0.956

β5 GEE (internal) 0.002 0.090 0.090 0.943

GMM (12) -0.001 0.093 0.089 0.937 0.096 0.955

GMM (3) -0.001 0.091 0.089 0.940 0.090 0.951

β6 GEE (internal) 0.001 0.091 0.093 0.944

GMM (12) -0.000 0.094 0.092 0.944 0.098 0.955

GMM (3) -0.001 0.092 0.093 0.944 0.096 0.946
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Table 1 (continued)

substitution bootstrap

η0 η1 η2 estimand method bias SD SE CP SE CP

3.6 -1.0 0 β0 GEE (internal) 0.013 0.217 0.216 0.947

GMM (12) -0.004 0.129 0.119 0.926 0.129 0.947

GMM (3) 0.117 0.138 0.139 0.880

β1 GEE (internal) -0.009 0.151 0.148 0.944

GMM (12) 0.003 0.106 0.097 0.930 0.104 0.946

GMM (3) -0.112 0.114 0.111 0.817

β2 GEE (internal) -0.007 0.218 0.220 0.951

GMM (12) -0.024 0.154 0.142 0.927 0.157 0.948

GMM (3) -0.362 0.204 0.207 0.597

β3 GEE (internal) 0.001 0.119 0.118 0.946

GMM (12) -0.001 0.072 0.065 0.931 0.072 0.947

GMM (3) 0.003 0.065 0.067 0.954

β4 GEE (internal) -0.003 0.205 0.211 0.944

GMM (12) -0.001 0.191 0.187 0.940 0.205 0.962

GMM (3) -0.037 0.209 0.213 0.945

β5 GEE (internal) 0.000 0.097 0.094 0.937

GMM (12) 0.006 0.078 0.070 0.914 0.078 0.937

GMM (3) 0.027 0.111 0.095 0.891

β6 GEE (internal) 0.001 0.098 0.096 0.938

GMM (12) -0.002 0.087 0.081 0.926 0.090 0.955

GMM (3) 0.016 0.102 0.097 0.931
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Table 1 (continued)

substitution bootstrap

η0 η1 η2 estimand method bias SD SE CP SE CP

3.8 -1.0 1.0 β0 GEE (internal) 0.006 0.258 0.254 0.944

GMM (12) -0.028 0.169 0.144 0.900 0.170 0.931

GMM (3) 0.167 0.211 0.215 0.895

β1 GEE (internal) 0.002 0.164 0.162 0.946

GMM (12) 0.018 0.116 0.100 0.902 0.114 0.934

GMM (3) 0.187 0.137 0.133 0.713

β2 GEE (internal) -0.001 0.203 0.207 0.953

GMM (12) -0.003 0.168 0.149 0.909 0.167 0.953

GMM (3) -0.369 0.235 0.191 0.538

β3 GEE (internal) -0.006 0.123 0.121 0.950

GMM (12) 0.001 0.081 0.070 0.921 0.079 0.945

GMM (3) 0.007 0.081 0.072 0.921

β4 GEE (internal) 0.007 0.189 0.191 0.953

GMM (12) -0.005 0.184 0.173 0.929 0.191 0.953

GMM (3) 0.046 0.198 0.195 0.941

β5 GEE (internal) 0.004 0.098 0.096 0.043

GMM (12) 0.005 0.088 0.080 0.908 0.088 0.938

GMM (3) 0.212 0.157 0.100 0.475

β6 GEE (internal) -0.004 0.100 0.094 0.932

GMM (12) -0.002 0.099 0.090 0.925 0.098 0.948

GMM (3) -0.049 0.115 0.096 0.872
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Table 2. Bias, standard deviation (SD), average standard error (SE), and coverage proba-

bility (CP) of 95% asymptotic confidence interval based on 1,000 simulations under logistic

model setting

substitution bootstrap

η0 η1 η2 estimand method bias SD SE CP SE CP

2.3 0 0 β0 GEE (internal) -0.043 0.244 0.245 0.960

GMM (12) -0.014 0.121 0.121 0.953 0.125 0.960

GMM (3) -0.012 0.122 0.122 0.956 0.133 0.965

β1 GEE (internal) 0.032 0.207 0.199 0.944

GMM (12) 0.009 0.116 0.112 0.945 0.114 0.950

GMM (3) 0.006 0.116 0.113 0.944 0.121 0.956

β2 GEE (internal) -0.012 0.239 0.235 0.941

GMM (12) -0.027 0.172 0.166 0.946 0.171 0.949

GMM (3) -0.029 0.172 0.168 0.944 0.184 0.956

β3 GEE (internal) 0.012 0.174 0.165 0.935

GMM (12) 0.010 0.080 0.075 0.931 0.076 0.932

GMM (3) 0.009 0.077 0.075 0.942 0.080 0.954

β4 GEE (internal) 0.023 0.233 0.222 0.937

GMM (12) 0.023 0.235 0.217 0.928 0.224 0.935

GMM (3) 0.027 0.236 0.218 0.926 0.237 0.926

β5 GEE (internal) 0.026 0.146 0.141 0.939

GMM (12) 0.029 0.151 0.140 0.933 0.143 0.938

GMM (3) 0.029 0.147 0.140 0.936 0.157 0.937

β6 GEE (internal) 0.003 0.175 0.166 0.919

GMM (12) 0.004 0.177 0.163 0.916 0.168 0.923

GMM (3) 0.002 0.177 0.163 0.917 0.192 0.958
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Table 2 (continued)

substitution bootstrap

η0 η1 η2 estimand method bias SD SE CP SE CP

3.6 -1.0 0 β0 GEE (internal) -0.043 0.315 0.309 0.947

GMM (12) -0.014 0.143 0.136 0.938 0.147 0.950

GMM (3) -0.165 3.523 5.265 0.968

β1 GEE (internal) 0.017 0.212 0.210 0.950

GMM (12) 0.007 0.130 0.120 0.936 0.127 0.948

GMM (3) 0.074 2.472 3.694 0.942

β2 GEE (internal) -0.027 0.307 0.306 0.951

GMM (12) -0.050 0.193 0.174 0.926 0.188 0.939

GMM (3) -0.548 3.224 4.839 0.632

β3 GEE (internal) 0.016 0.170 0.165 0.936

GMM (12) 0.005 0.082 0.080 0.949 0.085 0.960

GMM (3) 0.020 0.109 0.204 0.947

β4 GEE (internal) 0.056 0.355 0.335 0.937

GMM (12) 0.040 0.330 0.302 0.925 0.317 0.935

GMM (3) 0.034 0.523 0.793 0.927

β5 GEE (internal) 0.025 0.151 0.145 0.938

GMM (12) 0.031 0.119 0.109 0.927 0.115 0.946

GMM (3) 0.122 2.296 3.415 0.930

β6 GEE (internal) -0.013 0.187 0.181 0.940

GMM (12) -0.001 0.174 0.164 0.938 0.170 0.947

GMM (3) 0.018 0.511 0.829 0.933
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Table 2 (continued)

substitution bootstrap

η0 η1 η2 estimand method bias SD SE CP SE CP

3.8 -1.0 1.0 β0 GEE (internal) -0.050 0.364 0.353 0.941

GMM (12) -0.030 0.195 0.166 0.893 0.189 0.929

GMM (3) -6.187 25.43 2329 0.917

β1 GEE (internal) 0.030 0.240 0.231 0.943

GMM (12) 0.021 0.140 0.124 0.917 0.138 0.937

GMM (3) 6.296 22.02 2328 0.748

β2 GEE (internal) 0.011 0.333 0.318 0.941

GMM (12) -0.035 0.209 0.194 0.047 0.212 0.956

GMM (3) -8.351 37.03 3779 0.797

β3 GEE (internal) 0.012 0.184 0.176 0.940

GMM (12) 0.002 0.097 0.087 0.932 0.096 0.954

GMM (3) 1.430 5.916 412.7 0.936

β4 GEE (internal) 0.043 0.322 0.309 0.939

GMM (12) 0.036 0.308 0.272 0.922 0.292 0.947

GMM (3) 5.981 26.77 2424 0.902

β5 GEE (internal) 0.013 0.172 0.163 0.946

GMM (12) 0.022 0.136 0.129 0.952 0.139 0.959

GMM (3) 6.683 27.06 2854 0.881

β6 GEE (internal) -0.008 0.183 0.174 0.934

GMM (12) -0.001 0.180 0.162 0.921 0.172 0.933

GMM (3) 0.934 13.62 877.8 0.900
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Table 3. Estimate and standard error (SE) in the example with data from the National

Health and Nutrition Examination Survey (Section 4.2)

estimand method estimate SE

β0: intercept GEE (internal) 95.5358 3.3002

GMM (12) 95.4741 0.9782

GMM (3) 98.5944 0.9857

β1: gender GEE (internal) -2.6235 1.4682

GMM (12) -2.7205 0.4953

GMM (3) -2.8063 0.4982

β2: age GEE (internal) 0.4239 0.0372

GMM (12) 0.4499 0.0106

GMM (3) 0.4532 0.0105

β3: cholesterol GEE (internal) 1.9175 0.7426

GMM (12) 1.5935 0.3172

GMM (3) 0.7960 0.3164

β4: triglycerides GEE (internal) 1.0296 0.4954

GMM (12) 0.7727 0.4927

GMM (3) 1.0780 0.4951
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