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Abstract 
Context  Yellow sweetclover (Melilotus offici-
nalis; YSC) is an invasive biennial legume  that 
bloomed  across the Northern Great Plains  in 2018–
2019 in response to above-average precipitation. YSC 
can increase nitrogen (N) levels and potentially cause 
substantial changes in the composition of native plant 
species communities. There is little knowledge of 
the spatiotemporal variability and conditions causing 
substantial widespread blooms of YSC across western 
South Dakota (SD).
Objectives  We aimed to develop a generalized pre-
diction model to predict the relative abundance of 
YSC in suitable habitats across rangelands of western 
South  Dakota for 2019. Our research questions are: 
(1) What is the spatial extent of YSC across west-
ern South  Dakota? (2) Which model can accurately 

predict the habitat and percent cover of YSC? and (3) 
What significant biophysical drivers affect its pres-
ence across western South Dakota?
Methods  We trained machine learning models with 
in situ data (2016–2021), Sentinel 2A-derived surface 
reflectance and indices (10 m, 20 m) and site-specific 
variables of climate, topography, and edaphic factors 
to optimize model performance.
Results  We identified moisture proxies (Shortwave 
Infrared reflectance and variability in Tasseled Cap 
Wetness) as the important predictors to explain the 
YSC presence. Land Surface Water Index and vari-
ability in summer temperature were the top predictors 
in explaining the YSC abundance. We demonstrated 
how machine learning algorithms could help gener-
ate valuable information on the spatial distribution 
of this invasive plant. We delineated major YSC 
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hotspots in Butte, Pennington, and Corson Counties 
of South  Dakota. The floodplains of major rivers, 
including White and Bad Rivers, and areas around 
Badlands National Park also showed a higher occur-
rence probability and cover percentage.
Conclusions  These prediction maps could aid land 
managers in devising management strategies for the 
regions that are prone to YSC outbreaks. The manage-
ment workflow can also serve as a prototype for map-
ping other invasive plant species in similar regions.

Keywords  Abundance · Habitat suitability model · 
Ensemble model · Northern Great Plains · Sentinel 2 · 
Plant invasion

Introduction

Invasive species have directly contributed to the 
decline of 49% of endangered and threatened species 
in the United States (Dueñas et al. 2018). Invasive spe-
cies tend to reproduce rapidly and out-compete native 
species for food, water, and space, causing devastating 
effects on native biota (Northrup et  al. 2019). These 
invasive species are altering ecosystem processes and 
functions, resulting in severe environmental dam-
age and economic losses of ~ $120 billion annually in 
the United  States alone (Fantle-Lepczyk et  al. 2022). 
Grassland conversion to croplands and degradation due 
to overgrazing have contributed to increased soil ero-
sion, diminished water quality, and the introduction of 
invasive plant species (Wright and Wimberly 2013).

Yellow sweetclover (Melilotus officinalis; YSC) is 
an invasive, semi-cryptophyte, annual-biennial, legumi-
nous forb native to Eurasia. YSC was initially planted in 
the United States for bee habitat and to prevent roadside 
erosion, but was later utilized for livestock and wildlife 
forage (Gucker 2009). Changes in agricultural and soil 
conservation practices led to the establishment of YSC, 
and YSC acreage increased by 50% in South Dakota 
from 1927 to 1930 (Crosby and Kephart 1939). Seeding 
YSC was one of eight treatments applied to the dense 
clayey range sites of South Dakota in the spring of 1962 
to increase productivity and accelerate the recovery of 
rangelands depleted by drought and overgrazing (Nich-
ols and Johnson 1969). However, many positive  traits 
associated with YSC, such as drought tolerance, high 
biomass, and capacity to germinate under various envi-
ronmental conditions, indicate invasiveness and facilitate 

its dominance over native plant communities. The seeds 
of YSC are readily germinable and water-impermeable, 
and they remain viable in the soil seed bank for at least 
20 years (Nelson 2018). YSC has very little top growth 
in its first year and puts its resources into establishing a 
deep root system and underground carbohydrate storage. 
In the second year, it thrives aboveground and blooms 
with yellow-colored flower racemes. If enough moisture 
is available for consecutive years, YSC possesses weedy 
attributes, i.e., it reproduces in large numbers and will 
remain persistent. YSC can sprout and survive in vari-
ous environmental conditions (Ghaderi-Far et al. 2010), 
making it one of the highly invasive species in the range-
lands of the Great Plains.

YSC is unique in its effect on nutrient flow and other 
ecosystem functioning. YSC, as a frontier invasive, has 
the potential to facilitate the establishment of invasive 
species through its substantial nitrogen (N) fixing and 
accumulation ability (84 kg N/ha/yr) across the North-
ern  Great  Plains, which are historically low-N sys-
tems (Lesica and DeLuca 2000; Van Riper and Larson 
2009). Because native species are often better adapted 
to lower N levels, N-fixing plants (e.g.,YSC) provide 
a competitive advantage to invasive plant species and 
displace native perennials, resulting in a loss of diver-
sity (Darbyshire and Small 2018). Wolf et  al. (2003) 
found an increase in the number of exotic species and 
a concomitant decrease in native species when YSC 
colonized the montane grasslands of Colorado. YSC 
degraded the native grasslands and reduced biodiversity 
by covering and shading native plant species, changing 
the structure of grasslands and likely affecting wildlife 
population dynamics and behavior (Howard 2022).

YSC is an opportunistic plant that spreads quickly 
if favorable growth conditions are provided. Notably, 
South Dakota has had ~ 22% more 50 mm rain events 
since 1990 than the long-term average (Global  His-
torical  Climatology  Network-Daily data for 30 sta-
tions from 1900 to 2020) (Frankson et al. 2022). The 
onset of these spring rain events drives YSC germina-
tion and helps it to thrive in the two subsequent grow-
ing seasons (Turkington and Cavers 1979; Vermeire 
and Rinella 2020). Given the projected warmer and 
wetter conditions in the Northern Great Plains (Hoell 
et al. 2020, 2021), the abundance of invasive species 
(e.g., YSC) are expected to increase in semi-arid eco-
systems (Dukes and Mooney 1999; Frankson et  al. 
2022). Consecutive years of above-average precipita-
tion in 2018–2019, were associated with widespread 
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and abundant YSC blooms (S.I. Figure  1). Histori-
cally, such years with YSC blooms are referred to as 
‘sweetclover years’ (Gucker 2009).

YSC is drought-tolerant, mostly found in habitats 
associated with disturbances and dominated by other 
exotic species. YSC has the potential for establish-
ing large biomass growing as tall as 2.4 m in its bien-
nial life cycle, and providing habitat and nectar for 
honeybees (Gucker 2009). YSC is commonly observed 
in riparian areas, meadows, roadsides, railway embank-
ments, and riverbanks. The wide distribution of YSC 
implies its tolerance to different environmental con-
ditions. YSC can also be found in thick clayey-loam 
soil, and moist to slightly dry conditions. However, the 
mature plant size varies greatly depending on the soil’s 
quality and the availability of moisture (Gucker 2009).

Although concern is growing  regarding the YSC 
invasion of rangelands, there are several data gaps 
regarding its drivers and extent (Van Riper and Larson 
2009). To the best of our knowledge, there are no stud-
ies regarding the distribution of YSC in South Dakota 
and the Northern  Great  Plains. We do not know the 
forcing mechanisms for the large and widespread 
blooms of invasive exotics like YSC (Merow et  al. 
2017). To fill this knowledge gap, we examine the 
contribution of biophysical factors to the distribution 
and extent of YSC using a suite of machine learning 
algorithms such as random forest, cubist, generalized 
additive model and extreme gradient boosting. Spatial 
modeling has been considered a promising approach 
for predicting the risk of invasion. Spatial invasion 
patterns can be predicted by linking the abundance 
and habitat of YSC to spatially explicit predictor 
variables. Climatic, topographic, or edaphic variables 
related to an increased probability of invasive spe-
cies can be used to locate hotspots that could be tar-
geted for monitoring and management efforts. Hence, 
YSC distribution maps at a broad spatial scale and a 
high resolution would be integral to identifying driv-
ers, enabling targeted monitoring and management 
of YSC. Distribution maps can also help advance our 
knowledge of changes in the Northern  Great  Plains 
ecosystem’s structure and function (Rigge et al. 2019).

We developed a generalized prediction model to 
predict the relative abundance of YSC in suitable 
habitats across rangelands of western South  Dakota 
for 2019  (Saraf et  al. 2023) https://​doi.​org/​10.​5066/​
P9X08​W4T. We asked the following questions: 1.) 
What is the spatial extent of YSC across western 

South Dakota? 2.) Which model can accurately pre-
dict the habitat and percent cover of invasive YSC? 
and 3.) What environmental drivers affect its pres-
ence across western South Dakota? We hypothesized 
(H1) that YSC blooms are driven by a combination of 
wetter than average climate and topographic position 
(i.e., low-lying areas). We also hypothesized that YSC 
distribution is explained by a combination of (H2) 
heavy clay to loamy soils with alkaline to slightly 
acidic soil and above average soil moisture (Nichols 
and Johnson 1969; Turkington and Cavers 1979), and 
(H3) proximity to roads and stream networks, which 
facilitate dispersion.

Methods

Study area

We synthesized vegetation cover samples across the 
Upper Missouri River Basin (UMRB), which cov-
ers a large section of the Northern  Great  Plains. The 
UMRB covers 746,660 km2 in  six states: Montana, 
Nebraska, Wyoming, Minnesota, North Dakota, and 
South Dakota. We selected the UMRB, rather than just 
western South Dakota, for these samples to maximize 
the number of relevant observations and because  the 
UMRB has experienced high variability in precipi-
tation from 2016 to 2021, with flooding in 2019 and 
extreme drought in 2021 (Flanagan et al. 2020; Hoell 
et  al. 2020, 2021; Frankson et  al. 2022). Western 
South Dakota has an area of ~ 107,962 km2, and cov-
ers approximately one-seventh of the UMRB (Fig. 1). 
This region is characterized by a continental climate 
with cold winters and warm summers. Our study 
focuses on western SD (west of the Missouri River), 
which experiences a semi-arid climate with high inter-
annual variability in precipitation, averaging  about 
300–400  mm annually (Fig.  2). However, this region 
experienced above-average precipitation during 2019 
(S.I. Figure  1). This area comprises old Mesozoic 
soils such as eroded clay, shale, and sandstone. The 
landscape consists of rolling hills, eroded stream val-
leys, and the Black Hills, with the primary land use 
being rangeland (Menéndez et  al. 2020). Rangeland 
in western South  Dakota is dominated by  cool-sea-
son grasses such as western wheatgrass (Pascopyrum 
smithii), green needlegrass (Nassella viridula), smooth 
brome (Bromus inermis), and Kentucky bluegrass (Poa 

https://doi.org/10.5066/P9X08W4T
https://doi.org/10.5066/P9X08W4T
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pratensis). This region also includes warm-season 
grasses, namely buffalo grass (Bouteloua dactyloi-
des), blue grama (Bouteloua gracilis), little bluestem 
(Schizachyrium scoparium), switchgrass (Panicum vir-
gatum), and forbs including western wallflower (Erysi-
mum capitatum), Canada thistle (Cirsium arvense), 
leafy spurge (Euphorbia esula), and purple prairie clo-
ver (Dalea purpurea) (Rigge et al. 2013). 

Data sources

Field measurements and sample collection

We aim to develop a model for YSC at 10 m spatial 
resolution. We compiled YSC percent cover and pres-
ence data from several databases of federal, state, and 
non-governmental organizations across the UMRB 
(S.I. Table  1). The state and source distribution of 

sample points are provided in S.I. Table  2, and the 
frequency distribution of YSC cover in these samples 
is shown in S.I. Figure  2. We collected 2787 sam-
ple points from different sources during 2016–2021 
(S.I. Table  2). From these samples, we compiled 
1612 percent cover samples, and 1438 presence-
absence (binary) samples. Duplicates from differ-
ent sources lying within the same pixel (10  m) and 
from the same year were removed. Observed YSC 
samples with less than 10% cover were discarded in 
the presence-absence model because we assumed 
canopy cover of < 10% would not be detectable in 
the 10  m spatial resolution imagery. For 2021, we 
conducted field measurements during peak summer 
months (June-July–August) across different biomes 
throughout western South  Dakota (S.I. Table  2). 
We used a conventional plot-based quadrat method 
widely applied in the grassland ecology community 

Fig. 1   Locations of field data collections (n = 2787) across the 
years 2016–2021, overlaid on the Level III ecoregions  (U.S. 
Environmental Protection Agency –National Health and Envi-

ronmental Effects Research Laboratory) of the Upper Mis-
souri River Basin (top), and land cover map of western South 
Dakota overlaid with county boundaries (bottom right)
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to estimate canopy cover  (John et al 2018)  . In each 
30 × 30  m plot, we randomly placed a 0.5 × 0.5  m 
quadrat at three locations. The quadrat was marked 
with a 5 × 5 cm grid. We calculated the percent cover 
of YSC by counting the number of YSC occupied 
grid cells. 

Climatic and terrain variables

We obtained long-term daily (1991–2020) precipita-
tion and temperature data at 1  km from the Daymet 
dataset (https://​daymet.​ornl.​gov/) (Thornton et  al. 
2022). We computed annual (mean annual precipita-
tion − MAP, mean annual temperature − MAT) and 
seasonal composites of precipitation (spring  [March, 
April,May] − P_MAM and summer [June, July, 
August]  − P_JJA) and temperature (T_MAM and T_
JJA) using the Google Earth Engine (GEE). We also 

acquired normalized difference snow index (NDSI) 
data derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) MOD10A1 snow cover 
dataset, which has a spatial resolution of 500  m, to 
characterize the maximum percent snow cover in the 
region (Riggs et  al. 2015). We also acquired snow 
depth from maximum value composites of monthly 
means of the ERA5-Land dataset processed by the 
European Centre for Medium-Range Weather Fore-
casts (ECMWF) at 11 km spatial resolution (Muñoz-
Sabater et al. 2021). In addition, we used the National 
Elevation Dataset (10 m resolution) for terrain features 
to characterize elevation over the UMRB. We also 
obtained first-order derivatives such as slope, terrain 
roughness index and terrain wetness index from the 
National Elevation Dataset using the NASA Earthdata 
portal (Gesch et al. 2002, 2014).

Fig. 2   Changes in the mean (standard deviation) of yellow 
sweetclover (YSC) percent canopy cover and the mean annual 
precipitation (dashed line) for western South Dakota for 2016–
2021. The inset figure shows long-term mean annual precipita-

tion (1991-2021), with the dashed line representing the 30-year 
average precipitation for the study region. Source details 
for YSC percent cover is mentioned in S.I. Table 1 and Precipi-
tation was obtained from Daymet Data (S.I. Table 4)

https://daymet.ornl.gov/
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Other biophysical variables

We used GEE to obtain cloud-free, or maximum 
10% threshold cloud cover high-resolution Sentinel-
2A surface reflectance images (Gascon et  al. 2017) 
(https://​devel​opers.​google.​com/​earth-​engine/​datas​ets/​
catal​og/​COPER​NICUS_​S2_​SR). We derived several 
vegetation indices (VI) from Sentinel-2A: normalized 
difference vegetation index—(NDVI), green NDVI—
(GNDVI), normalized difference water index—
(NDWI), soil-adjusted vegetation index—(SAVI), 
and  land surface water index—(LSWI). These are 
proxies for vegetation cover (NDVI, SAVI), green-
ness (GNDVI), water bodies (NDWI), and plant water 
content (LSWI). We also derived tasseled cap bright-
ness (TCB), greenness (TCG), and wetness (TCW) 
indices from the 10  m Sentinel 2A bands, which 
serve as a proxy of albedo, vegetation, and moisture, 
respectively, to reduce dimensionality and the num-
ber of variables in rule-based modeling (Shi and Xu 
2019). The Sentinel 2A-derived bands, VI and tasse-
led caps were computed using maximum value com-
posites for the peak growing season (June–August) 
for each year from 2016 to 2021. Source details of 
all the VI’s and tasseled caps used in this study are 
provided in S.I. Table 3. For soil textural and physi-
cal properties, we obtained soil pH, sand, silt, and 
clay from the Polaris database (Chaney et al. 2019), 

available at 30  m spatial resolution, developed by 
the National Cooperative Soil Survey  under the US 
Department of Agriculture-Natural Resources Con-
servation Service. Land cover land use types and 
proximity to roads were derived from National Land 
Cover 2019 database (NLCD 2019) products avail-
able at 30  m resolution (Dewitz 2021). Lastly, the 
distance to streams product was derived from the 
National Hydrography Dataset developed by the 
U.S. Geological Survey  National Geospatial Pro-
gram  (https://​www.​usgs.​gov/​natio​nal-​hydro​graphy). 
All data sets were resampled to 10 m spatial resolu-
tion and projected in Albers Equal Area projection 
and WGS 84 datum. We calculated standard devia-
tions of all the variables derived from the monthly or 
annual composites to examine whether the variability 
of independent datasets explained the abundance of 
YSC. Altogether, we curated a database with 48 inde-
pendent variables (S.I. Table 4).

The observed samples were segregated into binary 
presence-absence data for habitat suitability models 
and percent cover data for machine learning models. 
We used the presence-absence dataset to determine 
the best modeling approach for developing a habitat 
suitability map for YSC. In addition, we compared 
multiple models to determine the best approach to 
predicting the relative percent cover in the suitable 
habitats of YSC. The percent cover map was clipped 

Fig. 3   Schematic workflow 
for predicting habitat suit-
ability of yellow sweetclover 
(YSC) and its canopy cover 
(%) distribution across west-
ern South Dakota. *Note—
RFE Recursive Feature 
Elimination, RF Random 
Forest, MARS Multivari-
ate Adaptive Regression 
Splines, GAM Generalized 
Additive Models, GBM Gen-
eralized Boosting Model, 
XGBoost eXtreme Gradient 
Boosting model, AUC​ Area 
Under Curve, TSS True Skill 
Statistic, R2 Coefficient of 
Determination, R Correla-
tion Coefficient, RMSE 
Root Mean square error, 
MAE Mean Absolute Error, 
MAPE Mean Absolute 
Percentage Error

Presence-absence 
data

Data for YSC 
probability of 
occurrence 
classification
80% - training
20% - validation

Percent cover 
data

Data for YSC 
percent canopy 
cover regression
80% - training
20% - validation

Feature selection
-RFE

YSC percent 
cover regression 
models
- RF
- XGBoost
- Cubist
- GAM

Feature selection
-RFE

YSC habitat 
suitability models
- RF
- MARS
- GAM
- GBM
- Maxent Phillips
- Ensemble

Model accuracy 
assessment
- Accuracy
- Kappa coefficient
- AUC
- TSS

YSC percent cover & 
habitat suitability 
map of YSC  

Model accuracy 
assessment
- R2

- RMSE
- MAE
- MAPE

Independent 
Variables

Best model selected 

Best model selected 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://www.usgs.gov/national-hydrography
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to the suitable habitats of YSC in the rangelands of 
western South  Dakota (Fig.  1). The workflow to 
determine the suitable habitat of YSC and its per-
cent cover distribution across rangelands of western 
South Dakota for 2019 is illustrated in Fig. 3.

For both habitat suitability and percent cover pre-
diction models, we used a Pearson correlation coef-
ficient (R) threshold of 0.7 (Green 1979; Domisch 
et  al. 2013) to remove highly correlated variables. 
We also used the Recursive Feature Elimination 
(RFE) method to select the best subset of independ-
ent variables to help determine the suitable habitat 
and percent cover of YSC. The RFE (Guyon et  al. 
2002) selects all predictor variables and determines 
the relevance of each predictor using the backward 
selection technique. We re-iterated the model to dis-
card all the least significant predictors based on sig-
nificance scores. The best subset predictors from the 
RFE were used to train the machine learning algo-
rithms (Guyon et al. 2002).

For both habitat suitability and percent cover 
prediction models, the samples were split into 80% 
for training and 20% for testing, using the boot-
strapping method (including replacement). We 
used repeated cross-validation (CV) to optimize the 
hyperparameters (subset size) and select the best 
predictors based on variable importance ranking 
(Kuhn 2015) (S.I. Table 5). We implemented hyper-
parameter tuning and CV techniques to minimize 
errors and improve the model accuracy (Allouche 
et al. 2006).

Habitat suitability model

We tested five algorithms, namely the generalized 
additive model—(GAM; Hastie and Tibshirani 1987), 
generalized boosting model—(GBM; De’ath 2007), 
multivariate adaptive regression splines − (MARS; 
Friedman 1991), random forests—(RF; Breiman et al. 
1984) and maximum entropy (Maxent Phillips) mod-
els (Phillips et  al. 2006) to develop the habitat suit-
ability model. These were all produced using the R 
statistical package Biomod-2 (Thuiller et  al. 2016). 
We implemented 10 evaluations with a threefold 
CV to evaluate the performance of individual mod-
els. The hyperparameters and CV technique details 
are described in S.I. Table 5. The average of the best 
three evaluated models was considered to develop the 
YSC prediction map.

We used accuracy and kappa coefficient to assess 
how well a model can predict and provide the propor-
tion of correct classifications based on the training 
data (Thuiller 2003). We also implemented True Skill 
Statistic (TSS) and area under the receiver operat-
ing curve (ROC), also known as area under the curve 
(AUC), to evaluate specificity and sensitivity due 
to the imbalance between the presence and absence 
samples used in the model (Allouche et  al. 2006; 
Amirkhiz et al. 2021).

The BIOMOD2 package’s “random shuffle” 
approach was used to determine the importance of 
each variable (Thuiller et  al. 2016). Three permuta-
tions per each variable were implemented to estimate 
the variable importance. We developed a response 
curve for each variable using the best-evaluated indi-
vidual habitat suitability model to understand the 
influence of environmental factors on YSC. To cre-
ate response curves for each covariate, we plotted the 
mean predicted probability of occurrence  models, 
including the covariate, against the corresponding 
values of the covariate (where the other covariates in 
the model were held constant at their median value).

The best evaluated model for each individual algo-
rithm was included in the ensemble-model building. 
The ensemble process within the BIOMOD2 frame-
work, produced ensemble maps based on weighted 
means. All four metrics(Accuracy, Kappa, TSS and 
AUC) were used to evaluate the ensemble model. 
We used AUC score-based threshold to derive a 
binary map from the probability of occurrence as it 
was considered a standard to assess the performance 
of ordinal scoring models such as logistic regression 
(Allouche et al. 2006). The non-rangeland areas were 
masked out before implementing the habitat suit-
ability model to emphasize the habitat of YSC in the 
rangelands of western South Dakota.

Estimating canopy cover (%)

We used 1612 samples from the  YSC canopy cover 
dataset to develop four non-parametric machine 
learning-based regression models, namely the RF 
(Liaw and Wiener 2002; Kolluru and Kolluru 2021; 
Das et al. 2022), Cubist (John et al. 2018; Kuhn et al. 
2023), extreme gradient boosting model − XGBoost 
(Abdullah et  al. 2019; Chen et  al. 2015) and GAM 
(Hastie 2015; Bera et al. 2021). Previous studies have 
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shown that training a regression-tree model with vari-
ous random ecological situations over multiple years 
can  produce  robust models with minimal  extrapo-
lation (Jacques et  al. 2014; John et  al. 2018). All 
variables were centered and scaled before the devel-
opment of prediction models. All model hyperparam-
eters were tuned; repeated CV was implemented to 
improve model fit and accuracy.

We evaluated the model performance using mean 
absolute error (MAE), mean absolute percentage error 
(MAPE), root mean square error (RMSE), and coeffi-
cient of determination (R2) metrics during the training 
and testing phases. The model with the best statistical 
metrics was selected to predict YSC canopy cover (%) 
across suitable habitat regions of western South Dakota.

Results

Habitat suitability model

We selected 22 out of 48 predictor variables based on 
a correlation (R) threshold of <  ± 0.7 (S.I. Figure 5). 

We further ran RFE and selected the 16 best predic-
tor variables that could explain the spatial variabil-
ity of YSC (Table  1 and S.I. Figures  3 and 4). The 
RFE analysis showed that the most important vari-
ables associated with YSC habitat suitability were 
S2A-SWIR1, elevation, and spring precipitation 
(P_MAM).

Habitat suitability model performance comparison

We used an ensemble model of five individual mod-
els (RF, GAM, GBM, Maxent Phillips and MARS) 
to obtain the probability occurrence of YSC. Among 
individual models, RF performed best and MARS 
least (accuracy values of 0.87 and 0.80, respectively) 
and the ensemble model outperformed each individ-
ual model’s predictions. The ensemble model scored 
best in the evaluation metrics with Accuracy, Kappa, 
AUC and TSS values 0.89, 0.72,0.92 and 0.73 respec-
tively (S.I. Table  6). We used the AUC score-based 
threshold value of the ensemble model to develop the 
binary maps (S.I. Table 7). The predicted probability 
of occurrence range varied from 0 to 0.9 for the study 
region (Fig. 4).

Table 1   Description of 
independent variables 
selected for estimating the 
probability of occurrence 
(presence-absence) and 
canopy cover (%) for yellow 
sweetclover (YSC)

*Indicates the variables 
used in the classification 
and regression models

S.no Independent variables Codes Presence-
absence (16)

Percent 
canopy 
(14)

1 Spring precipitation P_MAM * *
2 Summer precipitation P_JJA *
3 Spring temperature T_MAM *
4 Summer temperature T_JJA *
5 Spring precipitation (standard deviation) P_MAMsd * *
6 Summer precipitation (standard deviation) P_JJAsd *
7 Summer temperature (standard deviation) T_JJAsd * *
8 Elevation Elevation * *
9 Snow depth (standard deviation) Sdepthsd * *
10 Normalized difference snow index NDSI *
11 Standard deviation of NDSI NDSIsd *
12 Land surface water index LSWI * *
13 Normalized difference water index NDWI * *
14 Sentinel 2A-Near infrared S2A-NIR * *
15 Sentinel 2A-Shortwave infrared 1 S2A-SWIR1 * *
16 Tasseled cap wetness (standard deviation) TCW​sd * *
17 Soil pH Soil_pH *
18 Percent silt Silt * *
19 Percent clay Clay *
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S2A-SWIR1, TCW​sd, S2A-NIR, and LSWI which 
are land surface property proxies of moisture and 
elevation were the most influential variables in deter-
mining YSC suitable habitat (S.I. Figure 6). The most 
important variables i.e., S2A-SWIR1, TCW​sd and 
LSWI, showed that higher soil moisture availability 
can explain the habitat suitability of YSC. Low range 
values of S2A-SWIR1 and TCW​sd and high range 
values of LSWI are known to represents high soil and 
canopy moisture content (Gao 1996; Xiao et al. 2002; 
Bajgain et al. 2015). Furthermore, S2A-NIR is often 
to represent healthy vegetation and is known to show 
a high correlation with the above ground biomass 
(Zhao et  al. 2016). The higher range of S2A-NIR 
could perhaps represent higher above ground biomass 
of YSC. The response curves of seasonal precipitation 
variables (P_MAM and P_JJA) showed higher prob-
ability of occurrence even at below-average precipi-
tation. The response curve for the topographic vari-
ables (elevation) showed higher probability of YSC 
occurrence in the low-lying areas. These results did 
support our first hypothesis that YSC presence can be 
explained by low-lying elevation. However, the first 
hypothesis that YSC requires above-average precipi-
tation was not supported by seasonal precipitation. 

This could be attributed to coarser resolution data 
input.

In case of the second hypothesis, we found that 
clay and silt were the least important drivers of habitat 
suitability in the model. However, soil pH supported 
our hypothesis that YSC tends to occur more fre-
quently in slightly acidic to alkaline soils. Although, 
the response curve for pH showed a higher probability 
of YSC occurrence in pH range of 6.5–8.0, the impor-
tance of this variable was only slightly higher than 
that of clay and silt. Furthermore, the response curves 
of S2A-SWIR1 supported our second hypothesis that 
YSC tends to grow with above-average soil moisture 
(Fig. 5 & S.I. Figure 7). Our third hypothesis regard-
ing proximity factors (distance to roads and distance 
to streams) were not supported, as these variables 
were discarded based on RFE importance ranking. 
We used an optimum threshold of 0.44 to develop a 
binary presence-absence map from the probability of 
occurrence map (S.I. Table  7). Our final prediction 
map showed that more than half (42,722 km2 out of 
79,968 km2) of western South Dakota rangelands pro-
vide a suitable habitat for YSC (S.I. Figure  8). The 
suitability of YSC across western South Dakota indi-
cates that this species could exist in various environ-
mental conditions. Major YSC hotspots were found in 

Fig. 4   Habitat suitability 
map for yellow sweetclo-
ver (YSC) determined by 
probability of occurrence 
based on an ensemble 
model across rangelands of 
western South Dakota
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(i) portions of Butte, Pennington, Corson and Dewey 
Counties, (ii) areas around Badlands National Park, 
and (iii) some areas adjacent to floodplains of the 
White and Bad Rivers or their tributaries.

Estimated canopy cover and model performance

We selected 21 of 48 predictor variables based on a 
correlation (R) threshold of <  ± 0.7 (S.I. Figure  9). 
We further ran RFE and selected the 14 best variables 
for predicting YSC percent cover distribution (Table 1 
and S.I. Figures 3 and 4). RFE analysis showed that 
the most important variables associated with YSC 
percent cover were LSWI, variation in summer tem-
perature (T_JJAsd), and S2A-SWIR1.

We implemented four regression models (i.e., 
GAM, RF, Cubist and XGBoost) using the caret 

package in R (Kuhn et al. 2020). Based on the train-
ing and testing evaluation metrics, the GAM model 
had the poorest performance, with an R2 of 0.30 dur-
ing the testing phase. XGBoost performed relatively 
well compared to GAM but exhibited overfitting of 
the data. XGBoost had an R2 of 0.88 during train-
ing, but the metrics decreased to 0.46 during the test-
ing phase. Cubist performed second best with an R2 
of 0.54 during the testing phase. RF yielded the best 
result with an R2 of 0.55 and RMSE of 7.49 during 
the testing phase. In addition to R2 and RMSE, we 
found that RF had an MAE and MAPE of 5.09 and 
2.76, respectively (Table 2).

The RF model was chosen to estimate the percent 
cover distribution of YSC in western SD. The vari-
able importance of the RF model showed that LSWI 
performed the best and was among the top influencing 

Fig. 5   Response curves for the top-ranked covariates of yel-
low sweetclover (YSC) derived from the random forest (best 
individual model) habitat suitability model. The response 
curves of remaining variables are shown in S.I. Figure  7. 

*Note—LSWI– Land surface water index, NDWI– Normal-
ized difference water index, P_JJA—Summer precipitation, P_
MAM—Spring precipitation, T_MAM—Spring temperature, 
TCW​sd—Variation in tasseled cap wetness
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variables in other modeling approaches (S.I. Fig-
ure 10 and Table 2). Following LSWI, summer tem-
perature variability (T_JJAsd), S2A-SWIR1, and vari-
ability in tasseled cap wetness (TCW​sd) were among 
the other top important variables for both the RF and 
Cubist models. The response curves for the RF per-
cent cover model are represented in S.I. Figure  11. 
The response curves for YSC % cover distribution 
showed increase in LSWI significantly increased YSC 
% cover range from 0 to 20% whereas other vari-
ables explained small variation in abundance ranging 
between 0 and 10%.

We also developed a spatial correlation map 
using habitat suitability and predicted canopy cover 
(%) distribution of YSC (S.I. Figure 12). Small sec-
tions of western counties such as Butte, Meade, 
Pennington, and Fall River showed negative cor-
relation. Most of the study region showed a posi-
tive correlation between the probability of occur-
rence and percent cover distribution of YSC. The 
predicted canopy cover map was clipped to empha-
size the suitable habitat of YSC in the rangelands of 
western South  Dakota. The predicted YSC percent 
cover distribution had higher heterogeneity and var-
ied along moisture gradients. Highest canopy cover 

Table 2   Statistical comparison of machine learning models for predicting canopy cover (%) of yellow sweetclover (YSC) along with 
their descending order of variable importance (See S.I. Table 4 for variable descriptions)

GAM Generalized Additive Models, XGBoost eXtreme Gradient Boosting, R2 Coefficient of Determination, R Correlation coefficient 
RMSE Root Mean square error, MAE Mean Absolute Error, MAPE Mean Absolute Percentage Error

Model R2 R RMSE MAE MAPE Variable importance

GAM 0.30 0.54 9.13 6.50 3.21 Elevation, P_MAM, T_JJA, TCW​sd, S2A-SWIR1
Cubist 0.54 0.73 7.48 4.99 2.52 LSWI, Elevation, T_JJAsd, S2A-SWIR1, P_MAM, TCW​sd

Random forest 0.55 0.74 7.49 5.09 2.76 LSWI, T_JJAsd, S2A-SWIR1, TCW​sd, NDSIsd, P_MAM
XGBoost 0.46 0.68 8.02 4.96 2.56 LSWI, S2A-NIR, S2A-SWIR1, Elevation, P_MAM, NDSIsd

Fig. 6   Predicted canopy 
cover map of yellow 
sweetclover (YSC) based on 
random forest (best) model 
across rangelands of west-
ern South Dakota for 2019
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distribution was found in parts of Butte County 
followed by Meade, Fall River, and Pennington 
Counties. The predicted percent cover in suitable 
areas of YSC ranged from 5 to 53% with relatively 
higher abundance in the western counties of western 
South Dakota (Fig. 6).

Discussion

We developed a framework to predict the spa-
tial distribution and cover of YSC across western 
South  Dakota. We gathered YSC samples across 
multiple years (2016–2021), including wet and dry 
years to account for spatial heterogeneity and tem-
poral variation in the model. Sampling data over 
multiple growing seasons can help obtain a robust 
calibration model (John et al. 2018). We first devel-
oped a habitat suitability model and inspected 
response curves to understand the importance of 
various abiotic and biotic factors to YSC distribu-
tion. We then developed a prediction model of YSC 
canopy cover to determine the abundance of YSC. 
The abundance map can be used as an indicator of 
site conditions and as a surrogate index of habi-
tat suitability. We tested different machine learning 
models, which varied in their performance (Tables 2 
& S.I. Table 6). Different types of data, such as pres-
ence-absence, presence only, or percent cover data 
or the species-specific traits of habitat, may take 
precedence in local model selection (Stohlgren et al. 
2010). Testing several predictive models and several 
forms of datasets prevents the bias of relying on a 
single model. This approach of comparing various 
predictive models adds substantial robustness and 
consistency to the performance of a specific predic-
tive model (Kolluru et al. 2020).

Effect of environmental conditions

Climatic drivers

Precipitation is one of the key factors affecting grass-
land structure and function  (Lauenroth et  al. 2014). 
Previous studies have found an amplified response 
of invasive annuals to precipitation characteristics 
(Bradley and Mustard 2005). We found that spring 
precipitation (P_MAM) was a moderately significant 

climatic variable in predicting YSC presence. Gener-
ally, YSC emerges around spring (March or April) 
and grows approximately 10.2–30.5  cm tall, pro-
vided enough moisture is available during the growth 
period during the first year of its life cycle. Once 
the root develops, the plant becomes drought and 
cold-tolerant (Luo et  al. 2016). The response curve 
results showed that low spring precipitation ranging 
between 75 and 175  mm may contribute to higher 
chances of YSC occurrence (Fig. 5). This could per-
haps be owing to coarse-resolution precipitation data 
inputs or less sample points. The response curves 
may have under-represented the range of spring pre-
cipitation. However, the higher resolution land sur-
face property variables (LSWI, S2A-SWIR1, TCW​sd) 
indicated that YSC distribution is explained by high 
moisture availability during its vegetative growth 
period. The higher range of moisture proxies with 
low season precipitation range may indicate that the 
growth of YSC requires accumulated moisture from 
two consecutive wet periods to show enhanced pro-
ductivity. This effect of accumulated moisture could 
not be explained by seasonal precipitation variables 
(P_MAM and P_JJA) on their own but could have 
perhaps been explained by annual precipitation. How-
ever, annual precipitation was removed from this 
study due to high collinearity with other predictor 
variables. Further research would be useful to under-
stand the interaction or combined effect of climate 
variables on YSC presence and abundance.

Temperature is a significant factor in various phys-
iological processes in addition to precipitation (Gama 
et al. 2016). The periodicity of seed germination and 
spread of species are significantly influenced by tem-
perature (Ghaderi-Far et al. 2010). Conn et al. (2011) 
showed that YSC could even survive the extreme 
weather in Alaska, with annual precipitation and tem-
perature of 170 mm and − 3.3 °C, respectively. Ger-
mination rate generally rises linearly with tempera-
ture and drops rapidly at a higher temperature within 
a narrow range (Finch-Savage 2020). We found a 
slightly different trend in the response curve of spring 
temperature. Although YSC probability of occurrence 
gradually decreased until 7  °C, a slight increase in 
temperature (T_MAM) from 7 to 8 °C increased YSC 
probability of occurrence from 0.45 to 0.65 (Fig. 5).

Furthermore, we also found that variation in per-
cent snow cover (NDSIsd) in winters has a significant 
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effect on YSC abundance. Paudel and Andersen 
(2013) found a positive linear relationship between 
rangeland vegetation production and snow cover in 
the drier rangelands of the Trans Himalayan Region. 
Their findings indicated that although temperature is 
important, changes in snow cover and precipitation 
patterns play more important roles in snow-fed, drier 
regions for rangeland vegetation dynamics.

Effect of topographic drivers

Elevation gradient can affect and alter the seasonal 
development of various plant species. The response 
curve showed decreasing occurrence of YSC with 
increasing elevation. The probability of YSC occur-
rence dropped from 0.6 to 0.2 when the elevation 
increased beyond 1000  m (Fig.  5). YSC dominance 
is common at low to medium elevation near stream-
banks, meadows, or disturbed areas (Hansen et  al. 
1988). Previous studies have found that the YSC can 
grow even at higher elevations of above 2000 m (Stoa 
1933). However, higher elevation sites can affect 
vegetative growth of YSC by affecting its flowering 
period, fruit development, and seed maturation. We 
also found that the YSC abundance increased mov-
ing from east to west across the  elevation gradient 
(Fig. 6).

Effect of edaphic variables

We hypothesized that heavy clay to loamy soils might 
be influential in determining the presence of YSC. 
However, we found that clay and silt were the least 
important in the habitat suitability model whereas silt 
was the least important in predicting YSC abundance. 
This could be because of its ability to grow in vari-
ous soil types. On the contrary, seeding of YSC on 
South  Dakota’s rangelands is successful where soils 
are as much as 65% clay (Nichols and Johnson 1969). 
YSC is also productive on silty loams to clayey loam 
soil with neutral to alkaline pH. We found that soil 
pH had little effect on YSC habitat suitability. The 
response curve indicated a pH range of 6.5–8.0 has 
the highest  probability of YSC occurrence. Our 
results align with Turkington and Cavers (1979), 
who showed that YSC could thrive on soils with a 
pH > 6.5, whereas YSC is less competitive and fails at 
nitrogen fixation in acidic soils.

Distribution along roads and streams

YSC is often associated with disturbed lands and 
open sites. However, most of the undisturbed lands 
located farther from roads has already been affected 
by YSC in South  Dakota. Proximity to roads and 
streams as two separate variables were discarded 
for both habitat suitability and percent cover model 
during variable selection. This could be due to 
fewer field samples collected near roads and streams 
to minimize bias. The percent cover and suitabil-
ity map did not show any bias towards the roads 
or stream networks. The dispersion of sweetclover 
(yellow and white sweetclover) via roads or river 
streams were important factors in introducing and 
establishing exotic species (Tikka et  al. 2000). 
Wurtz et al. (2010) conducted a case study and doc-
umented the distribution of sweetclover near river 
crossings. They suggest that sweetclover might have 
spread onto the floodplains from upstream roads, 
mines, and agricultural developments. Early surveys 
for exotic plant species showed that sweetclover 
had invaded the Stikine, Matanuska, and Nenana 
Rivers floodplains in Alaska (Conn et  al. 2008). 
The dispersion of YSC via roads or highways had 
an important role in introducing and establishing 
exotic species. Tikka et  al. (2000) observed that 
grassland plants leveraged roads and railway corri-
dors for dispersion in central Finland. Contrary to 
not finding the distance to roads among the most 
important variables in this study, we found several 
patches of YSC alongside the highways and inter-
states of South Dakota during field visits. However, 
the length and size of these patches along the high-
ways vary.

Effect of other biophysical variables

YSC is ubiquitous across the North-
ern Great Plains, but very little is known about its 
spatial distributions and/or the environmental fac-
tors that affect its growth (Van Riper and Larson 
2009). S2A-SWIR1 was the top indicator for pre-
dicting YSC presence and the third most impor-
tant indicator for estimating its canopy cover (S.I. 
Figure 6 & S.I. Figure 10). S2A-SWIR-1 is sensi-
tive to the moisture content in soil and vegetation. 
S2A-SWIR1 reflectance decreases as the water 
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content increases in the soil. These characteristics 
make it helpful in distinguishing between dry and 
wet soils. YSC’s response to S2A-SWIR1 strength-
ens the understanding that YSC either prefers to 
grow in moist areas or it has high canopy water 
content. YSC also showed an upward abundance 
trend with the increase in LSWI, which was the top 
variable for predicting percent  canopy cover and 
the fourth most important for predicting the habi-
tat of YSC. LSWI also includes the S2A-SWIR1 
band and is sensitive to volumetric soil moisture 
and canopy water content (Gao 1996; Xiao et  al. 
2002; Bajgain et  al. 2015). The response curve 
showed probabilility of YSC occurrence if the 
TCW​sd range varied upto 0.08 whereas the actual 
range of TCW​sd varied upto 0.5 (Fig. 5 & S.I. Fig-
ure 4). The chances of YSC occurrence are higher 
only if consistent moisture availability is present 
in the region.

Implications for the management of YSC

Monitoring and mapping of YSC can help examine 
its current distribution patterns. These methods can 
help managers anticipate the possible trajectory of a 
species and its distribution in the coming years (How-
ard 2022). YSC has many positive attributes, such as 
a positive economic impact on honey production, its 
usage as a forage crop, carbon sequestration and soil 
stabilization. However, YSC can also threaten native 
prairies because it can reproduce in large numbers 
and effectively compete for nutrients with desired 
native species (Van Riper and Larson 2009). There-
fore, developing an operational and cost-effective 
monitoring system would be beneficial to understand 
the growth and spread of YSC in a specific region. 
The present study could help identify potential hot-
spot areas for implementing management strategies 
to stabilize or manage the level of YSC  growth. A 
monitoring system could also help honey produc-
ers track their potential production for the upcom-
ing years. Hence, mapping YSC in near-real time, at 
a broad spatial scale and high resolution, could help 
improve land management and policymaking deci-
sions and provide better knowledge of YSC habitat 
and its distribution.

Limitations of the study and future scope

The use of regression tree approaches such as RF, 
XGBoost and Cubist in estimating the canopy cover 
(%) has some limitations that could be addressed in 
future research. First, a small dataset (n = 1612) and 
the skewness of the data were a major limitation when 
using models such as RF and Cubist. Larger data-
sets would ideally  be analyzed to improve the mod-
el’s precision and reliability. A more stratified sam-
ple collection from disturbed and undisturbed sites 
could help explain its spread pattern. Many rangeland 
plant species are indistinguishable in aerial or satel-
lite imagery except in specific phenophases. YSC is 
a biennial species that grows over two years. It grows 
approximately 10.2–30.5  cm tall in the first year 
but does not bloom until the second year, making it 
harder to detect YSC in its first year using multi-spec-
tral imagery at 10  m resolution. The data collected 
from various sources over the past years did not have 
information regarding the phenological growth stages 
of YSC (bloom/no-bloom). The absence of phenolog-
ical growth information on YSC could lead to error 
propagation during response variable generation in 
geographic information system environments. We 
found all the top predictor variables belonged to high-
resolution dataset. Subsampling of datasets due to 
unavailability of climate variables at fine resolution is 
still a major limitation for 10 m resolution small-scale 
studies.We used the POLARIS dataset despite availa-
bility of Soil Survey Geographic (SSURGO) database 
at 10 m resolution because POLARIS data overcomes 
the challenges of spatial details and incomplete spa-
tial coverage (Chaney et al. 2019). In addition, dimen-
sionality reduction using multi-collinearity and varia-
ble selection might eliminate important variables that 
can explain the species occurrence.  Future studies 
could adapt and test more environmental factors and 
regression models in estimating YSC. The percent 
cover model evaluation metrics showed a good model 
fit, and the data strongly supported the classification 
of YSC suitable areas. These generalized models ide-
ally would be validated with more observation sam-
ples in the forthcoming years. The present study can 
be considered a reference that can be improved with 
more observations, phenological stage datasets, envi-
ronmental layers and resolution between temporal 
and spatial variation.
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Conclusions

We predicted YSC habitat suitability and its percent 
cover across western South  Dakota using machine 
learning algorithms trained with in situ field samples 
and biophysical drivers from different remote sensing 
datasets. Our study identified the most suitable driv-
ers that could explain the variability in YSC presence 
and its percent cover through data dimensionality 
reduction techniques (i.e., correlation and recursive 
feature elimination). We compared different modeling 
techniques and used the best model to develop a clas-
sified YSC presence-absence and canopy cover (%) 
distribution map for YSC in 2019. We also examined 
the variable importance and their response curves to 
determine the suitable habitat of YSC across west-
ern South  Dakota. Our research demonstrated how 
ensemble techniques for habitat suitability models 
and machine learning algorithms such as RF could 
help generate valuable information on the spatial 
distribution of an invasive rangeland plant species. 
These machine learning models helped explore the 
environmental constraints in distinguishing inva-
sive YSC through satellite imagery. The North-
ern Great Plains ecosystem is vulnerable to invasive 
species, prolonged droughts, human disturbance, and 
over-grazing (Derner et al. 2018). Therefore, our pre-
diction maps could be used to create a strategies that 
can  be used by managers for regions vulnerable to 
YSC. Moreover, these results will support ranchers 
in implementing conservation plans to protect vulner-
able species and support beekeepers in making the 
best productive use of these species. Mapping inva-
sive species in the Northern Great Plains every year 
or two would be useful  to monitor the spatiotempo-
ral dynamics of grassland landscapes. Monitoring 
plant invasives can provide landscape ecologists with 
information on the spatiotemporal scales of change 
in grasslands, allowing them to make more effective 
decisions. This research can help in mapping other 
invasive species in the rangeland ecosystem.
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