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Abstract— Unsupervised localization and segmentation are
long-standing robot vision challenges that describe the critical
ability for an autonomous robot to learn to decompose images
into individual objects without labeled data. These tasks are
important because of the limited availability of dense image
manual annotation and the promising vision of adapting to
an evolving set of object categories in lifelong learning. Most
recent methods focus on using visual appearance continuity
as object cues by spatially clustering features obtained from
self-supervised vision transformers (ViT). In this work, we
leverage motion cues, inspired by the common fate principle
that pixels that share similar movements tend to belong to
the same object. We propose a new loss term formulation
that uses optical flow in unlabeled videos to encourage self-
supervised ViT features to become closer to each other if
their corresponding spatial locations share similar movements,
and vice versa. We use the proposed loss function to fine-
tune vision transformers that were originally trained on static
images. Our fine-tuning procedure outperforms state-of-the-art
techniques for unsupervised semantic segmentation through
linear probing, without the use of any labeled data. This
procedure also demonstrates increased performance over orig-
inal ViT networks across unsupervised object localization and
semantic segmentation benchmarks. Our code is available at
https://github.com/mlzxy/flowdino.

I. INTRODUCTION

The ability to localize and recognize objects in images is
crucial for intelligent robots to effectively operate in the real
world [1]. A feature representation that can distinguish and
localize different semantic entities in a given image is impor-
tant for building downstream algorithms, and for making the
robot’s behavior naturally more interpretable by humans [2].
Dense prediction tasks, such as detection and segmentation,
are downstream tasks that are particularly important in
robotics. The current prevailing approach to these tasks is
to train deep neural networks with large amounts of human-
labeled dense image annotations. Despite the development
of self-supervised learning [3], and the utilization of vast
amounts of Internet images and descriptions [4], densely
annotated datasets are still scarce and obtained through
manual annotation, which is not only a labor-intensive and
expensive process, but also constrained to a fixed set of
object categories without the ability to discover new objects.
Therefore, unsupervised learning of dense prediction tasks
without labeled data, including detection and segmentation,
is an important open research challenge.

Current methods for unsupervised dense image under-
standing generally involve discovering basic structures such
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as foreground masks [5]—[7], contours [8], or invariant map-
pings under transformations [9]. These structures then guide
the learning of pixel-level embeddings, enabling the spatial
differentiation of different objects [9]-[12]. A new paradigm
of unsupervised dense prediction has emerged in the past
year to leverage self-distilled vision transformers (ViTs) [13].
Deep-Spectral [14] and STEGO [15] have achieved state-of-
the-art segmentation results through spectral clustering and
self-training on top of features extracted from frozen ViTs.
Leopart [16] incorporates spatial feature clustering into the
training of ViTs. These pioneering works apply the principle
of visual appearance continuity as object cues on self-
supervised features, pushing the boundaries of unsupervised
image understanding to complex images.

In this paper, we draw inspiration from the common fate
principle [17], which posits that pixels tend to belong to the
same object if they move in the same direction at the same
speed, i.e., if they have the same optical flow. Optical flow
has been extensively used for video object segmentation and
tracking for its ability to easily capture moving objects [18]—
[21]. However, few attempts have been made to transfer the
motion information in optical flow to the task of localizing
and segmenting objects in still images. Rather than using
optical flow for object tracking in videos, our approach is to
mimic the human ability to observe objects moving patterns
and learn transferable objects concept for static images.

We follow the assumption studied in CrossPixel [22]:
pixels sharing similar motion are likely to belong to the
same object and vice versa. We refine this assumption
by only considering pixels within a local neighborhood,
removing background motion, and concentrating learning on
regions with substantial movements. Our approach utilizes
optical flow as an auxiliary regularization for ViT features
in self-supervised learning to encourage the ViT network to
produce similar features in locations that exhibit similar pixel
motions. Specifically, we first estimate optical flows from ad-
jacent frames in existing unlabeled raw video datasets [23]—
[25] using off-the-shelf optical flow model [26]. We then split
feature and optical flow maps into local patches. For each
patch, we minimize the KL divergence between the feature
cosine similarity and the flow similarity measured with a
customized RBF kernel. We use this flow-based loss function
to fine-tune the vision transformers proposed in DINO [13].
We evaluate the features from the fine-tuned networks in
two downstream tasks: (1) the latest unsupervised object
localization procedure proposed in [14], and (2) the unsuper-
vised semantic segmentation evaluation protocols proposed
in [10], [16]. We demonstrate increased performance over
the original ViT networks across these unsupervised dense
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vision prediction tasks. Our proposed approach outperforms
the state-of-the-art in unsupervised semantic segmentation on
Pascal VOC 2012 and Cocostuff-27 through linear probing,
while preserving the discriminative power on ImageNet. We
summarize our contributions as follows:

1) A new unsupervised fine-tuning procedure using opti-
cal flow that leverages the correlation between motion
and objectness to encourage self-supervised ViT fea-
tures to become closer if their corresponding spatial
locations share similar flows in a local vicinity.

2) Implementation and evaluation of the proposed pro-
cedure in the DINO self-supervised framework [13].
We demonstrate increased performance over original
networks across unsupervised object localization and
semantic segmentation tasks, and outperform state-of-
the-art techniques in unsupervised semantic segmenta-
tion through linear probing.

II. RELATED WORK

Self-supervised Learning. Learning self-supervised visual
representations has drawn significant interest in computer
vision. Early work was based on learning through solving
pretext tasks such as inpainting, jigsaw puzzles, and coloriza-
tion [27]-[29]. Recent major successes are broadly based
on momentum-based contrastive learning [13], [30], [31],
and masked auto-encoding [3], and natural language supervi-
sion [4]. In particular, DINO [13] showed that self-supervised
features obtained through vision transformer (ViT) architec-
tures and self-distillation explicitly contain scene layout and
boundary information. These emerging properties inspired
pioneering work on unsupervised object discovery and se-
mantic segmentation based on existing self-supervised ViT
models [10], [12], [14]-[16], [32]. While existing works
employ pretrained ViT models as a sub-component of larger
systems, our approach provides a loss function that can
be seamlessly incorporated within existing self-supervised
frameworks.

Optical Flow. Optical flow is defined as the per-pixel motion
between adjacent video frames. This concept was introduced
to describe the visual stimulus of moving objects [33]. Based
on the object continuity property, optical flow has drawn con-
stant interest in video object segmentation [18]-[21]. With
the recent advances in deep learning [34], and the success
in learning optical flow from synthetic datasets [35], [36],
off-the-shelf dense optical flow estimation networks have
now become easily available [26]. For example, CMP [37]
predicts optical flow as a pretext task for self-supervised
learning, and CrossPixel [22] embeds pixels to match simi-
larity of corresponding flow vectors. While these early work
emphasize learning general representations from motion,
few attempts have been made to leverage optical flow in
learning for unsupervised object localization and semantic
segmentation of still images.

Unsupervised Object Localization. Object localization
refers to the prediction of bounding boxes of foreground

objects in images. Early unsupervised techniques for learning
object localization focused on mining co-occurring patterns
amongst image collections [38], [38]-[40]. Recent work
explores mining examples from single images [41], [42].
Significantly increased performance has been achieved with
graph-based partitioning procedures that use pre-trained ViT
architectures [14], [32], [43]. In this work, we build upon
existing localization procedures, and show the significant
benefit of fine-tuning ViT features with optical flow.

Unsupervised Semantic Segmentation. Unsupervised se-
mantic segmentation involves generating pixel-level pre-
diction that can be closely mapped to semantic labels
through clustering or linear projection. A popular paradigm
is to extract structures from images, including foreground
masks [5]-[7], contours [8] or invariant mapping under
transformation [9], then use the structures to guide the
learning of pixel-level embeddings [9]-[12]. Another ris-
ing approach originates from discovering emergent object
information from DINO ViTs [13]. For example, both Deep-
Spectral [14] and STEGO [15] achieve impressive segmen-
tation results using features of frozen ViTs with spectral
clustering and self-training. Leopart [16] achieves significant
improvement by leveraging visual appearance continuity and
incorporating cluster assignment loss [44] into DINO’s self-
supervised framework. Our method utilizes a loss fomulation
to finetune pretrained ViTs with motion cues from optical
flow. We increase the performance on unsupervised semantic
segmentation while preserving the discriminative power of
original ViTs, and our loss formulation does not depend on
DINO’s self-supervised framework.

Vision Transformers. Transformer architectures are the key
behind the recent significant success in natural language
processing [45]. Vision transformers (ViT) employ positional
embedding and self-attention layers instead of convolutional
layers [46]. Recent variants of ViT have demonstrated vari-
ous advantages over traditional CNN architectures, includ-
ing higher computational efficiency [47], improved self-
supervised learning efficacy [13], [31], stronger performance
on downstream vision tasks [48], [49], and more interpretable
features [50]. In this work, our technique is applied to ViTs.

III. METHOD

A. Motivation

Our approach stems from a simple assumption: Pixels that
share similar motion (i.e., optical flow) are likely to belong
to the same object, and vice versa. While this assumption
has been thoroughly studied in previous works such as
CrossPixel [22], there are several limitations in those works:

1) Two pixels having similar motion may not belong to
the same object if they are far apart.

2) For pixels with static motion, it cannot be determined
whether they belong to the same object or not.

3) Camera-motion may induce a similar motion at every
pixel, including foreground and background pixels.
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Fig. 1: Workflow of our proposed optical flow loss. Features and flows are divided into patches, and their similarity matrices
are matched with KL divergence, which are then averaged with flow norm to focus learning on moving areas. Optical flows
are computed from adjacent video frames and subtracted with average to reduce background motion.

To address the limitations, we refine the assumption with
the following constraints that impose a reliable correlation
between motion and appearance.

1) Pixels sharing a similar motion are presumed to belong
to the same object only if they are within the same local
neighborhood.

2) Objectness learning is focused on pixels with substan-
tial motion. That is, learn only from regions where
significant motion actually occurs.

3) Optical flow is normalized to reduce the effect of back-
ground motion, which results from camera-motion.

The locality assumption goes back to the earlier works
of Lucas and Kanade [33], which assumed that optical flow
remains constant within a local neighborhood, and can be
represented by flows at a small number of interest points
determined by visual features. We focus here on a local
vicinity and only learn from pixels with substantial flow. In
our proposed approach, detailed in the following section, we
train a ViT to return similar visual features for pixels that
have similar motion.

B. Approach

We start by extracting optical flow from a video using
an off-the-shelf model, and normalizing the optical flow to
remove the effect of background motion. Next, we divide
both the feature map and the flow map into local patches,
and compute for each patch a loss that encourages feature
similarity among pixels that share similar motions. Lastly,
we calculate a weighted average of patch-level losses with
the local flow norm serving as the patch’s weight to ensure
that we only learn from patches with significant motion. In
the following, we denote optical flow as v € RZ2XHXW and
feature map as f € RE*7*W The overall workflow of the
proposed approach is illustrated in Figure 1.

Given that optical flow can only be estimated from a pair
of adjacent video frames, it cannot be obtained from standard
image-based datasets. To overcome this challenge, we rely

Fig. 2 Comparzng before vs. after background motion
removal. From left to right, we show the original image,
12 norm of flows before and after motion removal.

on unlabeled videos to augment existing standard image-
based datasets. The dataset preparation procedure is detailed
in Section IV.

Background motion removal. We empirically found that
simply subtracting the average flow significantly reduces
the background motion. We further normalize the flow and
project it to [—1,1] by dividing it by the maximum norm,
as shown in Equation 1. We denote the stabilized and
normalized flow as v. We discuss the limitation of this
approach in Section V. Examples are shown in Figure 2.
- V-V
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Split local patches. We divide feature map f and flow v into
patches with sliding windows. We denote the feature patches

s f, € ROXKXK and flow patches as v, € R2XKXK p ¢
{1,...,L}, where K denotes patch size and L denotes the
number of patches.

Intra-patch similarity match. For each patch, we calculate
K x K similarity matrices for both feature and optical flow
by measuring the similarity between the most salient pixel
and other K x K locations. The most salient pixel is selected



as the one with the strongest self-attention received at class
token. Specifically, we flatten and denote the feature and
flow similarity matrices to be vectors zy ,,z, , € RE . We
denote by f,; € R® and v,; € R?, where i € {1,.., K*},
the feature and flow vectors at location % within patch p. We
denote the most salient location in patch p as s,. The feature
similarity vector zy ,, is computed with the cosine similarity,
i.e., the dot product of features after normalizing them to a
unit length, as shown in Equation 2.
Zip=lonfps, £l i€{l,.,K*} (2
The flow similarity vector z, , is computed with a cus-
tomized RBF kernel function Sy, as shown in Equation 3.
Zop = [ St (Vposys Vpii)s ]| i€ {1, K} (3
The RBF kernel function Sy is given in Equation 4, where
cos(x,y) denotes cosine similarity with the output saturated
to [0,1], and o is the RBF’s radius parameter. The expo-
nential term is multiplied by || y ||2 to separate stationary
pixels, which form clear boundaries between foreground and
background.

Spx,y) =l ll2 exp((cos(x,y) — 1) /o) )

Next, we transform the feature and flow similarity to a
probability distribution using softmax as shown in Equa-
tion 5, where 7 is a temperature parameter. We denote the
flow and feature distributions as p,,, and py ,, respectively.

p.p = softmax(z. ,/7) ®)

Then, we minimize the KL divergence between p, , and
Py, in Equation 6 to encourage features of pixels with
similar motions to become closer and vice versa. We denote
the KL divergence loss of patch p as £,,, given as

Ly =Drr(Poyp | Psp)- (6)

Reweighting loss terms across patches with motion. To
concentrate the learning on areas with significant motion, the
weight w,, of patch p is the proportion of patch p’s motion
relative to the motions of all the patches in the given frame,
as outlined in Equation 7.

[ vp ll2

-
2p=1 [y 2

Finally, the overall loss is given as a weighted average of
the local patch losses, as described in Equation 8.

(7

p:

L
L= w,L,. (8)
p=1

We use this optical flow loss in combination with the
original self-supervised learning loss to train our vision
transformer network, as depicted in Figure 1.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed training
procedure, we perform experiments on both unsupervised
object localization and unsupervised semantic segmentation
using the features before and after motion-guided fine-tuning.
We implement this procedure using PyTorch [51] on top of
the released implementation of DINO [13], and apply it on
ViT-Small and ViT-Base [46] architectures with patch sizes
of 8 and 16 respectively, and with weights initialized from
the pre-trained DINO models [13]. We set temperature 7
to 0.1 and radius o to 0.7 in all experiments. During fine-
tuning, each batch consists of half of the images taken from
ImageNet [52], and the other half is made of video frames.
Our final loss is the sum of DINO’s loss on the ImageNet
images and the optical flow loss on the video frames.

Dataset Preparation. To create datasets with optical flow
information, we merge the following existing video datasets:
UVO [23], VSPW [24], and Youtube-VOS [25]. We extract
frames from about 10,000 videos with a frame interval of
five and estimate the optical flow between each adjacent
frames with the Raft-Large model [26]. We also apply
the same procedure on the Moment-in-Time dataset [53],
but we use only the first dataset except when otherwise
noted. Compared to images, each pixel in the optical flow
is stored in two 32-bit float numbers rather than a single
8-bit unsigned integer. Optical flow does not have a widely
available compression format. Therefore, storing the optical
flow requires roughly one to two orders of magnitude more
space than an equivalent number of images. To overcome this
challenge, we quantize the optical flow into 16-bit integers
and concatenate the flow in the x and y directions into a
single 32-bit float number. Next, we save the 32-bit stream
in the TIFF image format, which supports 32-bit float pixel
values, and we apply the TIFF compression protocol. By
applying this approach to store the optical flow, we observe
about a ten-times reduction in disk space usage.

A. Object Localization

We extract features with our motion fine-tuned ViT models
and apply the latest unsupervised object localization method
from Deep-Spectral [14]. As is standard practice, we com-
pare the results to prior work on three datasets: Pascal VOC
2007, Pascal VOC 2012 [54], and COCO-20k [39] (a subset
of 20K images from MS-COCO dataset [55]). We follow the
evaluation procedure used in [39], [43], which accepts one
bounding box for each image. Results are reported in the
Correct Localization (CorLoc) metric, which measures the
percentage of images on which one object can be correctly
localized by the given bounding box. An object is considered
to be correctly localized if the predicted bounding box has
a greater than 50% intersection-over-union (IoU) with the
object’s ground-truth bounding box.

The quantitative results are summarized in Table 1. We
reproduce the localization performance in Deep-Spectral [14]
using ViT-B8 (ViT-Base network with patch size 8) and the
released implementation and hyper-parameters. We report



Method vVOC-07 VOC-12 COCO-20k
Selective Search [56] 18.8 20.9 16
EdgeBoxes [57] 31.1 31.6 28.8
Kim et al. [58] 439 46.4 35.1
Zhang et al. [42] 46.2 50.5 34.8
DDT+ [59] 50.2 53.1 38.2
rOSD [39] 54.5 55.3 48.5
LOD [38] 53.6 55.1 48.5
DINO-[CLS] [13] 45.8 46.2 42.1
LOST [43] 61.9 64 50.7
Deep-Spectral [14] 62.7 66.4 52.2
Deep-Spectral* 60.5 65.7 48.5
Ours (Deep-Spectral) ~ 63.1(+2.6)  68.5(+2.8) 53.6(+5.1)

TABLE I: Single-object localization performance (CorLoc).
Our results are obtained by reusing the post-processing
procedures in Deep-Spectral [14] with our motion fine-tuned
features, without any supervision. ‘*’ denotes the results we
reproduce from the official released implementations.

our results by reusing the same implementation on the
ViT-B8 architecture with our fine-tuned weights. Clear and
consistent improvement over the original features can be
seen in all three datasets. Note that this improvement is
obtained automatically, without any human effort, because
our approach is fully self-supervised. In Figure 3, we show
some qualitative examples of our methods.

Ground Truth

Fig. 3: Object localization on Pascal VOC 2012. From left
to right, we show the original image, predicted bounding
boxes from Deep-Spectral [14], our predicted bounding

boxes using the same procedure, and ground-truth boxes.

The results in Table II demonstrate that our motion-driven
fine-tuning approach improves object localization perfor-
mance across different ViT architectures. Additionally, in Ta-
ble III, we conduct an ablation study to assess the impact of
our optical flow loss. Specifically, we compare our proposed
optical flow loss with using only the DINO’s self-supervised
loss while adding video frames as extra training data. Our
results reveal that solely adding video frames as new training
images does not lead to performance gains. Moreover, we
assess the individual contributions of background motion
removal and motion-based loss re-weighting and demonstrate
that performance deteriorates when background motion is not
removed or when the learning is not focused on regions with
substantial motion.

Network VOC-07 VOC-12 COCO-20k
VIT-S16 574 63.4 46.4
Baselie  VITBI6 56.7 62.8 46
aseline ViT-S8 59.4 64.1 47.6
ViT-BS 60.5 65.7 48.5
VIT-S16 58.4 64.3 48.1
o VIT-B16 59 64.1 48.5
urs VIT-S8 58.4 64.2 46.7
ViT-B8 63.1 68.5 53.6

TABLE II: Comparing, in terms of object localization per-
formance with Deep-Spectral algorithm [14], different ViT
architectures before vs. after fine-tuning them with motion.
Motion-driven fine-tuning generally yields better results.

Arch Motion Removal  Patch Size  Loss Reweight VOC-12
ViT-S16 v 5 v 62.8
VIiT-S16 v 3 v 64.3
ViT-S16 3 v 62.8
ViT-S16 3 59.85
ViT-S16  Baseline 63.4
ViT-S16 ~ Only add video frames 62.6
ViT-S16  add video frames + flow loss 64.3
ViT-B8 Baseline 65.7
ViT-B8 Only add video frames 64.88
ViT-B8 add video frames + flow loss 68.5

TABLE III: Comparing different options of motion-driven
fine-tuning on the object localization task (CorLoc).

B. Semantic Segmentation

We evaluate our motion fine-tuned ViT models on un-
supervised semantic segmentation. Our evaluation protocol
follows prior work in self-supervised learning [16], i.e.,
linear probing and cluster probing. Linear probing protocol
involves training an extra linear projection from model
outputs to ground-truth labels with supervision while freez-
ing the model weights. Cluster probing protocol involves
dividing spatial features into separate groups with cluster-
ing algorithms and applying Hungarian matching [60] to
match clusters to ground-truth labels optimally. Both linear
and cluster probing are done solely for the purpose of
evaluating the learned features. We compare our results to
prior methods on Cocostuff-27 [61] and Pascal VOC 2012.
Results are measured in terms of mean intersection-over-
union (mloU), which denotes the percentage of overlaps
between the predicted segmentation mask and the ground-
truth across different classes.

Table IV compares our approach with previous methods
through linear probing, including the state-of-the-art tech-
nique Leopart [16]. Our results are obtained by fine-tuning
on ViT-B8 with the Moment-in-Time dataset [53] without
ImageNet. It should be noted that while the result reported
by Leopart [16] is achieved using a smaller ViT architecture
(ViT-S16), our method demonstrates the potential to improve
semantic segmentation performance solely by utilizing mo-
tion information, without relying on existing visual continu-
ity through spatial clustering. Qualitative examples of our
approach are shown in Figure 4.



Method Cocostuff-27 Method VOC-12
ResNet50 [62] 10.2 IIC [9] 28
MoCoV2 [31] 13.2 MoCoV2 [31] 45
MDC [63] 13.3 InfoMin [64] 452
PiCIE [63] 13.9 SWAV [65] 50.7
PiCIE+H [63] 14.8 SegSort [66] 36.2
STEGO [15] 41.2 Hierach. Group. [67] 48.8
DINO [13] 42.2 MaskContrast [10]  63.9
Leopart [16] 44.1 Leopart [16] 68
Ours 46.1(+2.0) Ours 68.7(+0.7)

TABLE IV: Semantic Segmentation (mloU) on Cocostuff-27
and Pascal VOC 2012 with linear probing. Our results are
obtained using the evaluation protocol of Leopart [16].

Fig. 4: Semantic Segmentation on Cocostuff-27 through
linear probing. From left to right, we show the original
image, predicted bounding boxes from ViT before and after
motion-driven fine-tuning, and ground-truth semantic masks.

Method mloU
Co-Occurrence [68] 4
CMP [37] 4.3
Colorization [27] 49
IIC [9] 9.8
MaskContrast [10] 35
Deep-Spectral [14] (w/o self-training) 30.8 £2.7
Deep-Spectral [14] 372 +38
DINO Baselines

ViT-B16 279 + 1.18
ViT-S16 30.2 £ 1.15

QOurs (W/o self-training)

ViT-B16
ViT-S16

31.0 £ 1.6 (+3.1)
3535 £ 2.2 (+5.15)

TABLE V: Semantic Segmentation (mloU) on Pascal VOC
2012 through cluster probing. We adopt the evaluation
protocol from MaskContrast [10] and use the same ViT from
Deep-Spectral [14] without the self-training part of [14].

In Table V, we compare to previous methods through clus-
ter probing on Pascal VOC 2012. Due to the lack of a stan-
dardized practice on cluster probing, we adopt the evaluation
protocol from MaskContrast [10], but use the ViT attention as
estimated saliency instead of a supervised saliency network.
We select other existing works based on similarity of their
evaluation protocols. Notably, our approach outperforms the
DINO baselines and achieves comparable results to Deep-

Ground Truth
o

i’

Fig. 5: Semantic Segmentation on Pascal VOC 2012 through
cluster probing. From left to right, we show the original
image, predicted bounding boxes from ViT before and after
motion-driven fine-tuning, and ground-truth semantic masks.

Spectral without self-training. It is worth mentioning that
self-training is a general performance boosting technique that
involves training on pseudo-labels generated for the target
dataset. Qualitative examples are shown in Figure 5.

VOC-12  Cocostuff-27  ImageNet

Baseli VIiT-S16 47.41 36.1 74.44
aseline ViT-S8 49.53 38.6 78.33
Leopart [16]  VIT-S16 68 44.1 51.99
our VIT-S16 59.39 39.96 73
urs VIT-S8 63.28 41.26 77.46

TABLE VI: Comparing networks before vs. after motion-
driven fine-tuning on unsupervised semantic segmentation
(mloU), and ImageNet classification (top-1 accuracy) tasks.

ViT-S16 ~ ViT-B16  ViT-S8  ViT-BS8
Baseline 74.44 75.87 78.33 77.28
Fine-tuned 73.6 74.65 77.45 76.59

TABLE VII: Comparing before vs. after fine-tuning using
video frames but without our optical flow loss on ImageNet
classification (top-1 accuracy).

Table VI compares our approach with the baselines DINO
and Leopart [16] on linear probe segmentation and ImageNet
classification performance. The ImageNet classification accu-
racy is evaluated using a weighted nearest neighbor classifier
(k-NN) as in [69]. It should be emphasized that our approach
not only boosts semantic segmentation performance com-
pared to the baselines, but also preserves the discriminative
power on ImageNet. In contrast, the discriminative power
is significantly affected in Leopart despite the remarkable
improvement on segmentation tasks. Table VII shows the
ImageNet top-1 classification accuracy after fine-tuning with
video frames without our optical flow loss. It can be observed
that a similar amount of performance drop occurs even
without using our optical flow loss. This further suggests
that the optical flow loss may not be the main reason for the
accuracy drop observed in Table VI.



V. DISCUSSION AND CONCLUSION

We have shown that improved object understanding can be
achieved for certain self-supervised learners through learning
from motion information that is embedded in adjacent video
frames. This information is readily available from off-the
shelf optical flow estimators. Some open questions are, how-
ever, still worth discussing. The background motion removal
through mean reduction is likely to leave extra background
motions around the image corners due to camera distortion,
and it may also diminish small object movements. Despite
the generality of our procedure and its independence of
DINO’s loss, our current implementation and experiments are
still closely linked to the self-supervision training of DINO.
This suggests the potential for designing more general mod-
ules that could translate motion into objectness information,
which can be agnostically digested by other networks.

As visual continuity and motion are both intrinsic clues
for determining objectness, the possibility of unifying them
in a single framework has yet to be fully explored, while
the lack of quality video datasets like ImageNet will likely
continue to be a limiting factor. Beyond only leveraging
adjacent frames, it is possible to extract long-term spatial-
temporal correspondences from videos to further improve
representation learning for still images.
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