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Abstract— This paper presents a new technique for learn-
ing category-level manipulation from raw RGB-D videos of
task demonstrations, with no manual labels or annotations.
Category-level learning aims to acquire skills that can be
generalized to new objects, with geometries and textures
that are different from the ones of the objects used in the
demonstrations. We address this problem by first viewing both
grasping and manipulation as special cases of tool use, where
a tool object is moved to a sequence of key-poses defined in a
frame of reference of a target object. Tool and target objects,
along with their key-poses, are predicted using a dynamic
graph convolutional neural network that takes as input an
automatically segmented depth and color image of the entire
scene. Empirical results on object manipulation tasks with a
real robotic arm show that the proposed network can efficiently
learn from real visual demonstrations to perform the tasks
on novel objects within the same category, and outperforms
alternative approaches.

I. INTRODUCTION

Category-level learning is an increasingly popular ap-
proach to training robots to manipulate unknown objects in
real-world environments. A sequence of images showing how
to perform a certain manipulation task is provided to the
robot by a human demonstrator. The robot is then tasked
with learning a manipulation policy that can be tested on
objects other than those used in the demonstrations.

Prior works in category-level robot learning were mostly
focused on grasping problems [1]–[7]. While there are nu-
merous learning-based techniques that generalize grasping
skills to novel objects, only a few recent ones have been
shown capable of generalizing other types of manipulation
skills, such as placing, painting, or pouring, to novel ob-
jects [8]–[20]. However, most of these techniques rely on
annotated images wherein a human expert manually specifies
keypoints on training objects.

In this work, we propose a new technique for learning
category-level manipulation skills from unlabeled RGB-D
videos of demonstrations. The proposed system is fully au-
tonomous, and does not require any human feedback during
training or testing besides the raw demonstration videos. The
setup of the system includes a support surface wherein a
number of unknown objects are placed, which includes task-
irrelevant distractive objects. The system is composed of a
high-level policy that selects a tool and a target from the set
of objects in the scene at each step of the manipulation, an
intermediate-level policy that predicts desired 6D keyposes
for the robot’s wrist, and a low-level policy that moves the
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Fig. 1: System overview and robotic setup used in the experiments.
In this example, the system is trained by unlabeled visual demon-
strations to pick up a paint-brush in a specific manner, and to place
it in a specific configuration relative to another object. The robot is
tasked with repeating the demonstrated behaviour on a new scene
containing novel objects with different sizes and texture.

wrist to the keyposes. The system employs a dynamic graph
convolutional neural network that receives as inputs partial
point clouds of the objects. A local frame of reference is
computed for each object based on the principal component
analysis of its point cloud. The 6D keyposes predicted by
the network are in the frame of the predicted target object.

The proposed system is tested on a real robot with demon-
strations of four tasks: two variants of stacking, pouring, and
painting. Pouring is performed with beads instead of liquid,
for the safety of the robot. The exact same architecture and
parameters are used for learning the four different tasks, the
only difference is the provided visual demonstrations.

The key novel contributions of this work are as follows.
(1) An efficient new architecture for learning category-level
manipulation tasks. A key feature of this architecture is
the capability to generate trajectories of the robot’s end-
effector according to the 3D shapes of the objects that are
present in the scene. The proposed architecture can thus
generalize to objects with significantly different sizes and
shapes. This is achieved through the use of a dynamic
version of graph neural networks, wherein the graph topology
is learned based on the demonstrated task. Moreover, the
proposed architecture can be used in scenes that contain an
arbitrary number of objects. This is in contrast with most
existing manipulation learning methods, which are limited
to objects of similar dimensions. (2) An empirical study
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comparing various architectures for learning manipulation
tasks, using real objects and robot. The study shows that,
amongst the compared methods, a dynamic GNN provides
the most data-efficient architecture for learning such tasks.
Furthermore, the same hyper-parameter values can be used
to learn different tasks. (3) A new formulation of the problem
by representing states as lists of relative 6D poses of object
pairs. The proposed formulation also unifies the problems
of grasping and manipulation by treating the end-effector as
one of the objects in the scene, and viewing grasping as a
special type of tool-use. (4) A fully self-supervised pipeline
that does not require manual task decomposition, in contrast
with existing category-level techniques [8]–[15], [21].

II. RELATED WORK

Category-Level Manipulation. Recently, several techniques
have been devised for learning to generalize robot manip-
ulation skills to new objects in the same category, such
as cups of different sizes, shapes and texture. Most of
these techniques use semantic 3D keypoints to represent
objects [21]. Keypoints were initially proposed as grasp
points for the manipulation of deformable objects [8], [9].
The technique presented in [10] consists in manually anno-
tating task-relevant keypoints on a large number of training
objects, and trains an integral neural network to align the
keypoints between intra-class object instances. The need
for tedious human annotation was removed in [11] through
the use of a robotic system that automatically re-arranges
objects. Contrastive learning was then employed to learn
feature descriptors of 2D image points [12]. Similar object-
centric dense descriptors were used for learning pick-and-
place tasks from demonstrations [13]. In [14], task-specific
keypoints are learned from self-supervised robot interactions
instead of human annotations. Semantic category-level 3D
keypoints were also trained in [15] using a combination of
self-supervised training and human annotations.
Category-Level Grasping. Most recent grasping techniques
focus on learning directly grasp success probabilities from
data [1], [3]–[7], [22]–[27]. Recent methods include training
a hierarchy of supervisors from demonstrations to grasp
objects in clutter [28], and convolutional neural networks,
such as Dex-net [29], that are trained to detect grasp 6D
poses in point clouds [30]. These data-driven techniques,
however, provide grasps that are valid only for picking up
objects, without taking into account the desired manipulation
task. In our proposed method, the robot learns from demon-
stration different types of grasps for different manipulation
tasks, such as pouring or stacking. Goal-conditioned grasping
was considered in recent works, such as [31]. A dataset
of 3D CAD models is required in [31] to learn grasps in
simulation. Our method requires instead only a small number
of demonstration videos without the need for CAD models.

III. PROPOSED APPROACH

A. Proposed Problem Formulation

A human demonstrates a grasping-and-manipulation task
that involves picking up a rigid tool object from a tabletop

that contains an arbitrary set of objects of various types, and
moving the object to a 6D pose with respect to a rigid target
object. Examples of such tasks include: stacking, where the
demonstrator picks up a box and puts it on top of a second
box; pouring, where the demonstrator picks up a cup or a
bottle and places it in a position and rotation relative to
another container so that liquid can flow between the two
objects. No priors or 3D models of the objects are given,
the objects are completely unknown. From only raw RGB-D
videos of the demonstrations, and without any labeling or
annotation, a robot is tasked with re-producing the tasks on
new scenes containing only new objects and not including
any of the objects that appeared in the demonstrations.

We denote the set of demonstrations by T = {τ1, . . . , τn},
wherein each demonstration τ i = (si0, s

i
1, . . . s

i
h) is a se-

quence (or trajectory) of recorded scene states sit at different
time-steps t ∈ {0, . . . , h}. Note that different demonstration
trajectories can have different lengths. A state is a tuple
sit = (< P i

0,t, I
i
0,t >,< P i

1,t, I
i
1,t >, . . . , < P i

m,t, I
i
0,t >),

wherein each element P i
j,t is a point cloud that corresponds

to an object j at time t, and Iij,t is its cropped RGB image.
The list of objects in the scene includes the hand of the
human demonstrator during training, and the robotic hand
during testing. These two are treated similarly to the other
objects, as we argue in this work that grasping is only a
special case of tool use, with the hand being the tool object.
In the first time-step t = 0 of a demonstration τ i, point
clouds {P i

j,0}
m
j=0 are obtained by segmenting the scene’s

depth image. Each point cloud is then tracked over time,
and updated based on the images received at time-steps
t ∈ {t, . . . , h}. The sets of objects used in the demonstrations
and during testing are denoted by Otraining and Otesting,
respectively, with Otraining ∩ Otesting = ∅. At the beginning
of each demonstration, objects are randomly drawn from
Otraining and placed on the support surface. Therefore, each
scene contains a number of “distraction” objects that are not
relevant to the demonstrated tasks. Presence of distraction
objects reflects how real-world manipulation tasks are per-
formed in uncontrolled environments.

In a scene st = (< P0,t, I0,t >, . . . , < Pm,t, I0,t >), each
point cloud Pi,t is assigned an intrinsic frame of reference
Xi,t = (ci,t, "xi,t, "yi,t, "zi,t), wherein ci,t is the 3D centroid
of the point cloud, and "xi,t, "yi,t and "zi,t are the principal,
secondary and tertiary axes of the 3D point cloud of object
j at time t, all expressed in the camera’s coordinates system.
The intrinsic frames of reference are computed automatically
by performing a PCA on Pi,t. A high-level policy, denoted
by πh, is used to select a pair of (tool, target) objects from
the set of objects present in the scene. This policy receives
as input state st and returns otool ∈ {0, . . . ,m} and otarget ∈
{0, . . . ,m}. A intermediate-level policy, denoted by πm, is
used to select a desired keypose K ∈ R3 × SO(3) of the
robotic arm’s wrist. The intermediate-level policy takes as
input state st as well as the (tool, target) objects returned
by the high-level policy. Finally, we denote by πl a low-
level policy. The policy receives as inputs the current robot
configuration in a world coordinates frame, denoted by ct ∈
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(

R3×SO(3)
)J

, where J is the number of joints of the robot
arm/hand, in addition to a desired keypose K of the robotic
arm’s wrist. The policy returns changes ∆ct to apply on ct
to move the robot’s wrist to keypose K.

B. System Overview

The proposed system receives as input at each step an
RGB-D image of the scene containing an end-effector and
a number of unknown objects. The system returns a pair
of tool and target objects, and a 6D key-pose that indicates
where the tool’s frame of reference should be displaced to
relative to the target’s frame. The system also returns a
sequence of low-level actions that move the robot’s joints
so that the tool is placed in the returned key-pose. At the
beginning of a task, the system always selects the robotic
hand as the tool object. The robotic gripper is initially open,
and closes once it reaches the 6D keypose generated by
the system. In a pouring task for example, the first target
selected by the system is a bottle that the robot needs to
grasp. In a small-on-large stacking task, the first target would
be the second-largest box. Once an object is grasped, which
is detected by the system from the point cloud input, the
system returns a different pair of (tool, target) objects. In
our pouring example, the grasped bottle becomes now the
new tool object, and a second object (a cup, for example)
is returned by the system as the new target object. In the
small-on-large stacking example, the grasped box becomes
the tool and the largest box becomes the target object. This
process is repeated until the task is performed.

C. Dynamic Graph CNNs

At the heart of the proposed system lies a Dynamic Graph
Convolutional Neural Network (DGCNN) [32]. DGCNN is
trained to extract task-relevant shape features of an object.
An object is given as a partial point cloud P = {p0, . . . , pl}
wherein pi ∈ R3 are the coordinates of a point in the camera
frame. Each point is connected to its k-nearest neighbors
in P . The points in P and their connections form a graph
structure, which is given as input to the DGCNN. The first
layer of the network performs an edge convolution on the
object and returns a set of feature vectors X = {x0, . . . , xl},
one for each point pi ∈ P . A feature vector xi ∈ X is
computed as xi = maxpj∈kNN(pi) hΘ(pi, pj) where hΘ is
a function parameterized by Θ = (θ,φ) and defined as
hΘ(pi, pj) = ReLU

(

θ.(pi − pj) − φ.pi
)

. Set X of feature
vectors returned from the first layer is used to form a new
graph that is given to the second layer, wherein the same
operations are repeated using different values for weights Θ.
And so on, this process is repeated for a number of layers,
followed by fully connected layers that return a feature
descriptor of the entire object. In each layer of the network,
the structure of the graph is dynamically re-defined by
connecting each point x ∈ X to its k-nearest neighbors from
X . This is different from standard graph CNNs, where the
graph structure is defined in the input and kept fixed inside
the network. The resulting architecture is more expressive
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Fig. 2: High-level policy

than regular GCNNs, as points from distant parts of an object
can become neighbors in later layers, depending on the task.

D. Architecture

High-level policy. The high-level policy receives as input
a state st and a candidate pair of objects (i, j) and returns
πh(i, j), the probability that (i, j) is indeed the pair of tool
and target objects needed for performing the manipulation
task that the system was trained on. This operation is
repeated on all pairs of objects in the scene, and the pair
that receives the highest probability πh(i, j) is selected and
forwarded to the intermediate policy. To compute πh, we start
by extracting features of each pair (i, j) of the objects present
in the scene. For object j paired with object i, we extract a
descriptor vector Φj→i of size 1548 from its point cloud Pj

and corresponding cropped RGB image Ij . The descriptor
vector is defined as Φj→i = [ΦI(Ij),ΦP (Pj), Tj→i]. The
first component ΦI(Ij) is a vector of size 1024 obtained from
Fast-RCNN [33] for the RGB features. The second compo-
nent ΦP (Pj) is a vector of size 512 returned by the DGCNN
module, as explained in Sec. III-C, for the shape features.
The last component Tj→i is a vector of size 12 that represents
the transformation (translation and rotation) of Xj to Xi,
wherein Xj and Xi are respectively the intrinsic frames of
reference of objects j and i, computed after performing a
PCA on each of their point clouds (Sec. III-A). Instead of
keeping the camera’s coordinates system, we take advantage
of our pairing input structure, and express an object’s PCA
pose in the coordinates system of its counterpart, object i.
With this input, the network can avoid irrelevant influences
from different camera poses and focus on motions between
the target and the tool objects.

The backbone of the high-level policy is a class-agnostic
network that takes as inputs Φj→i and Φi→j and returns a
score Fθ(Φj→i,Φi→j) ∈ R for every candidate pair (i, j),
wherein θ are the network’s parameters. From these out-
puts, we define πh(i, j) = softmax(i′,j′)Fθ(Φj′→i′ ,Φi′→j′)
by normalizing over all pairs in the scene, and we set
(otool, otarget) = argmax(i,j) πh(i, j).

Because the policy’s probabilities πh(i, j) are obtained
by normalizing the network’s outputs over all pairs in the
scene, the size of the network is decoupled from the number
of objects and their order. In contrast, an ordinary classifier
requires a fixed number and ordering of output classes. So
our model is more scalable and compact. The backbone Fθ
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Fig. 4: Learned low-level policy. Note how the generated 6D
keyposes and trajectories depend on the size of the target cup.

is composed of encoders consisting of fully connected layers
for tool candidate descriptor, Φj→i, and target candidate
descriptor, Φi→j , separately. The two branches return two
encoding vectors, one for the tool and another for the target.
The two encoding vectors are concatenated and provided as
input to hidden fully connected layers, which finally output
a scalar. In this design, Fθ receives only features for target
and tool candidates and has no class-specific architecture or
parameters, so it does not require predefined categories and it
can generalize to objects with similar shape and appearance
without manual labeling. It can also handle scenes with an
arbitrary number of objects.

Intermediate-level policy. The pair of objects otarget and
otool, received from high-level policy πh, is provided as input
to an intermediate-level policy πm, which is a second neural
network with a structure identical to Fθ, except for the
last layer that returns a 6D keypose K instead of a scalar.
Returned keypose K is the desired pose of the tool in the
target object’s coordinates system. For stacking, for example,
desired keypose puts the tool object right on the surface of
the target object. For painting, the keypose of a brush places
the tip of the brush on the surface of another object that
needs painting, and keeps the brush orthogonal to the target’s
surface. Keyposes are defined here as relative placements of
objects with respect to each other, which are more consistent

than the ones expressed in the camera coordinates system.
Additionally, as only relative poses between objects are used
here, one can easily use a different calibrated camera during
robot execution (i.e. testing) without the need for an align-
ment with the camera pose used during the demonstrations.

We use rotation matrices in input features Φ and a quater-
nion for the orientation in output K, because transformations
with homogeneous matrices can be easily represented in
linear operations inside neural networks, while the quaternion
is a better output format as it requires less constraints.
Similar to high-level policy πh, πm is also class-agnostic, and
keypose computation can be shared among similar-shaped
objects, which facilitates the training.

Low-level policy. The last component of our decomposed
policy is the low-level policy πl that moves object otool

to its next desired keypose K in the intrinsic frame of
reference of object otarget, after receiving otool, otarget and
K from the previous components. To be specific, πl =
P (∆Ttool→target|Φtool→target,K; η) where η are the low-level
neural network’s parameters. To facilitate the training, we
also include (K − Ttool→target) in the input of this low-level
policy network, which has an inner structure that resembles
the intermediate-level policy (Fig. 3). ∆Ttool→target describes
the change of tool’s pose in each time step. After applying
this change, a new state is sent to the policy, and the policy
returns the next pose change. This process repeats until the
end of the episode or reaching the predicted final keypose
K. The robot’s motion is performed by computing a change
∆ct from ∆Ttool→target to apply on the robot’s configuration
ct, using an inverse kinematics model of the robot, and the
pose of the tool in the robot’s frame. If otool selected by the
high-level policy happens to be the robot’s hand, then the
low-level policy automatically closes the hand once otool is
placed in keypose K, which results in grasping the object.

E. Learning from Demonstrations

During training, the system receives as inputs sequences of
RGB-D images showing a human demonstrating a grasping-
and-manipulation task on unknown objects. The system first
automatically segments the images into individual point
clouds, one per object, by removing the background. The
objects include the human hand, for learning task-appropriate
grasp poses. After segmenting the frames, an RGB-based
tracker [34] is applied to match segments across consecutive
frames. The segment with the most significant motion is
labeled as otool unless that object is the hand of the demon-
strator, in which case it is considered as the tool only if no
object is being grasped. The object closest to the tool object
in the end of the demonstration is labeled as otarget, and the
transformation Totool→otarget

in the end of the demonstration is
considered as the final keypose K. This entire process is fully
automated and does not require any human input other than
performing the demonstration. Given these labels, we train
the high-level policy network to maximize the likelihood of
πh(otool, otarget). Intermediate-level and low-level policies are
trained to minimize the mean squared errors.
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Fig. 5: Examples of demonstration videos used for training (top rows) in each of the four manipulation tasks, and examples
of the resulting robot executions on novel scenes (bottom rows).

IV. EXPERIMENTS

We evaluate the proposed method on four manipulation
tasks, listed in Fig. 5, and compare it with several alternative
architectures on the same tasks. For each task, we record 80
demonstration videos for training. The trained system is then
tested on 20 different scenes per task. More details about
these experiments are included in the long version of this
paper available at https://tinyurl.com/ynavw363
along with videos of the robot experiments.

We compare the proposed approach with several network
architectures and imitation learning techniques. The first
three are average pooling, max pooling, and attention,
which aggregate shape (from DGCNN) and appearance
(from Fast-RCNN) descriptors of all the objects that are
present in the scene into one large vector, and use that as
an input to a neural network that returns a predicted target
object, tool object and keypose. In the next two methods, we
compare the proposed feature extractor with ResNet [35] and
Dense Object Nets [11], which was specifically proposed
for learning from demonstrations. Additionally, we compare
against an End-to-End architecture based on ResNet [35],
where the input is identical to our method’s input, but the
output is a low-level action that corresponds to moving the
end-effector or grasping. We also compare with the Genera-
tive Adversarial Imitation Learning (GAIL) algorithm [36],
with an architecture similar to ours, except that it directly
predicts grasps and changes of hand poses in lieu of the
proposed hierarchical decomposition.

The following tasks are used to evaluate the different
learning methods. In Small-on-large box stacking (A), the
robot is tasked with finding the smallest box in the scene and
stacking it on top of the largest one. A predicted keypose is
considered accurate if it is within 3cm from the ground-truth.
The order of the boxes in the stack is reversed in the large-
on-small stacking task (B). In the pouring task (C), the
robot is trained to find a bottle, grasp it from the side, move

it close to a cup, and rotate it to point toward the cup in
order to transfer its content to the cup without spilling. In
the painting task (C), the robot is trained to locate a brush,
grasp it from the side, and use it to draw a short straight
line on a canvas. In all four tasks, we evaluate the methods
based on their: (1) accuracy in predicting target-tool pairs, (2)
accuracy in predicting keyposes, and (3) overall task success
rate, which combines together the two previous criteria.

Success / Trial Task A Task B Task C Task D
Proposed 5/5 5/5 4/5 4/5

Average Pooling 0/5 0/5 0/5 0/5
Max Pooling 2/5 1/5 1/5 0/5

Attention 1/5 1/5 1/5 1/5
ResNet [35] 0/5 1/5 1/5 0/5

End-to-End ResNet [35] 0/5 1/5 0/5 0/5
GAIL [36] 0/5 0/5 0/5 0/5

Dense Object Nets [11] 1/5 0/5 0/5 0/5

TABLE I: Real robot test success rates

Small-on-large box stacking (A), and large-on-small box
stacking (B). Results in the top two rows of Fig.6 show the
advantage of the proposed method in not only overall success
rate but also in selecting tool-target pairs and generating key-
poses. Furthermore, ResNet and Dense Object Nets baselines
reach higher accuracy on target and tool object prediction
than other baselines with other aggregation mechanisms. The
advantage of DGCNN features is clearly shown through the
decline in keypose prediction accuracy when the proposed
method is used with ResNet or Dense Object Nets.

(C) Pouring. We can see from the third row of Fig. 6 a more
pronounced advantage of the proposed method over other
methods in keypose predictions, due to the more complex
nature of the intermediate and low level policies in this task.
The ground-truth keyposes depend on the initial relative pose
of the bottle with respect to the cup because the demonstrator
used the same (left or right) side for grasping and for pouring.
The learned intermediate-policy extracts this information
from the pairs of 6D poses of objects relative to each other.
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Fig. 6: Results of experiments on predicting tool-target pairs and keyposes in real novel static scenes, as a function of the
number of videos used for training. The results are averaged over five independent trials.

(D) Painting. Results in the last row of Fig. 6 clearly show
the advantage of the proposed method. But we can see that in
this case, max pooling and attention achieve good accuracy
in target object prediction. We hypothesize that the reason is
that brushes have much different shapes than other objects
present in the scene, and hence, the tool object is easier to
be distinguished when DGCNN features are provided.

IoU Task (A) Task (B) Task (C)
Proposed 84.1% 82.6% 74.6%

Without DGCNN 77.3% 78.1% 56.8%

TABLE II: IoU between generated and ground-truth trajectories

To assess DGCNN features on the low-level policy alone
(without the tool/target and keypose selection), we also
evaluate the Intersection over Union (IoU) between trajec-
tories generated by the policy and ground-truth trajectories.
Two poses from different trajectories are considered as an
intersection if (1) they are within 2cm (2) the cosine between
their rotation axes is higher than 0.9, and (3) the difference

between their rotation angles is less than 20◦. The higher IoU
from Table II suggests that DGCNN features help low-level
motion generation. The improvement is more significant in
pouring than in stacking because the size of the tool/target
objects plays a more important role in pouring trajectories.

V. CONCLUSION

We presented a novel robot imitation learning framework
for performing manipulation tasks in scenes that contain
multiple unknown objects. The proposed model takes fea-
tures from images and point clouds as input, and predicts
a pair of target and tool objects, and a desired keypose for
placing the tool relative to the target. The proposed system
does not require any predefined class-specific priors, and can
generalize to new objects of different shapes within the same
category. Extensive experiments using real demonstration
videos and a real robot show that the proposed model
significantly outperforms state-of-the-art methods.
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