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Abstract

Because of advances in data collection and storage, statistical analysis in modern
scientific research and practice now has opportunities to utilize external information
such as summary statistics from similar studies. A likelihood approach based on a
parametric model assumption has been developed in the literature to utilize external
summary information when the populations for external data and the main internal
data are assumed to be the same. In this article we instead consider the generalized
estimation equation (GEE) approach for statistical inference, which is semiparametric
or nonparametric, and show how to utilize external summary information even when
internal and external data populations are not the same. Our approach is coupling
the internal data and external summary information to form additional estimation
equations, and then applying the generalized method of moments (GMM). We show
that the proposed GMM estimator is asymptotically normal and, under some con-
ditions, is more efficient than the GEE estimator without using external summary
information. Estimators of asymptotic covariance matrix of the GMM estimators are
also proposed. Simulation results are obtained to confirm our theory and to quan-
tify the improvements from utilizing external data. An example is also included for

illustration.
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1 Introduction

In modern statistical analyses we have not only primary individual-level data (referred
to as the internal data in what follows) carefully collected from a population of interest
but also summary or aggregated information from some independent external datasets, for
example, population-based census, administrative datasets, and data from past investiga-
tions or other similar studies. Due to various practical reasons, individual-level data from
external sources are not available. For simplicity of notation, we consider a single external
dataset, since extensions to multiple external datasets are straightforward. In both internal
and external datasets, Y denotes a univariate response of interest and X is an associated
covariate vector. The internal dataset contains an additional covariate vector Z (not in
external dataset) because of new technology and/or new scientific relevance. The growing
need for research in internal data analysis utilizing external information fits into the general
framework of data integration (Merkouris, 2004; Chatterjee et al., 2016; Lohr and Raghu-
nathan, 2017; Zhang et al., 2017; Yang et al., 2020; Yang and Kim, 2020; Zhang et al.,
2020; Kim et al., 2021; Li et al., 2021; Rao, 2021; Tian and Feng, 2022) and is different
from the meta-analysis, e.g., Lin and Zeng (2010), He et al. (2016), Kundu et al. (2019), Li
et al. (2022), in which the analysis focuses on the same parameter in multiple datasets with
summary statistics or individual data, not on a parameter in an internal individual-level
dataset with an additional covariate Z. Our goal is to couple the internal data and external
summary information to improve estimation efficiency over the analysis using internal data
only.

A distinction of our work from the existing papers in the literature is that we consider
situations where only external summary statistics (not individual-level data) are available
and Z is measured in internal dataset only but not external dataset, except for Chatterjee
et al. (2016) and Zhang et al. (2020) whose difference with our work is described next.

To analyze internal data with additional covariate Z and external summary statistics,



Chatterjee et al. (2016) proposed a constrained maximum likelihood estimation under the

following two key assumptions:

The internal and external data have the same population:

fly,z,2|D=1)= f(y,z,z| D = 0).

(A1)

The internal population has a correctly specified parametric model
fyle,z,D=1) = fo(y|z, 2),

where D is a binary indicator with D = 1 for internal datum and D = 0 for external

(B1)

datum, f(-]-) is a generic notation for conditional probability density, € is a vector of
unknown parameters, and fg is known when @ is known. Their approach is to maximize

the parametric likelihood based on fg(y|x, z) and internal data, subject to the constraint

0= [[[ utv.z ) tatv|, )5 2D = 0 dydadz (1)

where u( ) is a known function (based on a working model for external data) and ¢ is an
unknown parameter vector. Under assumption (A1), conditioning D = 0 in (C1) can be
ignored. To use (C1) as a constraint, we replace all integrals by empirical integrals based
on internal data and ¢ by an estimate ¢ available as a summary statistic based on external
data independent of internal data. Zhang et al. (2020) developed an improved approach,
under basically the same setting and assumptions (A1) and (B1).

The first purpose of our paper is to relax the strong parametric model assumption (B1).
We consider the generalized estimation equation (GEE) for estimating a parameter 8 of
interest in the internal data population f(y,x,z|D = 1). In the last three decades, the
GEE approach has shown its great success in analysis without a fully parametric likeli-
hood assumption. Our main effort is to derive a constraint relating the external summary
information to the estimation of 3 in GEE (B2) specified in Section 2, which serves as a
replacement of (C1) as (C1) depends on (B1). Details are presented in Section 2.

Since heterogeneity often exists among datasets, especially when internal data are col-



lected under a carefully designed study whereas external data are from past or different
studies, it is crucial to relax assumption (A1) for a wider scope of application, which is the
second purpose of our paper. It is challenging to do data coupling with different internal
and external populations, similar to the problem with missing data in which the population
of completed data may be different from the population of incomplete data (i.e., missingness
is not at random), especially when we do not have external individual-level data. Chatter-
jee et al. (2016) and Yang et al. (2020) discussed the population heterogeneity, but assumed
that individual-level external data are available. In Section 3 we start with a discussion
on what is the assumption really needed for the success of method assuming (A1), i.e.,
the robustness against violation of (A1). We then relax assumption (Al) in two different
ways, by linking the internal and external data with techniques in treating missing data
(although data coupling has a different study goal from analysis with incomplete data).
This link enables us to derive some constraints based on external summary statistics that
can be utilized in the GEE for 8 with internal data.

In Section 4, some simulation results are presented to illustrate finite sample perfor-

mance of the proposed method. We also illustrate our method using a real data example.

2 GMM under Homogeneous Data Populations

We start with a description of data, following the notation in Section 1. Consider two
scenarios different in whether the internal and external sample sizes are random or non-
random. In the first scenario, we have a random sample of size n (a known nonrandom
integer), (Y;, X;, Z;, D;), i = 1, ...,n, where (Y;, X;, Z;, D;) ~ (Y, X, Z, D) with probability
density f(y,x, z,d), D; = 1 indicates the observed internal data, and D; = 0 indicates the
unavailable external data, ¢ = 1,...,n. Although Z; is not measured in the external dataset,
we still include it as a potentially observable quantity. In this scenario, the observed in-

ternal sample size is ny = )., D;, which is random with expectation mn, 7 = P(D = 1),
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and the external sample size is ng = n — ny. In the second scenario, the internal dataset
is a random sample (Y;, X;, Z;, D; = 1), i = 1,...,mn, with a known nonrandom size 7n
and (Y;, X;, Z;) ~ f(y,x,z| D = 1), the external dataset is another independent random
sample (Y, X;, Z;,D; =0),i=1,....,(1 —m)n, (V;, X;, Z;) ~ f(y,z,z| D = 0), and the
total sample size is n. In any scenario, we consider large sample analysis with n — oo, in
which 7 and n; depend on n but the subscript n is omitted for simplicity. We focus on the
situation where the dimension of W = (X, Z")T is fixed (does not depend on n) and
less than n, where AT denotes the transpose A. A discussion about high-dimensional W
is given in the end of this section.

In this section, we assume (A1), i.e., the internal population f(y,x,z|D = 1) and the
external population f(y,x,z|D = 0) are the same, but we replace the parametric model
assumption (B1) with the following GEE to estimate an unknown parameter vector 8 of

interest:
0=E[{Y —¢(WT'B)}W|D=1], (B2)

where ¢ is a known function and 0 denotes a vector of all zeros with an appropriate
order. Conditioning D =1 can be ignored in (B2) since (A1) is assumed but it is kept for
extensions to the case without (A1) considered in Section 3.

This GEE approach is actually nonparametric as the expectation F in (B2) is jointly on
(Y, W) so that B is almost always defined. A semi-parametric GEE assumes a conditional
mean model E(Y |W) = ¢(W T 3), which is stronger than (B2) but still much weaker than
the parametric likelihood assumption (B1) described in Section 1, since it only specifies the
conditional mean model.

Consider the use of external summary statistic, a function of (Y;, X;) with D; = 0 for
all 7. The question is how to derive a constraint that relates the external information to the
estimation of B via GEE (B2). From the description in Section 1, constraint (C1) relates

external information to @ through the correctly specified parametric likelihood fo(y|x, 2)



under (B1), which we cannot use since fg(y|x, z) is not available without (B1).
Suppose that the external summary statistic is an estimate 4 of an unknown parameter
vector 7, using GEE
0=EB[{Y —¢(X"7)}X|D =0 (1)

derived under a working model (not necessarily correct) based on external data without
Z, where 1 is a known function. We only have the value of 4 and knowledge about
(1), not the individual-level external data. Ignoring the condition D = 0 in (1) as (A1)
is assumed in this section, we obtain E(YX) = E{¢(XT~)X}, which together with
E(YX)=FE{¢(W'B)X} from (B2) show that (B2)-(1) is equivalent to (B2) and

0=E[{(XTy) - ¢(W'B)}X|D=1], (C2)

where the condition D = 1 can be ignored in this section but it is kept for extensions in
Section 3. Note that (C2) relates external information to the estimation of 8 in GEE (B2).

Thus, we replace assumptions (B1)-(C1) by (B2)-(C2) and apply GEE utilizing external
summary information 4 and (1). Using internal data (Y;, W;, D; = 1), ¢ = 1,...,n, and
(C2) as a constraint in GEE (B2), we propose the following GEE estimator B of 3, which

is a solution to g(4,3) = 0, where
_ 1 ¢
90v.B) = - > Dig(Y:, Wi,v, ),
i=1

o(y.w.. B) = 91(y, w, B) _ {y — o(w ' B)jw |

g2(w,~, B) {V(@"y) — p(w'B)}a

w = (%), and n, is the internal sample size. The number of equations in g(¥,3) = 0 is the
dimension of W plus the dimension of X, more than the dimension of 3 that is the same
as the dimension of W. Thus, no single ﬁ satisfies g (7, B) = 0. We therefore apply the
two-step generalized method of moments (GMM) (Hansen, 1982) to obtain an estimator B



as

~

B =argmin {g(7.8)S7'3(3.8)} (3)
where g(«, 3) is defined in (2),

1 & o~ .
:{EZQQKW%%HWM%W%%HW1
=1

and B¢ = argmin {g(3.8) '9(3. 8)}-
The followmg result establishes the asymptotic normality of GMM estimator B in (3)
and provides an explicit form of its asymptotic covariance matrix. The proof is given in

the Appendix.

Theorem 1. Assume (A1) and (B2). Suppose that the true value (7., Bs) of the parameter
(v,8) defined in (B2) and (C2) is an interior point of the parameter space, the function
g(x,w,~,B) defined in (2) is continuously differentiable in (v,3) in a neighborhood N
of (Vs,B4), X = E{g(Y, W ~.,8.)9(Y, W ~.,B.) "} exists and is positive definite, M =
E{Vsg(Y,W ., B.)} exists and is of full rank, and E{sup, gyen |V~.89(Y; W, 7, B)[I} <
oo, where V¢ denotes the vector of partial derivatives with respect to € and ||C||* =
trace(CC'"). Assume that the internal sample size ny — oo and the internal and external
size ratio ny/ng — r € [0,00) almost surely as n — co. Assume further that the external
summary statistic 4 is a GEE estimator using (1), A = E[{Y — (X T~,)}2 X X "] ewists
and is positive definite, the function () is continuously differentiable with derivative 1),
E{"(XT7.) XX} exists and is of full rank, and E{sup,cp;, [[¢/(XTv) XX T} < oo,
where N, is a neighborhood of ~y.. Then, for the estimator ,@ defined by (3),

Vi (B~ B.) % N(0.V), (4)
where & denotes convergence in distribution as n — oo,
V=M'2"M) "' +r(M'S'M)"'M"S" (O NETTMMTESTIM) T, (5)
and O denotes a vector or matrixz of all zeros with an appropriate order.
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When the size of external data is much larger than the size of internal data, i.e., the ratio
ni/ng — r = 0, the asymptotic covariance matrix of \/n_l(B\ —B)isV=ME1M)!
and the asymptotic distribution of B is not affected by the estimation of «. If r > 0, then
the second term on the right side of (5) is the price for estimating + by ~.

The GEE estimator without using external information, denoted as B 1, has the following

asymptotic distribution,

Vi (Br — B.) % N(0, (M= M) 7Y, (6)

where ) = E{gi(Y,W,B)g:(Y,W,8.)"}, M, = E{V3g:(Y,W , 3,)}, and g; is defined
in (2). It can be seen from (4) and (6) that B does not improve G; in terms of convergence
rate, i.e., they both have convergence rate n;1/2. This is due to the fact that (i) we do not
have external individual-level data but have only summary statistics not necessary in the
form for estimating B and/or (ii) we do not have external information from Z which may
be useful in estimating (3.

In the following we show that
M'™S™'M — M/ 3'M,; is semi-positive definite, (7)

i.e., the GMM estimator B in (3) is asymptotically more efficient than ,@I when r = 0,
although the convergence rates of [3\ and B ; are the same. From the definition of ¥ and g,

and g, in (2),

> El Z]12

where 212 = E{gl <Y7 WJ 16*>92(W7 s B*)T} and 22 = E{92<W7 s /6*)92<W7 Y ﬁ*)T}
From the partition of 3, we obtain that

21_1 + 21_1212(22 — 21221_1212)_12]—221_1 —21_1212(22 — 2]—22;1212)_1
(3 - ZLE'Ep) 2L (B - ZLE13) 7!

=



Note that M" = (M|, M), where M, = E{V3g2(W,~.,3:)}. Then
M'S"'"M=M'S"'M, +A"TA+B'B-A"B-B'A,

where A = (22 — 21—22;1212)_1/22]—22;1]\41 and B = (22 — 21—22;1212>_1/2M2, and
result (7) follows because ATA+ B'B — AT B — BT A is semi-positive definite. In fact,

for any vector ¢ with the same dimension as 3,
¢c'(ATA+B'B-A"B-B"A)c=(Ac— Be)* >0,

with the equality holding if and only if Ac = Be, i.e., (X,X;'M; — M)c = 0.
For assessing accuracy or statistical inference, we need a consistent (as n — 00) esti-
mator of the covariance matrix V' in (5). Using substitution based on (5) and assuming

the conditions in Theorem 1, we obtain the following consistent estimator,
v ATTS —1ar\— n (AT -IAF\-1IAFTS—1(0 O\ 17 F A rTS -1 75\~
V=(M'S"TM) l—|-n—(1)(M S'M)'M'S (07\)2 'M(M'S"'M)™,
where 3 is given by (3) with 3(1) replaced by B,
e 1 n N R 1 n
M=—> D\Vgg(Y;, W, 7, and A=—Y DY, —(X/9PX,X,
m; 59( 7, 8) m; {V: — (X3}

The matrix A can also be estimated by an accuracy measure for 4 if it is provided as
external summary information.

We end this section with a discussion about the extension to situation where the di-
mension of W depends on n and is high, which often occurs in modern statistical studies.
When the dimension of W diverges as n — oo, we can apply penalized GMM (Caner, 2009;
Liao, 2013) instead of the non-penalized GMM defined by (3), i.e., we obtain estimators

By, = argmin {5(5,8) E79(7.8) + M(8) }

Bl = argmin {g(3.8) 9(5.8) + M(8)}



where \,(3) is a suitably chosen penalty such as LASSO, SCAD, or MCP (Caner, 2009;
Liao, 2013). Asymptotic results for the penalized GMM estimator B\,\n can be established
under some conditions along the lines of Caner (2009), Liao (2013), He et al. (2016), Li
et al. (2021), and Tian and Feng (2022), which will be our future research.

3 GMM under Heterogeneous Data Populations

We focus on W with a dimension not varying with n. The extension to high dimensional

W is as discussed in the end of Section 2.

3.1 Robustness of GMM (3)

When (A1) may not hold, i.e., the internal and external distributions are possibly different,
we still consider GEE (B2) for internal data and GEE (1) for external data.
Our first question is whether the GMM estimator B given by (3) is robust against

assumption (Al). Consider the following assumption weaker than (A1),

EY|X,D=1)=EY|X,D=0) and f(x|D=1)=f(x|D=0). (A2)
Note that the first condition in (A2) is on conditional means and is implied by the condition
flyle,D=1)= f(y|z,D =0). Also, (A2) is implied by f(y,x|D =1) = f(y,x|D = 0),
which is still weaker than (A1l). By the second condition in (A2),

E{(X ') X |D =0} = E{(X '9)X | D = 1}.

Also,

EYX|D=0)=FE{EY|X,D=0)X|D =0}
=E{E(Y|X,D=1)X|D =0}
=F{EY|X,D=1)X|D=1}
=FEYX|D=1),

10



where the second equality is from the first condition in (A2) and the third equality follows
from the second condition in (A2) as E(Y | X, D = 1)X is a function of X. This together
with (B2) imply that (C2) in Section 2 holds even when internal and external populations
are different. Consequently, under (A2), we can use constraint (C2) in GEE (B2) and apply
the GMM in (3) as it involves internal data only, and the result in Section 2 still holds.

A similar argument shows that (C2) is satisfied and the result in Section 2 holds under

the following alternative assumption,
EYW,D=1)=EY|W,D=0) and f(w|D=1)=f(w|D=0). (A2)

Note that there is no definite relationship between the first conditions in (A2) and (A2'),
although both (A2) and (A2') are weaker than (Al).
This shows that the GMM estimator 3 in (3) is robust against (A1) to some extent.

3.2 Results under weaker assumptions on populations

We next consider extensions when neither (A2) nor (A2') holds. Can a valid estimator
using external summary information be derived under only the first condition in (A2)?
The following analysis indicates that we need some additional conditions.

As in the previous argument, we still just need to consider (1) to derive an appropriate

constraint for GEE (B2). From (1),
0=FE[E{YX —¢(X"v)X|X,D=0}D=0]
=E[{E(Y|X,D=0)—¢%X'¥)}X|D=0]
— E[{E(V|X,D=1) - $(X 7)}X|D =0]
~ [{BY|X =2.D=1) - v )} of (2| D = 0)da
— [ K@Y X = 2.0 =1) - e )} 2f(@| D = iz

— B{x(X)YX|D = 1} — E{s(X)¥(X 7)X|D =1},

11



where the third equality follows from the first condition in (A2), the fifth equality is from

_ fz|D=0)
) =1 ®

and k(-) is typically an unknown function. In the scenario where D;’s are random as

described in the beginning of Section 2, we have

P(D=0|x) P(Dzl)‘ (9)
P(D=1]z) P(D = 0)

However, E{x(X)Y X | D = 1} is not directly related with 3 in (B2) because of the extra
k(X). If we strengthen (B2) to

K(x) =

Els(X){Y —¢(W'B)}X|D =1] =0, (B2+)

which holds if the semiparametric mean model E(Y | W, D = 1) = ¢(W ) is correct,
then E{x(X)Y X |D =1} = E{rs(X)¢(W @)X |D = 1} and we obtain that

0= E[R(X){y(Xy) - ¢(W'B)}X|D =1], (C3)

which can be used as a constraint replacing (C2). We can view k(x) as an adjustment for
the difference in internal and external populations, in order to use the external information.
The idea here is similar to the use of propensity score in dealing with missing data, although
k(x) is an odds ratio of propensities in view of (9).

It remains to estimate x(x) in (8), as it is unknown. If we have external individual-
level data, then the estimation of k() in (8) is simple. As we only have external summary

statistics, we need another condition to estimate x(x). Assume that

k(X)=q(X n), ¢() is known, 1 is an unknown parameter vector, and

there is a vector function S of X with dimension > the dimension of n (10)
such that the sample mean of S is provided as an external summary

statistic or the population mean vector E(S) is known.

As an example, components of S can be the vector of indicators of gender and age group

with the number of groups > the dimension of . If X = X is continuous and univariate,

12



then S can be the vector whose jth component is X7, j = 0,1,....,] — 1 with [ > the
dimension of n.

We propose to estimate n by using GEE or GMM with estimation equation

1 < _
n ZDNJ(X:U) Si = So, (11)
i=1

where S is the available sample mean of S;’s in external dataset and n; is the internal
sample size. This is supported by the fact that, under the law of large numbers, the left
side of (11) converges in probability to E{x(X)S|D = 1} = E(S|D = 0) and the right
side of (11) converges in probability to E(S|D = 0). The situation where the population
mean of S is known can be treated similarly.

If the second condition in (A2) holds, then x(x) = 1 and (10) automatically holds with

S to be a constant. Thus, we consider the following assumption weaker than (A2),
E(Y|X,D=1)=E(Y|X,D=0) and (10) holds. (A3)
Under conditions (A3) and (B2+), we use (C3) as a constraint to obtain the GMM estimator
( g ) = argmin {Q('Ay, So,B.m)" =" 9(3, S0, B, 'n)} : (12)

where

_ 1 <
g<77§aﬁ7n) = n_lzng(}/;7m77aca137n)a
=1

{y—o(w'B)}w (13)
g<y7w777§7/67n) = q(an)s—g )
g@'n){Y(x'y) —d(w'B)}x

~ ] — FEPSR JUPUR
2+ = n_l Zng(Yla Wfiv?’a 507/3(1)777(1)>g(}/;7 “/i777 SO)B(I)an(l))Tv

i=1
s denotes E(S|D = 0), and (B0, 5")T = arg min {g(5.8,m)'9(%.8.m)}.
717
The following theorem establishes the asymptotic distribution of 8 and 7 in (12). The
proof is in the Appendix.

13



Theorem 2. Assume (A3) and (B24). Suppose that the true value (7., S, B«, Ms) of the
parameter (v,s,3,m) is an interior point of the parameter space, g(x,w,~,s, 3,n) defined
in (13) is continuously differentiable in (v,s,3,m) in a neighborhood N of the true value
(Yo, S, B i), By = E{g(Y, W, 7.,6., B, 1)g(Y, W, v, 6., Be ) T | D = 1} exists and
is positive definite, My = E{Vg, g(Y, W, 7., 6, B, n.) | D = 1} exists and is of full rank,
and E{sup(y ¢ gmen IVysm gV, W,v,6,8,n)|| | D = 1} < oo. Assume that n; — oo
and the ratio ny/ng — r € [0,00) almost surely as n — co. Assume further that the exter-
nal summary statistic 4 is a GEE estimator using (1), Ag = E[{Y — (X Tv.)}PX X" |
D = 0] ezists and is positive definite, the function ¥(-) is continuously differentiable

with derivative ', Hy = E{Y/' (X v)XX" | D = 0} exists and is of full rank, and

E{sup,en;, [0(XTy)XX T |D =0} < oo, where N, is a neighborhood of .. Then,
Jn_l( o= ) 4 N(0, V),
n—n.
where

o) 0 0
V+=<MIE+1M+>1+r<MIE+1M+>1MIE+1<o - c;l)z;M+(sz;M+>l,

0 Cp1 Ao

Co=FE{(S—6)(S—¢)"|D=0} and Cy; = E[{y( X "v.) = Y}X(S —<.)"|D=0].
As an alternative to (A3), we consider the following different relaxation of (A2'). If
E(Y|W,D=1)= E(Y|W,D =0), then
E(XY|D=0)=E{XEY|W,D=0)|D =0}
— B{XE(Y|W,D=1)|D =0}
= FE{r(W)E(XY|W,D=1)|D =1}
= FE{r(W)XY|D =1},

where the third equality follows from

f(w|D =0)

)= D= 1)

(14)

14



Under (B2+) with (X)) replaced by x(W'), we obtain constraint
0= Elx(W)X{d(X ") - o(W'B)}| D =1],

which can be used to replace (C3) and obtain the GMM estimator (12), if x(w) in (14)
can be estimated. Note that x(w) in (14) plays the same role as k() in (8). To estimate
k(w), we apply (11) with X replaced by W.

Thus, we consider the following assumption weaker than (A2'):
E(Y|W,D=1)=EXY|W,D =0) and (10) holds with x(W)=¢(W 'n). (A3)

Note that (A3’) does not have a definite relationship with (A3), because E(Y |W,D =1) =
E(Y|W,D = 0) has no definite relationship with E(Y'|X,D =1) = E(Y | X,D =0).
Under (A3’) and (B2+), we can apply the GMM estimator in (12). A result similar to
Theorem 2 can be established for the asymptotic normality of this GMM estimator.
To end this subsection we provide the following diagram of the relationships among
different assumptions on populations, where = indicates “stronger than”:
(A2) = (A3),

(Al) =
(A2") = (A3).

3.3 Estimation of covariance matrix V.,

The asymptotic covariance matrix of B is the first diagonal sub-matrix of V in Theorem 2
with dimension the same as that of 3. A consistent estimator of V. can be obtained by sub-
stituting 3, M, Ay, Cy, and Cy; in V. by consistent estimators. Matrices ¥, and M,
can be consistently estimated by %, and J/\EJr =n;' >0 DiVang(Vi, W/},'?,S_'O,B, n),

15



respectively. Matrices Ay, Cy, and Cp; can be estimated by consistent estimators

~ 1 — _ ~
Ao = - > Dig(W ){Y; — (X)X X,
i=1

~

1< . 5 S
Co= = >~ Dia(W/A)(S, ~ S0)(Si — S0)".
=1
~ 1 - T~ = S.) "
Cor = = > Dia(W ){(X[5) - ) X,(S, - S0
=1

respectively, where W; can be replaced by X; under (A3). The consistency of 6’0 and 6’01
follows from the law of large numbers, (A3) or (A3'), and the fact that E{x(W)(S—¢.)(S—
¢)'|D =1} = E{(§—¢.)(S—c.)"|D =0} = Cp and E[x(W){¢(X "v.) -V} XS"|D =
1] = E{(XT,) —=Y}XST|D = 0] = Co1. For Ay, the consistency of Ay is shown in the
Appendix under an additional minor condition that E(Y?|X,D =1) = E(Y?| X, D = 0).

Although the substitution estimator of V, is consistent, it often underestimates vari-
ances (MacKinnon and White, 1985). Thus, we consider a bootstrap procedure (Efron and
Tibshirani, 1993) as an alternative to the substitution method. Internal bootstrap data
(Y, W), i =1,...,nq, are generated as a simple random sample with replacement from
(Y;,W;), i = 1,...,n;. Since we do not have external individual level data, we generate

bootstrap analog of Sy and 7 using

S; So\ 1 Co ~ChLH"
ﬁ* % No _H—\l—lé()l ﬁl—lxoﬁl—l

where 6’0, 6’01 and lAXo are the same as previously defined and

— 1

Hi— - > DX ) (X)X X[
=1

The bootstrap GMM estimator (,@*, n*) is calculated according to (12) based on bootstrap
internal data and S; and 4*. This bootstrap procedure is repeated independently B (e.g.,

100) times and the bootstrap variance estimator for B\ is the sample variance of B B*’s.
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Note that this bootstrap method requires extra repeated computations. Thus, when ¢

in (B2) is nonlinear, we suggest a linearized bootstrap calculating

5B "
| = MM TIMETE TGN S0, B 1)+ | = (85— S0) | ¢
0 - -
Hi(v" - %)
where g*(7, S'O,B, n), f—I\f, ii, and M\j are g(7, S'O,B, n), f{\l, fh, and f\im respectively,
with (Y;, W;)’s replaced by (Y;*, W*)’s.

4 Empirical Results

4.1 Simulations

We first present some simulation results to examine the finite-sample performance of the
proposed GMM estimators (3) and (12) and to compare them with the GEE estimator with-
out using external summary information. Also, our simulation studies the performance of
variance estimators described in Section 3.3 and the related asymptotic confidence intervals
for components of 3 in (B2).

We consider a 4-dimensional normally distributed covariate vector

Uy 1 1 -04 04 0.3

Us 0 -04 1 03 04
~ N ,

Us 1 04 03 1 04

Uy 0 03 04 04 1

Following the notation in Sections 2-3, in internal analysis we use W = (X, Z )T with
X = (1,U,,Us,U3)" and Z = (Uy, U U,, U Uy) " In the external dataset, we only have X,
not Z, where Z contains not only Uy, but also the cross-products U,;Us; and U, Uy.

Two GEE models (B2) are considered in internal analysis.
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(i) Linear model E(Y |W) = W3, where 8 = (8o, 1, B2, B3, B4, B, Bs) T = (—1.6,0.7,0.4,
0.5,0.4,0.4,0.4)" is a 7-dimensional parameter vector and Y | W is normally dis-
tributed but we do not use the normality information in analysis.

(ii) Logistic model with binary Y and P(Y = 1|W) = 1/{1 + exp(W3)}, where 3 is

the 7-dimensional parameter vector in (i).

For the external data, we consider GEE (1) with ¢(t) = ¢ for linear model and (t) =
1/{1 + exp(t)} for the logistic setting. Although the model for internal data is correct,
the model for external data is wrong because, under the logistic setting, P(Y = 1| X) =
E{P(Y = 1|W)| X} is no longer logistic and, under the linear model setting, the product
terms U;U; and U;U,; in W are nonlinear.

To generate internal and external data, we consider random D with

1
1+ exp(no + mUs +n2Us)’

P(D=1|X,2,Y) =

Consequently,

qg(W'n) = exp (logr +no + mUi +nUs)

where r = P(D = 1)/P(D = 0). Three sets of n’s are considered; (1) ny = 2.3, 1 = 1y = 0;
(2) mo = 3.6, = —1,m2=0; (3) no = 3.8, ; = —1, e = 1. These values are chosen so
that r ~ 0.1. When 7, = 0, (W ') = ¢(X "n7). Throughout, we consider S = X.

We consider the total sample size n = 5,500. Since r &~ 0.1, the internal sample size n;
is around 500 and the external sample size ng is around 5, 000.

Based on 1,000 simulation runs, Tables 1-2 provide the bias, standard deviation (SD),
average standard error (SE), and coverage probability (CP) of 95% asymptotic confidence
interval for the estimation of 3;’s under the linear and logistic model settings (i)-(ii), re-
spectively. The SE of GEE estimator using internal data only is based on substitution.
The SE of GMM (12) is computed using both the substitution and bootstrap described in
Section 3.3. The SE of GMM (3) is computed using the substitution; the bootstrap is used
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only in the case where n; = 19 = 0, because the GMM (3) is incorrect when either 7, or 7,
is nonzero.

The following is a summary of the results in Tables 1-2.

1. The empirical results confirm our asymptotic theory, i.e., using external summary
information substantially improves efficiency and the confidence intervals based on
asymptotic theory work well. The SD of GMM (12), or GMM (3) when it is correct,
is much smaller than the SD of GEE without using external information, for the
estimation of B-coefficients in front of X. The improvement in many cases is over
50%. Although in some cases using internal data only leads to a CP closer to 95%,
this advantage is built on a much longer confidence interval. For estimation of 3-
coefficients in front of Z, the GMM does not improve or has a slight improvement,

because Z-information is not in the external data.

2. If the heterogeneity between internal and external populations exists and is not well
addressed, the use of external information may create a non-negligible bias of GMM
(3) leading to a very low CP. It also affects the convergence of GMM (3), for example,
the SD of GMM (3) is extremely large in some cases under the logistic setting. On
the other hand, the correctness of GMM (12) is not affected by whether heterogeneity
in population exists or not, and two GMM estimators have comparable performance

when populations are homogeneous.

3. For GMM (12), the SE based on substitution may underestimate, especially when 7,
or 1y is not 0. When this occurs, the SE based on bootstrap is better, although the

bootstrap SE sometimes leads to a conservative CP.

4.2 An example

We illustrate our approach with data from the National Health and Nutrition Examination

Survey (CDCP, 2018), a program collecting the health and nutritional status of nationally

19



representative adults and children across the United States. The internal dataset consists of
500 sampled units from 2017-2018 survey cycle, in which the response Y is the systolic blood
pressure and associated covariates of interest are gender, age, total cholesterol (mmol/L)
and triglycerides (mmol/L). The external dataset contains results from 6,755 sampled units
in the 2015-2016 survey with systolic blood pressure, gender, age, and total cholesterol, but
not triglycerides. With the notation in Section 2, X = (1, gender, age, total cholesterol)™
and Z = triglycerides. We only use the summary information from the external dataset,
i.e., the mean values of components of X and the GEE estimates of the parameters in a
working linear model between Y and X.

We compute three estimates of @ in (B2) with B8 = (8o, 81,52, 33, 84)" and W =
(XT,Z)", which are the GEE estimate with internal data only, the GMM (3) using ex-
ternal summary information but assuming identical internal and external populations, and
the GMM (12) with possibly heterogeneous internal and external populations. The esti-
mates together with standard errors (SE) calculated by substitution are shown in Table
3. Both GMM estimates (3) and (12) have considerably smaller standard errors than the
GEE estimate using internal data only, except for the estimation of £, for triglycerides as
the external dataset has no information about triglycerides. The two GMM estimates are
not significantly different in the estimation of B-coefficients in front of gender, age, and
triglycerides, but they are different in the estimation of intercept 5y and S3 for choles-
terol, which indicates that the assumption of identical internal and external populations is

questionable.

Supplementary Material

The supplementary material contains computer codes.
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Appendix
Proof of Theorem 1. Since 3 is a solution to (3),
0=Vs9(3.0)E"9(7.5).
From Taylor’s expansion of g(v,3) at B = 8. and v = ~,,
9(7.8) = g(v..8.) + Va g(3.8)(B - B.) + V4 9(7.B)F — ),

where 3 is between 3, and B, and 4 is between 4, and 4. Combining the two equations

we obtain that

N PPN _ Y1 PPN -

B-B.=—{Vs3(.B) £ Vag(3.8)} Vaa.B) S a8+, 93,8 -}
Under the assumed conditions in Theorem 1, /no(¥ — v+) [ no 4 N(0, H-XAH ), where
ng =n—ny and H = B{¢/(X"v)XX"}. Hence, /nt HH — ~.) N N(0,7A) since
ni/ng — r. Further, under the assumed conditions, IR >4 Vgg(ﬁ,ﬁ) 5 M,
Vsg(7,8) & M, and V,g(%,8) & E{V,3(7.,8.)} = (I?{ , where & denotes conver-

gence in probability. Hence,

V(B = B.) = —/m(M TS M) MTE TG (v B.) + (1))} + 0p(1),

=
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where 0,(1) denotes a term converging to 0 in probability. From the central limit theorem,
V11 g(Vs, Be) 4N (0,3). Then the result follows from the independence between 4 and

internal data and
00

\/n_1<H(AO 0 A

- 7*)) safor
In the previous argument, we use the following result repeatedly to handle the case where
ny is random. If a quantity Q, satisfies \/n1Q, | 4N (0,€) for some fixed matrix €2
not depending on n, then unconditionally we also have /1@, 4N (0,9).

Proof of Theorem 2. Following the proof of Theorem 1, we obtain that

~ 0
:3_5* _ _ _ _ _
Vi | = —/m(M[S M) MIS S (v 6, Bem)+ | —(So — ) | p+op(1),
7 — 1. 5
Hl('Y_'Y*)

where H; = E[¢(X "n.)¢ (X Tv)X X" | D = 1] = H, under (A3). Then the result

follows from the independence between (7, Sy) and internal data and

0 0O O 0
Vil =S-<) | EN]or| 0 ¢ Cf
Hl(’/)\’—')’*) 0 Cn Ao

Proof of the consistency of KO in Section 3.3. Under the assumed conditions and the

law of large numbers, JAXU converges in probability to

Er(W)H{Y = (X 7))’ X X" |D = 1]
= E{s(W)E[{Y = (X "7.)}’XX"|X,D =1]|D = 1}
= E{E{{Y —¢(X "))’ XX | X,D =1]| D = 0}
= E{B{Y —¢(X"7.)}’XX | X,D =0]| D =0}
= E[{Y — (XT3}’ X X" |D = 0]
= Ag.
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Table 1. Bias, standard deviation (SD), average standard error (SE), and coverage proba-
bility (CP) of 95% asymptotic confidence interval based on 1,000 simulations under linear

model setting

substitution bootstrap

Mo m 172 estimand method bias SD SE CP SE CPp

23 0 0 Bo GEE (internal) -0.001 0.167 0.169 0.950
GMM (12) -0.007 0.111 0.110 0.954 0.110 0.965
GMM (3) -0.011 0.110 0.112 0.954 0.114 0.957

b1 GEE (internal) 0.005 0.147 0.144 0.951
GMM (12) 0.004 0.096 0.097 0.958 0.100 0.966
GMM (3) 0.006 0.096 0.099 0.965 0.100 0.970

Ba GEE (internal) 0.008 0.166 0.170 0.955
GMM (12) 0.008 0.138 0.134 0.941 0.142 0.954
GMM (3) 0.010 0.136 0.136 0.945 0.140 0.951

B3 GEE (internal) -0.003 0.123 0.122 0.947
GMM (12) 0.004 0.065 0.062 0.932 0.064 0.940
GMM (3) 0.004 0.064 0.062 0.942 0.062 0.938

B4 GEE (internal) -0.010 0.150 0.154 0.951
GMM (12) -0.011 0.153 0.153 0.955 0.161 0.963
GMM (3) -0.011 0.150 0.153 0.952 0.157 0.956

Bs GEE (internal) 0.002 0.090 0.090 0.943
GMM (12) -0.001  0.093 0.089 0.937 0.096 0.955
GMM (3) -0.001 0.091 0.089 0.940 0.090 0.951

Be GEE (internal) 0.001 0.091 0.093 0.944
GMM (12) -0.000 0.094 0.092 0.944 0.098 0.955
GMM (3) -0.001 0.092 0.093 0.944 0.096 0.946
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Table 1 (continued)

substitution bootstrap
Mo m 12 estimand method bias SD SE CP SE CP

36 -1.0 0 Bo GEE (internal) 0.013 0.217 0.216 0.947
GMM (12) -0.004 0.129 0.119 0.926 0.129 0.947

GMM (3) 0.117 0.138 0.139 0.880

B GEE (internal) -0.009 0.151 0.148 0.944
GMM (12) 0.003 0.106 0.097 0.930 0.104 0.946

GMM (3) -0.112 0.114 0.111 0.817

B GEE (internal) -0.007 0.218 0.220 0.951
GMM (12) -0.024 0.154 0.142 0.927 0.157 0.948

GMM (3) -0.362 0.204 0.207 0.597

B3 GEE (internal) 0.001 0.119 0.118 0.946
GMM (12) -0.001 0.072 0.065 0.931 0.072 0.947

GMM (3) 0.003 0.065 0.067 0.954

Ba GEE (internal) -0.003 0.205 0.211 0.944
GMM (12) -0.001 0.191 0.187 0.940 0.205 0.962

GMM (3) -0.037 0.209 0.213 0.945

Bs GEE (internal) 0.000 0.097 0.094 0.937
GMM (12) 0.006 0.078 0.070 0.914 0.078 0.937

GMM (3) 0.027 0.111 0.095 0.891

Be GEE (internal) 0.001 0.098 0.096 0.938
GMM (12) -0.002 0.087 0.081 0.926 0.090 0.955

GMM (3) 0.016 0.102 0.097 0.931
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Table 1 (continued)

substitution bootstrap
Mo m 12 estimand method bias SD SE CP SE CP

3.8 -1.0 1.0 Bo GEE (internal) 0.006 0.258 0.254 0.944
GMM (12) -0.028 0.169 0.144 0.900 0.170 0.931

GMM (3) 0.167 0.211 0.215 0.895

163} GEE (internal) 0.002 0.164 0.162 0.946
GMM (12) 0.018 0.116 0.100 0.902 0.114 0.934

GMM (3) 0.187 0.137 0.133 0.713

Ba GEE (internal) -0.001 0.203 0.207 0.953
GMM (12) -0.003 0.168 0.149 0.909 0.167 0.953

GMM (3) -0.369 0.235 0.191 0.538

B3 GEE (internal) -0.006 0.123 0.121 0.950
GMM (12) 0.001 0.081 0.070 0.921 0.079 0.945

GMM (3) 0.007 0.081 0.072 0.921

B4 GEE (internal) 0.007 0.189 0.191 0.953
GMM (12) -0.005 0.184 0.173 0.929 0.191 0.953

GMM (3) 0.046 0.198 0.195 0.941

Bs GEE (internal) 0.004 0.098 0.096 0.043
GMM (12) 0.005 0.088 0.080 0.908 0.088 0.938

GMM (3) 0.212 0.157 0.100 0.475

Be GEE (internal) -0.004 0.100 0.094 0.932
GMM (12) -0.002 0.099 0.090 0.925 0.098 0.948

GMM (3) -0.049 0.115 0.096 0.872
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Table 2. Bias, standard deviation (SD), average standard error (SE), and coverage proba-
bility (CP) of 95% asymptotic confidence interval based on 1,000 simulations under logistic

model setting

substitution bootstrap

Mo m 172 estimand method bias SD SE CP SE CPp

23 0 O Bo GEE (internal) -0.043 0.244 0.245 0.960
GMM (12) -0.014 0.121 0.121 0.953 0.125 0.960
GMM (3) -0.012  0.122 0.122 0.956 0.133 0.965

b1 GEE (internal) 0.032 0.207 0.199 0.944
GMM (12) 0.009 0.116 0.112 0.945 0.114 0.950
GMM (3) 0.006 0.116 0.113 0.944 0.121 0.956

B, GEE (internal) -0.012 0.239 0.235 0.941
GMM (12) -0.027 0.172 0.166 0.946 0.171 0.949
GMM (3) -0.029 0.172 0.168 0.944 0.184 0.956

B3 GEE (internal) 0.012 0.174 0.165 0.935
GMM (12) 0.010 0.080 0.075 0.931 0.076 0.932
GMM (3) 0.009 0.077 0.075 0.942 0.080 0.954

Ba GEE (internal) 0.023 0.233 0.222 0.937
GMM (12) 0.023 0.235 0.217 0.928 0.224 0.935
GMM (3) 0.027 0.236 0.218 0.926 0.237 0.926

Bs GEE (internal) 0.026 0.146 0.141 0.939
GMM (12) 0.029 0.151 0.140 0.933 0.143 0.938
GMM (3) 0.029 0.147 0.140 0.936 0.157 0.937

Be GEE (internal) 0.003 0.175 0.166 0.919
GMM (12) 0.004 0.177 0.163 0.916 0.168 0.923
GMM (3) 0.002 0.177 0.163 0.917 0.192 0.958
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Table 2 (continued)

substitution bootstrap
Mo m 12 estimand method bias SD SE CP SE CP

3.6 -1.0 0 Bo GEE (internal) -0.043 0.315 0.309 0.947
GMM (12) -0.014 0.143 0.136 0.938 0.147 0.950

GMM (3) -0.165 3.523 5.265 0.968

b1 GEE (internal) 0.017 0.212 0.210 0.950
GMM (12) 0.007 0.130 0.120 0.936 0.127 0.948

GMM (3) 0.074 2472 3.694 0.942

Ba GEE (internal) -0.027 0.307 0.306 0.951
GMM (12) -0.050 0.193 0.174 0.926 0.188 0.939

GMM (3) -0.548 3.224 4.839 0.632

B3 GEE (internal) 0.016 0.170 0.165 0.936
GMM (12) 0.005 0.082 0.080 0.949 0.085 0.960

GMM (3) 0.020 0.109 0.204 0.947

Ba GEE (internal) 0.056 0.355 0.335 0.937
GMM (12) 0.040 0.330 0.302 0.925 0.317 0.935

GMM (3) 0.034 0.523 0.793 0.927

Bs GEE (internal) 0.025 0.151 0.145 0.938
GMM (12) 0.031 0.119 0.109 0.927 0.115 0.946

GMM (3) 0.122 2296 3.415 0.930

Be GEE (internal) -0.013 0.187 0.181 0.940
GMM (12) -0.001 0.174 0.164 0.938 0.170 0.947

GMM (3) 0.018 0.511 0.829 0.933
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Table 2 (continued)

substitution bootstrap

Mo m 12 estimand method bias SD SE CP SE CP

3.8 -1.0 1.0 Bo GEE (internal) -0.050 0.364 0.353 0.941
GMM (12) -0.030 0.195 0.166 0.893 0.189 0.929

GMM (3) -6.187 25.43 2329 0917

163} GEE (internal) 0.030 0.240 0.231 0.943
GMM (12) 0.021 0.140 0.124 0.917 0.138 0.937

GMM (3) 6.296 22.02 2328 0.748

Ba GEE (internal) 0.011 0.333 0.318 0.941
GMM (12) -0.035 0.209 0.194 0.047 0.212 0.956

GMM (3) -8.351 37.03 3779 0.797

B3 GEE (internal) 0.012 0.184 0.176 0.940
GMM (12) 0.002 0.097 0.087 0.932 0.096 0.954

GMM (3) 1.430 5.916 412.7 0.936

B4 GEE (internal) 0.043 0.322 0.309 0.939
GMM (12) 0.036 0.308 0.272 0.922 0.292 0.947

GMM (3) 5.981 26.77 2424 0.902

Bs GEE (internal) 0.013 0.172 0.163 0.946
GMM (12) 0.022 0.136 0.129 0.952 0.139 0.959

GMM (3) 6.683 27.06 2854 0.881

Be GEE (internal) -0.008 0.183 0.174 0.934
GMM (12) -0.001 0.180 0.162 0.921 0.172 0.933

GMM (3) 0.934 13.62 877.8 0.900
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Table 3. Estimate and standard error (SE) in the example with data from the National

Health and Nutrition Examination Survey (Section 4.2)

estimand method estimate SE
Bo: intercept GEE (internal)  95.5358 3.3002
GMM (12) 054741  0.9782
GMM (3) 98.5944 0.9857
p1: gender GEE (internal)  -2.6235 1.4682
GMM (12) 27205 0.4953
GMM (3) 12,8063  0.4982
Pa: age GEE (internal)  0.4239 0.0372
GMM (12) 0.4499 0.0106
GMM (3) 0.4532  0.0105
Ps: cholesterol  GEE (internal) 1.9175 0.7426
GMM (12) 1.5935 0.3172
GMM (3) 0.7960  0.3164
By: triglycerides GEE (internal) 1.0296 0.4954
GMM (12) 0.7727  0.4927
GMM (3) 1.0780 0.4951
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