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Abstract: Dealing with sparse rewards is a long-standing challenge in reinforce-

ment learning (RL). Hindsight Experience Replay (HER) addresses this problem

by reusing failed trajectories for one goal as successful trajectories for another.

This allows for both a minimum density of reward and for generalization across

multiple goals. However, this strategy is known to result in a biased value function,

as the update rule underestimates the likelihood of bad outcomes in a stochastic

environment. We propose an asymptotically unbiased importance-sampling-based

algorithm to address this problem without sacrificing performance on deterministic

environments. We show its effectiveness on a range of robotic systems, including

challenging high dimensional stochastic environments.

Keywords: Reinforcement Learning, Multi-goal reinforcement learning

1 Introduction

In recent years, model-free reinforcement learning (RL) has become a popular approach in robotics.

In particular, these methods stand out in their ability to learn near-optimal policies in high-dimensional

spaces [1, 2, 3]. One popular extension of RL, multi-goal RL, allows trained robots to generalize

to new tasks by conditioning on a goal parameter that determines the reward function. However,

RL algorithms often struggle with tasks that involve sparse rewards, as these environments can

require a very large amount of exploration to discover good solutions. Hindsight Experience Replay

(HER) offers a solution to the sparse reward problem for multi-goal reinforcement learning [4].

Figure 1: Q-values learned with HER
(left), and Q-learning (right). A robot
must navigate from the white circle to
the black circle while avoiding obsta-
cles (black squares) and risky areas (yel-
low triangle, 75% chance of stopping
the robot). The value function ranges
from 1 (bright green) to 0 (bright red).

HER treats failed attempts to reach one goal as successful at-

tempts to reach another goal. This significantly reduces the

difficulty of the exploration problem, because it guarantees a

minimum density of reward and ensures that every trajectory

receives useful feedback on how to reach some goal, even when

the reward signal is sparse. However, these benefits come with

a trade-off. While HER is unbiased in deterministic environ-

ments, it is known to be asymptotically biased in stochastic

environments [5, 6]. This is because HER suffers from a sur-

vivorship bias. Since failed trajectories to one goal are treated

as successful trajectories to another, it follows that HER only

ever sees successful trajectories. If a random event can prevent

the robot from reaching a desired goal g, then HER will only
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sample g as a goal when the event did not occur, leading it to

significantly overestimate the likelihood of success and underestimate the likelihood of dangerous

events. Practically, this manifests as a tendency for HER to want to ªrun red lightsº and take risks.

We present a concrete toy example of this problem in Figure 1, using tabular Q-learning. As we can

see, HER values the direct path to the goal and the square en route to the dangerous square much

higher than that path’s correct Q-value because it undersestimates the risk. HER learns to take the

shorter, more dangerous path and achieves a lower success rate with lower reward than Q-learning.

As suggested in both [5] and [6], we derive an approach that allows us to use HER for sampling

goals without suffering from these bias problems. We do this by separating the goal used for the

reward function (gr) from the goal that is passed to the policy (gπ). The value function is conditioned

on both goals, but only the reward goal is sampled using HER. This allows us to efficiently learn a

successor representation over future achieved goals that we can use for importance sampling. We

show that reweighting HER’s mean squared Bellman error using this successor representation yields

an unbiased estimate of the error. We call this method Unbiased Sampling for Hindsight Experience

Replay (USHER). We demonstrate this approach on an array of stochastic environments, and find that

it counteracts the bias shown by HER without compromising HER’s sample efficiency or stability.

2 Definitions

We define a multi-goal Markov Decision Process (MDP) as a seven-tuple: state space S Ď R
n, action

space A Ď R
m, discount factor γ P r0, 1s, transition probability distribution P ps1 | s, aq (with density

function fps1 | s, aq) for ps, a, s1q P S ˆAˆ S, goal space G Ď R
l, goal function ϕ : S Ñ G, and

reward function R : S ˆGÑ R. A goal g “ ϕpsq P G is a vector of goal-relevant features of state

s P S. Goal function ϕ is defined a priori, depending on the task. A typical example of ϕpsq is a

low-dimensional vector that preserves only the entries of state-vector s that are relevant to the goal.

For instance, a mobile robot is tasked with moving to a particular location and arriving there at zero

velocity. The state space of the robot would include velocities and orientations of each wheel, along

with several other attributes that are needed to control the robot. The goal function would take the

full high-dimensional state of the robot and return only its location and velocity. Therefore, each goal

point corresponds to a subspace of the state space in this example. A special case is when G “ S

and g “ ϕpsq,@s P S. Note that the immediate reward function Rps, gq depends on a selected goal

g P G. Every selection of g P G produces a valid single-goal MDP. We denote by π a deterministic

goal-conditioned policy, with πps, gq P A for s P S, g P G, and define Q˚ps, a, gq to be the unique

optimal Q-value of action a P A in state s P S, given selected goal g P G.

In the proposed algorithm and analysis, a policy π can be evaluated according to a goal that is not

necessarily the same goal used by the policy for selecting actions. Therefore, we use gπ to refer to

goals that are passed to policies, and gr to denote goals that are used to evaluate policies. Using these

notations, the Bellman equation is re-written as

Qπps, a, gr, gπq “ Es1rRps1, grq ` γQπps1, πps1, gπq, gr, gπq | s, as.

Intuitively, this means ªThe expected cumulative discounted sum of rewards Rps1, grq, when using

policy πps1, gπqº. The reason for this separation is that it allows us to more easily separate the

problem of predicting future rewards from the problem of directing the policy. This makes it much

easier to find an analytic expression for HER’s bias. In particular, it lets us learn an expression for

future goal occupancy that is conditioned only on gπ and not gr, which will allow us to correct

for the bias induced by hindsight sampling. Observe that when gr “ gπ, this definition reduces

to the Bellman equation for standard multi-goal RL. For standard Q-learning, πps1, gπq would be

argmaxa1 Qps1, a1, gπ, gπq, where both the policy and reward goals are set to gπ .

HER. HER is a modification of the experience replay method employed by many deep RL algo-

rithms [1, 4, 7, 8, 9]. Policy goal gπ is sampled before each trajectory begins, and is not changed

while generating the trajectory. After generating a trajectory, HER stores the entire trajectory in the

replay buffer. When sampling transitions ps, gπ, a, s
1q from the buffer, HER retains the original goal
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gπ used in the policy that generated the trajectory, i.e., gr Ð gπ, with probability 1

k`1
, where k is

a natural number (usually 4 or 8). The rest of the time, it replaces the original goal with ϕpstq, i.e.,

gr Ð ϕpstq, where st is a randomly sampled state from the future trajectory that starts at s. Goals

that are selected from the future trajectory are referred to as ªhindsight goalsº. HER then updates the

Q-value and policy networks with ps, gπ, a, s
1, Rps1, grqq.

3 Related Work

Over the last few years, several methods have attempted to address the hindsight bias induced by

HER. ARCHER attempts to decrease HER’s hindsight bias by multiplying the loss on hindsight goals

and non-hindsight goals by different weights, effectively upweighting the importance of hindsight

goals [10]. MHER extends HER to a multi-step RL and proposes a bias/variance tradeoff for that

setting [11]. A rigorous mathematical approach to HER’s hindsight bias is taken in [5], by showing

that HER is unbiased in deterministic environments, and that one of HER’s key benefits is ensuring

a minimum density of feedback from the reward function, even in high-dimensional spaces where

the reward density would normally be extremely low. This reward-density problem is addressed

by deriving a family of algorithms (called the δ-family, e.g. δ-DQN, δ-PPO), which guarantees a

minimum reward density while still being unbiased. These methods do not use HER and have higher

variance. The authors of [5] also state that the problem of formulating an unbiased form of HER is

still open, and call for additional research into the problem.

Bias-Corrected HER (BHER) attempts to account for hindsight bias by analytically calculating

importance-sampling hindsight goals [12]. Unfortunately, we believe that this derivation is incorrect.

The proof in BHER relies on the assumption that the probability of a transition is independent of

the goal (fps1 | s, a, gq “ fps1 | s, aq). This assumption does not hold for HER, because it samples

the goal from the future trajectory of s, which depends on s1. Both our work and [5] give concrete

counterexamples to this assumption. The following derivation provides an unbiased solution that

does not rely on this flawed assumption.

4 Derivation

Bias in HER. We derive the formula of the bias introduced by HER in estimating the Q-value function

in the following. Let s, a, and s1 be random variables representing a state, action, and subsequent

state in a given trajectory generated by policy π with goal gπ. Let T be the number of time-steps

remaining in the sub-trajectory that starts at s. Let Qπ
HERps, a, gr, gπq be the solution to the Bellman

equation obtained using HER’s sampling process of reward goal gr (Sec. 2). This sampling process

takes into account both gπ and T . Furthermore, gr is selected from the sub-trajectory that starts at

s with probability k
k`1

. Therefore, the probability fps1 | s, a, gr, gπ, T q of the next state s1 after

knowing gπ, gr and T is generally not the same as fps1 | s, aq, which is what HER uses empirically

to estimate Qπ
HERps, a, gr, gπq. The following proposition quantifies this bias ratio.

Proposition 1. Suppose gπ is fixed at the start of the trajectory, and gr is sampled using HER. Then

for any s1, s, a, gr, gπ, T ,fps1 | s, a, gr, gπ, T q “
fpgr|s1,πps1,gπq,gπ,T´1q

fpgr|s,a,gπ,T q fps1 | s, aq.

Proof: Appendix (A.5). This identity presents an interesting corollary.

Corollary. Suppose Qπ
HERps, a, gπ, gπq satisfies the Bellman equation and the distribution of future

achieved goals is absolutely continuous with respect to the goal space for all s, a, gπ , and πps, gπq “
argmaxa1 Qπ

HERps, a
1, gπ, gπq. Then Qπ

HERps, a, gπ, gπq “ Q˚ps, a, gπq, where Q˚ is the optimal

goal-conditioned Q-function.

Proof: Appendix (A.6). While this establishes that the target value for Qπ
HER is unbiased when

gr “ gπ , the function approximator for Qπ
HER may still be biased, because values other than gr “ gπ

may influence it through the training of the network. Thus, it is possible that the learned Qπ
HER value

may remain biased until unacceptably large amounts of data are gathered. Additionally, since the

density of data is discontinuous, Qπ
HER may be discontinuous and difficult to approximate with a
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neural network. The rest of this section is devoted to developing an importance sampling method that

is guaranteed to be asymptotically unbiased over the entire domain of Q.

Unbiased HER. To estimate Qπps, a, gr, gπq, the solution to the unbiased Bellman equation, we use

in this work the following expression,

Qπps, a, gr, gπq “ Es1rMps1, s, a, gr, gπ, T q
`

Rps1, grq ` γQπps1, πps1, gπq, gr, gπq
˘

| s, a, gr, gπ, T s,

where Mps1, s, a, gr, gπ, T q is a weight that cancels the bias ratio given in Proposition 1. Conditioning

the expected value over s1 on gr, gπ , and T frees us from the constraint that s1 needs to be independent

of gr, gπ , and T . This would allow us to select gr from the future trajectory of s, as HER does. Note

that conditioning on T , the number of steps left in the trajectory, is necessary because the distribution

of goals selected by HER is not time-independent.

Proposition 1 is useful for understanding what situations may cause HER to be biased, but un-

fortunately we cannot directly use it for importance sampling. Weighting samples by setting

Mps1, s, a, gr, gπ, T q as
fpgr|s,a,gπ,T q

fpgr|s1,πps1,gπq,gπ,T´1q would require fpgr | s
1, πps1, gπq, gπ, T ´ 1q to

always be greater than 0, which is not necessarily true. To solve this, we sample a mixture of

hindsight goals and goals drawn uniformly from the goal space G. Of the goals where gr ‰ gπ, a

fraction α of our goals will be drawn uniformly from the goal space, and the remaining 1´ α will be

drawn from the trajectory that follows s. This results in the following identity,

Proposition 2. Let W ps1, s, a, gr, gπ, T q “
fpgr|s,a,gπ,T q

αfpgr|s,a,gπ,T q`p1´αqfpgr|s1,πps1,gπq,gπ,T´1q . Let α be a

real value in the range p0, 1s. Then for any s1, s, a, gr, gπ ,

fps1 | s, aq “W ps1, s, a, gr, gπ, T q
`

αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q
˘

Furthermore, for any function F of state s1,

Es1rF ps1q | s, as “ αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

`p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gπ, gr, T s. (1)

Proof: Appendix (A.7). We can now derive an unbiased variant of HER by applying Proposition 2 to

Bellman equation.

Corollary. Suppose π is a deterministic policy, gr is sampled from the previously mentioned mix of

hindsight and uniform random goals, and gπ . Then for any s1, s, a, gr, gπ, T ,

Qps, a, gr, gπq “ αEs1rW ps1, s, a, gr, gπ, T q
`

Rps1, grq ` γQps1, πps1, gπq, gr, gπq
˘

| s, as

`p1´ αqEs1rW ps1, s, a, gr, gπ, T q
`

Rps1, grq ` γQps1, πps1, gπq, gr, gπq
˘

| s, a, gπ, gr, T s (2)

This corollary provides us with a simple method of estimating Qps, a, gr, gπq using HER. A similar

unbiased expression can be derived for estimating the gradient of the Bellman error with respect to

the weights of a Q-function network, instead of estimating Qps, a, gr, gπq directly from samples.

Learning the future goal distribution. In order to use the proposed unbiased estimator of

the Q-function with policy and reward goals, we need to compute weight W defined in Propo-

sition 2. This can be achieved by learning future goal distributions fpgr | s, a, gπ, T q and

fpgr | s
1, πps1, gπq, gπ, T ´1q, which both correspond to the conditional probability that a given goal

gr will be selected as a hindsight goal by HER. A technique for learning such long-term distributions,

introduced in [5], consists in training a network fθ, with parameters θ, to approximate the density of

future goals fpgr | s, aq. The following estimator for the gradient is used in [5], sampling ps, a, s1q
from transitions, and fixing gr at the start of each trajectory,

∇θ

`

Es,ar´fθps, a, ϕpsqqs ` Es,a,s1,gr rfθps, a, grqpfθps, a, grq ´ γmaxa1ftargetps
1, a1, grqs

˘

,

wherein ftarget is a copy of fθ that is updated separately. This method has however a significantly

higher variance than HER [5]. We examine here the source of this variance, and explain how

separating the policy and reward goals allows us to avoid this variance problem. One issue with this

method that can contribute to variance is that the gradient is separated into two parts: one in which
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the goal comes from the state (ϕpsq), and one in which the goal is sampled at the start of the trajectory

(gr). This is a problem, because the gradient at the state-derived goals is strictly negative, while the

gradient at the sampled goals is usually positive. In our experiments, this led to a pattern where the

value at the state-derived goals would diverge unboundedly, until a goal was sampled sufficiently

close to make the value function crash back down to zero, and then the process would repeat again.

In other words, it is not guaranteed that fθ converges a fixed point for every finite set of trajectories.

One way to avoid this problem would be to have a fixed, non-zero chance that ϕpsq “ gr, so that

fθ always converges to a fixed point given any set of training trajectories. We use HER to achieve

this outcome. This is possible, unlike in [5], because we can use the importance sampling method

derived above to sample a mixture of HER goals and goals independent of the state. Since HER draws

from the future states of s, observe that fpgr | s, a, gπ, T q is in fact a successor representation [13],

using an average-reward formulation (because the probability of selecting any of the next T states is

uniform). Observe that we can define this probability as

fpgr | s, a, gπ, T q “ Es1r
1

T
δpgr ´ ϕps1qq ` p1´

1

T
qfpgr | s

1, πps1, gπq, gπ, T ´ 1q | s, as,

wherein δ is Dirac delta function. This results in the loss gradient:

∇θ

´

Es,a,gr,gπ,T r´
2

T
fθps, a, ϕpsq, gπ, T q ` Es1rLps, a, s1, gr, gπ, T q | s, ass

¯

, (3)

Lps, a, s1, gr, gπ, T q fi fθps, a, gr, gπ, T q
`

fθps, a, gr, gπ, T q ´ γftargetps
1, πps1, gπq, gr, gπ, T ´ 1q

˘

.

While fθ may not be a true probability density (because it may not integrate to 1), this does not matter

for our purposes, as this factor will divide out when we calculate W . Finally, we inject the formula in

Equation 3 into Equation 1, while replacing F with fθ, to derive the following unbiased loss gradient,

∇θL “ ∇θEr´
2

T
fθps, a, ϕpsq, gπ, T q ` αEs1rW ps, a, s1, gr, gπ, T qLps, a, s

1, gr, gπ, T q | s, as

` p1´ αqErW ps, a, s1, gr, gπ, T qLps, a, s
1, gr, gπ, T q | s, a, gr, gπ, T ss. (4)

Note that the values of α we use for learning Qθ (Equation 2) and goal distribution densities fθ
(Equation 4) can be different. For discrete environments, we can learn the future distribution of the

goal state using simple tabular methods, such as tabular successor representations.

5 Algorithm and Implementation

USHER may be implemented atop DDPG [7], SAC [8], TD3 [9], or any other continuous RL

algorithm, as it only changes the loss function for training the goal-conditioned Q-value network. In

our experiments, we use SAC as a base. USHER calculates the loss as follows: It samples a batch of

transitions ps, a, s1, gπ, T q from the replay buffer, along with two sets of goals: gr, which is drawn

from the future distribution of s, and g1
r, which is drawn uniformly from the goal space G. For each

set of goals, we calculate two values of W , WαQ
and Wαf

. We omit the full training loop here, as it

is identical to standard HER except for the loss computation. To minimize the variance induced by

importance sampling, we clip WαQ
and W 1

αQ
to the range r 1

1`c
, 1` cs, where c is a hyperparameter.

This allows us to make a bias/variance trade-off between hindsight bias and the variance induced

by importance sampling. We find that performance is best for c « 0.3, and that the bias induced

by clipping is negligible for c ą 1.0 for most environments. We approximate W using fθ for all

experiments. In order to reduce the total number of neural network evaluations, we made Qθ and fθ
two heads of a two-headed neural network. Although this choice conditions the value function on T ,

the expected gradient for the policy remains the same.

6 Experiments

6.1 Discrete environment

We first demonstrate our method in the discrete case described in the introduc-

tion in Figure 1 because it is analytically tractable and allows us to verify that
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Algorithm 1 Update Rule for USHER

Input: Replay Buffer B, Two-headed Critic Network with weights θ, Actor Network with weights
w, Weighting Factor αQ for Q , Weighting Factor αf for f , Goal Space G, Goal Function ϕ;
Sample batch of tuples ps, a, s1, gπ, T q from B;
critic_loss = 0; actor_loss = 0

Define W ps, a, s1, gπ, gr, T, αq “
fθpgr|s,a,gπ,T q

αfθpgr|s,a,gπ,T q`p1´αqftargetpgr|s1,πps1,gπq,gπ,T´1q ;

for each sampled tuple ps, a, s1, gπ, T q P B do

With probability k
k`1

: gr “Sample from future trajectory of s; Else: gr “ gπ
target_q “ Rpϕps1q, grq `Qtargetps

1, πps1, gπq, gr, gπ, T ´ 1q; // Qtarget is a copy of Qθ

target_q1 “ Rpϕps1q, g1
rq `Qtargetps

1, πps1, gπq, g
1
r, gπ, T ´ 1q;

Wαf
“ p1´ αf qW ps, a, s

1, gπ, gr, T, αf q; W
1
αf
“ αfW ps, a, s

1, gπ, g
1
r, T, αf q

WαQ
“ p1´ αQqW ps, a, s

1, gπ, gr, T, αQq; W
1
αQ
“ αQW ps, a, s

1, gπ, g
1
r, T, αQq

critic_loss ´“ 2

T
fθpϕps

1q | s, a, gπ, T q
critic_loss `“Wαf

pfθpgr | s, a, gπ, T q ´ ftargetpgr | s
1, πps1, gπq, gπ, T ´ 1qq2

critic_loss `“W 1
αf
pfθpg

1
r | s, a, gπ, T q ´ ftargetpg

1
r | s

1, πps1, gπq, gπ, T ´ 1qq2

critic_loss `“WαQ
pQθps, a, gr, gπ, T q ´ target_qq2

critic_loss `“W 1
αQ
pQθps, a, g

1
r, gπ, T q ´ target_q1q2

actor_loss ´“ Qθps, πwps, gπq, gr “ gπ, gπ, T q
end for
Backprop critic_loss and update θ
Backprop actor_loss and update w

USHER learns the correct value function. The environment used has a short, risky

path that has a high chance of disabling the robot, and a longer risk-free path.

Figure 2: Average reward and bias for HER, USHER,
and Q-learning on the long/short path environment.

The longer path has a higher expected reward,

but we find that HER mistakenly prefers the

riskier path. The value functions for USHER

and Q-learning both quickly converge to the ex-

pected value, while HER overestimates the ex-

pected reward.

6.2 4-Torus with Freeze

Figure 3: Success Rates (left) and Average Rewards
(right) for the 4-Torus with Freeze environment

N-Torus with Freeze (Fig 3) is a benchmark envi-

ronment introduced by Unbiased Methods that

demonstrates HER’s bias. Robots navigate a

torus with an N-dimensional surface to reach

a goal. There is also a "Freeze" action, which

causes the agent to jump to a random location

and then permanently freeze in place and not

move again. Further details can be found in [5]

or in the Appendix (A.1.2). HER learns to always take the freeze action and fails as a result, while

USHER learns a successful policy. DDPG and δ-DDPG are unbiased in this environment, but

DDPG struggles due to the difficulty of exploring in high dimensions, and δ-DDPG struggles with its

variance.

6.3 Car Environment with Random Noise

This environment (Fig 4) uses the "Simple Car" dynamics described in [14]. The robot must navigate

around walls while subject to Gaussian action noise [15]. HER performs well for low noise values,

but tends to overestimate values more as the noise level rises. USHER suffers significantly less from

high noise levels than HER.
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Figure 4: Success Rates (middle) and Bias (right) for the Stochastic Car environment

6.4 Red Light Environment

Figure 5: Success rates (left) and average reward (right) for the
Red Light Environment

Here, we expand on the example given

in the introduction, where HER learns

to run red lights because it underesti-

mates the likelihood of a crash. This

environment (Fig 5) uses the same car

dynamics as the short/long path en-

vironment, but change the map to be

two sections separated by an intersec-

tion and a traffic light. If the car is in the intersection while the traffic light is red, than there is a 75%

chance per unit time that the car will be in an accident and break. The green and yellow lights are

both safe, and the initial color of the light is random. We find that HER learns to run the red light and

immediately attempt to reach the goal, while USHER learns to wait for the red light to end. This

results in USHER achieving both higher success rates and higher rewards.

6.5 Fetch Robot Environments

While the δ-Actor Critic succeeded at being unbiased, this came at the expense of performance in

deterministic environments, due to the method’s increased variance [5]. Our goal in this section

is to show that USHER does not suffer from this trade-off, and delivers performance competitive

with standard HER. To do this, we compare the performance of HER and USHER on several Fetch

Robot object manipulation tasks (Fig 6), as these were the tasks HER was originally designed for.

These three environments task a robot manipulating a robot arm to reach a point, push an object,

and slide an object to a point outside of the robot’s reach, respectively. USHER is able to match

HER’s performance on all of the tested environments (Fig 7). This suggests that the importance

sampling method does not significantly affect USHER’s variance or sample efficiency in deterministic

environments, where HER is known to be unbiased. It also significantly outperforms two other

unbiased methods, DDPG and δ-DDPG on FetchReach. Note that although BHER performs slightly

better than HER, it takes approximately 10x as long to train as HER, due to needing to evaluate the

policy for the entire trajectory for every sampled goal at training time.

Figure 6: FetchReach (left), FetchPush (middle), and FetchSlide (right) Environments

Figure 7: Success Rates for the FetchReach, FetchPush, and FetchSlide Environments
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6.6 Mobile Throwing Robot

We design a simulated robot arm on a mobile base, and task it with throwing a ball to a randomly

selected location (Fig 8). There is also a 50% chance of wind that can blow the ball off course.

USHER matches HER’s sample efficiency until the point where HER’s bias causes its performance

to suffer. USHER’s performance, by contrast, continues to grow steadily to a 75% success rate,

significantly better than HER’s 55%. Interestingly, we find that USHER actually underestimates its

reward here. This is likely because this environment is slightly non-Markovian, because the wind is

sampled at the beginning of each trajectory, and then remains fixed. USHER’s proof of unbiasedness,

however, assumes that the environment is Markovian. It is interesting to note that USHER still

performs well even when this property does not completely hold.

Figure 8: (Left to right) Visualization of the experiment, Success Rates, Rewards, and Bias for the Mobile
Robot Throwing experiment

6.7 Navigation on a physical mechanum robot

High Friction Zone

Goal

Safe
 Path

Figure 9: Simulated Mechanum Robot(left) and Physi-
cal Mechanum Robot(right)

Lastly, we train a mechanum robot to navigate

around obstacles to reach a goal and deploy it

on a physical robot (Fig 9). The terrain contains

a high friction zone that leads to the goal faster,

but unreliably. Transfer was done by rolling out

trajectories in simulation, and then deploying the

same sequence of actions on the physical robot

as an open-loop control. We find that USHER

outperforms HER. Both robots take the short

goal when it is open. When the path is blocked, HER repeatedly slams into the obstacle. By contrast,

USHER runs into the block once, and then turns to go around it if it is blocked. This leads USHER to

have a higher success rate. In simulation, HER’s success rate is approximately 50%, while USHER’s

is near 100%. Due to the difficulty of transfer, USHER’s performance drops on the physical robot,

but it still outperforms HER. HER succeeded on 4/10 goals, while USHER succeeds on 6/10. Both

methods succeed 100% of the time on the unblocked path environment.

7 Limitations

One limitation of this work is that we rely on the Markov assumption to derive our importance

sampling weights. This means that while we can correctly estimate the value function for stochastic

transitions, we cannot guarantee that the learned value is correct in environments with hidden

information. It is unclear whether this is actually an issue in practice, as USHER still outperforms

HER on the non-Markovian environments we tested (such as the Throwing Bot). Additionally,

USHER requires approximately 2.5 times as many neural net evaluations as HER does per batch

update. This was not an issue in our experiments, as the cost of simulation and policy evaluations

usually dominated the training time.

8 Conclusion

We derive an unbiased importance sampling method for HER, and show that it is able to effectively

counteract HER’s hindsight bias. We find that addressing this bias leads to higher success rates

and rewards in a range of stochastic environments. Furthermore, we introduce a mathematical

framework to justify our method which can be used to examine the situations where HER is likely to

experience significant bias. In future work, we hope to examine the finite-sample case, in order to

better understand whether HER introduces a bias there, and if so, how it could be corrected.
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A Appendix

A.1 Experimental Details

All experiments were performed on an Alienware-Aurora-R9 with 8 Intel i7-9700 cores. We did not

use a GPU. Code for the experiments is provided in the supplementary materials

A.1.1 Discrete Case

We perform 1000 episodes, using trajectories of 30 steps, a k of 8, and a γ of 0.825. Our learning

rate begins at 0.01 and decays as Opn´ 3

4 q.

A.1.2 For all continuous-space experiments

NNs: We use four-layer neural nets with RELU activations and 256 hidden units for both the actor

and critic networks

Optimizer: Adam with default params

Learning rate: .001 for both actor and critic

Polyak averaging coefficient: .95

K (number of hindsight goals per non-hindsight goal): 8

Batch-size: 256

αQ: 0.1

αf : 0.5

N-torus with Freeze

Figure 10: A Torus with a 2-
dimensional surface

In this environment, robots move on a unit torus with a 4-

dimensional surface 14. The robot can move up to 0.05 units

in any direction on the surface. Alternatively, robots can take

the "Freeze" action which randomly teleports them to a random

location on the surface and permanently breaks the robot so it

cannot move. The goal space is the 4-dimensional unit cube.

The state space is the Cartesian product of the 4-dimensional

unit cube with a boolean pR4
Ś

rTrue, Falsesq. The boolean

represents whether the robot is broken. Because this is a torus,

the space loops around on itself as a torus would ± robots that

would move off the positive edge of any axis loop around and

appear on the negative edge. The action is a 5-dimensional

vector in the range [-1, 1]. The first four dimensions indicate

the direction and distance to move, and the last axis indicates the probability with which to take

the "freeze" action. Positive values are interpretted as a probability of taking the freeze action, and

negative values are interpretted as "0 probability of taking the freeze action". We chose to make this

value a scalar rather than a discrete value, because DDPG and SAC assume a continuous action space.

For the Torus with Freeze environment, we increase the ratio clipping factor c from 0.3 to 10, allowing

the importance sampling weight to go as high as 11 and as low as 1

11
. We do this because the Freeze

action was designed as a pathological counterexample to HER, and therefore the weights required to

correct for its bias can be significantly higher than for more naturalistic environments.

Although this environment is very non-physical, it is the only benchmark we are aware of that assesses

the bias of HER variants. For this reason, we felt reporting results with it was necessary.

γ : .98

Trajectory length: 50

Batches per epoch: 4

Episodes per epoch: 500

11



Entropy Regularization: 0.001

Car with Random Noise

γ : .95

Trajectory length: 20

Batches per epoch: 5

Episodes per epoch: 500

Entropy Regularization: 0.01

RedLight

The yellow tile in the figure represents the intersection that is dangerous during red lights.

Figure 11: Red Light Environment

γ : .9

Trajectory length: 50

Batches per epoch: 4

Episodes per epoch: 500

Entropy Regularization: 0.01

The light pattern was green: 1 second, yellow: 1 second, red:

4 seconds, with a randomized starting color. FetchReach

γ : .98

Trajectory length: 50

Batches per epoch: 40

Episodes per epoch: 50

Entropy Regularization: 0.001

FetchPush

γ : .98

Trajectory length: 50

Batches per epoch: 40

Episodes per epoch: 50

Entropy Regularization: 0.01

FetchSlide

γ : .98

Trajectory length: 50

Batches per epoch: 40

Episodes per epoch: 50

Entropy Regularization: 0.001

Mobile Throwing Robot

γ : .9

Trajectory length: 20

Batches per epoch: 100

Episodes per epoch: 50

Entropy Regularization: 0.001

Mechanum robot ± simulator

γ : .925

Trajectory length: 50

Batches per epoch: 100

Episodes per epoch: 50

Entropy Regularization: 0.01

Mechanum robot ± analytic model

γ : .975

Trajectory length: 50

Batches per epoch: 10

Episodes per epoch: 50

Entropy Regularization: 0.01

Importance weight clipping value: 100
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Our USHER and HER implementations are based on Tianhong Dai’s implementation [16].

A.2 Additional Experiments

Due to space limitations, we were not able to include all of our experimental results. We have

included these additional results here. We first trained the mechanum robot in simulation before

transferring it to a real-world robot. Here are the training curves for the robot that was trained in

simulation.

Figure 12: USHER performance with weight clipping (left) and without weight clipping (right)

A.3 Hyperparameter analysis

Here, we include an analysis of the performance of USHER as αQ and αf vary. We evaluated

USHER’s success rate on FetchReach after 30 episodes of training.

Figure 13: USHER performance with weight clipping (left) and without weight clipping (right)

Observe that the maximum value of WαQ
is at most 1

αQ
. This means that for small values of αQ,

WαQ
can potentially take on very large values, which can be a source of variance that harms USHER’s

performance. For large values of αQ, hindsight goals have much less weight than random goals,

which undercuts the source of HER’s sample efficiency. For this reason, the best values of αQ

lie in the low-to-mid ranges, between αQ “ 0.1 and αQ “ 0.5. This seems to hold true for both

clipped and unclipped weights. The selection of αf mattered much less. We suspect this is because

variance in the Q function matters more than variance in the future goal distribution, as we have to

backpropagate through the Q value to get the policy gradient.

13



We did not carefully tune αQ or αf for our experiments. We simply guessed at a value of αQ “ 0.01

and αf “ 0.5 and used these values for all experiments. For c, we selected the value of 0.3 by trying

a range of values from 0.1 to 10 on a sample environment similar to the stochastic car environment

(6.2), but using simple displacement actions instead of dynamics that require numerical integration.

We found that for c ą 1 the bias induced by clipping was negligible.

Figure 14: Bias as a function of the clipping parameter c

We found c “ 0.3 worked well, so we used it for all experiments, except where the environment

induced a very strong HER bias, in which case we set c high enough that clipping was effectively

turned off.

A.4 Implementation

An implementation of USHER and our experiments can be found at: https://anonymous.4open.

science/r/USHER_CoRL-0E16/README.md

A.5 Goal Selection Probability

Proposition 1:

Suppose gπ is fixed at the start of the trajectory, and gr is sampled using HER. Then for any

s1, s, a, gr, gπ, T ,

fps1 | s, a, gr, gπ, T q “
fpgr | s

1, πps1, gπq, gπ, T ´ 1q

fpgr | s, a, gπ, T q
fps1 | s, aq

Proof. Suppose gπ is sampled before the trajectory begins, and is not changed at training time.

Let s, a, and s1 be random variables representing a state, action, and subsequent state. Let

Qπ
HERps, a, gr, gπq be the solution to the Bellman equation obtained using HER’s sampling bias,

with state s, hindsight goal gr, policy goal gπ, and deterministic policy πps1, gπq. Let ts be the

number of steps remaining in the trajectory when state s is sampled, t1
s be the number of steps

remaining in the trajectory when state s1 is sampled, and T be an integer

14



fps1 | s, a, gr, gπ, ts “ T q “
fps1, s, a, gr, gπ, ts “ T q

fps, a, gr, gπ, ts “ T q

“
fpgr | s

1, s, a, gπ, ts “ T qfps1, s, a, gπ, ts “ T q

fps, a, gr, gπ, ts “ T q

“
fpgr | s

1, s, a, gπ, ts “ T qfps1 | s, a, gπ, ts “ T q

fpgr | s, a, gπ, ts “ T q

fps, a, gπ, ts “ T q

fps, a, gπ, ts “ T q

“ fps1 | s, a, gπ, ts “ T q
fpgr | s

1, s, a, gπ, ts “ T q

fpgr | s, a, gπ, ts “ T q

Observe that with HER, gr is either selected from the trajectory beginning with s1, sampled in-

dependently of s1 or left the same as the original goal given to the policy. In all three cases,

fpgr | s
1, s, a, gπ, ts “ T q “ fpgr | s

1, gπ, ts “ T q. In the first case where gr comes from the

future trajectory, the Markov property implies that given the most recent observed state s1, gr is

independent of all earlier states and actions, including s and a, so fpgr | s
1, s, a, gπ, ts “ T q “

fpgr | s
1, gπ, ts “ T q. In the second case where gr is sampled independently of the trajectory, so

fpgr | s
1, s, a, gπ, ts “ T q “ fpgrq “ fpgr | s

1, gπ, ts “ T q . In the third case, gr “ gπ, so gr has

no dependence on s, a, or s1. In any case, fpgr | s
1, s, a, gπ, ts “ T q “ fpgr | s

1, gπ, ts “ T q.

For the same reason that gr depends only upon s1 and not on s when s1 is known, gr depends only

on ts1 and not ts when ts1 is known. Thus we find that fpgr | s
1, gπ, ts “ T q “ fpgr | s

1, gπ, ts1 “
T ´ 1q.

fps1 | s, a, gπ, gr, ts “ T q “ fps1 | s, a, gπ, ts “ T q
fpgr | s

1, gπ, ts1 “ T ´ 1q

fpgr | s, a, gπ, ts “ T q

“ fps1 | s, a, gπ, ts “ T q
Ea1rfpgr | s

1, a1, gπ, ts1 “ T ´ 1q | s1gπs

fpgr | s, a, gπ, ts “ T q

“ fps1 | s, a, gπ, ts “ T q
fpgr | s

1, πps1, gπq, gπ, ts1 “ T ´ 1q

fpgr | s, a, gπ, ts “ T q

Observe that from the Markov assumption of the environment, the transition probability depends only

on s, a, and does not depend on gπ nor ts. gπ is sampled before the trajectory begins, independently

of all other random variables. From this we can see that fps1 | s, aq is independent of gπ and ts.

We can then conclude that for all gr, gπ

fps1 | s, a, gπ, gr, ts “ T q “ fps1 | s, aq
fpgr | s

1, πps1, gπq, gπ, ts1 “ T ´ 1q

fpgr | s, a, gπ, ts “ T q

For conciseness, we will abbreviate this to

fps1 | s, a, gπ, gr, T q “ fps1 | s, aq
fpgr | s

1, πps1, gπq, gπ, T ´ 1q

fpgr | s, a, gπ, T q

A.6 2-goal HER is asymptotically unbiased

Corollary. Suppose Qπ
HERps, a, gπ, gπq satisfies the Bellman equation and the distribution of future

achieved goals is absolutely continuous with respect to the goal space. Then Qπ
HERps, a, gπ, gπq “

Q˚ps, a, gπq for all s, a, gπ , where Q˚ps, a, gπq is the optimal goal-conditioned Q function.
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Proof. Suppose that the distribution of future achieved goals is absolutely continuous with respect to

the goal space. Furthermore, suppose the goal space is a continuous space of at least one dimension.

Then the probability of arriving exactly at any given goal gr given the policy goal gπ is infinitesimal.

This means that the only time there is a non-zero probability of having gr “ gπ is when gr is not

drawn from the distribution of future achieved goals and HER instead uses the same goal as during

the data-gathering phase.

Let P pgr “ gπ | s, a, gπq be the probability that gπ is selected as the reward goal. Then

P pgr “ gπ | s, a, gπ, T q “ P pgr “ gπ | s, a, gπ, T,HqP pHq

` P pgr “ gπ | s, a, gπ, T,␣HqP p␣Hq

“ P pgr “ gπ | s, a, gπ, T,HqP pHq ` 1P p␣Hq

Since P pgr “ gπ | s, a, gπ, Hq is infinitesimal and P p␣Hq is not, this reduces to

P pgr “ gπ | s, a, gπ, T q “ P p␣Hq “
1

k ` 1

Thus,

Qπ
HERps, a, gπ, gπq “ Es1r

P pgr “ gπ | s
1, πps1, gπq, gπ, T q

P pgr “ gπ | s, a, gπ, T q

pRps1, gπq ` γQπ
HERps

1, πps1, gπq, gπ, gπqq | s, a, gr, gπ, T s

“ Es1r
1{pk ` 1q

1{pk ` 1q

pRps1, gπq ` γQπ
HERps

1, πps1, gπq, gπ, gπqq | s, a, gr, gπ, T s

“ Es1rpRps1, gπq ` γQπ
HERps

1, πps1, gπq, gπ, gπqq | s, a, gr, gπ, T s

Now, observe that Qπ
HERps, a, gπ, gπq satisfies the one-goal Bellman equation. Since the Bellman

equation has a unique solution, and Q˚ps, a, gq is a solution, Qπ
HERps, a, gπ, gπq “ Q˚ps, a, gπq.

A.7 Importance Sampling for Mixed Sampling Method

Proposition 2:

Let W ps1, s, a, gr, gπ, T q “
fpgr|s,a,gπ,T q

αfpgr|s,a,gπ,T q`p1´αqfpgr|s1,πps1,gπq,gπ,T q . Let α be a real value in the

range p0, 1s. Then for any s1, s, a, gr, gπ ,

fps1 | s, aq “W ps1, s, a, gr, gπ, T qpαfps
1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

Furthermore, for any function F of the state s1,

Es1rF ps1q | s, as “ αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

`p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gπ, gr, T s
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Proof. Let gr, gπ, T be a reward goal, a policy goal, and the remaining steps left in the current

trajectory, respectively Using Proposition 1, we can show that

fps1 | s, aq “fps1 | s, aq
αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q

αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

fps1 | s, aq

αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

fps1 | s, aq

αfps1 | s, aq ` p1´ αq fpgr|s1,πps1,gπq,gπ,T q
fpgr|s,a,gπ,T q fps1 | s, aq

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

1

α` p1´ αq fpgr|s1,πps1,gπq,gπ,T q
fpgr|s,a,gπ,T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

fpgr | s, a, gπ, T q

αfpgr | s, a, gπ, T q ` p1´ αqfpgr | s1, πps1, gπq, gπ, T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

W ps1, s, a, gr, gπ, T q

It then follows that for any gr, gπ, T , the expectation value Es1rF ps1q | s, as may be written as

follows:

Es1rF ps1q | s, as “

ż

S

fps1 | s, aqF ps1qds1

“

ż

S

pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

W ps1, s, a, gr, gπ, T qF ps
1qds1

“

ż

S

pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

W ps1, s, a, gr, gπ, T qF ps
1qds1

“α

ż

S

fps1 | s, aqW ps1, s, a, gr, gπ, T qF ps
1qds1

` p1´ αq

ż

S

fps1 | s, a, gπ, gr, T qW ps
1, s, a, gr, gπ, T qF ps

1qds1

“αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

` p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gr, gπ, T s

“αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

` p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gr, gπ, T s
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