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Abstract: This work presents OVIR-3D, a straightforward yet effective method
for open-vocabulary 3D object instance retrieval without using any 3D data for
training. Given a language query, the proposed method is able to return a ranked
set of 3D object instance segments based on the feature similarity of the instance
and the text query. This is achieved by a multi-view fusion of text-aligned 2D re-
gion proposals into 3D space, where the 2D region proposal network could lever-
age 2D datasets, which are more accessible and typically larger than 3D datasets.
The proposed fusion process is efficient as it can be performed in real-time for
most indoor 3D scenes and does not require additional training in 3D space. Ex-
periments on public datasets and a real robot show the effectiveness of the method
and its potential for applications in robot navigation and manipulation.
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1 Introduction
There has been recent progress in open-vocabulary 2D detection and segmentation methods [1, 2, 3]
that rely on pre-trained vision-language models [4, 5, 6]. However, their counterparts in the 3D
domain have not been extensively explored. One reason is the lack of large 3D datasets with suf-
ficient object diversity for training open-vocabulary models. Early approaches for dense semantic
mapping [7, 8, 9, 10] project multi-view 2D detections to 3D using closed-set detectors but can-
not handle arbitrary language queries. More recently, OpenScene [11] and Clip-fields [12] achieve
open-vocabulary 3D semantic segmentation by projecting text-aligned pixel features to 3D points
and distilling 3D features from the aggregated 2D features. Given a text query during inference,
OpenScene [11] generates a heatmap of the point cloud based on the similarity between point fea-
tures and the query feature. Nevertheless, manual thresholding is required for object search to con-
vert a heatmap to a binary mask and it lacks the ability to separate instances from the same category.
This limits its use in robotic applications, such as autonomous robotic manipulation and naviga-
tion. Clip-fields [12], on the other hand, requires training on additional ground truth annotation for
instance identification, which makes it less open-vocabulary at the instance level.

This work focuses on open-vocabulary 3D instance retrieval, aiming to return a ranked set of 3D
instance segments given a 3D point cloud reconstructed from an RGB-D video and a language
query. Some examples are shown in Figure 1. While 2D segmentation from a single viewpoint is
often insufficient for robot grasping and navigation, 3D instance retrieval methods generate a more
complete and accurate segmentation of objects in 3D space by multi-view fusion and smoothing. In
particular, this work considers a scenario, where a mobile robot navigates in an indoor scene and
automatically reconstructs the 3D environment using its RGB-D sensor and an off-the-shelf SLAM
module. Instead of fusing pixel-level information and then either grouping them into instances
by thresholding at inference time [11] or training an object identification model with additional
ground truth data [12], the proposed method directly fuses instance-level information into the 3D
scene without additional training, so that given a text query such as “lamp” or ”bed”, a robot can
immediately locate the top-related object instances and perform required tasks.
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Figure 1: Examples of open-vocabulary 3D instance retrieval using the proposed system. (a-c)
Given a 3D scan reconstructed from an RGB-D video (e.g., scene0645 from ScanNet [13]) and a text
query (e.g., bed, lamp), the proposed method retrieves a set of 3D instances ranked based on their
semantic similarity to the text query. (d-e) Instances that are not even in the ground-truth annotations
can also be detected and queried by the proposed method, such as the cushions on the sofa.

The proposed method addresses this problem by first generating 2D object region proposals and their
corresponding text-aligned features by querying a 2D open-vocabulary detector with an extensive
vocabulary. It then performs data association and periodic filtering and merging of 3D instances
to improve instance masks and remove noisy detections. Finally, a post-processing step handles
isolated objects and filters small segments that are likely to be noise. Extensive experiments on real
scans from both room-scale dataset ScanNet200 [14] and tabletop-scale dataset YCB-Video [15]
demonstrate the effectiveness of the proposed method, which offers an efficient 2D-to-3D instance
fusion module (⇠ 30 fps for a scene in ScanNet [13] on an NVIDIA RTX 3090) and an open-
vocabulary 3D instance retrieval method with near-instant inference time for a text query.

The main contributions of this work are: (i) an efficient 2D-to-3D instance fusion module given
text-aligned region proposals, which results in (ii) an open-vocabulary 3D instance retrieval method
that ranks 3D instances based on semantic similarity given a text query.

2 Related Work
2.1 2D Open-Vocabulary Detection and Segmentation
With the advent of large vision-language pre-trained models, such as CLIP [4], ALIGN [5] and
LiT [16], a number of 2D open-vocabulary object detection and segmentation methods have been
proposed [17, 18, 19, 1, 2, 20, 21]. For 2D semantic segmentation, LSeg [17] encodes 2D images
and aligns pixel features with segment label embeddings. OpenSeg [18] uses image-level supervi-
sion, such as caption text, which allows scaling up training data. GroupViT [19] performs bottom-
up hierarchical spatial grouping of semantically-related visual regions for semantic segmentation.
For 2D object detection, ViLD [1] achieves open-vocabulary detection by aligning the features of
class-agnostic region proposals with text label features. Detic [2] attempts to address the long-tail
detection problem by utilizing data with bounding box annotations and image-level annotations.
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OWL-ViT [20] proposes a pipeline for transferring image-text models to open-vocabulary object
detection. Our proposed method adopts Detic [2] as a backbone detector to locate objects in 2D im-
ages since it can provide pixel-level instance segmentation and text-aligned features. Furthermore,
it can be queried with a large vocabulary without sacrificing much speed.

2.2 3D Reconstruction and Closed-Vocabulary Semantic Mapping
Early works have addressed the 3D reconstruction problem either through online SLAM meth-
ods [22, 23, 24, 25, 26] or offline methods like structure-from-motion [27, 28] using a variety of
3D representations, such as TSDF [29], Surfel [30], and more recently NeRF [31, 32, 33, 34]. With
the advancement of learning-based 2D object detection and segmentation methods, recent efforts
have focused on point-wise dense semantic mapping of 3D scenes [7, 8, 10, 9, 35]. Despite being
effective, these methods have not yet been designed to fit open-vocabulary detectors. They either
assume mutually exclusive instances [7, 10] or utilize category labels for data association [8, 9, 35].
The proposed method in this paper adopts an off-the-shelf 3D reconstruction method and focuses on
integrating 2D information with point-cloud information to achieve open-vocabulary 3D instance
segmentation. A key contribution in this context is a method that associates open-vocabulary 2D
instance detections and fuses them into a 3D point cloud while keeping them open-vocabulary.

2.3 3D Open-Vocabulary Scene Understanding
More recently, research efforts aim for open-vocabulary 3D scene understanding [12, 11, 36, 37, 38,
39, 40]. Given that existing 3D datasets tend to be significantly smaller than 2D image datasets,
this is mainly accomplished by fusing pretrained 2D image features into 3D reconstructions. Open-
Scene [11] projects pixel-wise features from 2D open-vocabulary segmentation models [17, 18] to
a 3D reconstruction and distills 3D features for better semantic segmentation. ConceptFusion [38]
fuses multi-modal features, such as sound, from off-the-shelf foundation models that can only pro-
duce image-level embeddings. LeRF [39] fuses multi-scale CLIP features to a neural radiance field
for open-vocabulary query. These methods can generate a heatmap of a scene that corresponds to a
query, but they do not provide instance-level segmentation, which limits their use in tasks that require
a robot to interact with specific object instances. PLA [40] constructs hierarchical 3D-text pairs for
3D open-world learning and aims to perform not only 3D semantic segmentation but instance seg-
mentation as well. Nevertheless, the method so far has been demonstrated only on certain furniture-
scale objects, and performance in other categories is unclear. On the other hand, our method focuses
on instance-level, open-vocabulary 3D segmentation without manual 3D annotation.

3 Problem Formulation
A 3D scan XN represented by N points is reconstructed from an RGB-D video V =
{I1, I2, . . . , IT } given known camera intrinsics C and camera poses Pt, where It is the video
frame at time t. The objective in open-vocabulary 3D instance retrieval is to return a set of K

ranked instances represented as binary 3D masks MN = {mi|i 2 [1,K]} over the 3D scan XN ,
given a text query Q and the desired number of instances K to be retrieved. The ranking of instance
masks is based on the semantic similarity between the 3D instance and the text query, where the
most similar instance should be ranked first.

4 Method
The overall pipeline of the proposed method is illustrated in figure 2. To summarize, given a video
frame, the method first generates 2D region proposals R2D = {r1, .., rk} with text-aligned fea-
tures F 2D = {f2D

1 , .., f
2D
k } using an off-the-shelf 2D open-vocabulary method trained on large 2D

datasets. The 2D region proposals R2D of each frame It are then projected to the reconstructed 3D
point cloud given the camera intrinsics C and poses Pt. The projected 3D regions R3D are either
matched to existing 3D object instances O = {o1, .., ob} with 3D features F

3D = {f3D
1 , .., f

3D
b }

stored in the memory bank B, or added as a new instance if not matched with anything. The 2D
region to 3D instance matching is based on feature similarity sij = cos(f2D

i , f
3D
j ) and region over-

lapping IoU(r3Di , oj) in the 3D space. Matched regions are integrated into the 3D instance. To
remove unreliable detections and improve segmentation quality, periodic filtering and merging of
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Figure 2: Pipeline of the proposed method.

3D instances in the memory bank B is performed every T frames. A final post-processing step re-
moves 3D instances that are too small and separates object instances that are isolated in 3D space but
incorrectly merged. During inference time, the text query q will be used to match with a set of rep-
resentative features of each 3D instance, and the instances O will be ranked based on the similarity
and returned. Details of the proposed method are presented below.

4.1 Text-aligned 2D Region Proposal
Learning-based region proposal networks have served as a critical module for many instance seg-
mentation methods, such as MaskRCNN [41]. However, directly generating 3D region proposals
for open-vocabulary instance retrieval is hard due to the lack of annotated 3D data with enough
category varieties. This work views the 3D region proposal problem as a fusion problem from 2D
region proposals. In particular, it leverages the power of an off-the-shelf open-vocabulary 2D detec-
tor Detic [2], which is trained with multiple large image datasets, to generate 2D region proposals
(masks) R2D by querying it with an extensive number of categories, i.e. all 21k categories from
ImageNet21k [42] dataset. In addition to 2D masks R2D, associated text-aligned features F

2D

are extracted before the final classification layer of the 2D model. The output category labels are
dropped without being used as they are rather noisy given the input vocabulary size. Both region
proposals R2D and their text-aligned features F 2D are used for data association in the fusion step.

Though the proposed method does not critically depend on a specific 2D detector, not all open-
vocabulary 2D detectors can serve as a region proposal backbone. There are two requirements that
a 2D detector must exhibit: 1) It must be able to generate pixel-wise masks for a wide variety
of objects in a timely manner; and 2) It should provide a text-aligned feature for each region so
that it can be queried with language. During the development of this work, it’s found that Detic [2]
naturally meets the requirement without additional modifications and thus it is adopted for this work.
Some other options, such as SAM [43] and Grounding-DINO [44] were not adopted because they
are either too slow or unable to directly output text-aligned features for proposed regions, which
turn out to be critical for data association in the experiments. Detic [2] also has a fast inference
speed even when queried with all the categories from ImageNet21k [42] (⇠ 10fps on an NVIDIA
RTX3090), which makes it favorable for this task.

4.2 2D-to-3D Instance Fusion
2D region proposals R2D = {r2D1 , .., r

2D
k } and their corresponding features F 2D = {f2D

1 , .., f
2D
k }

for each frame It are first projected to the 3D scan using camera intrinsics C and pose Pt. The
projected 3D regions R3D are either matched to existing 3D object instances O = {o1, .., ob} with
3D features F

3D = {f3D
1 , .., f

3D
b }, where b is the number of 3D instances already stored in the
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memory bank B, or added as a new instance if it is not matched with anything. The 3D feature
f
3D
i of instance i for matching is simply the average of 2D features f

2D
j from all the associated

2D regions, i.e. f3D
i = 1

n

Pn
j=1 f

2D
j , where j is the index of 2D regions that are associated to 3D

instance i, and n is the number of 2D regions that have already been merged. The memory bank is
empty at the beginning.

The matching of 2D region ri to 3D instance oj is based on cosine similarity sij = cos(f2D
i , f

3D
j )

and 3D intersection over union IoU(r3Di , ôj) between the projected region r
3D
i and visible part of

the 3D instance ôj in the current frame. If sij is greater than a predefined threshold ✓s (default
✓s = 0.75) and the overlapping IoU(r3Di , ôj) is also greater than predefined threshold ✓iou (default
✓iou = 0.25), then they are considered as a match. Matched regions will be aggregated to the 3D
instance, i.e., oj := oj [ r

3D
i and f

3D
j := n

n+1f
3D
j + 1

nf
2D
i . The matching is not restricted to

one-to-one as multiple 2D region proposals may correspond to the same instance.

4.3 Periodic 3D Instance Filtering and Merging
The fusion process is fast but it will generate redundant 3D instances when a 2D region proposal fails
to match properly, potentially leading to low-quality segmentation and inaccurate data association.
To address this, periodic filtering and merging of 3D instances stored in memory bank B occur every
T (default T = 300) frames. Point filtering is based on the detection rate r

det
p of a point p, where

r
det
p = c

oi
p /c

vis
p . Intuitively, this is the frequency of a point being considered as part of the instance

(coip ) over the frequency of it being visible (cvisp ). Points with r
det
p < ✓det (default ✓det = 0.2) are

removed from instance oi. Meanwhile, the number of points in each projected 3D segment from a
single view that corresponds to oi is recorded. If after point filtering, instance oi contains fewer than
the median number of points in its corresponding segments, then it is filtered entirely. This dynamic
threshold that automatically adapts to instance sizes is critical in the filtering process.

Merging of two instances op, oq is determined by feature similarity spq = cos(f3D
p , f

3D
q ) and 3D

intersection over union IoU(op, op) between two instance segments, using the same thresholds ✓s

and ✓iou as in Section 4.2. Additionally, instances op and oq are merged if recall(op, oq) = |op [
oq|/|oq| � ✓recall (default ✓recall = 0.25) and spq � ✓s, indicating that oq is mostly contained in op

and both instances have similar features.

Hyper-parameters are justified through ablation studies in Section 6, and these values remain fixed
for experiments in Section 5 across different datasets.

4.4 Post-processing
A simple post-processing step is executed to separate object instances that are isolated in 3D space
and filter small segments that are likely to be noise. This is achieved by using DBSCAN [45] to find
3D point clusters in each instance, where the distance parameter eps is set to 10cm. If an instance
oi has segments not connected in 3D space, DBSCAN will return more than one point cluster and
oi will be separated in multiple instances.

4.5 Inference
During inference time, a text query q is converted to a feature vector fq = ⇥(q) using CLIP [4].
Instead of representing each 3D instance with the average feature of associated 2D regions, the K

clustering centers by K-Means of associated features, which can be viewed as representative features
from a set of viewpoints, are used. The 3D instances are then ranked by the largest cosine similarity s

between the text query q and K representative features of an instance. An ablation study on different
strategies of feature ensemble is presented in section 6.3.

5 Experiments
5.1 Datasets
The first dataset used for the experiment is ScanNet200 [14], which contains a validation set of 312
indoor scans with 200 categories of objects. Uncountable categories ”floor”, ”wall”, and ”ceiling”
and their subcategories are not evaluated. The second dataset is YCB-Video [15], which contains
a validation set of 12 videos. It’s a tabletop dataset that was originally designed for object 6DoF
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pose estimation for robot manipulation. The 3D scans of the tabletop scene are reconstructed by
KinectFusion [22]. The ground truth instance segmentation labels are automatically generated given
the object mesh models and annotated 6DoF poses.

5.2 Metrics
Standard mean average precision (mAP ) metric for instance retrieval at different IoU thresholds is
adopted for the evaluation purpose. In particular, mAP25 and mAP50 at the IoU threshold ✓ = 0.25
and ✓ = 0.5 respectively, as well as the overall mAP , i.e 1

10

P
mAP✓, where ✓ = [0.5:0.05:0.95]

are reported. Only annotated object categories in a 3D scene are used as text queries for evaluation.
The mAP results were computed for each 3D scene and then averaged for the whole dataset.

5.3 Baselines
OpenScene [11], which is the most relevant work to date, is used as the first comparison point. Given
an object query, it returns a heatmap of the input point cloud. A set of thresholds ✓ = [0.5:0.03:0.9]
are tested for each category to convert the heatmap into a binary mask and then foreground points are
clustered into 3D instances using DBSCAN [45], similar to the post-processing step in section 4.4.
The one with the best overall performance is reported. Furthermore, a series of prior research has
focused on semantic mapping using closed-vocabulary detectors. Two representative works, Fu-
sion++ [9] and PanopticFusion [10], are used as comparison points with two revisions: 1) Instead of
using their whole SLAM system, this work assumes the 3D reconstruction and ground truth camera
poses are given, and only tested their data association and instance mapping algorithms. 2) Their
backbone detector MaskRCNN [41] is replaced with Detic [2] for open-vocabulary detection, and
the mean feature of associated 2D detections for each instance is used to match text queries.

ScanNet200 [14] YCB-Video [15]
Method mAP25 mAP50 mAP mAP25 mAP50 mAP

OpenScene [11] 0.268 0.190 0.089 0.421 0.333 0.116
*Fusion++ [9] 0.414 0.253 0.094 0.817 0.464 0.120

*PanopticFusion [10] 0.539 0.370 0.150 0.851 0.803 0.393
Ours 0.564 0.443 0.211 0.863 0.848 0.465

Table 1: Results on ScanNet200 [14] and YCB-Video [15] dataset

mAP50 mAP
Method head common tail head common tail

OpenScene [11] 0.308 0.178 0.067 0.150 0.076 0.033
*Fusion++ [9] 0.235 0.243 0.288 0.094 0.090 0.098

*PanopticFusion [10] 0.335 0.360 0.424 0.145 0.146 0.162
Ours 0.417 0.433 0.469 0.224 0.214 0.193

Table 2: Results on three sets of categories with different frequencies in ScanNet200 [14]
5.4 Results
Quantitative results of instance retrieval on ScanNet200 [14] and YCB-video [15] datasets are shown
in Table 1. Furthermore, results on different sets of categories with different frequencies in Scan-
Net200 are shown in Table 2. The proposed method outperforms all other baselines by a large
margin in terms of instance retrieval mAP . It seems that OpenScene[11] does not perform well on
this task even with an automatically tuned threshold for each category because fused point features
are not distinguishable enough. As a result, grouping points into segments with accurate boundaries
by thresholding is rather difficult. The proposed method, on the other hand, directly fuses instance-
level information and improves segment quality by periodic merging and filtering. The proposed
method outperforms the other two baselines primarily because of the use of instance feature simi-
larity as an additional metric for data association while the baselines only consider 3D overlapping,
which can easily fail when the 2D detections are noisy, especially in the open-vocabulary setup.

5.5 Running Time
The inference time is nearly instant (⇠ 20ms) for a text query. The running time for the fusion
process depends on the number of detections (N ) in a frame and the number of fused 3D instances
(M ), i.e. O(MN). As mentioned in Section 4.2, it requires two dot products to compute the region
overlapping and feature similarity, which in practice is a fast process that operates at ⇠ 30FPS with
an NVIDIA RTX 3090 GPU for most 3D scans in the ScanNet200 [14] dataset.
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6 Ablation Studies
6.1 Input queries to the 2D region proposal method
The proposed method utilizes an open-vocabulary 2D detector as a region proposal method by
querying it with a large vocabulary. One concern is whether the input query of the 2D method
would affect the performance of the 3D instance retrieval. This ablation study tests queries from
multiple datasets as input to the region proposal method and displays their impact on the overall
performance. In addition to ScanNet200 [14] and ImageNet21K [42], COCO [46] (80 categories),
LVIS [47] (1203 categories), and more aggressively, queries with ImageNet21k categories but with-
out ScanNet200 categories are tested. Results of 3D instance retrieval on the ScanNet200 dataset
are shown in Table 4. It turns out that an extensive vocabulary is helpful for generating regions of
interest for arbitrary objects. Furthermore, the results show that the region proposal network has cer-
tain generalizability, such that even when ScanNet200 categories are completely removed from the
ImageNet21k categories, it can still find most regions based on similar categories in the vocabulary,
and the final performance of retrieving objects in ScanNet200 only slightly dropped.

COCO ScanNet200 LVIS ImageNet21k ImageNet21k - ScanNet200
mAP50 0.228 0.419 0.429 0.443 0.410

Table 3: Results on ScanNet200 [14] with different input queries to the 2D region proposal network

6.2 Instance features and 2D masks
In this ablation study, alternative approaches are explored to replace instance features and 2D masks
derived from Detic in order to demonstrate the adaptability of the proposed method across different
backbones. Rather than utilizing the mask feature directly extracted from Detic, detected bounding
boxes are cropped and fed to the CLIP model to extract features from these cropped regions. For the
generation of 2D masks, SAM [43] is adopted to create segmentations for the regions proposed by
Detic bounding boxes. In this experimental setup, instance fusion is performed every three frames,
primarily due to the relatively slow performance of SAM. Substituting the Detic feature with the
CLIP feature from cropped images yields slightly inferior results, whereas replacing the Detic mask
with the SAM mask leads to an improvement in performance. This outcome is expected since SAM
generally produces higher-quality masks, albeit with a tradeoff in terms of speed. It is anticipated
that as open-vocabulary 2D detection techniques advance, more potent and efficient methods may
emerge as viable alternatives to the current backbone.

Proposed w/ CLIP feature w/ SAM segmentation
mAP50 0.414 0.406 0.440

Table 4: Results on ScanNet200 [14] with different instance features and 2D masks

6.3 Feature ensemble strategies
Three different feature ensemble strategies are tested to represent a 3D instance based on associated
2D features. The first strategy is to compute the average of all 2D features. The second strategy
involves clustering the 2D features from different viewpoints using the K-Means algorithm, and
the clustering centers are used to represent each instance. During instance retrieval, the feature
similarity is determined as the maximum similarity between the query feature and the clustering
centers. The third strategy is to use the feature from the largest associated 2D region. Results of
3D instance retrieval on the ScanNet200 dataset are presented in Table 5. The approach of using
multiple features through clustering outperforms simple averaging, while using the feature from the
largest associated 2D region yields the poorest results.

average clustered (K=16) clustered (K=64) feature from largest 2D detection
mAP50 0.428 0.429 0.443 0.380

Table 5: Results on ScanNet200 [14] with different feature ensemble strategies

6.4 Time intervals and visibility threshold for periodic instance filtering and merging
This ablation study tested different time intervals T and visibility threshold ✓vis for filtering men-
tioned in section 4.3. Results of 3D instance retrieval on the ScanNet200 dataset are shown in
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Table 6 and Table 7 respectively. The frame interval T = 300 and visibility threshold ✓vis = 0.2
yields the best results.

T = 1 T = 100 T = 300 T = 500 T = 1000
mAP50 0.340 0.417 0.443 0.410 0.412

Table 6: Results on ScanNet200 [14] with different time intervals of periodic filtering and merging

✓vis = 0 ✓vis = 0.1 ✓vis = 0.15 ✓vis = 0.2 ✓vis = 0.25 ✓vis = 0.3
mAP50 0.256 0.386 0.407 0.443 0.418 0.408

Table 7: mAP50 on ScanNet200 [14] dataset

7 Robotics Experiments

Figure 3: Robot Experiments.
Contrasting to conventional closed-set semantic methods, the superiority of open-vocabulary detec-
tors for manipulation lies in their ability to pinpoint the grasp region with a language specification.
A part-based grasping experiment was devised given this inspiration. In particular, the robot is asked
to grasp the ”bottle cap” and ”handle” respectively in two sets of experiments with five distinct table
setups in each set. An RGB-D camera is mounted on the robot’s wrist that captures videos of the
objects on the table. For each scene, there is a short scanning phase as shown in Figure 3(b) that
the robot arm went through a predefined trajectory to get a more complete view of objects on the
table. Reconstruction is performed using KinectFusion. OVIR-3D is compared against OpenScene
to segment parts given the text query and located segments are used to guide the robot’s grasp.
For OVIR-3D, the 5/5 graspable bottle caps and 4/5 ”handle” of the pitcher were detected and the
robot grasping success rate was 90%. The detection rate for OpenScene was low at 0/5 and 3/5
respectively, and the overall grasping success rate was 30%. An object is considered detected if a
reasonable visual segment is found.

8 Conclusion and Limitations
This paper presents OVIR-3D, a rather straightforward but effective method for open-vocabulary 3D
instance retrieval. By utilizing an off-the-shelf open-vocabulary 2D instance segmentation method
for region proposal and fusing its output 2D regions and text-aligned features in 3D space, the
proposed method can achieve much better performance than other baselines without using any 3D
instance annotation, additional training, or manual heatmap thresholding during inference. This
method can also be used for 3D instance pseudo-label generation for self-supervised learning.

A limitation of the proposed method is that it is not always able to merge segments of very large
instances, such as long dining tables. It can also miss tiny objects as they are likely to be treated as
noise and removed during the fusion process. Furthermore, while the proposed method can improve
segmentation quality due to multi-view noisy filtering, it still relies on the 2D region proposal model
to not consistently miss an object or generate bad segmentation, since it does not use any 3D data
for fine-tuning. A promising direction is to integrate this method with a 3D learning-based method
to utilize the scarcer but cleaner 3D annotations.
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