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Abstract

We give estimates from below for the error of approximation of a compact subset from
a Banach space by the outputs of feed-forward neural networks with width W , depth ℓ and
Lipschitz activation functions. We show that, modulo logarithmic factors, rates better that
entropy numbers’ rates are possibly attainable only for neural networks for which the depth
ℓ → ∞, and that there is no gain if we fix the depth and let the width W → ∞.

1 Introduction

The fascinating new developments in the area of Artificial Intelligence (AI) and other important
applications of neural networks prompt the need for a theoretical mathematical study of their
potential to reliably approximate complicated objects. Various network architectures have been
used in different applications with substantial success rates without significant theoretical back-
ing of the choices made. Thus, a natural question to ask is whether and how the architecture
chosen affects the approximation power of the outputs of the resulting neural network.

In this paper, we attempt to clarify how the width and the depth of a feed-forward neural
network affect its worst performance. More precisely, we provide estimates from below for the
error of approximation of a compact subset K ⊂ X of a Banach space X by the outputs of feed-
forward neural networks (NNs) with width W , depth ℓ, bound w(W, ℓ) on their parameters, and
Lipschitz activation functions. Note that the ReLU function is included in our investigation
since it is a Lipschitz function with a Lipschitz constant L = 1.

To prove our results, we assume that we know lower bounds on the entropy numbers of the
compact sets K that we approximate by the outputs of feed-forward NNs. Such bounds are
known for a wide range of classical and novel classes K and Banach spaces X, and are usually
of the form n−α[log n]β , α > 0, β ∈ R. We refer the reader to [8, Chapters 3,4], [10, Chapter
15],[5, Section 5], [18, Theorem 9], or [6, 9], where such examples are provided.

It is a well known fact that the number n of parameters of a feed-forward NN with width
W and depth ℓ is

n ≍

{

W 2ℓ, when ℓ > 1,

W, when ℓ = 1.
(1)

Let us denote by Σ(W, ℓ, σ;w) the set of functions that are outputs of a such a NN with bounds
w = w(W, ℓ) on its parameters and with Lipschitz activation function. We prove estimates
from below for the error E(K,Σ(W, ℓ, σ;w))X of approximation of a class K by the functions
from Σ(W, ℓ, σ;w), see Theorem 4.1. Our conclusion is that under a moderate growth of the
bound w ≍ nδ, δ ≥ 0, one can possibly obtain rates of approximation that are better than the
corresponding entropy numbers’ rates only when the depth of the NN is let to grow. If the
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rate of approximation of K by outputs of feed-forward NNs is better than the decay rate of its
entropy numbers, then we say that we have super convergence. In fact, since we only obtain
estimates from below, we claim that super convergence is possibly attainable in such cases. If
the depth ℓ is fixed, then the rates of decay of E(K,Σ(W, ℓ, σ;w))X cannot be better (modulo
logarithmic factors) than the rates of the entropy numbers of K. If both the width W and depth
ℓ are allowed to grow, then an improvement of the rates of decay of E(K,Σ(W, ℓ, σ;w))X in
comparison to the entropy numbers’ decay is possible. Of course, the bound w on the NN’s
parameters also has an effect and a fast growing bound, for example w ≍ 2n, could lead to
improved convergence in all cases. However, one needs to be aware of the fact that NNs with
such bounds are computationally infeasible.

We show that the mapping assigning to each choice of neural network parameters the function
that is an output of a feed-forward NN with these parameters is a Lipschitz mapping, see
Theorem 3.1. This allows us to study the approximation properties of such NNs via the recently
introduced Lipschitz widths, see [14, 15]. We have utilized this approach in [15] to discuss deep
(W = W0 is fixed and ℓ → ∞) and shallow (W → ∞ and ℓ = 1) NNs with bounded Lipschitz
or ReLU activation functions and their limitations in approximating compact sets K. Here, we
implement the developed technique to treat NNs for which both W, ℓ → ∞. Results in this
direction are available for shallow and deep NNs, and we refer the reader to the series of works
[19, 2, 22, 20, 21, 16, 1, 7, 12, 13], where various estimates from below are given for the error of
approximation for particular classes K and Banach spaces X.

The paper is organized as follows. In §2, we introduce our notation, recall the definitions
of NNs, entropy numbers and Lipschitz widths, and state some known results about them. We
show in §3 that feed-forward NNs are Lipschitz mappings. Finally, in §4, we use results for
Lipschitz widths to derive estimates from below for the error of neural network approximation
for a compact class K.

2 Preliminaries

In this section, we introduce our notation and recall some known facts about NNs, Lipschitz
widths and entropy numbers. In what follows, we will denote by A & B the fact that there is
an absolute constant c > 0 such that A ≥ cB, where A,B are some expressions that depend on
some variable which tends to infinity. Note that the value of c may change from line to line,
but is always independent on that variable. Similarly, we use the notation A . B (defined in
an analogues way) and A ≍ B if A & B and A . B.

We also write A = A(B) to stress the fact that the quantity A depends on B. For example,
if C is a constant, the expression C = C(d, σ) means that C depends on d and σ.

2.1 Entropy numbers

We recall, see e.g. [3, 4, 10], that the entropy numbers ǫn(K)X , n ≥ 0, of a compact set K ⊂ X
are defined as the infimum of all ǫ > 0 for which 2n balls with centers from X and radius ǫ cover
K. Formally, we write

ǫn(K)X = inf{ǫ > 0 : K ⊂

2n
⋃

j=1

B(gj , ǫ), gj ∈ X, j = 1, . . . , 2n}.

2.2 Lipschitz widths

We denote by (Rn, ‖.‖Yn
), n ∈ N, the n-dimensional Banach space with a fixed norm ‖ · ‖Yn

, by

BYn
(r) := {y ∈ R

n : ‖y‖Yn
≤ r},
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its ball with radius r, and by
‖y‖ℓn

∞
:= max

j=1,...,n
|yj |,

the ℓ∞ norm of y = (y1, . . . , yn) ∈ R
n. The Lipschitz widths dγn(K)X of the compact set K with

respect to the norm ‖ · ‖X is defined as

dγn(K)X := inf
Ln, r>0, ‖·‖Yn

sup
f∈K

inf
y∈BYn (r)

‖f − Ln(y)‖X , (2)

where the infimum is taken over all γ/r-Lipschitz maps Ln : (BYn
(r), ‖·‖Yn

) → X, all r > 0, and
all norms ‖·‖Yn

in R
n. We have proven, see Theorem 9 in [15], the following result which relates

the behavior of the entropy numbers of K and its Lipschitz widths with a Lipschitz constant
γ = 2ϕ(n).

Theorem 2.1. For any compact set K ⊂ X, we consider the Lipschitz width dγn
n (K)X with

Lipschitz constant γn = 2ϕ(n), where ϕ(n) ≥ c log2 n for some fixed constant c > 0. Let α > 0
and β ∈ R. Then the following holds:

(i) ǫn(K)X &
(log2 n)β

nα
, n ∈ N ⇒ dγn

n (K)X &
[log2(nϕ(n))]β

[nϕ(n)]α
, n ∈ N; (3)

(ii) ǫn(K)X & [log2 n]−α, n ∈ N ⇒ dγn
n (K)X & [log2(nϕ(n))]−α, n ∈ N. (4)

2.3 Neural networks

Let us denote by C(Ω) the set of continuous functions defined on the compact set Ω ⊂ R
d,

equipped with the uniform norm.
A feed-forward NN with activation function σ : R → R, width W , depth ℓ and bound

w = w(W, ℓ) on its parameters generates a family Σ(W, ℓ, σ;w) of continuous functions

Σ(W, ℓ, σ;w) := {ΦW,ℓ
σ (y) : y ∈ R

n} ⊂ C(Ω), Ω ⊂ R
d,

where the number of parameters n satisfies (1). Each y ∈ R
n, ‖y‖ℓn

∞
≤ w determines a contin-

uous function ΦW,ℓ
σ (y) ∈ Σ(W, ℓ, σ;w), defined on Ω, of the form

ΦW,ℓ
σ (y) := A(ℓ) ◦ σ̄ ◦A(ℓ−1) ◦ . . . ◦ σ̄ ◦A(0), (5)

where σ̄ : RW → R
W is given by

σ̄(z1, . . . , zW ) = (σ(z1), . . . , σ(zW )), (6)

and A(0) : R
d → R

W , A(j) : R
W → R

W , j = 1, . . . , ℓ − 1, and A(ℓ) : R
W → R are affine

mappings. The coordinates of y ∈ R
n are the entries of the matrices and offset vectors (biases)

of the affine mappings A(j), j = 0, . . . , ℓ, taken in a pre-assigned order. The entries of A(j)

appear before those of A(j+1) and the ordering for each A(j) is done in the same way. We refer
the reader to [7] and the references therein for detailed study of such NNs with fixed width
W = W0 and depth ℓ → ∞.

We view a feed-forward NN as a mapping that to each vector of parameters y ∈ R
n assigns

the output ΦW,ℓ
σ (y) ∈ Σ(W, ℓ, σ;w) of this network,

y → ΦW,ℓ
σ (y), (7)

where all parameters (entries of the matrices and biases) are bounded by w(W, ℓ), namely

Σ(W, ℓ, σ;w) = ΦW,ℓ
σ (Bℓn

∞
(w(W, ℓ))),
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with ΦW,ℓ
σ being defined in (5).

Lower bounds for the error of approximation of a class K ⊂ X by the outputs of DNNs (when
W = W0 for a fixed W0 and ℓ → ∞, in which n ≍ ℓ) and SNNs (when ℓ = 1 and W → ∞, in
which n ≍ W ) have been discussed in [15] in the case of bounded Lipschitz or ReLU activation
functions. In this paper, we state similar results for any feed-forward NN with general Lipschitz
activation function. We use the approach from [15] and first show that the mapping (7) is a
Lipschitz mapping.

3 Feed-forward NNs are Lipshitz mappings

Let us denote by
L := max{L′, |σ(0)|}, (8)

where L′ is the Lipschitz constant of σ. Then the following theorem is a generalization of
Theorems 3 and 5 from [15] to the case of any feed-forward NN.

Theorem 3.1. Let X be a Banach space such that C([0, 1]d) ⊂ X is continuously embedded
in X. Then the mapping ΦW,ℓ

σ : (Bℓn
∞

(w(W, ℓ)), ‖ · ‖ℓn
∞

) → X, defined in (5) with a Lipschitz
function σ, is an Ln-Lipschitz mapping, that is,

‖ΦW,ℓ
σ (y) − ΦW,ℓ

σ (y′)‖X ≤ Ln‖y − y′‖ℓn
∞
, y, y′ ∈ Bℓn

∞
(w(W, ℓ)).

Moreover, there are constants c1, c2 > 0 such that

2c1ℓ log2
(W (w+1))) < Ln < 2c2ℓ log2

(W (w+1))), w = w(W, ℓ),

provided LW ≥ 2.

Proof: Let us first set up the notation ‖g‖ := max
1≤i≤W

‖gi‖C(Ω), where g is the vector function

g = (g1, . . . , gW )T whose coordinates gi ∈ C(Ω). We also will use

w := w(W, ℓ), and w̃ := w + 1.

Let y, y′ be the two parameters from Bℓn
∞

(w(W, ℓ)) that determine the continuous functions
ΦW,ℓ

σ (y), ΦW,ℓ
σ (y′) ∈ Σ(W, ℓ, σ;w). We fix x ∈ Ω and denote by

η(0)(x) := σ(A0x + b(0)), η′(0)(x) := σ(A′
0x + b′(0)),

η(j) := σ(Ajη
(j−1) + b(j)), η′(j) := σ(A′

jη
′(j−1) + b′(j)), j = 1, . . . , ℓ− 1,

η(ℓ) := Aℓη
(ℓ−1) + b(ℓ), η′(ℓ) := A′

ℓη
′(ℓ−1) + b′(ℓ).

Note that A0, A
′
0 ∈ R

W×d, Aj , A
′
j ∈ R

W×W , b(j), b′(j) ∈ R
W , for j = 0, . . . , ℓ − 1, while

Aℓ, A
′
ℓ ∈ R

1×W , and b(ℓ), b′(ℓ) ∈ R. Each of the η(j), η′(j), j = 0, . . . , ℓ− 1, is a continuous vector
function with W coordinates, while η(ℓ), η′(ℓ) are the outputs of the NN with activation function
σ and parameters y, y′, respectively.

Since, see (8),

|σ(t)| ≤ |σ(t) − σ(0)| + |σ(0)| ≤ L(|t| + 1), |σ(t1) − σ(t2)| ≤ L|t1 − t2|, t1, t2 ∈ R,

it follows that for any m, vectors ȳ, ŷ, η ∈ R
m and numbers y0, ŷ0 ∈ R, where ȳ, y0 and ŷ, ŷ0 are

subsets of the coordinates of y, y′ ∈ R
n, respectively, we have

|σ(ȳ · η + y0)| ≤ L(|ȳ · η + y0| + 1) ≤ L(m‖η‖ℓm
∞

+ 1)‖y‖ℓn
∞

+ L (9)

≤ L(m‖η‖ℓm
∞

+ 1)w + L < Lw̃m‖η‖ℓm
∞

+ Lw̃
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and

|σ(ȳ · η + y0) − σ(ŷ · η + ŷ0)| ≤ L(m‖η‖ℓm
∞

+ 1)‖y − y′‖ℓn
∞
. (10)

Then we have ‖η′(0)‖ < Lw̃d + Lw̃ (when m = d and η = x) and

‖η′(j)‖ < LWw̃‖η′(j−1)‖ + Lw̃, j = 1, . . . , ℓ,

(when m = W and η = η′(j−1)). One can show by induction that for j = 1, . . . , ℓ,

‖η′(j)‖ ≤ dW j [Lw̃]j+1 + Lw̃

j
∑

i=0

[LWw̃]i.

Therefore, we have that

‖η′(j)‖ ≤ dW j [Lw̃]j+1 + 2Lw̃[LWw̃]j = (d + 2)Lw̃[LWw̃]j , (11)

since LWw̃ > LW ≥ 2. The above inequality also holds for j = 0.
Clearly, we have

‖η(0) − η
′(0)‖ ≤ L(d + 1)‖y − y′‖ℓn

∞
=: C0‖y − y′‖ℓn

∞
.

Suppose we have proved the inequality

‖η(j−1) − η′(j−1)‖ ≤ Cj−1‖y − y′‖ℓn
∞
,

for some constant Cj−1. Then we derive that

‖η(j) − η′(j)‖ ≤ L‖Ajη
(j−1) + b(j) −A′

jη
′(j−1) − b′(j)‖

≤ L‖Aj(η
(j−1) − η′(j−1))‖ + L‖(Aj −A′

j)η
′(j−1)‖ + L‖b(j) − b′(j)‖

≤ LW‖y‖ℓn
∞
‖η(j−1) − η′(j−1)‖ + LW‖y − y′‖ℓn

∞
‖η′(j−1)‖ + L‖y − y′‖ℓn

∞

≤ (LWw̃Cj−1 + LW (d + 2)Lw̃[LWw̃]j−1 + L)‖y − y′‖ℓn
∞

= L(Ww̃Cj−1 + (d + 2)[LWw̃]j + 1)‖y − y′‖ℓn
∞

=: Cj‖y − y′‖ℓn
∞
,

where we have used that ‖y‖ℓñ
∞

≤ w, the bound (11), and the induction hypothesis. The relation
between Cj and Cj−1 can be written as

C0 = L(d + 1), Cj = L(Ww̃Cj−1 + (d + 2)[LWw̃]j + 1), j = 1, . . . , ℓ.

Clearly,
C1 = L((d + 1)LWw̃ + (d + 2)LWw̃ + 1) < (d + 2)L(2LWw̃ + 1),

and we obtain by induction that

Cℓ < (d + 2)L

(

ℓ[LWw̃]ℓ +

ℓ
∑

i=0

[LWw̃]i

)

.

If we use the fact 2 ≤ LW < LWw̃, we derive the inequality

Cℓ < (d + 2)L(ℓ + 2)[LWw̃]ℓ.

5



Finally, we have

‖ΦW,ℓ
σ (y) − ΦW,ℓ

σ (y′)‖C(Ω) = ‖η(ℓ) − η′(ℓ)‖ ≤ Cℓ‖y − y′‖ℓn
∞

< (d + 2)L(ℓ + 2)[LWw̃]ℓ‖y − y′‖ℓn
∞
,

and therefore

‖ΦW,ℓ
σ (y) − ΦW,ℓ

σ (y′)‖X ≤ c0‖ΦW,ℓ
σ (y) − ΦW,ℓ

σ (y′)‖C(Ω) ≤ C̃ℓ[LWw̃]ℓ‖y − y′‖ℓn
∞
,

where C̃ = C̃(d, σ). Clearly, the Lipschitz constant Ln := C̃ℓ[LWw̃]ℓ is such that 2c1ℓ log2
(W (w+1)) <

Ln < 2c2ℓ log2
(W (w+1)) for some c1, c2 > 0, and the proof is completed. ✷

Remark 3.2. Note that the proof of Theorem 3.1 holds also in the case when every coordinate
of σ̄, see (6), is chosen to be a different Lipschitz function σ as long as LW ≥ 2, where L is
defined via (8).

4 Estimates from below for neural network approximation

In this section, we consider Banach spaces X such that C([0, 1]d) is continuously embedded in
X. Let us denote by

E(f,Σ(W, ℓ, σ;w))X := inf
y∈Bn

ℓ∞
(w)

‖f − ΦW,ℓ
σ (y)‖X ,

the error of approximation in the norm ‖ · ‖X of the element f ∈ K by the set of outputs
Σ(W, ℓ, σ;w) of a feed-forward NN with width W , depth ℓ, activation function σ, and a bound
w on its parameters y, that is ‖y‖ℓn

∞
≤ w. We also denote by

E(K,Σ(W, ℓ, σ;w))X := sup
f∈K

E(f,Σ(W, ℓ, σ;w))X ,

the error for the class K ⊂ X. It follows from Theorem 3.1 that

E(K,Σ(W, ℓ, σ;w))X ≥ dγn
n (K)X , with γn = 2cℓ log2

(W (w+1)) =: 2ϕ(n), (12)

for some c > 0. Therefore, see (1),

nϕ(n) =

{

cnℓ log2(W (w + 1)), n ≍ W 2ℓ, ℓ > 1,

cn log2(n(w + 1)), n ≍ W, ℓ = 1,

and we can state the following corollary of (12) and Theorem 2.1.

Theorem 4.1. Let Σ(W, ℓ, σ;w) be the set of outputs of an n parameter NN with width W ,
depth ℓ, Lipschitz activation function σ and weights and biases bounded by w, where LW ≥ 2.
Then, the error of approximation E(K,Σ(W, ℓ, σ;w))X of a compact subset K of a Banach space
X by Σ(W, ℓ, σ;w) satisfies the following estimates from below, provided we know the following
information about the entropy numbers ǫn(K)X of K:

• if for α > 0 and β ∈ R we have

ǫn(K)X &
[log2 n]β

nα
, n ∈ N,

then

E(K,Σ(W, ℓ, σ;w))X &















1
nαℓα

· [log
2
(nℓ log

2
(W (w+1)))]β

[log
2
(W (w+1))]α , n ≍ W 2ℓ, ℓ > 1,

1
nα · [log

2
(n log

2
(nw))]β

[log
2
(n(w+1))]α , n ≍ W, ℓ = 1.
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• if for α > 0 we have
ǫn(K)X & [log2 n]−α, n ∈ N,

then

E(K,Σ(W, ℓ, σ;w))X &











[log2(nℓ log2(W (w + 1)))]−α, n ≍ W 2ℓ, ℓ > 1,

[log2(n log2(n(w + 1)))]−α, n ≍ W, ℓ = 1.

Proof: The proof follows directly from (12) and Theorem 2.1. ✷

Remark 4.2. Theorem 4.1 gives various estimates from below depending on the behavior of the
bound w = w(W, ℓ) on the absolute values of the parameters of the NN. Here we state only one
particular case. Under the conditions of Theorem 4.1 with w = w(W, ℓ) = const, we have:

• if for α > 0 and β ∈ R we have

ǫn(K)X &
[log2 n]β

nα
, n ∈ N,

then

E(K,Σ(W, ℓ, σ;w))X &











1
nαℓα

· [log
2
(nℓ log

2
W )]β

[log
2
W ]α , n ≍ W 2ℓ, ℓ > 1,

1
nα · [log2 n]β−α, n ≍ W, ℓ = 1.

• if for α > 0 we have
ǫn(K)X & [log2 n]−α, n ∈ N,

then

E(K,Σ(W, ℓ, σ;w))X &











[log2(nℓ log2 W )]−α, n ≍ W 2ℓ, ℓ > 1,

[log2 n]−α, n ≍ W, ℓ = 1.
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8, 00-656 Warszawa, Poland, wojtaszczyk@impan.pl

8


