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Abstract

Context Yellow sweetclover (Melilotus offici-
nalis; YSC) is an invasive biennial legume that
bloomed across the Northern Great Plains in 2018—
2019 in response to above-average precipitation. YSC
can increase nitrogen (N) levels and potentially cause
substantial changes in the composition of native plant
species communities. There is little knowledge of
the spatiotemporal variability and conditions causing
substantial widespread blooms of YSC across western
South Dakota (SD).

Objectives We aimed to develop a generalized pre-
diction model to predict the relative abundance of
YSC in suitable habitats across rangelands of western
South Dakota for 2019. Our research questions are:
(1) What is the spatial extent of YSC across west-
ern South Dakota? (2) Which model can accurately
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predict the habitat and percent cover of YSC? and (3)
What significant biophysical drivers affect its pres-
ence across western South Dakota?

Methods We trained machine learning models with
in situ data (2016-2021), Sentinel 2A-derived surface
reflectance and indices (10 m, 20 m) and site-specific
variables of climate, topography, and edaphic factors
to optimize model performance.

Results We identified moisture proxies (Shortwave
Infrared reflectance and variability in Tasseled Cap
Wetness) as the important predictors to explain the
YSC presence. Land Surface Water Index and vari-
ability in summer temperature were the top predictors
in explaining the YSC abundance. We demonstrated
how machine learning algorithms could help gener-
ate valuable information on the spatial distribution
of this invasive plant. We delineated major YSC
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hotspots in Butte, Pennington, and Corson Counties
of South Dakota. The floodplains of major rivers,
including White and Bad Rivers, and areas around
Badlands National Park also showed a higher occur-
rence probability and cover percentage.

Conclusions These prediction maps could aid land
managers in devising management strategies for the
regions that are prone to YSC outbreaks. The manage-
ment workflow can also serve as a prototype for map-
ping other invasive plant species in similar regions.

Keywords Abundance - Habitat suitability model -
Ensemble model - Northern Great Plains - Sentinel 2 -
Plant invasion

Introduction

Invasive species have directly contributed to the
decline of 49% of endangered and threatened species
in the United States (Duefias et al. 2018). Invasive spe-
cies tend to reproduce rapidly and out-compete native
species for food, water, and space, causing devastating
effects on native biota (Northrup et al. 2019). These
invasive species are altering ecosystem processes and
functions, resulting in severe environmental dam-
age and economic losses of ~$120 billion annually in
the United States alone (Fantle-Lepczyk et al. 2022).
Grassland conversion to croplands and degradation due
to overgrazing have contributed to increased soil ero-
sion, diminished water quality, and the introduction of
invasive plant species (Wright and Wimberly 2013).
Yellow sweetclover (Melilotus officinalis; YSC) is
an invasive, semi-cryptophyte, annual-biennial, legumi-
nous forb native to Eurasia. YSC was initially planted in
the United States for bee habitat and to prevent roadside
erosion, but was later utilized for livestock and wildlife
forage (Gucker 2009). Changes in agricultural and soil
conservation practices led to the establishment of YSC,
and YSC acreage increased by 50% in South Dakota
from 1927 to 1930 (Crosby and Kephart 1939). Seeding
YSC was one of eight treatments applied to the dense
clayey range sites of South Dakota in the spring of 1962
to increase productivity and accelerate the recovery of
rangelands depleted by drought and overgrazing (Nich-
ols and Johnson 1969). However, many positive traits
associated with YSC, such as drought tolerance, high
biomass, and capacity to germinate under various envi-
ronmental conditions, indicate invasiveness and facilitate
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its dominance over native plant communities. The seeds
of YSC are readily germinable and water-impermeable,
and they remain viable in the soil seed bank for at least
20 years (Nelson 2018). YSC has very little top growth
in its first year and puts its resources into establishing a
deep root system and underground carbohydrate storage.
In the second year, it thrives aboveground and blooms
with yellow-colored flower racemes. If enough moisture
is available for consecutive years, YSC possesses weedy
attributes, i.e., it reproduces in large numbers and will
remain persistent. YSC can sprout and survive in vari-
ous environmental conditions (Ghaderi-Far et al. 2010),
making it one of the highly invasive species in the range-
lands of the Great Plains.

YSC is unique in its effect on nutrient flow and other
ecosystem functioning. YSC, as a frontier invasive, has
the potential to facilitate the establishment of invasive
species through its substantial nitrogen (N) fixing and
accumulation ability (84 kg N/ha/yr) across the North-
ern Great Plains, which are historically low-N sys-
tems (Lesica and DeLLuca 2000; Van Riper and Larson
2009). Because native species are often better adapted
to lower N levels, N-fixing plants (e.g.,YSC) provide
a competitive advantage to invasive plant species and
displace native perennials, resulting in a loss of diver-
sity (Darbyshire and Small 2018). Wolf et al. (2003)
found an increase in the number of exotic species and
a concomitant decrease in native species when YSC
colonized the montane grasslands of Colorado. YSC
degraded the native grasslands and reduced biodiversity
by covering and shading native plant species, changing
the structure of grasslands and likely affecting wildlife
population dynamics and behavior (Howard 2022).

YSC is an opportunistic plant that spreads quickly
if favorable growth conditions are provided. Notably,
South Dakota has had ~22% more 50 mm rain events
since 1990 than the long-term average (Global His-
torical Climatology Network-Daily data for 30 sta-
tions from 1900 to 2020) (Frankson et al. 2022). The
onset of these spring rain events drives YSC germina-
tion and helps it to thrive in the two subsequent grow-
ing seasons (Turkington and Cavers 1979; Vermeire
and Rinella 2020). Given the projected warmer and
wetter conditions in the Northern Great Plains (Hoell
et al. 2020, 2021), the abundance of invasive species
(e.g., YSC) are expected to increase in semi-arid eco-
systems (Dukes and Mooney 1999; Frankson et al.
2022). Consecutive years of above-average precipita-
tion in 2018-2019, were associated with widespread
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and abundant YSC blooms (S.I. Figure 1). Histori-
cally, such years with YSC blooms are referred to as
‘sweetclover years’ (Gucker 2009).

YSC is drought-tolerant, mostly found in habitats
associated with disturbances and dominated by other
exotic species. YSC has the potential for establish-
ing large biomass growing as tall as 2.4 m in its bien-
nial life cycle, and providing habitat and nectar for
honeybees (Gucker 2009). YSC is commonly observed
in riparian areas, meadows, roadsides, railway embank-
ments, and riverbanks. The wide distribution of YSC
implies its tolerance to different environmental con-
ditions. YSC can also be found in thick clayey-loam
soil, and moist to slightly dry conditions. However, the
mature plant size varies greatly depending on the soil’s
quality and the availability of moisture (Gucker 2009).

Although concern is growing regarding the YSC
invasion of rangelands, there are several data gaps
regarding its drivers and extent (Van Riper and Larson
2009). To the best of our knowledge, there are no stud-
ies regarding the distribution of YSC in South Dakota
and the Northern Great Plains. We do not know the
forcing mechanisms for the large and widespread
blooms of invasive exotics like YSC (Merow et al.
2017). To fill this knowledge gap, we examine the
contribution of biophysical factors to the distribution
and extent of YSC using a suite of machine learning
algorithms such as random forest, cubist, generalized
additive model and extreme gradient boosting. Spatial
modeling has been considered a promising approach
for predicting the risk of invasion. Spatial invasion
patterns can be predicted by linking the abundance
and habitat of YSC to spatially explicit predictor
variables. Climatic, topographic, or edaphic variables
related to an increased probability of invasive spe-
cies can be used to locate hotspots that could be tar-
geted for monitoring and management efforts. Hence,
YSC distribution maps at a broad spatial scale and a
high resolution would be integral to identifying driv-
ers, enabling targeted monitoring and management
of YSC. Distribution maps can also help advance our
knowledge of changes in the Northern Great Plains
ecosystem’s structure and function (Rigge et al. 2019).

We developed a generalized prediction model to
predict the relative abundance of YSC in suitable
habitats across rangelands of western South Dakota
for 2019 (Saraf et al. 2023) https://doi.org/10.5066/
P9X08W4T. We asked the following questions: 1.)
What is the spatial extent of YSC across western

South Dakota? 2.) Which model can accurately pre-
dict the habitat and percent cover of invasive YSC?
and 3.) What environmental drivers affect its pres-
ence across western South Dakota? We hypothesized
(H1) that YSC blooms are driven by a combination of
wetter than average climate and topographic position
(i.e., low-lying areas). We also hypothesized that YSC
distribution is explained by a combination of (H2)
heavy clay to loamy soils with alkaline to slightly
acidic soil and above average soil moisture (Nichols
and Johnson 1969; Turkington and Cavers 1979), and
(H3) proximity to roads and stream networks, which
facilitate dispersion.

Methods
Study area

We synthesized vegetation cover samples across the
Upper Missouri River Basin (UMRB), which cov-
ers a large section of the Northern Great Plains. The
UMRB covers 746,660 km? in six states: Montana,
Nebraska, Wyoming, Minnesota, North Dakota, and
South Dakota. We selected the UMRB, rather than just
western South Dakota, for these samples to maximize
the number of relevant observations and because the
UMRB has experienced high variability in precipi-
tation from 2016 to 2021, with flooding in 2019 and
extreme drought in 2021 (Flanagan et al. 2020; Hoell
et al. 2020, 2021; Frankson et al. 2022). Western
South Dakota has an area of ~107,962 km?, and cov-
ers approximately one-seventh of the UMRB (Fig. 1).
This region is characterized by a continental climate
with cold winters and warm summers. Our study
focuses on western SD (west of the Missouri River),
which experiences a semi-arid climate with high inter-
annual variability in precipitation, averaging about
300400 mm annually (Fig. 2). However, this region
experienced above-average precipitation during 2019
(S.I. Figure 1). This area comprises old Mesozoic
soils such as eroded clay, shale, and sandstone. The
landscape consists of rolling hills, eroded stream val-
leys, and the Black Hills, with the primary land use
being rangeland (Menéndez et al. 2020). Rangeland
in western South Dakota is dominated by cool-sea-
son grasses such as western wheatgrass (Pascopyrum
smithii), green needlegrass (Nassella viridula), smooth
brome (Bromus inermis), and Kentucky bluegrass (Poa
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Fig. 1 Locations of field data collections (n=2787) across the
years 2016-2021, overlaid on the Level III ecoregions (U.S.
Environmental Protection Agency —National Health and Envi-

pratensis). This region also includes warm-season
grasses, namely buffalo grass (Bouteloua dactyloi-
des), blue grama (Bouteloua gracilis), little bluestem
(Schizachyrium scoparium), switchgrass (Panicum vir-
gatum), and forbs including western wallflower (Erysi-
mum capitatum), Canada thistle (Cirsium arvense),
leafy spurge (Euphorbia esula), and purple prairie clo-
ver (Dalea purpurea) (Rigge et al. 2013).

Data sources

Field measurements and sample collection

We aim to develop a model for YSC at 10 m spatial
resolution. We compiled YSC percent cover and pres-
ence data from several databases of federal, state, and

non-governmental organizations across the UMRB
(S.I. Table 1). The state and source distribution of
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ronmental Effects Research Laboratory) of the Upper Mis-
souri River Basin (top), and land cover map of western South
Dakota overlaid with county boundaries (bottom right)

sample points are provided in S.I. Table 2, and the
frequency distribution of YSC cover in these samples
is shown in S.I. Figure 2. We collected 2787 sam-
ple points from different sources during 2016-2021
(S.I. Table 2). From these samples, we compiled
1612 percent cover samples, and 1438 presence-
absence (binary) samples. Duplicates from differ-
ent sources lying within the same pixel (10 m) and
from the same year were removed. Observed YSC
samples with less than 10% cover were discarded in
the presence-absence model because we assumed
canopy cover of <10% would not be detectable in
the 10 m spatial resolution imagery. For 2021, we
conducted field measurements during peak summer
months (June-July—August) across different biomes
throughout western South Dakota (S.I. Table 2).
We used a conventional plot-based quadrat method
widely applied in the grassland ecology community
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Fig. 2 Changes in the mean (standard deviation) of yellow
sweetclover (YSC) percent canopy cover and the mean annual
precipitation (dashed line) for western South Dakota for 2016—
2021. The inset figure shows long-term mean annual precipita-

to estimate canopy cover (John et al 2018) . In each
30%x30 m plot, we randomly placed a 0.5x0.5 m
quadrat at three locations. The quadrat was marked
with a 5X5 cm grid. We calculated the percent cover
of YSC by counting the number of YSC occupied
grid cells.

Climatic and terrain variables

We obtained long-term daily (1991-2020) precipita-
tion and temperature data at 1 km from the Daymet
dataset (https://daymet.ornl.gov/) (Thornton et al.
2022). We computed annual (mean annual precipita-
tion—MAP, mean annual temperature—MAT) and
seasonal composites of precipitation (spring [March,
AprilMay] -P_MAM and summer[June, July,
August] —P_JJA) and temperature (T_MAM and T_
JJA) using the Google Earth Engine (GEE). We also

Year

2019 2021

tion (1991-2021), with the dashed line representing the 30-year
average precipitation for the study region. Source details
for YSC percent cover is mentioned in S.I. Table 1 and Precipi-
tation was obtained from Daymet Data (S.1. Table 4)

acquired normalized difference snow index (NDSI)
data derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) MOD10A1 snow cover
dataset, which has a spatial resolution of 500 m, to
characterize the maximum percent snow cover in the
region (Riggs et al. 2015). We also acquired snow
depth from maximum value composites of monthly
means of the ERAS-Land dataset processed by the
European Centre for Medium-Range Weather Fore-
casts (ECMWF) at 11 km spatial resolution (Mufioz-
Sabater et al. 2021). In addition, we used the National
Elevation Dataset (10 m resolution) for terrain features
to characterize elevation over the UMRB. We also
obtained first-order derivatives such as slope, terrain
roughness index and terrain wetness index from the
National Elevation Dataset using the NASA Earthdata
portal (Gesch et al. 2002, 2014).
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Other biophysical variables

We used GEE to obtain cloud-free, or maximum
10% threshold cloud cover high-resolution Sentinel-
2A surface reflectance images (Gascon et al. 2017)
(https://developers.google.com/earth-engine/datasets/
catalog/COPERNICUS_S2_SR). We derived several
vegetation indices (VI) from Sentinel-2A: normalized
difference vegetation index—(NDVI), green NDVI—
(GNDVI), normalized difference water index—
(NDWI), soil-adjusted vegetation index—(SAVI),
and land surface water index—(LSWI). These are
proxies for vegetation cover (NDVI, SAVI), green-
ness (GNDVI), water bodies (NDWI), and plant water
content (LSWI). We also derived tasseled cap bright-
ness (TCB), greenness (TCG), and wetness (TCW)
indices from the 10 m Sentinel 2A bands, which
serve as a proxy of albedo, vegetation, and moisture,
respectively, to reduce dimensionality and the num-
ber of variables in rule-based modeling (Shi and Xu
2019). The Sentinel 2A-derived bands, VI and tasse-
led caps were computed using maximum value com-
posites for the peak growing season (June—August)
for each year from 2016 to 2021. Source details of
all the VI’s and tasseled caps used in this study are
provided in S.I. Table 3. For soil textural and physi-
cal properties, we obtained soil pH, sand, silt, and
clay from the Polaris database (Chaney et al. 2019),

Fig. 3 Schematic workflow

available at 30 m spatial resolution, developed by
the National Cooperative Soil Survey under the US
Department of Agriculture-Natural Resources Con-
servation Service. Land cover land use types and
proximity to roads were derived from National Land
Cover 2019 database (NLCD 2019) products avail-
able at 30 m resolution (Dewitz 2021). Lastly, the
distance to streams product was derived from the
National Hydrography Dataset developed by the
U.S. Geological Survey National Geospatial Pro-
gram (https://www.usgs.gov/national-hydrography).
All data sets were resampled to 10 m spatial resolu-
tion and projected in Albers Equal Area projection
and WGS 84 datum. We calculated standard devia-
tions of all the variables derived from the monthly or
annual composites to examine whether the variability
of independent datasets explained the abundance of
YSC. Altogether, we curated a database with 48 inde-
pendent variables (S.I. Table 4).

The observed samples were segregated into binary
presence-absence data for habitat suitability models
and percent cover data for machine learning models.
We used the presence-absence dataset to determine
the best modeling approach for developing a habitat
suitability map for YSC. In addition, we compared
multiple models to determine the best approach to
predicting the relative percent cover in the suitable
habitats of YSC. The percent cover map was clipped

o . X . Model accuracy
for predicting habitat suit- Feature selection assessment
ability of yellow sweetclover Presence-absence -RFE - Accuracy
(YSC) and its canopy cover data l - Kappa coefficient
(%) distribution across west- Data for YSC YSC habitat -AUC
ern South Dakota. *Note— probability of suitability models -TSS
RFE Recursive Feature occurrence -RF
Elimination, RF Random classification - MARS
Forest, MARS Multivari- 80% - training - GAM | Best model selected
ate Adaptive Regression 20% - validation - GBM l
Splines, GAM Generalized - Maxent Phillips YSC percent cover &
Additive Models, GBM Gen- Independent - Ensemble habitat suitability
eralized Boosting Model, Variables map of YSC
XGBoost eXtreme Gradient Feature selection '[
Boosting model, AUC Area Percent cover RFE
Under Curve, TSS True Skill data | Best model selected
Statistic, R? Coefficient of l ‘[
Determination, R Correla- Data for YSC YSC percent
tion Coefficient, RMSE percent canopy cover regression Model accuracy
Root Mean square error, C(’Zer regression models assessment
MAE Mean Absolute Error, 80% - tralp ng -RF ] -R?
MAPE Mean Absolute 20% - validation - XGBoost - RMSE
Percentage Error - Cubist - MAE

- GAM - MAPE
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to the suitable habitats of YSC in the rangelands of
western South Dakota (Fig. 1). The workflow to
determine the suitable habitat of YSC and its per-
cent cover distribution across rangelands of western
South Dakota for 2019 is illustrated in Fig. 3.

For both habitat suitability and percent cover pre-
diction models, we used a Pearson correlation coef-
ficient (R) threshold of 0.7 (Green 1979; Domisch
et al. 2013) to remove highly correlated variables.
We also used the Recursive Feature Elimination
(RFE) method to select the best subset of independ-
ent variables to help determine the suitable habitat
and percent cover of YSC. The RFE (Guyon et al.
2002) selects all predictor variables and determines
the relevance of each predictor using the backward
selection technique. We re-iterated the model to dis-
card all the least significant predictors based on sig-
nificance scores. The best subset predictors from the
RFE were used to train the machine learning algo-
rithms (Guyon et al. 2002).

For both habitat suitability and percent cover
prediction models, the samples were split into 80%
for training and 20% for testing, using the boot-
strapping method (including replacement). We
used repeated cross-validation (CV) to optimize the
hyperparameters (subset size) and select the best
predictors based on variable importance ranking
(Kuhn 2015) (S.I. Table 5). We implemented hyper-
parameter tuning and CV techniques to minimize
errors and improve the model accuracy (Allouche
et al. 2006).

Habitat suitability model

We tested five algorithms, namely the generalized
additive model—(GAM; Hastie and Tibshirani 1987),
generalized boosting model—(GBM; De’ath 2007),
multivariate adaptive regression splines —(MARS;
Friedman 1991), random forests—(RF; Breiman et al.
1984) and maximum entropy (Maxent Phillips) mod-
els (Phillips et al. 2006) to develop the habitat suit-
ability model. These were all produced using the R
statistical package Biomod-2 (Thuiller et al. 2016).
We implemented 10 evaluations with a threefold
CV to evaluate the performance of individual mod-
els. The hyperparameters and CV technique details
are described in S.I. Table 5. The average of the best
three evaluated models was considered to develop the
YSC prediction map.

We used accuracy and kappa coefficient to assess
how well a model can predict and provide the propor-
tion of correct classifications based on the training
data (Thuiller 2003). We also implemented True Skill
Statistic (TSS) and area under the receiver operat-
ing curve (ROC), also known as area under the curve
(AUC), to evaluate specificity and sensitivity due
to the imbalance between the presence and absence
samples used in the model (Allouche et al. 2006;
Amirkhiz et al. 2021).

The BIOMOD2 package’s “random shuffle”
approach was used to determine the importance of
each variable (Thuiller et al. 2016). Three permuta-
tions per each variable were implemented to estimate
the variable importance. We developed a response
curve for each variable using the best-evaluated indi-
vidual habitat suitability model to understand the
influence of environmental factors on YSC. To cre-
ate response curves for each covariate, we plotted the
mean predicted probability of occurrence models,
including the covariate, against the corresponding
values of the covariate (where the other covariates in
the model were held constant at their median value).

The best evaluated model for each individual algo-
rithm was included in the ensemble-model building.
The ensemble process within the BIOMOD?2 frame-
work, produced ensemble maps based on weighted
means. All four metrics(Accuracy, Kappa, TSS and
AUC) were used to evaluate the ensemble model.
We used AUC score-based threshold to derive a
binary map from the probability of occurrence as it
was considered a standard to assess the performance
of ordinal scoring models such as logistic regression
(Allouche et al. 2006). The non-rangeland areas were
masked out before implementing the habitat suit-
ability model to emphasize the habitat of YSC in the
rangelands of western South Dakota.

Estimating canopy cover (%)

We used 1612 samples from the YSC canopy cover
dataset to develop four non-parametric machine
learning-based regression models, namely the RF
(Liaw and Wiener 2002; Kolluru and Kolluru 2021;
Das et al. 2022), Cubist (John et al. 2018; Kuhn et al.
2023), extreme gradient boosting model — XGBoost
(Abdullah et al. 2019; Chen et al. 2015) and GAM
(Hastie 2015; Bera et al. 2021). Previous studies have
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Table 1 Description of

; ' S.no Independent variables Codes Presence- Percent
independent va.rlabl.es absence (16)  canopy
selectefi ‘for estimating the (14)
probability of occurrence
(presence-absence) and 1 Spring precipitation P_MAM * *
canopy cover (%) for yellow 2 Summer precipitation P_JJA *
sweetclover (YSC) -

3 Spring temperature T_MAM *

4 Summer temperature T_JJA *

5 Spring precipitation (standard deviation) P_MAM, * *

6 Summer precipitation (standard deviation) P_JJA *

7 Summer temperature (standard deviation) T_JJAy * *

8 Elevation Elevation * *

9 Snow depth (standard deviation) Sdepthy * *

10 Normalized difference snow index NDSI *

11 Standard deviation of NDSI NDSI, *

12 Land surface water index LSWI * *

13 Normalized difference water index NDWI * *

14 Sentinel 2A-Near infrared S2A-NIR * *

15 Sentinel 2A-Shortwave infrared 1 S2A-SWIR1 * *

16 Tasseled cap wetness (standard deviation) TCW * *

17 Soil pH Soil_pH *
*Indicates the variables 18 Percent silt Silt * *
used in the classification 19 Percent clay Clay *

and regression models

shown that training a regression-tree model with vari-
ous random ecological situations over multiple years
can produce robust models with minimal extrapo-
lation (Jacques et al. 2014; John et al. 2018). All
variables were centered and scaled before the devel-
opment of prediction models. All model hyperparam-
eters were tuned; repeated CV was implemented to
improve model fit and accuracy.

We evaluated the model performance using mean
absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RMSE), and coeffi-
cient of determination (R?) metrics during the training
and testing phases. The model with the best statistical
metrics was selected to predict YSC canopy cover (%)
across suitable habitat regions of western South Dakota.

Results
Habitat suitability model

We selected 22 out of 48 predictor variables based on
a correlation (R) threshold of < +0.7 (S.I. Figure 5).

@ Springer

We further ran RFE and selected the 16 best predic-
tor variables that could explain the spatial variabil-
ity of YSC (Table 1 and S.I. Figures 3 and 4). The
RFE analysis showed that the most important vari-
ables associated with YSC habitat suitability were
S2A-SWIRI1, elevation, and spring precipitation
(P_MAM).

Habitat suitability model performance comparison

We used an ensemble model of five individual mod-
els (RF, GAM, GBM, Maxent Phillips and MARS)
to obtain the probability occurrence of YSC. Among
individual models, RF performed best and MARS
least (accuracy values of 0.87 and 0.80, respectively)
and the ensemble model outperformed each individ-
ual model’s predictions. The ensemble model scored
best in the evaluation metrics with Accuracy, Kappa,
AUC and TSS values 0.89, 0.72,0.92 and 0.73 respec-
tively (S.I. Table 6). We used the AUC score-based
threshold value of the ensemble model to develop the
binary maps (S.I. Table 7). The predicted probability
of occurrence range varied from O to 0.9 for the study
region (Fig. 4).



Landsc Ecol (2023) 38:1463-1479

1471

Fig. 4 Habitat suitability 104°' W 102° W 100° W
map for yellow sweetclo- 4N F T T T
ver (YSC) determined by N
probability of occurrence A 4 46°N
based on an ensemble \ .
model across rangelands of ® Occurrence Probability
western South Dakota R [ ]0-0.2
4N - L[ ]0.2-04
[ 0.4-0.6
. > 0.6 14"
— River Streams
44°N
- 44°N
43°N Oglalh, Lako
0 25 50 100 15]0(m a7 d 430N
1 1 1
104° W 102° W 100° W

S2A-SWIR1, TCW, S2A-NIR, and LSWI which
are land surface property proxies of moisture and
elevation were the most influential variables in deter-
mining YSC suitable habitat (S.I. Figure 6). The most
important variables i.e., S2A-SWIRI, TCW and
LSWI, showed that higher soil moisture availability
can explain the habitat suitability of YSC. Low range
values of S2A-SWIR1 and TCW; and high range
values of LSWI are known to represents high soil and
canopy moisture content (Gao 1996; Xiao et al. 2002;
Bajgain et al. 2015). Furthermore, S2A-NIR is often
to represent healthy vegetation and is known to show
a high correlation with the above ground biomass
(Zhao et al. 2016). The higher range of S2A-NIR
could perhaps represent higher above ground biomass
of YSC. The response curves of seasonal precipitation
variables (P_MAM and P_JJA) showed higher prob-
ability of occurrence even at below-average precipi-
tation. The response curve for the topographic vari-
ables (elevation) showed higher probability of YSC
occurrence in the low-lying areas. These results did
support our first hypothesis that YSC presence can be
explained by low-lying elevation. However, the first
hypothesis that YSC requires above-average precipi-
tation was not supported by seasonal precipitation.

This could be attributed to coarser resolution data
input.

In case of the second hypothesis, we found that
clay and silt were the least important drivers of habitat
suitability in the model. However, soil pH supported
our hypothesis that YSC tends to occur more fre-
quently in slightly acidic to alkaline soils. Although,
the response curve for pH showed a higher probability
of YSC occurrence in pH range of 6.5-8.0, the impor-
tance of this variable was only slightly higher than
that of clay and silt. Furthermore, the response curves
of S2A-SWIR1 supported our second hypothesis that
YSC tends to grow with above-average soil moisture
(Fig. 5 & S.I. Figure 7). Our third hypothesis regard-
ing proximity factors (distance to roads and distance
to streams) were not supported, as these variables
were discarded based on RFE importance ranking.
We used an optimum threshold of 0.44 to develop a
binary presence-absence map from the probability of
occurrence map (S.I. Table 7). Our final prediction
map showed that more than half (42,722 km? out of
79,968 km?) of western South Dakota rangelands pro-
vide a suitable habitat for YSC (S.I. Figure 8). The
suitability of YSC across western South Dakota indi-
cates that this species could exist in various environ-
mental conditions. Major YSC hotspots were found in
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Fig. 5 Response curves for the top-ranked covariates of yel-
low sweetclover (YSC) derived from the random forest (best
individual model) habitat suitability model. The response
curves of remaining variables are shown in S.I. Figure 7.

(i) portions of Butte, Pennington, Corson and Dewey
Counties, (ii) areas around Badlands National Park,
and (iii) some areas adjacent to floodplains of the
White and Bad Rivers or their tributaries.

Estimated canopy cover and model performance

We selected 21 of 48 predictor variables based on a
correlation (R) threshold of < +0.7 (S.I. Figure 9).
We further ran RFE and selected the 14 best variables
for predicting YSC percent cover distribution (Table 1
and S.I. Figures 3 and 4). RFE analysis showed that
the most important variables associated with YSC
percent cover were LSWI, variation in summer tem-
perature (T_JJA ), and S2A-SWIR1.

We implemented four regression models (i.e.,
GAM, RF, Cubist and XGBoost) using the caret

@ Springer
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*Note—LSWI- Land surface water index, NDWI- Normal-
ized difference water index, P_JJA—Summer precipitation, P_
MAM—Spring precipitation, T_MAM—Spring temperature,
TCW,—Variation in tasseled cap wetness

package in R (Kuhn et al. 2020). Based on the train-
ing and testing evaluation metrics, the GAM model
had the poorest performance, with an R? of 0.30 dur-
ing the testing phase. XGBoost performed relatively
well compared to GAM but exhibited overfitting of
the data. XGBoost had an R? of 0.88 during train-
ing, but the metrics decreased to 0.46 during the test-
ing phase. Cubist performed second best with an R?
of 0.54 during the testing phase. RF yielded the best
result with an R? of 0.55 and RMSE of 7.49 during
the testing phase. In addition to R? and RMSE, we
found that RF had an MAE and MAPE of 5.09 and
2.76, respectively (Table 2).

The RF model was chosen to estimate the percent
cover distribution of YSC in western SD. The vari-
able importance of the RF model showed that LSWI
performed the best and was among the top influencing
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Table 2 Statistical comparison of machine learning models for predicting canopy cover (%) of yellow sweetclover (YSC) along with
their descending order of variable importance (See S.I. Table 4 for variable descriptions)

Model R? R RMSE MAE MAPE Variable importance

GAM 0.30 0.54 9.13 6.50 3.21 Elevation, P_MAM, T_JJA, TCW, S2A-SWIR1

Cubist 0.54 0.73 7.48 4.99 2.52 LSWI, Elevation, T_JJA,, S2A-SWIR1, P_MAM, TCW 4
Random forest 0.55 0.74 7.49 5.09 2.76 LSWI, T_JJA4, S2A-SWIR1, TCW,, NDSI,, P_ MAM
XGBoost 0.46 0.68 8.02 4.96 2.56 LSWI, S2A-NIR, S2A-SWIRI, Elevation, P_MAM, NDSI,

GAM Generalized Additive Models, XGBoost eXtreme Gradient Boosting, R? Coefficient of Determination, R Correlation coefficient
RMSE Root Mean square error, MAE Mean Absolute Error, MAPE Mean Absolute Percentage Error

variables in other modeling approaches (S.I. Fig-
ure 10 and Table 2). Following LSWI, summer tem-
perature variability (T_JJA ), S2A-SWIR1, and vari-
ability in tasseled cap wetness (TCW ) were among
the other top important variables for both the RF and
Cubist models. The response curves for the RF per-
cent cover model are represented in S.I. Figure 11.
The response curves for YSC % cover distribution
showed increase in LSWI significantly increased YSC
% cover range from 0 to 20% whereas other vari-
ables explained small variation in abundance ranging
between 0 and 10%.

We also developed a spatial correlation map
using habitat suitability and predicted canopy cover
(%) distribution of YSC (S.I. Figure 12). Small sec-
tions of western counties such as Butte, Meade,
Pennington, and Fall River showed negative cor-
relation. Most of the study region showed a posi-
tive correlation between the probability of occur-
rence and percent cover distribution of YSC. The
predicted canopy cover map was clipped to empha-
size the suitable habitat of YSC in the rangelands of
western South Dakota. The predicted YSC percent
cover distribution had higher heterogeneity and var-
ied along moisture gradients. Highest canopy cover
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distribution was found in parts of Butte County
followed by Meade, Fall River, and Pennington
Counties. The predicted percent cover in suitable
areas of YSC ranged from 5 to 53% with relatively
higher abundance in the western counties of western
South Dakota (Fig. 6).

Discussion

We developed a framework to predict the spa-
tial distribution and cover of YSC across western
South Dakota. We gathered YSC samples across
multiple years (2016-2021), including wet and dry
years to account for spatial heterogeneity and tem-
poral variation in the model. Sampling data over
multiple growing seasons can help obtain a robust
calibration model (John et al. 2018). We first devel-
oped a habitat suitability model and inspected
response curves to understand the importance of
various abiotic and biotic factors to YSC distribu-
tion. We then developed a prediction model of YSC
canopy cover to determine the abundance of YSC.
The abundance map can be used as an indicator of
site conditions and as a surrogate index of habi-
tat suitability. We tested different machine learning
models, which varied in their performance (Tables 2
& S.I. Table 6). Different types of data, such as pres-
ence-absence, presence only, or percent cover data
or the species-specific traits of habitat, may take
precedence in local model selection (Stohlgren et al.
2010). Testing several predictive models and several
forms of datasets prevents the bias of relying on a
single model. This approach of comparing various
predictive models adds substantial robustness and
consistency to the performance of a specific predic-
tive model (Kolluru et al. 2020).

Effect of environmental conditions
Climatic drivers

Precipitation is one of the key factors affecting grass-
land structure and function (Lauenroth et al. 2014).
Previous studies have found an amplified response
of invasive annuals to precipitation characteristics
(Bradley and Mustard 2005). We found that spring
precipitation (P_MAM) was a moderately significant
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climatic variable in predicting YSC presence. Gener-
ally, YSC emerges around spring (March or April)
and grows approximately 10.2-30.5 cm tall, pro-
vided enough moisture is available during the growth
period during the first year of its life cycle. Once
the root develops, the plant becomes drought and
cold-tolerant (Luo et al. 2016). The response curve
results showed that low spring precipitation ranging
between 75 and 175 mm may contribute to higher
chances of YSC occurrence (Fig. 5). This could per-
haps be owing to coarse-resolution precipitation data
inputs or less sample points. The response curves
may have under-represented the range of spring pre-
cipitation. However, the higher resolution land sur-
face property variables (LSWI, S2A-SWIR1, TCW,)
indicated that YSC distribution is explained by high
moisture availability during its vegetative growth
period. The higher range of moisture proxies with
low season precipitation range may indicate that the
growth of YSC requires accumulated moisture from
two consecutive wet periods to show enhanced pro-
ductivity. This effect of accumulated moisture could
not be explained by seasonal precipitation variables
(P_MAM and P_JJA) on their own but could have
perhaps been explained by annual precipitation. How-
ever, annual precipitation was removed from this
study due to high collinearity with other predictor
variables. Further research would be useful to under-
stand the interaction or combined effect of climate
variables on YSC presence and abundance.
Temperature is a significant factor in various phys-
iological processes in addition to precipitation (Gama
et al. 2016). The periodicity of seed germination and
spread of species are significantly influenced by tem-
perature (Ghaderi-Far et al. 2010). Conn et al. (2011)
showed that YSC could even survive the extreme
weather in Alaska, with annual precipitation and tem-
perature of 170 mm and — 3.3 °C, respectively. Ger-
mination rate generally rises linearly with tempera-
ture and drops rapidly at a higher temperature within
a narrow range (Finch-Savage 2020). We found a
slightly different trend in the response curve of spring
temperature. Although YSC probability of occurrence
gradually decreased until 7 °C, a slight increase in
temperature (T_MAM) from 7 to 8 °C increased YSC
probability of occurrence from 0.45 to 0.65 (Fig. 5).
Furthermore, we also found that variation in per-
cent snow cover (NDSI,) in winters has a significant
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effect on YSC abundance. Paudel and Andersen
(2013) found a positive linear relationship between
rangeland vegetation production and snow cover in
the drier rangelands of the Trans Himalayan Region.
Their findings indicated that although temperature is
important, changes in snow cover and precipitation
patterns play more important roles in snow-fed, drier
regions for rangeland vegetation dynamics.

Effect of topographic drivers

Elevation gradient can affect and alter the seasonal
development of various plant species. The response
curve showed decreasing occurrence of YSC with
increasing elevation. The probability of YSC occur-
rence dropped from 0.6 to 0.2 when the elevation
increased beyond 1000 m (Fig. 5). YSC dominance
is common at low to medium elevation near stream-
banks, meadows, or disturbed areas (Hansen et al.
1988). Previous studies have found that the YSC can
grow even at higher elevations of above 2000 m (Stoa
1933). However, higher elevation sites can affect
vegetative growth of YSC by affecting its flowering
period, fruit development, and seed maturation. We
also found that the YSC abundance increased mov-
ing from east to west across the elevation gradient
(Fig. 6).

Effect of edaphic variables

We hypothesized that heavy clay to loamy soils might
be influential in determining the presence of YSC.
However, we found that clay and silt were the least
important in the habitat suitability model whereas silt
was the least important in predicting YSC abundance.
This could be because of its ability to grow in vari-
ous soil types. On the contrary, seeding of YSC on
South Dakota’s rangelands is successful where soils
are as much as 65% clay (Nichols and Johnson 1969).
YSC is also productive on silty loams to clayey loam
soil with neutral to alkaline pH. We found that soil
pH had little effect on YSC habitat suitability. The
response curve indicated a pH range of 6.5-8.0 has
the highest probability of YSC occurrence. Our
results align with Turkington and Cavers (1979),
who showed that YSC could thrive on soils with a
pH> 6.5, whereas YSC is less competitive and fails at
nitrogen fixation in acidic soils.

Distribution along roads and streams

YSC is often associated with disturbed lands and
open sites. However, most of the undisturbed lands
located farther from roads has already been affected
by YSC in South Dakota. Proximity to roads and
streams as two separate variables were discarded
for both habitat suitability and percent cover model
during variable selection. This could be due to
fewer field samples collected near roads and streams
to minimize bias. The percent cover and suitabil-
ity map did not show any bias towards the roads
or stream networks. The dispersion of sweetclover
(yellow and white sweetclover) via roads or river
streams were important factors in introducing and
establishing exotic species (Tikka et al. 2000).
Wurtz et al. (2010) conducted a case study and doc-
umented the distribution of sweetclover near river
crossings. They suggest that sweetclover might have
spread onto the floodplains from upstream roads,
mines, and agricultural developments. Early surveys
for exotic plant species showed that sweetclover
had invaded the Stikine, Matanuska, and Nenana
Rivers floodplains in Alaska (Conn et al. 2008).
The dispersion of YSC via roads or highways had
an important role in introducing and establishing
exotic species. Tikka et al. (2000) observed that
grassland plants leveraged roads and railway corri-
dors for dispersion in central Finland. Contrary to
not finding the distance to roads among the most
important variables in this study, we found several
patches of YSC alongside the highways and inter-
states of South Dakota during field visits. However,
the length and size of these patches along the high-
ways vary.

Effect of other biophysical variables

YSC is ubiquitous across the North-
ern Great Plains, but very little is known about its
spatial distributions and/or the environmental fac-
tors that affect its growth (Van Riper and Larson
2009). S2A-SWIR1 was the top indicator for pre-
dicting YSC presence and the third most impor-
tant indicator for estimating its canopy cover (S.I.
Figure 6 & S.I. Figure 10). S2A-SWIR-1 is sensi-
tive to the moisture content in soil and vegetation.
S2A-SWIR1 reflectance decreases as the water
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content increases in the soil. These characteristics
make it helpful in distinguishing between dry and
wet soils. YSC’s response to S2A-SWIRI1 strength-
ens the understanding that YSC either prefers to
grow in moist areas or it has high canopy water
content. YSC also showed an upward abundance
trend with the increase in LSWI, which was the top
variable for predicting percent canopy cover and
the fourth most important for predicting the habi-
tat of YSC. LSWI also includes the S2A-SWIRI1
band and is sensitive to volumetric soil moisture
and canopy water content (Gao 1996; Xiao et al.
2002; Bajgain et al. 2015). The response curve
showed probabilility of YSC occurrence if the
TCW,, range varied upto 0.08 whereas the actual
range of TCW, varied upto 0.5 (Fig. 5 & S.I. Fig-
ure 4). The chances of YSC occurrence are higher
only if consistent moisture availability is present
in the region.

Implications for the management of YSC

Monitoring and mapping of YSC can help examine
its current distribution patterns. These methods can
help managers anticipate the possible trajectory of a
species and its distribution in the coming years (How-
ard 2022). YSC has many positive attributes, such as
a positive economic impact on honey production, its
usage as a forage crop, carbon sequestration and soil
stabilization. However, YSC can also threaten native
prairies because it can reproduce in large numbers
and effectively compete for nutrients with desired
native species (Van Riper and Larson 2009). There-
fore, developing an operational and cost-effective
monitoring system would be beneficial to understand
the growth and spread of YSC in a specific region.
The present study could help identify potential hot-
spot areas for implementing management strategies
to stabilize or manage the level of YSC growth. A
monitoring system could also help honey produc-
ers track their potential production for the upcom-
ing years. Hence, mapping YSC in near-real time, at
a broad spatial scale and high resolution, could help
improve land management and policymaking deci-
sions and provide better knowledge of YSC habitat
and its distribution.
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Limitations of the study and future scope

The use of regression tree approaches such as RF,
XGBoost and Cubist in estimating the canopy cover
(%) has some limitations that could be addressed in
future research. First, a small dataset (n=1612) and
the skewness of the data were a major limitation when
using models such as RF and Cubist. Larger data-
sets would ideally be analyzed to improve the mod-
el’s precision and reliability. A more stratified sam-
ple collection from disturbed and undisturbed sites
could help explain its spread pattern. Many rangeland
plant species are indistinguishable in aerial or satel-
lite imagery except in specific phenophases. YSC is
a biennial species that grows over two years. It grows
approximately 10.2-30.5 cm tall in the first year
but does not bloom until the second year, making it
harder to detect YSC in its first year using multi-spec-
tral imagery at 10 m resolution. The data collected
from various sources over the past years did not have
information regarding the phenological growth stages
of YSC (bloom/no-bloom). The absence of phenolog-
ical growth information on YSC could lead to error
propagation during response variable generation in
geographic information system environments. We
found all the top predictor variables belonged to high-
resolution dataset. Subsampling of datasets due to
unavailability of climate variables at fine resolution is
still a major limitation for 10 m resolution small-scale
studies.We used the POLARIS dataset despite availa-
bility of Soil Survey Geographic (SSURGO) database
at 10 m resolution because POLARIS data overcomes
the challenges of spatial details and incomplete spa-
tial coverage (Chaney et al. 2019). In addition, dimen-
sionality reduction using multi-collinearity and varia-
ble selection might eliminate important variables that
can explain the species occurrence. Future studies
could adapt and test more environmental factors and
regression models in estimating YSC. The percent
cover model evaluation metrics showed a good model
fit, and the data strongly supported the classification
of YSC suitable areas. These generalized models ide-
ally would be validated with more observation sam-
ples in the forthcoming years. The present study can
be considered a reference that can be improved with
more observations, phenological stage datasets, envi-
ronmental layers and resolution between temporal
and spatial variation.
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Conclusions

We predicted YSC habitat suitability and its percent
cover across western South Dakota using machine
learning algorithms trained with in situ field samples
and biophysical drivers from different remote sensing
datasets. Our study identified the most suitable driv-
ers that could explain the variability in YSC presence
and its percent cover through data dimensionality
reduction techniques (i.e., correlation and recursive
feature elimination). We compared different modeling
techniques and used the best model to develop a clas-
sified YSC presence-absence and canopy cover (%)
distribution map for YSC in 2019. We also examined
the variable importance and their response curves to
determine the suitable habitat of YSC across west-
ern South Dakota. Our research demonstrated how
ensemble techniques for habitat suitability models
and machine learning algorithms such as RF could
help generate valuable information on the spatial
distribution of an invasive rangeland plant species.
These machine learning models helped explore the
environmental constraints in distinguishing inva-
sive ' YSC through satellite imagery. The North-
ern Great Plains ecosystem is vulnerable to invasive
species, prolonged droughts, human disturbance, and
over-grazing (Derner et al. 2018). Therefore, our pre-
diction maps could be used to create a strategies that
can be used by managers for regions vulnerable to
YSC. Moreover, these results will support ranchers
in implementing conservation plans to protect vulner-
able species and support beekeepers in making the
best productive use of these species. Mapping inva-
sive species in the Northern Great Plains every year
or two would be useful to monitor the spatiotempo-
ral dynamics of grassland landscapes. Monitoring
plant invasives can provide landscape ecologists with
information on the spatiotemporal scales of change
in grasslands, allowing them to make more effective
decisions. This research can help in mapping other
invasive species in the rangeland ecosystem.
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