
Fine-Tuning can Distort Pretrained Features and Underperform
Out-of-Distribution

Ananya Kumar Aditi Raghunathan Robbie Jones
Tengyu Ma Percy Liang

Stanford University
Department of Computer Science

{ananya,aditir,rmjones,tengyuma,pliang}@cs.stanford.edu

Abstract

When transferring a pretrained model to a downstream task, two popular methods are full fine-tuning
(updating all the model parameters) and linear probing (updating only the last linear layer—the “head”).
It is well known that fine-tuning leads to better accuracy in-distribution (ID). However, in this paper, we
find that fine-tuning can achieve worse accuracy than linear probing out-of-distribution (OOD) when
the pretrained features are good and the distribution shift is large. On 10 distribution shift datasets
(Breeds-Living17, Breeds-Entity30, DomainNet, CIFAR → STL, CIFAR10.1, FMoW, ImageNetV2,
ImageNet-R, ImageNet-A, ImageNet-Sketch), fine-tuning obtains on average 2% higher accuracy ID but
7% lower accuracy OOD than linear probing. We show theoretically that this tradeoff between ID and
OOD accuracy arises even in a simple setting: fine-tuning overparameterized two-layer linear networks.
We prove that the OOD error of fine-tuning is high when we initialize with a fixed or random head—this
is because while fine-tuning learns the head, the lower layers of the neural network change simultaneously
and distort the pretrained features. Our analysis suggests that the easy two-step strategy of linear probing
then full fine-tuning (LP-FT), sometimes used as a fine-tuning heuristic, combines the benefits of both
fine-tuning and linear probing. Empirically, LP-FT outperforms both fine-tuning and linear probing on
the above datasets (1% better ID, 10% better OOD than full fine-tuning).

1 Introduction

Pretraining a model on a large dataset before transferring to a downstream task’s training data substantially
improves accuracy over training from scratch—for example, pretraining a ResNet-50 on unlabeled ImageNet
boosts accuracy on CIFAR-10 from 94% to 98% (Chen et al., 2020a,b). Achieving high in-distribution
accuracy is not enough: high-stakes applications such as poverty mapping in under-resourced countries (Jean
et al., 2016), self-driving cars (Yu et al., 2020), and medical diagnosis (AlBadawy et al., 2018), require
models that also generalize to circumstances not seen in the training distribution. In addition to testing on
data drawn from the downstream task’s training distribution (in-distribution; ID), it is increasingly important
to test on data distributions unseen during training (out-of-distribution; OOD). OOD accuracy can be much
lower than ID accuracy; for example, an ImageNet pretrained ResNet-50 fine-tuned on CIFAR-10 gets 98%
accuracy on CIFAR-10 (ID) but 82% on STL (OOD).

After initializing with a pretrained model, two popular transfer methods are fine-tuning (running gradient
descent on all the model parameters), and linear probing (tuning the head but freezing lower layers). In the ID
setting, it is well known that fine-tuning leads to better accuracy than linear probing (Kornblith et al., 2019;

1

ar
X

iv
:2

20
2.

10
05

4v
1

 [c
s.L

G
]

21
 F

eb
 2

02
2

Figure 1: Given a good feature extractor (top-left), a randomly initialized head is added to map features
to outputs and we can (a) fine-tune all the model parameters or (b) linear-probe, which freezes the feature
extractor and trains only the head. We run experiments on ten distribution shifts. Fine-tuning does well when
the test example is sampled from the fine-tuning distribution (ID), but can underperform on test examples
sampled from OOD distributions (when the distribution shift is large). (c) Our theory indicates that fine-tuning
can distort the pretrained feature extractor and lead to poor OOD accuracy, but initializing with a linear
probed head can fix this—empirically LP-FT gets better accuracies both ID and OOD.

Zhai et al., 2020; He et al., 2020),1 and even when testing OOD, prior work usually fine-tunes all parameters
of their model (Hendrycks et al., 2019a; Miller et al., 2021; Andreassen et al., 2021). Intuitively, fine-tuning
all layers of a network can improve pretrained features by adapting them to the specific task, while linear
probing simply inherits the frozen pretrained features.

In this work, we investigate the OOD accuracy of fine-tuning and linear probing and find that surprisingly,
fine-tuning can do worse than linear probing in the presence of large distribution shift. We experiment
on ten distribution shift benchmarks (Breeds Living17, Breeds Entity30, DomainNet, CIFAR → STL,
CIFAR10.1, FMoW geo-shift, ImageNetV2, ImageNet-R, ImageNet-A, ImageNet-Sketch), initializing with
good pretrained features from MoCo-v2 (Chen et al., 2020b) and CLIP (Radford et al., 2021). While both
methods offer gains over training from scratch, fine-tuning improves the average ID accuracy relative to
linear probing from 83% to 85% but brings down the OOD accuracy from 66% to 59% (Figure 1).

Under what conditions does fine-tuning underperform linear probing? We theoretically consider fine-tuning a
two-layer linear network in an overparameterized regression setting where the feature extractor layer has been
pretrained to map high-dimensional inputs to useful, lower-dimensional, features. We prove that fine-tuning
is worse than linear probing on directions outside the span of the training data when using “good” pretrained
features. Even with an infinitesimally small learning rate, fine-tuning distorts pretrained features—the features
of ID training data are updated while those of OOD data change less. Since the head and feature extractor are
simultaneously optimized during fine-tuning to a configuration that works well on ID training data, the head
only accomodates the distorted features of ID points and performs poorly (relative to linear probing) on the
less changed features of OOD points. Interestingly, we show that this feature distortion issue cannot be simply
fixed by early stopping—throughout the entire process of fine-tuning, we never pass through parameters
that do well OOD (relative to linear probing). On the other hand, given “good” features, linear-probing

1Probing is commonly used but usually for interpretability or assessing feature quality.

2

extrapolates better OOD because it preserves pretrained features, but does not do as well as fine-tuning ID
because linear probing cannot adapt the features to the downstream task.

Technical challenges. Existing theoretical work on transfer learning focuses on linear probing (Wu et al.,
2020; Tripuraneni et al., 2020; Du et al., 2020). In contrast, analyses of fine-tuning is scarce and challenging
because it requires understanding the training dynamics, instead of only the loss function and its global
minimizers. In fact, fine-tuning and training from scratch optimize the same training loss and only differ
in their initializations (pretrained vs random). A mathematical analysis that distinguishes them needs
to capture properties of the different minima that these algorithms converge to, a phenomenon that is
sometimes theoretically referred to as the implicit regularization effect of initialization (Neyshabur et al.,
2014). Accordingly, our analysis reasons about the parameters that gradient methods pass through starting
from the pretrained initialization, which is challenging because this is a non-convex optimization problem
and there is no known closed form for this trajectory. Two-layer linear networks are widely studied in the
literature on implicit regularization (Saxe et al., 2014; Gunasekar et al., 2017; Gidel et al., 2019; Arora et al.,
2018). However, they analyze random and often small initializations, which don’t capture pretraining.

Algorithmic implications. Our theory shows that fine-tuning underpeforms because when trying to fit ID
training data with a randomly initialized head, the feature extractor changes significantly for ID examples,
making features for ID and OOD examples largely inconsistent. This can be fixed by initializing with a good
head that does not need to be updated much during fine-tuning, reducing how much the feature extractor
changes. This suggests a simple two-step strategy of first linear-probing to find a good head and then full
fine-tuning (LP-FT). Empirically, LP-FT outperforms fine-tuning and linear-probing, both ID and OOD. Even
on CIFAR-10.1 (small distribution shift), where fine-tuning is better for both ID and OOD, we find LP-FT
outperforms fine-tuning on both metrics. LP-FT and vanilla fine-tuning use similar amounts of compute
because the first step of linear probing is relatively very cheap. Prior work has used LP-FT (Levine et al.,
2016; Kanavati & Tsuneki, 2021) (or variants such as layerwise fine-tuning (Howard & Ruder, 2018) or larger
learning rates for the head layer (Prabhu et al., 2021))—however it has not been used for robustness / OOD
accuracy, and we show that it addresses the ID-OOD tradeoff theoretically and empirically. Note that LP-FT
is not meant to be a SOTA method but a simple, principled way to get good ID and OOD accuracy—we hope
our analysis inspires even better methods for robust fine-tuning.

Empirical validation. Finally, we check whether fine-tuning underperforms and LP-FT works, for the
reasons predicted by our feature distortion theory. As predicted by the theory, we find that: (1) fine-tuning
indeed never matches the OOD accuracy of linear probing throughout the course of training (if the pretrained
features are good, and OOD shift is large); (2) fine-tuning changes the features for ID examples more than for
OOD examples, leading to distortions; (3) LP-FT indeed changes both ID and OOD features 10×−100×
less than fine-tuning does; (4) fine-tuning can do better than linear probing OOD if the pretrained features
are not very high quality (MoCo-v1 instead of MoCo-v2) or the ID and OOD datasets are very close (e.g.,
CIFAR-10 and CIFAR-10.1); and (5) LP-FT gets the best of both worlds, better accuracies than fine-tuning
and linear probing, both ID and OOD (Figure 1).

2 Setup

Task and evaluation. Given training examples sampled from some distribution Pid, our goal is to learn a
predictor f : Rd → Y to map inputs x ∈ Rd to outputs y ∈ Y . We evaluate predictors on their standard
“in-distribution” (ID) performance Lid on new test samples drawn from Pid that the training data is also

3

sampled from. We also evaluate classifiers on their “out-of-distribution” (OOD) performance Lood on test
samples drawn from a new distribution Pood that is different from Pid. Formally, for some loss function `, we
evaluate classifiers on:

Lid(f) = E
(x,y)∼Pid

[`(f(x), y)] and Lood(f) = E
(x,y)∼Pood

[`(f(x), y)]. (2.1)

Models. In this work, we focus on predictors that leverage pretrained representations. We parameterize the
final predictor f as follows: given features gB(x) ∈ Rk for some feature extractor parameters B ∈ B, and a
linear “head” v ∈ V , we have fv,B(x) = v>gB(x). In our experiments (Section 4), gB is a deep network and
in our theory (Section 3), gB is a linear projection.

We assume access to some initial pretrained feature extractor B0 that is obtained by training on potentially
large amounts of data from a distribution that contains unlabeled or weakly supervised x inputs from Pid

and Pood. We focus on two popular methods to learn a predictor fv,B given training data from Pid: (i) linear
probing where B = B0 and the linear head is obtained by minimizing some loss (e.g., logistic loss for
classification, squared loss for regression) on the training data, and (ii) fine-tuning where both v and B are
updated by performing gradient descent on some loss on the training data with B initialized at B0.

3 Theory: fine-tuning distorts pretrained features

Our goal is to understand under what conditions fine-tuning does worse than linear probing out-of-distribution
(OOD).2 We consider a linear setting (feature extractor gB is linear) where the pretrained features are “good”
and the OOD shift is large (Section 3.1). We prove our main result: that fine-tuning, in which all model
parameters are updated, distorts features and gets suboptimal OOD error (Section 3.2, Theorem 3.3). We use
this result to show that linear probing gets better OOD error but worse ID error than fine-tuning (Section 3.3).
Finally, we explain why linear probing then fine-tuning can mitigate this ID-OOD tradeoff (Section 3.4).

Our analysis handles two key challenges which distinguishes it from prior work on transfer learning in linear
models (Wu et al., 2020; Tripuraneni et al., 2020; Du et al., 2020; Xie et al., 2021a). Prior work focuses on
linear probing, while we study fine-tuning where the resulting optimization problem is non-convex. We also
study overparameterized models where the training loss alone does not determine test performance—this
captures the fact that both training neural networks from scratch and fine-tuning them have the same training
loss but very different test performance. However, it also makes the analysis challenging because we need to
reason about the trajectory of gradient methods starting from a pretrained initialization, which has no known
closed form.

3.1 Linear overparameterized setting

For our analysis, we focus on regression, where Y = R and `(ŷ, y) = (ŷ − y)2 is the squared loss.

Models. Recall from Section 2 that we parameterize predictors in terms of feature extractor and head
parameters. In this section, we study models where the feature extractor is linear, i.e. fv,B(x) = v>Bx
where B ∈ B = Rk×d, and v ∈ V = Rk.

2For example, without additional assumptions we can have Pid = Pood and so the same method will do better both ID and OOD.

4

Good pretrained features. For simplicity, we assume the models are well-specified i.e. y = v>? B?x where
v? ∈ Rk and B? ∈ Rk×d. 3 Note that B? and v? are only unique up to rotations, i.e., for any rotation
matrix U , (Uv?)

T (UB?)x = vT? B?x. As in prior work (Tripuraneni et al., 2020) suppose B?, B0 have been
orthogonalized to have orthonormal rows. Suppose we have a pretrained feature extractor B0 close to B?, so
d(B0, B?) ≤ ε where the distance d is defined below:

Definition 3.1 (Feature Extractor Distance). The distance between feature extractors B,B′ ∈ Rk×d (with
orthonormal rows) is given by (where the min is over rotation matrices U ∈ Rk×k):

d(B,B′) = min
U
‖B − UB′‖2, (3.1)

Pretraining coverage intuition: Intuitively, the existence of B? corresponds to assuming that there exists a
shared set of useful features for ID (Pid) and OOD (Pood). We also assume that B0 is close to B?—one way
this can happen is if pretraining is done on large scale data and has seen unlabeled or weakly supervised x
inputs that cover the support of Pid and Pood. Formally, the task diversity assumption in Tripuraneni et al.
(2020) is sufficient (but not necessary) for obtaining a good B0. In our paper we show that even if we have
these good features, fine-tuning can distort them and lead to low OOD accuracy.

Training data. Let X ∈ Rn×d, X 6= 0 be a matrix encoding n training examples from Pid where each of
the n rows is a training input. Let Y ∈ Rn be the corresponding outputs. Let S = rowspace(X) be the
m-dimensional subspace spanning the training examples. We consider an overparameterized setting where
1 ≤ m < d − k. Intuitively, the input dimension d is high (e.g., 10K), feature dimension k is lower (e.g.,
100) and m is in the middle (e.g., 5K).4

Large OOD shift. We assume that the OOD data contains examples outside the span of the training data.
Formally, let Pood have second moment Σ = E[xx>] where x ∼ Pood, and we assume Σ is invertible.56

Training methods. Given training data and a pretrained feature extractor B0, we study the two popular
methods of linear probing (LP) and fine-tuning (FT) to learn the final predictor. Both methods involve
optimizing the training loss via gradient descent (or variants). In order to effectively analyze these gradient
based algorithms, we study vanishing step sizes leading to gradient flows. Gradient flows can be thought of
as a continuous time analogue of gradient based methods and have been extensively studied in recent years as
a way to understand gradient based methods (Gunasekar et al., 2017; Arora et al., 2018; Du et al., 2018).

Formally, for training loss L̂(v,B) = ‖XB>v − Y ‖22, the gradient flow differential equations for LP and FT

3We note that our main contribution—analysis of fine-tuning (Theorem 3.3)—does not require this well-specified assumption.
We compare fine-tuning with linear probing by adapting earlier work on linear probing which requires well-specification.

4Indeed, in neural tangent kernel approximations, the input dimension d is the number of weights in a neural network which
is much larger than the span of the training data m, while the feature dimension k of neural networks is usually smaller than m.
Extending our results to the NTK regime could be an interesting future direction.

5We don’t need Σ to be invertible, but just require the OOD span T = Range(Σ) to have some directions outside the training
span: dim(T \ S) > k.

6Prior work on distribution shift (Rosenfeld et al., 2021; Kamath et al., 2021; Chen et al., 2021b) often considers a worst case loss
over some set—we can equivalently write Lood as a worst case loss over distributions (equivalently, individual points) of bounded
norm: maxx(v>? B?x− v>Bx)2 over x>Σ−1x ≤ 1. If Σ = Id then this is just the worst case loss over ‖x‖2≤ 1.

5

Figure 2: A toy version of our theory illustrating why fine-tuning distorts features, with inputs in 2D. Given
input x, the ground truth output is y = w>? x. The ID data is along the x-axis and the pretrained feature
extractor is B0. (a) Linear probing learns wlp, a scaling of the pretrained feature extractor that gets the ID
data correct (wlp and w? have the same x coordinate as indicated by the vertical dotted line). (b) Fine-tuning
updates the pretrained feature extractor along the ID data (so horizontally) to get Bft, and then learns a scaling
of these features that gets the ID data correct. While both methods get ID data correct, fine-tuning makes
large errors perpendicular to the ID data, because fine-tuning updates B0 along the ID direction but not the
perpendicular direction (we call this feature “distortion”).

are as follows:

∂tvft(t) = −∇vL̂(vft(t), Bft(t)), ∂tBft(t) = −∇BL̂(vft(t), Bft(t)), (3.2)

∂tvlp(t) = −∇vL̂(vlp(t), B0), ∂tBlp(t) = 0, (3.3)

initialized with Bft(0) = Blp(0) = B0 and vft(0) = vlp(0) = v0. In practice, the head parameter v0 is
initialized randomly—our results hold for any standard random initialization (Glorot & Bengio, 2010), for
example v0 ∼ N (0, σ2I) for any σ2, or zero initialization where v0 = 0. Recall that the initial value of the
feature extractor B0 is obtained via pretraining.

The final LP and FT solutions are the limit points of the corresponding gradient flows:

v∞ft = lim
t→∞

vft(t) and B∞ft = lim
t→∞

Bft(t), (3.4)

v∞lp = lim
t→∞

vlp(t) and B∞lp = lim
t→∞

Blp(t) = B0. (3.5)

3.2 Fine-tuning distorts pretrained features

The more common method of using a pretrained feature extractor is fine-tuning (FT) which typically improves
ID performance relative to linear probing (LP). In this section, we show theoretically that FT can distort
features leading to poor OOD performance. We first present the key intuitions demonstrating potential issues
of FT and then present our formal theorem lower bounding the OOD error of FT (Section 3.2.2).

3.2.1 Key intuitions

There are two main observations that we use to characterize when and why FT has higher OOD error than
linear probing.

6

1. Features get distorted: representations change only in the ID subspace (i.e., subspace spanned by the
training data) and are unchanged in the orthogonal subspace. To see this, we take the derivative of the
training loss L̂(v,B) = ‖XB>v − Y ‖22 with respect to the feature extractor parameter B:

∇BL̂(v,B) = 2v(Y −XBv)>X. (3.6)

By definition, if u is a direction orthogonal to the training subspace S = rowspace(X), then∇BL̂(v,B)u =
0, that is the gradient updates to B do not modify Bu for u ∈ S⊥. However, the gradient is non-zero for
directions u in the ID subspace and the corresponding features Bu change across the fine-tuning process. We
call this feature distortion: the features in some directions are changed but not others. Next, we explain why
this can lead to high OOD error.

2. Distorted features can lead to higher OOD error. Consider a toy example (Figure 2) where d = 2
and the dimensionality of the representations k = 1. The linear head v is a scalar quantity that denotes
how much the feature extractor B has to be scaled by. Suppose the ID-subspace is the x-axis. There are
different ways of fitting the ID subspace depending on the feature extractors B as shown in the Figure—both
fine-tuned and linear probed estimators match the true parameter in the ID subspace (since wlp, wft, w? have
the same projection on the x-axis). If the feature extractor were optimal or scaled versions of the optimal,
good performance on the ID subspace would translate to good performance everywhere, even in directions
orthogonal to the ID subspace. However, in FT, the features change only for inputs in the ID subspace (see
(1)) and thus the updated features are not simply scaled but distorted. In Figure 2, this corresponds to the
feature extractor B0 changing along the x-axis. In this case even if the ID error is low, error in directions
orthogonal to the ID subspace can be high, leading to high OOD error.

The only way the pretrained features are not distorted and only scaled during FT is if the initial feature
extractor B0 is exactly aligned with the ID subspace. In Figure 2, if B0 is along the x-axis (the ID subspace),
then updating the features exclusively along the x-axis would simply scale the initial features. In this
case linear probing and fine-tuning will have identical behavior. If the angle between B0 and the x-axis is
non-zero—which occurs with probability 1 if the training data X or pretrained feature extractor B0 involves
even a tiny amount of randomness e.g., from SGD in pretraining—the updates would lead to distortions. In
high dimensions, we measure the alignment between B0 and the ID subspace with the largest principal angle:

Definition 3.2 (largest principal angle). Let A and B be arbitrary subspaces, and E and F be matri-
ces with orthonormal columns than span A and B respectively, with r = min(dim(A), dim(B)). Then
cos θmax(A,B) = σr(E

>F), which is the r-th largest singular value of E>F .

Note that E,F are not unique in Definition 3.2, but σr(E>F) is the same for every valid choice of E and F .
See Appendix A.1 for more information on principal angles.

3.2.2 General result on the OOD error of fine-tuning

Our main theorem lower bounds the OOD error of fine-tuning outside the span of the training data. In
Section 3.3 we compare this lower bound with an upper bound on the OOD error of linear probing.

Theorem 3.3. In the overparameterized linear setting, let S⊥ = rowspace(X)⊥, R0 = rowspace(B0), and
v?, B? be the optimal parameters with w? = B?v?. If cos θmax(R0, S

⊥) > 0, then for all time steps t, the

7

OOD error of the fine-tuning iterates (Bft(t), vft(t)) is lower bounded:√
Lood(vft(t), Bft(t)) ≥

√
σmin(Σ)

(cos θmax(R0, S
⊥)√

k

min(ϕ,ϕ2/‖w?‖2)
(1 + ‖w?‖2)2

− ε
)
, (3.7)

where ϕ2 = |(v>0 v?)2 − (v>? v?)
2| is defined to be inital head alignment error and ε ≥ d(B0, B?) is the error

in the pretrained feature extractor.

Proof sketch. Since the features do not change for examples in S⊥ (perpendicular to the training data), we
show that in order to achieve low error on S⊥ the linear head vft(t) would have to become very similar to
the optimal v? at some time t. The head initialization v0 is random (or zero) and likely to be far from v?
(measured by the alignment error ϕ), so the head would have to change a lot to get close to v?. As we see from
the fine-tuning gradient flow (3.2), vft(t) and Bft(t) change in a “coupled” manner, and a “’balancedness”
invariant in Du et al. (2018) holds across the fine-tuning trajectory. Correspondingly, if vft(t) changes a lot
and gets close to v?, the features Bft(t) also change a lot for examples in S—we show that this would lead to
high error on examples in S. Either way, fine-tuning would get some subspace (S or S⊥) of examples wrong,
leading to high OOD error. The full proof appears in Appendix A.

Interpretations of various quantities. Quality of pretrained features (ε). To unpack the bound consider a
special case where the pretrained features are perfect (ε = 0). With perfect features, Proposition A.20 shows
that linear probing gets zero OOD error. Theorem 3.3 shows that Lood(vft(t), Bft(t)) > 0 at all times t—so
fine-tuning underperforms when the features are perfect. The ε > 0 case just captures the fact that even if
the features are not perfect, fine-tuning can still get positive error. Ideally we would like the lower bound to
increase if we have worse features (so “+ε” instead of “−ε” in the bound)—the reason we do not is that the
errors of the pretrained feature extractor d(B0, B?) and the fine-tuning step can potentially cancel out.7

Alignment error of random head initialization (ϕ2). The lower bound (Equation A.14) increases as ϕ2

increases i.e. alignment error increases because the gradient updates to the head and feature extractor are
coupled. If the head were somehow initialized perfectly at v?, then fine-tuning updates may not increase
the OOD error. However, when the head is randomly initialized (or initialized to zero) as is standard in
fine-tuning, the alignment error is high, leading to high OOD error. We use this insight in Section 3.4 to show
that better head initialization (namely via linear probing) improves OOD performance of fine-tuning.

Span of Training data (S). Theorem 3.3 lower bounds the error outside the span of the training data. If the
training dataset is very small, then even the support of the ID distribution Pid may not be spanned by the
training data, and the ID error can be large. Indeed, even in the ID setting Kornblith et al. (2019) show that
linear probing can do better than fine-tuning if we have very few training examples, but fine-tuning does
better on all 11 of their datasets once we have more than just 30 examples per class.

Conjectures for improved bounds. We believe it may be possible to improve cos θmax(R0, S
⊥) to the cosine

of the minimum principal angle.8 This may look like a technicality but would be a substantial improvement,
because it would imply that fine-tuning has error in every direction outside the training span, whereas we
show that it would have errors in some directions. Our proof strategy requires the maximum principal angle
(a crucial step is a variational characterization of the maximal principal angle in Lemma A.2—we use this in
Step 1 of the proof in Appendix A to show that to get low OOD error vft(t) must become similar to v?).

7Intuitively this cancelation is very “unlikely” to happen, and we hope future work can capture this intuition.
8Which would be a larger/better lower bound since the cosine of a smaller quantity is larger.

8

3.3 Linear probing vs. fine-tuning

In this section, we use our main theorem on fine-tuning (Theorem 3.3) and adapt prior work on linear probing
to show that linear probing is better than fine-tuning OOD, but worse ID, when the ID distribution has density
on a lower m < d dimensional subspace S, and B0 is close to B? (so we have “good” pretrained features).

Assumption 3.4 (ID subspace assumption). We assume that the ID data lies on an m-dimensional subspace
S where k < m < d− k, and we have n ≥ m training examples. Formally, let Pz be a distribution on Rm
which has density, and let the columns of F ∈ Rd×m form an orthonormal basis for S. Then Pid has the
distribution of Fz where z ∼ Pz .

Recall that the ID error is the expected mean-squared error over the ID distribution Pid:

Lid(v,B) = E
x∼Pid

[(v>? B?x− v>Bx)2] (3.8)

OOD comparison: Under mild non-degeneracy conditions, we show that as the feature extractor error ε
goes to 0, linear probing does much better than fine-tuning OOD: the ratio of the losses goes to 0. The non-
degeneracy conditions are similar to Section 3.2—we require that the training data cannot be exactly in the
same direction or orthogonal to the pretrained features, formally that cos θmax(R∗, S) and cos θmax(R∗, S

⊥)
are not 0 where R∗ = rowspace(B?). In the toy example in Figure 2, this means that xid cannot be exactly in
the same direction or orthogonal to B>0 —in these cases fine-tuning and linear probing get the same loss but
in all other cases in the toy example in Figure 2 linear probing does better OOD.

Theorem 3.5 (Informal version of Theorem A.8). In the linear overparameterized setting, under the ID
subspace assumption (Assumption 3.4), if cos θmax(R∗, S) 6= 0 and cos θmax(R∗, S

⊥) 6= 0 where R∗ =
rowspace(B?), then,

Lood(v∞lp , B0)

Lood(vft(t), Bft(t))

p→ 0, as B0 → B?. (3.9)

This holds for all times t for FT (and therefore also for the limit v∞ft , B
∞
ft) and the LP iterates converge to

v∞lp , B0 as a result of the gradient flow on a convex problem.

Intuitively, if the pretrained features are good, LP learns a near optimal linear head which has small
OOD error (Lemma A.14) but fine-tuning has high OOD error (Theorem 3.3). We give a more formal
version of Theorem 3.5 and a proof in Appendix A.3. If Pz is isotropic Gaussian, we can get a better
result: Theorem A.15 derives a threshold T (in terms of d, n, k) where LP does better than FT if ε < T ,
instead of just the asymptotic result (B0 → B?). Theorem 3.5 requires that cos θmax(R∗, S) 6= 0 and
cos θmax(R∗, S

⊥) 6= 0—intuitively, for any subspace a small perturbation would make these angles non-
zero and the assumption would hold. To illustrate that these assumptions typically hold, Lemma A.16 in
Appendix A proves that if S is a random m-dimensional subspace then these angles are non-zero almost
surely.

ID comparison: When the pretrained features have some error, we show that fine-tuning does better than
linear probing ID because fine-tuning can update the features to fit the ID data.

If the pretrained features are perfect so that the optimal predictor can be written as a linear combination of the
pretrained features (w? = B>? v? ∈ rowspace(B0)), then both linear probing and fine-tuning get zero ID error.
However, if the pretrained representation has some error, and the training data satisfies a mild non-degeneracy

9

condition, then LP has high ID error because there is no linear head on B0 that fits the training data perfectly.
FT, on the other hand, can update the features to find a new B∞ft that can fit the training data perfectly with a
linear head v∞ft .

The non-degeneracy condition is similar to our previous results, and holds with probability 1 if the ID
subspace is chosen randomly, from Lemma A.16. Formally, let Raug be a k + 1 dimensional subspace
spanning R0 ∪ {w?}, where we recall that R0 = rowspace(B0). Then we just require that the ID subspace S
and Raug are not orthogonal: cos θmax(S,Raug) 6= 0. We state the formal proposition below and give a proof
in Appendix A.

Proposition 3.6. In the linear overparameterized setting, under the ID subspace assumption (Assumption 3.4),
let R0 = rowspace(B0), and Raug = Span({w?} ∪ R0). Suppose w? 6∈ R0, cos θmax(S,Raug) 6= 0, and
that fine-tuning converges to a local minimum of its loss, then fine-tuning does better ID almost surely:
Lid(v∞ft , B

∞
ft) < Lid(v∞lp , B0) with probability 1 (over the randomness of the training examples).

To summarize, we proved that there are tradeoffs between ID and OOD error: FT has lower ID error but
higher OOD error than LP. In the next section, we extend our theoretical insights to illustrate why a simple
variant of FT may mitigate such tradeoffs.

3.4 Linear probing then fine-tuning: a simple variant to mitigate tradeoffs

The advantage of fine-tuning is it can adapt both the feature extractor and head to fit the downstream task.
Can we keep this benefit while ensuring that our OOD error is low when we have good pretrained features?

Going back to Theorem 3.3, we see that the alignment error in the head initialization ϕ2 = (v>0 v?)
2−(v>? v?)

2

plays an important role. The issue with FT was that under random or zero initialization, ϕ2 is usually large
and since the gradient updates to the feature extractor parameter are coupled with that of the head parameter,
the features get distorted in a manner that increases the OOD error. This suggests that we should use a better
head initialization—one obtained from linear probing. If the pretrained features are decent, a linear probed
head would be much better aligned with v? allowing the features to be updated in a manner that does not
increase the OOD error much.

We formally prove this intuition in a simple setting where we have perfect pretrained features. Of course, if
we have perfect pretrained features, linear probing alone gets zero OOD error—so Proposition 3.7 is just a
first cut result to illustrate that if initialized well, full fine-tuning does not distort features.

Proposition 3.7. Suppose we have perfect pretrained features B0 = UB? for some rotation U . Let R0 =
rowspace(B0). Under the non-degeneracy conditions cos θmax(R0, S) 6= 0, cos θmax(R0, S

⊥) 6= 0:

∀t, Lood(Bft(t)
>vft(t)) > 0, if v0 ∼ N (0, σ2I) is randomly initialized (FT), (3.10)

∀t, Lood(Bft(t)
>vft(t)) = 0, if v0 is initialized to v∞lp (LP-FT). (3.11)

The case where we do not have perfect features (d(B0, B?) > 0) is challenging to analyze because except
in very special cases, there is no closed form for the fine-tuning iterates (vft(t), Bft(t)). Our proof of
Theorem 3.3 leveraged invariants to show a lower bound on the error of fine-tuning when v0 and v? are
different, but we were not able to show an upper bound.

10

4 Experiments

We run experiments on ten distribution shifts to see if our theoretical predictions on the relative performance
of linear probing (LP), fine-tuning (FT), and LP-FT, generalize to deep neural networks on real datasets. As
expected, given good pretrained features, fine-tuning (FT) does better ID but worse on large OOD shifts than
linear probing (LP). In particular, ID and OOD accuracy are not correlated, unlike Recht et al. (2018) but
like Xie et al. (2021a). As predicted by the theory, we find that LP-FT does better than both methods ID and
OOD and gets around this tradeoff. Our theory also predicts that the reason for these trends is that fine-tuning
distorts features, and we see that this distortion indeed happens in practice. For more details on datasets,
pretraining models, and experiment protocols, see Appendix B. The datasets we use are:

• DomainNet (Peng et al., 2019) is a standard domain adaptation dataset. Here, our ID dataset contains
“sketch” images (e.g., drawings of apples, elephants, etc), and the OOD dataset contains “real”, “clipart”,
and “painting” images of the same categories. We use the version of the dataset from Tan et al. (2020).

• Living-17 and Entity-30 are sub-population shift datasets from the BREEDS benchmark (Santurkar et al.,
2020). In Living-17 the goal is to classify an image as one of 17 animal categories such as “bear”—for
example, the ID dataset contains images of black bears and sloth bears and the OOD dataset has images
of brown bears and polar bears. In Entity-30 the goal is to classify an image as one of 30 entities such as
“fruit” or “insect”.

• FMoW Geo-shift is adapted from the satellite remote sensing dataset Functional Map of the World (Christie
et al., 2018; Koh et al., 2021). The goal is to classify a satellite image into one of 62 categories such as
“impoverished settlement” or “hospital”. Our ID dataset contains images from North America, and the
OOD dataset contains images from Africa and Europe.

• CIFAR-10→ STL is a standard domain adaptation dataset (French et al., 2018), where the ID is CIFAR-
10 (Krizhevsky, 2009), and the OOD is STL (Coates et al., 2011). The task is to classify an image into one
of 10 categories such as “dog”, “cat”, or “airplane”—as usual, we remove the “monkey” class in STL since
CIFAR-10 has no “monkey” images.

• CIFAR-10 → CIFAR-10.1 (Recht et al., 2018) is a dataset collected using a very similar protocol to
CIFAR-10, and the authors describe it as “a minute distributional shift”. The hope is that a classifier trained
on CIFAR-10 gets high accuracy on CIFAR-10.1.

• ImageNet-1K (Russakovsky et al., 2015) is a large scale dataset containing over a million images, where
the goal is to classify an image into one of 1000 categories such as “Yorkshire terrier”, “Labrador retriever”,
“acoustic guitar”, “library”, “school bus”, etc. We fine-tune on ImageNet as the ID dataset, and evaluate
on four standard OOD datasets: ImageNetV2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2020),
ImageNet-A (Hendrycks et al., 2019b), and ImageNet-Sketch (Wang et al., 2019).

Pretraining and models. We use a CLIP pretrained ViT-B/16 for ImageNet. For the other datasets we use a
ResNet-50 architecture and consider a diverse range of pretraining methods and datasets: MoCo-v2 (Chen
et al., 2020b), CLIP (Radford et al., 2021), and MoCo-TP (Ayush et al., 2020). In Appendix B, we also show
results for a CLIP-ViT-B/16 and more fine-tuning baselines on Living-17.

11

Table 1: ID accuracies with 90% confidence intervals over 3 runs—fine-tuning does better than linear
probing on all datasets except DomainNet (which could be because the version of the DomainNet training
dataset from Tan et al. (2020) is fairly small, with around 20K examples). LP-FT does the best on all except
FMoW where it is in between linear probing and fine-tuning.

CIFAR-10 Ent-30 Liv-17 DomainNet FMoW ImageNet Average

FT 97.3 (0.2) 93.6 (0.2) 97.1 (0.2) 84.5 (0.6) 56.5 (0.3) 81.7 (-) 85.1
LP 91.8 (0.0) 90.6 (0.2) 96.5 (0.2) 89.4 (0.1) 49.1 (0.0) 79.7 (-) 82.9

LP-FT 97.5 (0.1) 93.7 (0.1) 97.8 (0.2) 91.6 (0.0) 51.8 (0.2) 81.7 (-) 85.7

4.1 Linear probing vs. fine-tuning

Experiment protocols. We initialize with the pretrained model, and fine-tune or linear probe on ID training
examples. For fine-tuning on each dataset we swept over 6 learning rates, using a cosine learning rate schedule
and batch size of 64. We early stop and choose the best learning rate using ID validation accuracy. For linear
probing we train an `2-regularized logistic regression classifier on frozen features from the penultimate layer
of the pretrained model, selecting the best `2-regularization hyperparameter based on ID validation accuracy.
For all methods, we run each hyperparameter configuration 3 times (with different random seeds), and take
the average accuracy. We used a slightly different protocol for ImageNet because the dataset is much larger
and running these experiments involves more computational resources: we used a batch size of 128, swept
over 3 learning rates for both fine-tuning and linear probing (we did not sweep over `2-regularization), and
ran each hyperparameter configuration once. In all cases, OOD data was only used for evaluation.

Results. Fine-tuning does better than linear probing on 5 out of 6 ID datasets (average accuracy of 85.1%
for fine-tuning vs. 82.9% for linear probing, see Table 1). This is consistent with prior work and intuitions.
However, linear-probing does better on 8 out of 10 OOD datasets (average accuracy of 66.2% for linear
probing vs. 59.3% for fine-tuning, see Table 2)—linear probing does better on all datasets except CIFAR-10.1
and ImageNetV2, where the OOD is designed to closely replicate the ID dataset. This matches our theoretical
predictions, which says that linear probing does better than fine-tuning when the ID and OOD are very
different (and the pretrained features are “good”). Our training datasets vary in size from 20K examples to
over a million examples, so linear probing does not appear to perform better than fine-tuning simply because
of a small training set.

4.2 Linear probing then fine-tuning (LP-FT)

Experiment protocols. For LP-FT, we initialize the neural network head using the linear probed solution,
and then fine-tune the model. LP-FT and fine-tuning use similar compute because the linear probing step is
much faster than fine-tuning. As with fine-tuning, we swept over 6 learning rates, early stopping using ID
validation accuracy. For the ImageNet experiments we swept over 3 learning rates, and explicitly ensured that
LP-FT and fine-tuning use exactly the same compute (we ran each stage of LP-FT for half as many epochs as
we ran vanilla fine-tuning).

Results. We find that LP-FT gets the best accuracy ID (average: 85.7%) and OOD (average: 68.9%). This is
true for 5/6 ID and 10/10 OOD datasets—every dataset except FMoW ID, where LP-FT is better than linear
probing but worse than fine-tuning. Since the ID accuracy on FMoW is low (56.5%), this could be because

12

Table 2: OOD accuracies with 90% confidence intervals over 3 runs. Linear probing does better than
fine-tuning on all datasets except CIFAR-10.1 and ImageNetV2, where the ID and OOD are very similar (this
is consistent with our theory). LP-FT matches or exceeds fine-tuning and linear probing on all 10 datasets.

STL CIFAR-10.1 Ent-30 Liv-17 DomainNet FMoW

FT 82.4 (0.4) 92.3 (0.4) 60.7 (0.2) 77.8 (0.7) 55.5 (2.2) 32.0 (3.5)
LP 85.1 (0.2) 82.7 (0.2) 63.2 (1.3) 82.2 (0.2) 79.7 (0.6) 36.6 (0.0)

LP-FT 90.7 (0.3) 93.5 (0.1) 62.3 (0.9) 82.6 (0.3) 80.7 (0.9) 36.8 (1.3)

ImNetV2 ImNet-R ImNet-Sk ImNet-A Average

FT 71.5 (-) 52.4 (-) 40.5 (-) 27.8 (-) 59.3
LP 69.7 (-) 70.6 (-) 46.4 (-) 45.7 (-) 66.2

LP-FT 71.6 (-) 72.9 (-) 48.4 (-) 49.1 (-) 68.9

the pretrained features are not good.

4.3 Examining the feature distortion theory

Early stopping does not mitigate feature distortion. One might think that fine-tuning is simply overfitting
ID, and so early stopping on OOD data (if it were available) might match linear probing OOD. However, our
theory predicts that fine-tuning can do worse OOD (than linear probing) throughout the process of fine-tuning,
and not just at the end. To test this, we early stop each fine-tuning method and choose the best learning rate
based on OOD test accuracy (OOD data was not used except for this ablation). As expected, fine-tuning
does improve a little, but linear probing (average accuracy: 67.1%) is still better than fine-tuning (average
accuracy: 61.3%). See Appendix B for per-dataset results.

ID-OOD features get distorted from fine-tuning. The feature distortion theory predicts that fine-tuning
changes features for ID examples more than for OOD examples, which is why fitting a head on ID examples
performs poorly OOD. To test this, for each example x in Living-17 (results for other datasets are in
Appendix B), we took the Euclidean distance of the ResNet-50 features before and after fine-tuning: ‖gB(x)−
gB0(x)‖2. As expected, the average distance for ID examples (0.0188 ± 0.0001) is more than for OOD
examples (0.0167± 0.0001). The theory also predicts that LP-FT changes features less than fine-tuning does.
As expected, the average distance changed by LP-FT both ID (0.0011± 0.0001) and OOD (0.0009± 0.0001)
is 20× smaller than for fine-tuning.

Pretrained features must be good, ID-OOD far apart. Our theory gives conditions under which linear
probing can do better than fine-tuning OOD. Specifically, we require that the ID distribution Pid and OOD
distribution Pood are quite different, and the pretrained features are good (B0 is close to B?)—otherwise
fine-tuning can do better OOD by adjusting the feature extractor ID. Here we test that these conditions are
essential—when they are violated fine-tuning can do better than linear probing OOD.

Feature quality: We use a checkpoint of MoCo-v1 that got 10% worse accuracy (on ImageNet) and compare
linear probing and fine-tuning on Living-17. With worse features, both methods do worse, but fine-tuning
(96% ID, 71% OOD) does better than linear probing (92% ID, 66% OOD).

13

ID ≈ OOD: We fine-tune / linear probe on CIFAR-10, and test on CIFAR-10.1, a dataset collected using a
similar protocol to CIFAR-10. As expected, fine-tuning (92.3%) outperforms linear probing OOD (82.7%).
Even in this case, where we have no tradeoffs, LP-FT does the best (93.5%).

5 Related work and discussion

Fine-tuning vs. linear probing. Fine-tuning (FT) and linear probing (LP) are popular transfer learning
algorithms. There is substantial evidence of FT outperforming LP in-distribution (ID) including recent
large-scale investigations (Kornblith et al., 2019; Chen et al., 2021a; Zhai et al., 2020; Chen et al., 2020b)
(the only notable exception is in Peters et al. (2019) where LP performs better than FT when using ELMo
representations, but worse using BERT). 9 FT is therefore the method of choice for improving accuracy,
while LP is used to analyze properties of representations (Peters et al., 2018; Belinkov et al., 2017; Hewitt
& Manning, 2019). In our work, we find that FT can underperform LP especially when using high quality
pretrained features in the presence of a large distribution shift. There are a variety of other fine-tuning
heuristics (Ge & Yu, 2017; Guo et al., 2019; Zhang et al., 2020; Zhu et al., 2020; Jiang et al., 2021;
Aghajanyan et al., 2021)—combining our insights with these ideas might lead to better methods.

The benefit of preserving pretrained features. Our work adds to growing evidence that lightweight
fine-tuning, where only a small part of a pretrained model are updated, performs better under distribution
shifts—and we give a theoretical grounding to why this might be the case. Zero-shot language prompting in
vision (Radford et al., 2021) and other lightweight fine-tuning approaches in NLP (Houlsby et al., 2019; Li &
Liang, 2021; Xie et al., 2021b; Lester et al., 2021; Utama et al., 2021; Zhou et al., 2021) have been shown
to improve OOD performance. In independent and concurrent work, Andreassen et al. (2021) observe that
through the course of fine-tuning, ID accuracy continues to increase but OOD accuracy plateaus. Our work
shows something stronger: at no point in the fine-tuning process does FT outperform LP.

Mitigating ID-OOD tradeoffs. While LP-FT has sometimes been used as a fine-tuning heuristic (Levine
et al., 2016; Kanavati & Tsuneki, 2021; fastai), it has not been used for robustness / OOD accuracy, and we
show that it addresses the ID-OOD tradeoff theoretically and empirically. Tradeoffs between ID and OOD
accuracy are widely studied and prior work self-trains on large amounts of unlabeled data to mitigate such
tradeoffs (Raghunathan et al., 2020; Xie et al., 2021a; Khani & Liang, 2021). In contrast, LP-FT uses no
extra unlabeled data and is a simple variant of fine-tuning. In concurrent and independent work, Wortsman
et al. (2021) show that ensembling the weights of a zero-shot and fine-tuned model mitigates the ID-OOD
tradeoff between these approaches, and this method could be promising for our datasets as well.

Theoretical analysis of transfer learning. Prior works on transfer learning mainly analyze linear prob-
ing (Wu et al., 2020; Tripuraneni et al., 2020; Du et al., 2020). In recent work, (Chua et al., 2021) study
regularized fine-tuning in an underparameterized regime where there is a unique global optimum. In contrast,
our analysis studies the overparameterized regime (mirroring modern settings of zero train loss) where we
need to analyze the trajectory of fine-tuning from the pretrained initialization because there is no unique
optimizer of the objective function. Prior works also focus on ID error, while we analyze OOD error. See
Section C for additional related work on theory of overparameterized models.

9This is not intended to be a comprehensive list. There is a large body of past work across different domains that have reported a
similar observation.

14

6 Conclusion.

There is a strong trend towards leveraging pretrained models to improve downstream performance, and
whenever feasible, it is common to fine-tune all model parameters. In this work, we show theoretically
and empirically that preserving features might be important for robustness, and simpler approaches like
linear-probing can improve out-of-distribution (OOD) performance. This OOD gap between fine-tuning and
linear probing grows as the quality of pretrained features improve, so we believe our results are likely to gain
significance over time with growing innovations and scale of pretraining.

Theoretical understanding of modern deep learning remains limited, especially the effect of pretraining and
transfer learning. In addition to our specific results on fine-tuning, our work introduces some tools and ideas
for dealing with the main challenge of characterizing properties of the trajectory from a specific initialization
in the presence of multiple global optima (implicit regularization effect of initialization). There are several
open questions and extensions such as dealing with non-linear activations, different layerwise learning rates,
and the effect of explicit regularization. 10

Finally, we showed LP-FT can mitigate tradeoffs between ID and OOD accuracy in our context. LP-FT
could be useful in other situations, for example in CLIP we could initialize the final layer with the zero-shot
classifier and then fine-tune the entire model, as done in concurrent work (Wortsman et al., 2021). LP-FT is
just a first step in leveraging the intuition from our theoretical analysis and we hope that this work inspires
new methods of leveraging powerful pretrained models.

Proofs and Reproducibility: We include proofs for our theoretical results in Appendix A and additional
experiment details in Appendix B.

Acknowledgements: We would like to thank Kumar Ayush and Burak Uzkent for MoCo checkpoints
pretrained on unlabeled FMoW images, Nilesh Tripuraneni for clarifications on his work and references
on principal angles, Daniel Levy for useful suggestions on experiments to run, Niladri Chatterji, Jeff Z.
HaoChen, and Colin Wei for useful papers and comments on figures, Niladri Chatterji and Kaidi Cao for
reviewing the paper at ML paper swap, Kevin Yang for his help with analyzing differential equations, Tri Dao
and Pang Wei Koh for help with writing, Suriya Gunasekar, Adam Kalai, Simon Kornblith, Ting Chen, Sang
Michael Xie, Albert Gu, and Kendrick Shen for useful discussions, and Pang Wei Koh, Niladri Chatterji, and
Tri Dao for suggestions on framing our results better.

Ananya Kumar was supported by the Rambus Corporation Stanford Graduate Fellowship. Percy Liang
was supported by the Open Philantropy Project and NSF Award Grant No. 1805310. Aditi Raghunathan
was supported by a Google PhD Fellowship and Open Philanthropy Project AI Fellowship. Tengyu Ma
acknowledges support of a Google Faculty Award, NSF IIS 2045685, the Sloan Fellowship, JD.com, SAIL,
and SDSI.

10We found that LP-FT outperforms explicit regularization and using a higher learning rate for the linear layer on Living-17
(Appendix B.4), but a more extensive theoretical and empirical study on this is important.

15

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
Better fine-tuning by reducing representational collapse. In International Conference on Learning Repre-
sentations (ICLR), 2021.

EA AlBadawy, A Saha, and MA Mazurowski. Deep learning for segmentation of brain tumors: Impact of
cross-institutional training and testing. Med Phys., 45, 2018.

Anders Andreassen, Yasaman Bahri, Behnam Neyshabur, and Rebecca Roelofs. The evolution of out-of-
distribution robustness throughout fine-tuning. arXiv, 2021.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In International Conference on Machine Learning (ICML), pp. 244–253, 2018.

Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, M. Burke, D. Lobell, and Stefano Ermon.
Geography-aware self-supervised learning. arXiv, 2020.

Peter L. Bartlett, Philip M. Long, G´abor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. arXiv, 2019.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What do neural machine
translation models learn about morphology? In Association for Computational Linguistics (ACL), pp.
861–872, 2017.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. arXiv, 2019.

Koby Bibas, Yaniv Fogel, and Meir Feder. A new look at an old problem: A universal learning approach to
linear regression. In 2019 IEEE International Symposium on Information Theory (ISIT), pp. 2304–2308,
2019.

Tianle Cai, Ruiqi Gao, J. Lee, and Qi Lei. A theory of label propagation for subpopulation shift. In
International Conference on Machine Learning (ICML), 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International Conference on Machine Learning (ICML), pp. 1597–
1607, 2020a.

Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. arXiv, 2020b.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers.
arXiv preprint arXiv:2104.02057, 2021a.

Yining Chen, Elan Rosenfeld, Mark Sellke, Tengyu Ma, and Andrej Risteski. Iterative feature matching:
Toward provable domain generalization with logarithmic environments. arXiv, 2021b.

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In
Computer Vision and Pattern Recognition (CVPR), 2018.

Kurtland Chua, Qi Lei, and Jason D Lee. How fine-tuning allows for effective meta-learning. arXiv preprint
arXiv:2105.02221, 2021.

16

Adam Coates, Andrew Ng, and Honlak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
volume 15, pp. 215–223, 2011.

Simon S. Du, Wei Hu, Sham M. Kakade, Jason D. Lee, and Qi Lei. Few-shot learning via learning the
representation, provably. arXiv, 2020.

Simon Shaolei Du, Wei Hu, and Jason Lee. Algorithmic regularization in learning deep homogeneous models:
Layers are automatically balanced. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

fastai. fastai tutorial on transfer learning. https://github.com/fastai/course-v3/blob/
master/nbs/dl1/lesson1-pets.ipynb.

Geoff French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adaptation. In
International Conference on Learning Representations, 2018.

Weifeng Ge and Yizhou Yu. Borrowing treasures from the wealthy: Deep transfer learning through selective
joint fine-tuning. In Computer Vision and Pattern Recognition (CVPR), 2017.

Gauthier Gidel, Francis R. Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in deep linear neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In International Conference on Artificial Intelligence and Statistics, 2010.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 2013.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Implicit
regularization in matrix factorization. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 6151–6159, 2017.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris. Spottune:
Transfer learning through adaptive fine-tuning. In Computer Vision and Pattern Recognition (CVPR), 2019.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional
ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Computer Vision and Pattern Recognition (CVPR), 2020.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness and
uncertainty. In International Conference on Machine Learning (ICML), 2019a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples.
arXiv preprint arXiv:1907.07174, 2019b.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces
of robustness: A critical analysis of out-of-distribution generalization. arXiv preprint arXiv:2006.16241,
2020.

17

https://github.com/fastai/course-v3/blob/master/nbs/dl1/lesson1-pets.ipynb
https://github.com/fastai/course-v3/blob/master/nbs/dl1/lesson1-pets.ipynb

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representations. In
Association for Computational Linguistics (ACL), 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. arXiv, 2019.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
Association for Computational Linguistics (ACL), 2018.

Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon. Combining
satellite imagery and machine learning to predict poverty. Science, 353, 2016.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart: Robust and
efficient fine-tuning for pre-trained natural language models through principled regularized optimization.
In International Conference on Learning Representations (ICLR), 2021.

Pritish Kamath, Akilesh Tangella, Danica J. Sutherland, and Nathan Srebro. Does invariant risk minimization
capture invariance? In Artificial Intelligence and Statistics (AISTATS), 2021.

Fahdi Kanavati and Masayuki Tsuneki. Partial transfusion: on the expressive influence of trainable batch
norm parameters for transfer learning. In Medical Imaging with Deep Learning, 2021.

Fereshte Khani and Percy Liang. Removing spurious features can hurt accuracy and affect groups dispropor-
tionately. In ACM Conference on Fairness, Accountability, and Transparency (FAccT), 2021.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness,
Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery, Jure Leskovec, Anshul Kundaje, Emma
Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning (ICML), 2021.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better? In Computer
Vision and Pattern Recognition (CVPR), 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

Thomas Laurent and James H. von Brecht. Deep linear neural networks with arbitrary loss: All local minima
are global. In International Conference on Machine Learning (ICML), 2018.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

S. Levine, Chelsea Finn, Trevor Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research (JMLR), 17, 2016.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Association
for Computational Linguistics (ACL), 2021.

Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with
convolutional networks. In International Conference on Machine Learning (ICML), 2018.

18

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise asymptotics
and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

John Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy
Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation between
out-of-distribution and in-distribution generalization. In International Conference on Machine Learning
(ICML), 2021.

Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless interpolation of
noisy data in regression. IEEE Journal on Selected Areas in Information Theory, 1(1):67–83, 2020.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role of
implicit regularization in deep learning. arXiv, 2014.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In International Conference on Computer Vision (ICCV), 2019.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations. In North American Association for Computational
Linguistics (NAACL), 2018.

Matthew E Peters, Sebastian Ruder, and Noah A Smith. To tune or not to tune? adapting pretrained
representations to diverse tasks. In Proceedings of the 4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pp. 7–14, 2019.

Viraj Prabhu, Shivam Khare, Deeksha Karthik, and Judy Hoffman. Selective entropy optimization via
committee consistency for unsupervised domain adaptation. In International Conference on Computer
Vision (ICCV), 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In International Conference on Machine
Learning (ICML), volume 139, pp. 8748–8763, 2021.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C. Duchi, and Percy Liang. Understanding and
mitigating the tradeoff between robustness and accuracy. In International Conference on Machine Learning
(ICML), 2020.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10 classifiers
generalize to CIFAR-10? arXiv, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize
to imagenet? In International Conference on Machine Learning (ICML), 2019.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimization. In
International Conference on Learning Representations (ICLR), 2021.

Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectangular matrix. Communica-
tions on Pure and Applied Mathematics, 62:1707–1739, 2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

19

Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation shift.
arXiv, 2020.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv, 2014.

Shuhan Tan, Xingchao Peng, and Kate Saenko. Class-imbalanced domain adaptation: An empirical odyssey.
arXiv preprint arXiv:1910.10320, 2020.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
Measuring robustness to natural distribution shifts in image classification. arXiv preprint arXiv:2007.00644,
2020.

Nilesh Tripuraneni, Michael I. Jordan, and Chi Jin. On the theory of transfer learning: The importance of
task diversity. arXiv, 2020.

Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine
Learning, 8:1–230, 2015.

Prasetya Ajie Utama, Nafise Sadat Moosavi, Victor Sanh, and Iryna Gurevych. Avoiding inference heuristics
in few-shot prompt-based finetuning. arXiv preprint arXiv:2109.04144, 2021.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by
penalizing local predictive power. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Mitchell Wortsman, Gabriel Ilharco, Mike Li, Jong Wook Kim, Hannaneh Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. Robust fine-tuning of zero-shot models. arXiv preprint
arXiv:2109.01903, 2021.

Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information transfer in
multi-task learning. In International Conference on Learning Representations (ICLR), 2020.

Sang Michael Xie, Ananya Kumar, Robbie Jones, Fereshte Khani, Tengyu Ma, and Percy Liang. In-N-out:
Pre-training and self-training using auxiliary information for out-of-distribution robustness. In International
Conference on Learning Representations (ICLR), 2021a.

Sang Michael Xie, Tengyu Ma, and Percy Liang. Composed fine-tuning: Freezing pre-trained denoising
autoencoders for improved generalization. In International Conference on Machine Learning (ICML),
2021b.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In Computer
Vision and Pattern Recognition (CVPR), 2020.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip
Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem,
Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and Neil Houlsby. A large-scale
study of representation learning with the visual task adaptation benchmark. arXiv, 2020.

20

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning: A baseline
for network adaptation via additive side networks. In European Conference on Computer Vision (ECCV),
2020.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. arXiv preprint arXiv:2109.01134, 2021.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. FreeLB: Enhanced adversarial
training for natural language understanding. In International Conference on Learning Representations
(ICLR), 2020.

21

A Proofs for Section 3

A.1 Preliminaries on Important Notations and Principal Angles

Big-Oh Notation: For convenience, we use big-oh notation in a way that differs from standard theoretical
computer science texts. When we say O(<expr1>) we mean that this can be replaced by c <expr1> for some
universal constant such that the statement holds. As an example, we can say 5x2 ≤ O(x2) because there
exists some universal constant (c = 5) such that 5x2 ≤ 5x2. More examples: we can also say 5x2 ≥ O(x2)
or if x ≥ 1 then 7x2 ≤ O(x3) and 0.1x2 ≥ O(x).

Singular Values: Given a rectangular matrix A ∈ Rm×n, let r = min(m,n). The minimum singular value
is defined as the r-th largest singular value of A, so σmin(A) = σr(A).

Working with minimum singular values requires more care than maximum singular vectors. In particular,
when we have rectangular matrices some bounds depend on whether the matrix is ‘fat’ (has more columns
than rows) or ‘tall’ (has more rows than columns).

Given a matrix A, the operator norm ‖A‖2 is the maximum singular value: ‖A‖2= σmax(A).

Projectors: Given a subspace R of Rd, let ΠR denote the orthogonal projection onto R, satisfying that for
all x ∈ Rd:

ΠR(x) ∈ R and ∀r ∈ R, ‖x−ΠR(x)‖2≤ ‖x− r‖2. (A.1)

If E ∈ Rd×dim(R) has orthonormal columns that form a basis for R, then we have:

ΠR = EE> (A.2)

From this we can easily check that Π2
R = ΠR and Π>R = ΠR. See e.g., Chapter 2.5.1 Golub & Loan (2013)

for more information.

Principal Angles: Given two non-zero vectors x and y, the cosine of the angle between them, cos θ, is:

cos θ =
x>y

‖x‖2‖y‖2
(A.3)

If we consider the 1-dimensional subspaces (so basically lines) Sx and Sy spanned by x and y respectively,
then the angle between them, cos θ′ is given by the absolute value (since lines are undirected):

cos θ′ =
|x>y|
‖x‖2‖y‖2

(A.4)

Principal angles generalize this notion to higher dimensions. See e.g., Chapter 6.4.3 in Golub & Loan (2013)
for more information on principal angles.

Definition A.1. Given two non-empty subspaces R and S of Rd, where r = min(dim(R), dim(S)), we have
r principal angles:

0 ≤ θ1 ≤ . . . ≤ θr ≤ π/2. (A.5)

The directions of the inequalities swap when we take the cosine of the principal angles:

1 ≥ cos θ1 ≥ . . . ≥ cos θr ≤ 0. (A.6)

22

The cosines of the principal angles are given by the SVD—let E ∈ Rd×dim(R) and F ∈ Rd×dim(S) have
orthonormal columns which span R and S respectively. Then we have:

cos θi = σi(E
>F), (A.7)

where σi denotes the i-th largest singular value. In this paper, we are interested in the cosine of the largest
angle between them, given by:

cos θmax(R,S) = cos θr (A.8)

We can massage this into a variational characterization of the maximum principal angle, which is important
for lower bounding the error of fine-tuning outside the span of the training data.

Lemma A.2. Suppose dim(R) ≤ dim(S), and let F ∈ Rd×dim(S) have orthonormal columns that form a
basis for S. We have:

cos θmax(R,S) = min
r∈R,‖r‖2=1

‖F>(r)‖2 (A.9)

Proof. Let E ∈ Rd×dim(R) and F ∈ Rd×dim(S) have orthonormal columns that span R and S respectively.
Since dim(R) ≤ dim(S) (a crucial condition!), F>E is a ‘tall’ matrix (it has more rows than columns) so
we have:

σmin(F>E) = min
‖v‖2=1

‖F>Ev‖2. (A.10)

The result now follows from some algebra:

cos θmax(R,S) = σmin(F>E) (A.11)

= min
‖v‖2=1

‖F>Ev‖2 (A.12)

= min
r∈R,‖r‖2=1

‖F>(r)‖2. (A.13)

A.2 Feature distortion theorem

We first prove our core theorem, that fine-tuning distorts pretrained features.

Restatement of Theorem 3.3. In the overparameterized linear setting, let S⊥ = rowspace(X)⊥, R0 =
rowspace(B0), and v?, B? be the optimal parameters with w? = B?v?. If cos θmax(R0, S

⊥) > 0, then for
all time steps t, the OOD error of the fine-tuning iterates (Bft(t), vft(t)) is lower bounded:√

Lood(vft(t), Bft(t)) ≥
√
σmin(Σ)

(cos θmax(R0, S
⊥)√

k

min(ϕ,ϕ2/‖w?‖2)
(1 + ‖w?‖2)2

− ε
)
, (A.14)

where ϕ2 = |(v>0 v?)2 − (v>? v?)
2| is defined to be inital head alignment error and ε ≥ d(B0, B?) is the error

in the pretrained feature extractor.

We follow the sketch in the main paper. We begin with a few lemmas, showing that certain quantities are
preserved throughout the fine-tuning process.

23

Our first lemma says that the representations Bt
ftx do not change for examples perpendicular the span of the

training examples. Note that the final output vtft
>
Bt
ftx still changes, because vtft changes.

Lemma A.3. For all times t and all x ∈ S⊥, we have:

B0x = Bt
ftx (A.15)

Proof. We initialized fine-tuning with the feature extractor Bft(0) = B0. It suffices to show that ∂tBt
ftx = 0

for all x ∈ S⊥. Recall that ∂tBt
ft is given by the gradient flow update equation:

∂tB
t
ft = −∂BL̂(vtft, B

t
ft) = −∂B‖XB>v − Y ‖22 (A.16)

Computing the RHS explicitly using multivariable chain rule, we get:

∂tB
t
ft = −2v(XB>v − Y)>X (A.17)

Since x is a constant, we get:
∂tB

t
ftx = −2v(XB>v − Y)>Xx (A.18)

But Xx = 0 for x ∈ S⊥, since x ∈ S⊥ is defined as x is perpendicular to the rowspace of X (i.e.,
perpendicular to the rows of X). So the RHS is 0—that is, ∂tBt

ftx = 0, as desired.

Next, we show that the change in the head and feature extractor are ‘coupled’. So if the head changes in a
certain way, then the feature extractor cannot just stay the same. In the literature, this is sometimes called the
“balancedness" lemma, and has been proved in prior work on two layer linear networks.

Lemma A.4. For all t we have:

v0v
>
0 −B0B

>
0 = vtftv

t
ft
> −Bt

ftB
t
ft
> (A.19)

Proof. This follows by showing that the derivative is 0:

∂t[v
t
ftv

t
ft
> −Bt

ftB
t
ft
>

] = 0 (A.20)

Which can be verified by direct calculation. See Theorem 2.2 in Du et al. (2018) and the proof of Theorem 1
in Arora et al. (2018).

For our proof we will require that every feature r ∈ R can be generated from some OOD direction, that
is r = B0u for some u ∈ S⊥. We will show that this is implied by the condition on the principal angle:
cos θmax(R,S

⊥) > 0 where R = rowspace(B0), which we assumed in Theorem 3.3. The following lemma
shows this (and also quantifies that the norm of u does not shrink too much when projected onto R).

Lemma A.5. LetR,S be subspaces of Rd with dim(R) ≤ dim(S). For all r ∈ R with ‖r‖2= cos θmax(R,S),
there exists s ∈ S with ΠR(s) = r and ‖s‖2≤ 1. Here ΠR ∈ Rd×d projects a vector onto R.

Proof. Let c = cos θmax(R,S). Firt, we get rid of an easy case—if c = 0, then we need to show the claim
for all r ∈ R with ‖r‖2= c = 0, which means r = 0. Then we can just pick s = 0, and ΠR(s) = 0 = r and
‖s‖2= 0 ≤ 1. So for the rest of the proof we assume c > 0.

24

Consider arbitrary vector r ∈ R with ‖r‖2= c. Let E ∈ Rd×dim(S), F ∈ Rd×dim(R) have orthonormal
columns, which form a basis for R and S respectively.

Step 1: Finding s: Since the columns of E span R, r = Ez for some z ∈ Rdim(R). c = σmin(E>F) > 0,
which means that E>F ∈ Rdim(R)×dim(S) has rank dim(R) since dim(R) ≤ dim(S)—in other words,
E>F has full column rank since the column dimension is smaller than the row dimension. So z = E>Fw
for some w ∈ rowspace(E>F). Then we set s = Fw—this means s ∈ S because the columns of F form
a basis for S. In addition, following the steps above we have r = Ez = EE>Fw = EE>s. We note that
ΠR = EE> is the projection onto R (see e.g., Chapter 2.5.1 of Golub & Loan (2013)).

Step 2: Bounding norm of s: It suffices to show that ‖s‖2≤ 1. Since F has orthonormal columns,
‖s‖2= ‖Fw‖2= ‖w‖2, so it suffices to show that ‖w‖2≤ 1. Since E has orthonormal columns, ‖r‖2= ‖z‖2.
Recall that z = E>Fw—since w ∈ rowspace(E>F), from Lemma A.6 we have:

‖z‖2≥ σmin(E>F)‖w‖2= c‖w‖2. (A.21)

Rearranging, we get ‖w‖2≤ ‖z‖2/c = 1, as desired.

In the lemma above, we used a standard linear algebraic result that we include for completeness. This says
that A cannot shrink vectors in its rowspace too much, where the shrinkage factor is given by the minimum
singular value of A.

Lemma A.6. Let A ∈ Rm×n. Let r = min(m,n). Then if x ∈ rowspace(A), we have ‖Ax‖2≥ σr(A)‖x‖2.

Proof. We bound the norm of x using the SVD. Consider the singular value decomposition (SVD) of A:

A = UDV > (A.22)

Where U ∈ Rm×r, D ∈ Rr×r, V > ∈ Rr×n, where U and V have orthonormal columns, and D =
diag(σ1, . . . , σr) is a diagonal matrix with σ1 ≥ . . . ≥ σr ≥ 0.

‖Ax‖2 = ‖UDV >x‖2 [Definition of r] (A.23)

= ‖DV >x‖2 [U ∈ Rm×r has orthonormal columns] (A.24)

≥ σr‖V >x‖2 [D is diagonal] (A.25)

= σr‖x‖2 [rows of V > are orthonormal, x is in rowspace] (A.26)

= σr(A)‖x‖2 (A.27)

Where for the fourth step, we used the fact that if x ∈ rowspace(V >) and the rows of V > are orthonormal,
then ‖V >x‖2= ‖x‖2. One way to see this is by writing x =

∑
i αivi, where vi are rows of V >, and then

noting that V >x = (α1, . . . , αr) and so x and V >x have the same norm.

We recall that Pood has second moment Σ: E[xx>] = Σ when x ∼ Pood, where Σ is invertible. So with
some simple algebra we can write the OOD error Lood in terms of Σ (the proof is standard and basic, but we
include it just for completeness):

25

Lemma A.7.

Lood(v,B) = (B>? v? −B>v)>Σ(B>? v? −B>v) ≤ σmin(Σ)‖B>? v? −B>v‖22. (A.28)

Proof. Let x ∼ Pood. We have,

Lood(v,B) = E[(v>? B?x− v>Bx)2] (A.29)

= E[(B>? v? −B>v)>xx>(B>? v? −B>v)] (A.30)

= (B>? v? −B>v)> E[xx>](B>? v? −B>v) (A.31)

= (B>? v? −B>v)>Σ(B>? v? −B>v). (A.32)

The inequality follows immediately because σmin(A) (for a square matrix A) is simply the min over x with
unit `2 norm of x>Ax.

We now prove Theorem 3.3, following the 3 steps outlined in the main text.

Proof of Theorem 3.3. Let c = cos θmax(R,S
⊥). From Lemma A.7, we haveLood(vtft, B

t
ft) ≤ σmin(Σ)‖B>? v?−

Bt
ft
>
vtft‖22 so it suffices to bound ‖B>? v? −Bt

ft
>
vtft‖2.

Because it makes the proof much easier, we will prove the contrapositive, and then convert back to the
original theorem statement. We assume ‖B>? v? −Bt

ft
>
vtft‖2≤ ∆, and will show that:

|(v>0 v?)2 − (v>? v?)
2| ≤ ∆ + ε

c
g1(‖w‖2)

√
k +

(∆ + ε)2

c2
g2(‖w‖2)k (A.33)

Where g1 and g2 are non-negative polynomials we will bound in the proof.

We gave a basic outline of the proof in the main paper, and here we are just trying to be careful about capturing
all the dependencies. We also give intuition for each step before diving into algebra (which we include for
completeness).

Recall that in the overparameterized linear setting we assumed we have orthonormalB0 with ‖B0−UB?‖2≤ ε
for some U . We note that the setup is rotationally symmetric so without loss of generality we can suppose
‖B0 − B?‖2≤ ε. This is because we can let B′? = UB? and v′? = Uv?, and we have w? = B>? v? =
(UB?)

>(Uv?), where w? is the optimal classifier—so we can now write the entire proof in terms of B′? and
v′?.

Step 1: Show that ‖vtft − v?‖2≤ ∆/c: We first give intuition and then dive into the math. The key insight is
to use the fact that in ‘many’ directions Bt

ft and B0 are the same (formally, for all x ∈ S⊥, Bt
ftx = B0x).

But B0 and B? are close by assumption, which means that Bt
ft and B? are close in ‘many’ directions. Then

since we assumed in the contrapositive that vtft
>
Bt
ft and v>? B? are close, we get that vtft and v? are close in

‘many’ directions. Because S⊥ covers the rowspace of B0, we get that ‘many’ is k, which is precisely the
dimensionality of v?, so the two vectors vtft and v? must be close.

We now dive into the math. Since B0 has orthogonal rows, B0 has full column rank.

26

Let z be given by:
z =

c

‖vtft − v?‖2
(vtft − v?) (A.34)

We note that ‖z‖2= c. Then, we can find y ∈ R = rowspace(B0) such that B0y = z (since B0 has full
column-rank) and then ‖y‖2= ‖z‖2= c (since B0 has orthonormal rows).

Since c = cos θmax(R,S
⊥) > 0, and y ∈ R with ‖y‖= c, from Lemma A.5 we can choose x ∈ S⊥ with

‖x‖2≤ 1 and ΠR(x) = y. Then, we have B0x = z.

From Proposition A.3, since x ∈ S⊥, B0 does not change in directions of x when fine-tuning so we have:
B0x = Bt

ftx.

The claim now follows from simple algebraic manipulation, following the intuition we described. The algebra
just captures what ‘close’ means and adds up the error terms.

‖vtft − v?‖2 =
1

c
(vtft − v?)>(

c(vtft − v?)
‖vtft − v?‖2

) [Algebra] (A.35)

=
1

c
(vtft − v?)>z [Definition of z] (A.36)

=
1

c
(vtft − v?)>B0x [Since B0x = z] (A.37)

=
1

c
(vtft

>
B0x− v>? B0x) [Algebra] (A.38)

=
1

c
(vtft

>
Bt
ftx− v>? B0x) [Bt

ftx = B0x since x ∈ S⊥] (A.39)

=
1

c
(vtft

>
Bt
ft − v>? B0)x [Algebra] (A.40)

≤ 1

c
‖vtft

>
Bt
ft − v>? B0‖2‖x‖2 [Cauchy-Schwarz] (A.41)

≤ 1

c
‖vtft

>
Bt
ft − v>? B0‖2 [since ‖x‖2≤ 1] (A.42)

≤ 1

c
‖vtft

>
Bt
ft − v>? B?‖2+

1

c
‖v>? B? − v>? B0‖2 [Triangle inequality] (A.43)

≤ 1

c
‖Bt

ft
>
vtft −B>? v?‖2+

1

c
‖v>? B? − v>? B0‖2 [Taking transpose] (A.44)

=
1

c
‖Bt

ft
>
vtft −B>? v?‖2+

1

c
σmax(B0 −B?)‖v?‖2 [definition of max singular value]

(A.45)

=
1

c
‖Bt

ft
>
vtft −B>? v?‖2+

1

c
ε‖v?‖2 [since σmax(B0 −B?) ≤ ε] (A.46)

≤ ∆ + ε‖v?‖2
c

[since ‖B>? v? −Bt
ft
>
vtft‖2≤ ∆]

(A.47)

(A.48)

Which shows that ‖vtft − v?‖2≤ (∆ + ε‖v?‖2)/c.

Step 2A: Show that ‖Bt
ft‖2F is small: The key insight is to take the trace on both sides of Proposition A.4,

27

which bounds the Frobenius norm of Bt
ft and therefore the operator norm.

Rearranging Proposition A.4, we have:

Bt
ftB

t
ft
>

= B0B
>
0 + v?v

>
? − v0v>0 (A.49)

Taking the trace everywhere, we get:

Tr(Bt
ftB

t
ft
>

) = Tr(B0B
>
0) + Tr(v?v

>
?)− Tr(v0v

>
0) (A.50)

For any matrix A, Tr(AA>) = ‖A‖2F , and for a vector v the Frobenius norm is just the `2-norm, so
Tr(vv>) = ‖v‖22. So we have:

‖Bt
ft‖2F= ‖B0‖2F+‖v?‖22−‖v0‖22 (A.51)

Squares are non-negative, so we get the inequality:

‖Bt
ft‖2F≤ ‖B0‖2F+‖v?‖22 (A.52)

Step 2B: Show that ‖B>0 v?‖22−‖Bt
ft
>
v?‖22 is small: This step doesn’t involve much insight, and is standard

peturbation analysis—we simply factor the difference of squares and bound each term.

First, we bound ‖Bt
ft
>
vtft −Bt

ft
>
v?‖2:

‖Bt
ft
>
vtft −Bt

ft
>
v?‖2 ≤ σmax(Bt

ft)‖vtft − v?‖2 (A.53)

≤ ‖Bt
ft‖F ‖vtft − v?‖2 (A.54)

≤
√
‖B0‖2F+‖v?‖22‖v

t
ft − v?‖2 (A.55)

≤
√
‖B0‖2F+‖v?‖22

(∆ + ε‖v?‖2
c

)
(A.56)

Next, we bound ‖B>0 v? −Bt
ft
>
v?‖2:

‖B>0 v? −Bt
ft
>
v?‖2 ≤ ‖B>0 v? −B>? v?‖2+‖B>? v? −Bt

ft
>
v?‖2 (A.57)

≤ σmax(B0 −B?)‖v?‖2+‖B>? v? −Bt
ft
>
v?‖2 (A.58)

≤ ε‖v?‖2+‖B>? v? −Bt
ft
>
v?‖2 (A.59)

≤ ε‖v?‖2+‖B>? v? −Bt
ft
>
vtft‖2+‖Bt

ft
>
vtft −Bt

ft
>
v?‖2 (A.60)

≤ ε‖v?‖2+∆ +
√
‖B0‖2F+‖v?‖22

(∆ + ε‖v?‖2
c

)
(A.61)

=: ∆2 (A.62)

Finally, we bound |‖B>0 v?‖22−‖Bt
ft
>
v?‖22|, using the identity:

|‖u‖22−‖v‖22| = |(u− v)>(u+ v)| (A.63)

≤ ‖u− v‖2‖u+ v‖2 (A.64)

≤ ‖u− v‖2(2‖u‖2+‖u− v‖2) (A.65)

28

Applying this:

|‖B>0 v?‖22−‖Bt
ft
>
v?‖22| ≤ ‖B>0 v? −Bt

ft
>
v?‖2(2‖B>0 v?‖2+‖B>0 v? −Bt

ft
>
v?‖2) (A.66)

≤ ∆2(2‖B>0 v?‖2+∆2) (A.67)

≤ ∆2(2‖B>? v?‖2+2‖B>0 v? −B>? v?‖2+∆2) (A.68)

≤ ∆2(2‖w?‖2+2ε‖v?‖2+∆2) (A.69)

=: ∆3 (A.70)

Step 3: Use Proposition A.4 to show v0 and v? must be close: The key insight is that we start from
Proposition A.4, and left and right multiply by v?, after that we use the previous steps and do some some
standard perturbation analysis.

We start from Proposition A.4:

v0v
>
0 −B0B

>
0 = vtftv

t
ft
> −Bt

ftB
t
ft
> (A.71)

The key step is to left multiply both sides by v>? and right multiply both sides by v? to get:

(v>0 v?)
2 − ‖B>0 v?‖22= (vtft

>
v?)

2 − ‖Bt
ft
>
v?‖22 (A.72)

Rearranging, and then using Equation A.66, we get:

|(vtft
>
v?)

2 − (v>0 v?)
2| = |‖Bt

ft
>
v?‖22−‖B>0 v?‖22| ≤ ∆3 (A.73)

This is close to what we want, except we have (vtft
>
v?)

2 on the LHS instead of (v>? v?)
2. We previously

showed that vtft and v? are close, in Step 1, so with some algebra we can bound the difference between

(vtft
>
v?)

2 and (v>? v?)
2:

|(vtft
>
v?)

2 − (v>? v?)
2| = |(vtft

>
v? − v>? v?)>(vtft

>
v? + v>? v?)| (A.74)

= |(vtft
>
v? − v>? v?)>[2v>? v? + (vtft

>
v? − v>? v?)]| (A.75)

= |(v>? (vtft − v?))>[2v>? v? + (v>? (vtft − v?))]| (A.76)

≤ ‖vtft − v?‖2‖v?‖22[2‖v?‖2+‖vtft − v?‖2] (A.77)

= (∆/c)‖v?‖22(2‖v?‖2+(∆/c)) := ∆4 (A.78)

Above, from the third line to the fourth line, we used triangle inequality and Cauchy-Schwarz.

So finally, by triangle-inequality we can now bound |(v>? v?)2 − (v>0 v?)
2|:

|(v>? v?)2 − (v>0 v?)
2| ≤ |(v>? v?)2 − (vtft

>
v?)

2|+ |(vtft
>
v?)

2 − (v>0 v?)
2| (A.79)

≤ ∆4 + ∆3 (A.80)

Wrap up i.e., writing out ∆4 + ∆3 explicitly: This is basically the bound we want, but we would like to
express ∆3,∆4 in terms of ∆ and ε. Note that this step has no insight, and is just algebra—we include the
details for reference and verifiability. We recall:

∆4 = (∆/c)‖v?‖22(2‖v?‖2+(∆/c)) (A.81)

∆3 = ∆2(2‖w?‖2+2ε‖v?‖2+∆2) (A.82)

∆2 = ε‖v?‖2+∆ +
√
‖B0‖2F+‖v?‖22

(∆ + ε‖v?‖2
c

)
(A.83)

29

Since B0 has orthogonal rows (by assumption), B>0 has orthogonal columns, so ‖w?‖2= ‖B>0 v?‖2=
‖v?‖2. In addition, since B0 has k orthogonal rows, ‖B0‖F=

√
k. We also note that

√
‖B0‖2F+‖v?‖22 ≤

‖B0‖F+‖v?‖2=
√
k + ‖w?‖2. Since c ≤ 1, we have:

ε‖v?‖2+∆ ≤
(∆ + ε‖v?‖2

c

)
(A.84)

So for ∆2, up to constant factors we can ignore the ε‖v?‖2+∆ term—this means we get:

∆2 ≤ O
(

(
√
k + ‖w?‖2)

(∆ + ε‖w?‖2
c

))
(A.85)

Using the fact that
√
k + ‖w?‖2≤

√
k(1 + ‖w?‖) we get:

∆2 ≤ O
(√

k(1 + ‖w?‖)
(∆ + ε‖w?‖2

c

))
(A.86)

Then since ∆ + ε‖w?‖2≤ (1 + ‖w?‖2)(∆ + ε), we get:

∆2 ≤ O
(√

k(1 + ‖w?‖)2
(∆ + ε

c

))
(A.87)

Now for ∆3, first note that ε ≤ 2, since B? and B0 have orthogonormal rows so ‖B?−B0‖2≤ 2. This means
that ε‖w?‖2≤ ‖w?‖2, so ∆3 simplifies to:

∆3 ≤ O(∆2(‖w?‖2+∆2)) = O(∆2‖w?‖2+∆2) (A.88)

Substituting the bound for ∆2 into ∆3, we get:

∆3 ≤ O
(√

k‖w?‖2(1 + ‖w?‖)2
(∆ + ε‖w?‖2

c

)
+ k(1 + ‖w?‖)4

(∆ + ε‖w?‖2
c

)2)
(A.89)

For ∆4, we get:

∆4 ≤ O
(
‖w?‖32

∆

c
+ ‖w?‖2(

∆

c
)
)

(A.90)

Since ∆/c ≤ (∆ + ε)/c and ‖w?‖22≤ (1 + ‖w?‖2)2 we have for the final error ∆3 + ∆4:

∆3 + ∆4 ≤
√
kw(1 + ‖w?‖22)2

(∆ + ε

c

)
+ k(1 + ‖w?‖22)4

(∆ + ε

c

)2
(A.91)

Wrap up i.e., taking the contrapositive: So we’ve shown that if ‖B>? v? −Bt
ft
>
vtft‖22≤ ∆, then:

|(v>? v?)2 − (v>0 v?)
2| ≤ ∆ + ε

c
w(1 + ‖w?‖22)2

√
k +

(∆ + ε)2

c2
(1 + ‖w?‖22)4k (A.92)

We’d like to flip this around: suppose |(v>? v?)2 − (v>0 v?)
2| ≥ ϕ2 for some ϕ. To lower bound ‖B>? v? −

Bt
ft
>
vtft‖22, we simply take the contrapositive of what we have proved. Let ∆ be given by:

∆ = min
(c

w(1 + ‖w?‖22)2
√
k
ϕ2,

c√
(1 + ‖w?‖22)4k

ϕ
)
− ε (A.93)

In this case with some algebra, we can show that:

|(v>? v?)2 − (v>0 v?)
2| ≥ ϕ2 ≥ ∆ + ε

c
w(1 + ‖w?‖22)2

√
k +

(∆ + ε)2

c2
(1 + ‖w?‖22)4k (A.94)

30

To see this, we bound each of the terms in the RHS separately using our definition of ∆. Then, from the
contrapositive of what we proved (compare with Equation A.92, we get:

‖B>? v? −Bt
ft
>
vtft‖22≥ ∆ (A.95)

Finally, we can massage ∆ to combine terms and make it look slightly nicer:

∆ ≥ c√
k

min(ϕ,ϕ2/‖w?‖2)
(1 + ‖w?‖2)2

− ε (A.96)

Then applying Lemma A.7 we get the desired result. For even more interpretability, if ‖w‖2= 1 and ϕ is
bounded above by some constant, then you can think of ∆ as approximately c√

k
ϕ2 − ε. This completes the

proof.

A.3 LP vs. FT (OOD)

We now prove Theorem 3.5, which compares linear probing and fine-tuning in the linear overparameterized
setting, when the ID data lies in a lower dimensional subspace.

We first state a more precise version of Theorem 3.5—basically we fix all problem parameters except B0

(which limits to B?). To define the limit, we consider a sequence of pretrained feature extractors: {Bi
0}∞i=1.

We define the corresponding limit points of fine-tuning and linear probing when we start from the i-th
pretrained feature extractor. That is, let vfti(t), Bft

i(t) denote the parameters at time t of fine-tuning if
we initialize with v0, Bi

0 (see Equation 3.2 for the fine-tuning updates). Let v∞lp
i, Bi

0 be the linear probing
solution when initialized with v0, Bi

0 (see Equation 3.5 for the linear probing updates). We note that the LP
iterates converge to v∞lp

i, Bi
0 as a result of gradient flow on a convex problem.

Finally, Theorem 3.5 says that as the pretrained representations get better, linear probing does much better
than fine-tuning OOD:

Theorem A.8 (Formal statement of Theorem 3.5). In the linear overparameterized setting, under the ID
subspace assumption, fix the dimensions of the setting d, k,m, number of examples n, the ID subspace S, ID
distribution Pid, the distribution over the head v0, and the ground truth parameters v?, B?. Assume the non-
degeneracy conditions cos θmax(R∗, S) > 0 and cos θmax(R∗, S

⊥) > 0 where R∗ = rowspace(B?). Given
a sequence of pretrained feature extractors {Bi

0}∞i=1 with Bi
0 → B?, where the limit is in the pseudometric

given by Definition 3.1, the ratio of OOD errors of linear probing and fine-tuning converges in probability to
0:

Lood(v∞lp
i, Bi

0)

inft≥0 Lood(vfti(t), Bft
i(t))

p→ 0, as i→∞. (A.97)

The purpose of the infimum is to capture the fact that the bound holds for all times t for fine-tuning (and
therefore also for the limit v∞ft , B

∞
ft when it exists). Note that the ratio is a random variable because the

training data is sampled from Pid and the head is sampled (v0 ∼ N (0, σ2I) for some σ2).

Proof. Recall that we say a sequence of real-valued random variables converges in probability to 0 (written
as Xi

p→ 0) if for every ε′, δ > 0, for all large enough i (that is, for all i ≥ Ni for some Ni), we have:

P (|Xi| > ε′) ≤ δ. (A.98)

31

Accordingly, fix arbitrary ε′, δ > 0, and we will show that the ratio of errors is eventually smaller than ε′ with
probability at least 1− δ.

Lower bounding fine-tuning error: Since Bi
0 → B?, from Lemma A.10 we have that cos θmax(R

i, S⊥)→
cos θmax(R∗, S

⊥) where Ri = rowspace(Bi
0). Since cos θmax(R∗, S

⊥) > 0, this means that for all large
enough i we have:

cos θmax(R
i, S⊥) > cos θmax(R∗, S

⊥)/2. (A.99)

Next, from Lemma A.12, we have that with probability at least 1− δ/2, Head-Error(v0, v?) = |(v>0 v?)2 −
(v>? v?)

2| ≥ cδ for some cδ > 0. Plugging this into the fine-tuning bound in Theorem 3.3, this means that for
all large enough i with probability at least 1− δ/2:

inf
t≥0

√
Lood(vfti(t), Bft

i(t)) ≥ c′δ − d(Bi
0, B?), (A.100)

for some c′δ > 0. But since Bi
0 → B? we have d(Bi

0, B?) → 0 as i → ∞. So this means that for all large
enough i with probability at least 1− δ/2:

inf
t≥0

Lood(vft
i(t), Bft

i(t)) ≥ c′′δ , (A.101)

for some c′′δ > 0.

Upper bounding the linear probing error: SinceBi
0 → B?, from Lemma A.10 we have that cos θmax(R

i, S)→
cos θmax(R∗, S) and so since cos θmax(R∗, S) > 0, for all large enough i we have:

cos θmax(R
i, S) > cos θmax(R∗, S)/2. (A.102)

Plugging this into the RHS of Lemma A.14, Equation A.132, which upper bounds the OOD error of linear
probing, we get that for all large enough i, with probability at least 1− δ/2:

Lood(v∞lp
i, Bi

0) ≤ uδ(d(Bi
0, B?))

2, (A.103)

for some uδ > 0. Again since d(Bi
0, B?)→ 0 as i→∞, this means for all large enough i, with probability

at least 1− δ/2, d(Bi
0, B?) will be small enough so that:

Lood(v∞lp
i, Bi

0) ≤ c′′δ ε. (A.104)

Taking the ratio: So taking the ratio of the lower bound for fine-tuning, and upper bound for linear probing,
we get with with probability at least 1− δ:

Lood(v∞lp
i, Bi

0)

inft≥0 Lood(vfti(t), Bft
i(t))

≤ ε, (A.105)

as desired.

We now prove the Lemmas that we used in the above proof.

32

A.3.1 Convergence of principal angle

Theorem 3.5 assumes conditions on the angle between the perfect feature extractor B? and the ID subspace
S. However, fine-tuning and linear probing start from features B0 with some error, and do not get access
to B?. We show that if B0 and B? are close, then the angles between their rowspaces to a third subspace T
(which could be the the ID subspace S) is similar.

Lemma A.9. Given two feature extractorsB0, B? ∈ Rk×d with orthonormal rows, whereR0 = rowspace(B0), R∗ =
rowspace(B?), and a subspace T with dimension at least 1, we have:

|cos θmax(R0, T)− cos θmax(R∗, T)| ≤ d(B0, B?) (A.106)

Proof. Recall that k = dim(R0) = dim(R∗). Let r = min(k, dim(T)) and let F be a d-by-dim(T) matrix
with orthonormal columns that form a basis for T . We have, for arbitrary rotation matrix U ∈ Rk×k:

cos θmax(R0, T) = σr(B0F) (A.107)

= σr(UB0F) (A.108)

= σr(B?F + (UB0 −B?)F) (A.109)

≥ σr(B?F)− σ1((UB0 −B?)F) (A.110)

≥ σr(B?F)− σ1(UB0 −B?) (A.111)

= σr(B?F)− ‖UB0 −B?‖2 (A.112)

= cos θmax(R∗, T)− ‖UB0 −B?‖2 (A.113)

Here in the first step we used the definition of cos θmax (Definition 3.2), and the fact that B>0 has orthonormal
columns which form a basis for R0 (the rowspace of B0), so in Definition 3.2 we can subtitute E = B>0 .
To get Equation A.110 we used Weyl’s theorem, which bounds the singular value under perturbations:
σr(A + B) ≥ σr(A) − σ1(B). To get Equation A.111 we used the fact that ‖Fv‖2= ‖v‖ since F has
orthonormal columns.

Since this holds for all rotation matrices U , we can take the minimum over U to get:

cos θmax(R0, T) ≥ cos θmax(R∗, T)−min
U
‖UB0 −B?‖2= cos θmax(R∗, T)− d(Bi

0, B?) (A.114)

Since the relationship between B0 and B? are symmetric (and the distance d is symmetric), this gives us the
desired result:

|cos θmax(R0, T)− cos θmax(R∗, T)| ≤ d(B0, B?) (A.115)

Lemma A.10. Given a sequence of pretrained feature extractors {Bi
0}∞i=1 with Bi

0 → B?, where Bi
0, B? ∈

Rk×d have orthonormal rows, let Ri = rowspace(Bi
0), R∗ = rowspace(B?). Then for any subspace T , we

have:
cos θmax(R

i, T)→ cos θmax(R∗, T), as i→∞. (A.116)

Proof. This follows directly from Lemma A.9. Bi
0 → B? means d(Bi

0, B?)→ 0. Then from Lemma A.9:

|cos θmax(R
i, T)− cos θmax(R∗, T)| → 0, as i→∞ (A.117)

This means cos θmax(R
i, T)→ cos θmax(R∗, T) as i→∞

33

A.3.2 Bounding the head error

We prove a lower bound on Head-Error(v0, v?) = |(v>0 v?)2 − (v>? v?)
2|, which was a key term in the fine-

tuning lower bound (Theorem 3.3). Note that if the head is initialized as v0 = 0, then Head-Error(v0, v?) =
‖v?‖22= ‖w?‖22. In practice, the head is usually initialized randomly, for example normally distributed.
Intuitively, the head error is still high because we do not know which direction the head is pointing in, so most
of the time the initial (randomly sampled) head will be pointing in the wrong direction. If v0 ∼ N(0, σ2I)
can show that for any σ2, the head error will still typically be at least Ω(‖v?‖2) This is an illustrative result,
one can show similar results for other random initializations as well.

We first prove an anti-concentration lemma, which says that if u is univariate Gaussian, then it cannot be too
close to any particular constant a, no matter how the variance of the Gaussian is chosen.

Lemma A.11. For some universal constant c, given a > 0, for all ν2 if u ∼ N(0, ν2) then for all 0 ≤ δ ≤ 1:

P (|u− a| ≤ cδa) ≤ δ (A.118)

Proof. Consider δ such that δ ≤ 1/10. Then for all u with |u − a| ≤ δa, we have u ≥ 9a/10. For all
u ≥ 9a/10, the density f(u) is upper bounded (from the formula for the density of a Gaussian random
variable) by:

f(u) ≤ O(
1

v
exp

−92a2

2 · 102v2
) (A.119)

We can maximize this explicitly (e.g., use Mathematica or by taking the logarithm and then setting the
derivative to 0) and we get for some universal constant c′ ≥ 10 (it is OK to choose a larger universal constant
than needed):

f(u) ≤ c′

a
(A.120)

Since the density is less than c′/a and if |u− a| ≤ δa the size of the interval is 2δa, we get for all δ ≤ 1/10:

P (|u− a| ≤ δa) ≤ 2c′δa

a
= 2c′δ (A.121)

Now, we substitute δ′ = 2c′δ. We get for all δ′ ≤ 2c′/10:

P (|u− a| ≤ 1

2c′
δ′a) ≤ δ′ (A.122)

Since c′ ≥ 10, 2c′/10 ≥ 1, so the statement is true for all 0 ≤ δ′ ≤ 1.

We now bound the error in the head if the initialization is Gaussian. This bound holds for all initialization
variances σ2. Similar bounds can be shown for other (non-Gaussian) head initializations using similar
anti-concentration arguments.

Lemma A.12. For some universal constant c, for all v? ∈ Rk with v? 6= 0, σ ∈ R+, δ ∈ [0, 1], if
v0 ∼ N(0, σ2Ik), we have with probability at least 1− δ:

(Head-Error(v0, v?))2 := |(v>0 v?)2 − (v>? v?)
2| ≥ cδ(v>? v?)2 (A.123)

34

Proof. First note that Head-Error(v0, v?) = Head-Error(−v0, v?) and v0 is symmetric around 0 (v0 and −v0
have the same probability), and is almost surely not exactly 0. So without loss of generality, we can suppose
that v>0 v? ≥ 0.

Suffices to bound |v>0 v? − v>? v?|: We decompose the error:

|(v>0 v?)2 − (v>? v?)
2| = |v>0 v? − v>? v?|(|v>0 v? + v>? v?|) (A.124)

≥ |v>0 v? − v>? v?|(v>? v?)| (A.125)

So we bound |v>0 v? − v>? v?|.

v>0 v? is normally distributed: We note that v>0 v? is distributed as:

v>0 v? ∼ N(0, σ2v>? v?) (A.126)

In other words, a normal with mean 0, and variance σ21 = σ2v>? v?, and therefore standard deviation
σ1 = σ

√
v>? v?.

Apply Gaussian anti-concentration lemma: Then, from Lemma A.11, we have for some universal constant
c that with probability at least 1− δ:

|v>0 v? − v>? v?| ≥ cδv>? v? (A.127)

So substituting this back into Equation A.124, we get the desired result:

|(v>0 v?)2 − (v>? v?)
2| ≥ cδ(v>? v?)2 (A.128)

A.3.3 Upper bounding linear probing error

We showed a lower bound for the OOD error of fine-tuning in Theorem 3.3. To compare this with linear
probing, we prove an upper bound on the OOD error of linear probing.

For completeness we include an elementary lemma (note that the condition that the matrices are tall is
important for composing σmin, unlike for σmax, and we included this lemma to be careful about these
conditions):

Lemma A.13. Suppose we have two matrices A, B of shape (r, s) and (s, t) respectively, and they are tall
matrices so r ≥ s ≥ t. Then we have:

σmin(AB) ≥ σmin(A)σmin(B) (A.129)

Proof. For a tall matrix A, we have:

σmin(A) = min
‖x‖2≤1

‖Ax‖2 (A.130)

So we have:
σmin(AB) = min

‖x‖2≤1
‖ABx‖2≥ σmin(A)σmin(B) min

‖x‖2≤1
‖x‖2 (A.131)

And min‖x‖2≤1‖x‖2= 1 which completes the proof.

35

Lemma A.14. In the linear overparameterized setting, under the ID subspace assumption, fix arbitrary Pz .
Then there exists cδ such that with probability at least 1− δ, for all d, n,m, k, w?, feature extractors B?, B0,
and ID subspaces S with corresponding F (whose columns are orthonormal and form a basis for S), if
cos θmax(S,R) > 0, we have:√

Lood(v∞lp , B0) ≤
(cδ

cos θmax(S,R)

)2
d(B0, B?)||w ∗ ||2 (A.132)

If Pz is isotropic Gaussian so N (0, Im), then we derive a bound for cδ analytically: if n ≥ 5m and
n ≥ 10 log 1

δ then with probability at least 1− δ, the linear probing OOD error is upper bounded by:√
Lood(v∞lp , B0) ≤ O

(log(n/δ)

(cos θmax(R,S))2
d(B0, B?)‖w?‖2

)
(A.133)

Proof. From the ID subspace assumption, the data matrix X of shape (n, d) can be written as X = ZF>

where Z be a matrix of shape (n,m) with each row Zi sampled iid from Pz , and F is a matrix of shape
(d,m) whose columns are orthonormal and form a basis for the ID subspace S.

Let ε = ‖B?−B0‖2≤. We first prove the bounds for ε, in terms of d(B0, B?) and we later handle the fact that
the feature extractor distance involves the min over rotation matrices U : d(B0, B?) = minU‖UB0 −B?‖2.

Bounding key singular values: Before proceeding with the proof, we examine a key quantity XB>0 =
ZF>B>0 which comes up in the Hessian of the loss function. We will show that this is invertible almost
surely, and get a lower bound on its min singular value.

First, we examine the shapes of the matrices. ZF>B>0 has shape (n, d) where Z has shape (n,m) and
F>B>0 has shape (m, k). Since n ≥ m > k we have that Z and F>B>0 are tall matrices, and so from
Lemma A.13 we can write the min singular value of ZF>B>0 as:

σmin(ZF>B>0) ≥ σmin(Z)σmin(F>B>0) (A.134)

Now from the definion of the principal angle (Definition 3.2), we have:

σmin(F>B>0) = cos θmax(R,S) > 0. (A.135)

Since we assumed Pz has density in the ID subspace assumption, from Lemma 3 in Xie et al. (2021a) we get
that for some c′δ > 0 that depends on δ and Pz , with probability at least 1− δ:

σmin(Z) ≥ c′δ (A.136)

Note that this also means that σmin(ZF>B>0) > 0 and so XB>0 = ZF>B>0 has full rank k almost surely.
This also implies that B0X

>XB>0 is a matrix of shape (k, k) that is invertible almost surely.

Main proof Since B0X
>XB>0 is invertible almost surely, there is a unique global minimum (minimizing

over v) to the loss optimized by linear-probing:

arg min
v
‖XB>0 v −XB>? v?‖22= (B0X

>XB>0)−1B0X
>XB>? v? (A.137)

We can see this by noting that the loss function on the LHS is strongly convex in v since the Hessian
B0X

>XB>0 is invertible. Then, gradient flow converges to the unique minimizer on the RHS, so:

v∞lp = (B0X
>XB>0)−1B0X

>XB>? v? (A.138)

36

We now bound the square-root OOD error (taking the square root makes it easier to apply triangle inequalities),
starting with the definition:√

Lood(v∞lp , B0) = ‖B>? v? −B>0 v∞lp ‖2 (A.139)

≤ ‖(B>? v? −B>0 v?) + (B>0 v? −B>0 v∞lp)‖2 (A.140)

≤ ‖B>? v? −B>0 v?‖2︸ ︷︷ ︸
(1)

+ ‖B>0 v? −B>0 v∞lp)‖2︸ ︷︷ ︸
(2)

(A.141)

We bound each term on the RHS of the last line. For term (1):

‖B>? v? −B>0 v?‖2 ≤ σmax(B? −B0)‖v?‖2 (A.142)

≤ ε‖v?‖2 (A.143)

= ε‖w?‖2. (A.144)

Where we note that ‖v?‖2= ‖w?‖2 because w? = B>? v? where the rows of B? (columns of B>?) are
orthonormal.

Let Σ = X>X . For term (2), we first subtitute v∞lp and do some algebra (again noting that ‖v?‖2= ‖w?‖2)
to get:

‖B>0 v? −B>0 v∞lp ‖2 = ‖B>0 (B0ΣB
>
0)−1B0ΣB

>
0 v? −B>0 v∞lp ‖2 (A.145)

= ‖B>0 (B0ΣB
>
0)−1B0Σ(B0 −B?)>v?‖2 (A.146)

≤ σmax(B>0 (B0ΣB
>
0)−1B0Σ)σmax(B0 −B?)‖w?‖2 (A.147)

≤ σmax(B>0 (B0ΣB
>
0)−1B0Σ)ε‖w?‖2 (A.148)

≤ σmax(B0)
2σmax(Σ)

1

σmin(B0ΣB>0)
ε‖w?‖2 (A.149)

≤ σmax(B0)
2σmax(X)2

σmin(XB>0)2
ε‖w?‖2 (A.150)

=
σmax(B0)

2σmax(ZF>)2

σmin(ZF>B>0)2
ε‖w?‖2 (A.151)

≤ σmax(B0)
2σmax(Z)2

σmin(Z)2(cos θmax(R,S))2
ε‖w?‖2 (A.152)

(A.153)

Where in the first line we subtituted in the closed form for v∞lp from Equation A.137, and in the last line
we used the fact that σmax(ZF>) ≤ σmax(Z) since F> has orthonormal rows, and σmin(ZF>B>) =
σmin(Z) cos θmax(R,S) as explained in Equation A.134 and Equation A.135.

So it suffices to bound the quantities in the RHS. Since B0 has orthonormal rows, σmax(B0) = 1.

No Gaussian assumption: For the first part of the Theorem (Equation A.132 where we make no Gaussian
assumptions, but give a less quantitative bound), we just use the fact that σmax(Z) is upper bounded almost
surely, and σmin(Z) ≥ c′δ with probability at least 1− δ. This implies that for some cδ > 0 with probability
at least 1− δ: √

Lood(v∞lp , B0) ≤
(cδ

cos θmax(S,R)

)2
ε||w ∗ ||2, (A.154)

37

where ε = ‖B0 −B?‖2.

Gaussian assumption: For the second part of the Theorem (Equation A.133 where we assume Pz is
Gaussian), we use results in random matrix theory to lower bound and upper bound σmin(Z). For the lower
bound we use a result from Rudelson & Vershynin (2009) (see page 4, in the equation below Equation 1.11),
since Z ∈ Rn×m is a matrix with each entry sampled from N (0, 1), we get for all t > 0:

P(σmin(Z) ≤
√
n−
√
m− t) ≤ e−t2/2 (A.155)

With a bit of algebra, this gives us that with probability at least 1− δ:

σmin(Z) ≥
√
n−
√
m−

√
2 log

1

δ
(A.156)

We assumed n ≥ 5m and n ≥ 10 log 1
δ , so we get:

σmin(Z) ≥ O(
√
n) (A.157)

The upper bound is a standard matrix concentration bound—we use the high probability bound in Theorem
4.1.1 from Tropp (2015) (see Section 4.2.2 which calculates the variance statistic for rectangular Gaussian
matrices, also notice the square on the LHS below):

σmax(Z)2 ≤ O(n log
n

δ
) (A.158)

Substituting the lower and upper bounds on σmin(Z) into Equation A.145 we get:

‖B>0 v? −B>0 v∞lp ‖2≤ O
(log(n/δ)

(cos θmax(R,S))2
ε‖w?‖2

)
(A.159)

Substituting into equation A.139, we have:√
Lood(v∞lp , B0) ≤ O

(log(n/δ)

(cos θmax(R,S))2
ε‖w?‖2

)
, (A.160)

where ε = ‖B0 −B?‖2. Which completes the proof of the second part (Equation A.133).

Handling the rotation matrix U : We now handle the fact that the feature extractor distance involves the
min over rotation matrices U : d(B0, B?) = minU‖UB0−B?‖2. Let v∞lp (B0) denote the linear probing head
solution if we use a pretrained feature extractor B0. We first note that for any k-by-k rotation matrix U , we
have:

Lood(v∞lp (B0), B0) = Lood(v∞lp (UB0), UB0). (A.161)

This follows from using the closed form we derived above for v∞lp (B0) and some simple algebraic manipula-
tion (e.g., recall that U−1 = Y >):

(UB0)
>v∞lp (UB0) = (UB0)

>(UB0X
>XB>0 U

>)−1UB0X
>XB>? v? (A.162)

= B>0 U
>U(B0X

>XB>0)−1U>UB0X
>XB>? v? (A.163)

= B>0 (U>U)(B0X
>XB>0)−1(U>U)B0X

>XB>? v? (A.164)

= B>0 (B0X
>XB>0)−1B0X

>XB>? v? (A.165)

= B>0 v
∞
lp (B0) (A.166)

38

So the final predictors in both cases, (UB0)
>v∞lp (UB0) and B>0 v

∞
lp (B0) are identical. This means that the

OOD error Lood(v,B) = ‖B>v −B>? v?‖2 is the same in both cases.

This means that we can just take the min over all rotation matrices U (where the first step follows since the
identity matrix is a rotation matrix, and the second step is from Equation A.154):

Lood(v∞lp (B0), B0) ≤ min
U
Lood(v∞lp (UB0), UB0) (A.167)

≤ min
U

(c(δ)

cos θmax(S,R)

)2
‖UB0 −B?‖2||w ∗ ||22 (A.168)

=
(c(δ)

cos θmax(S,R)

)2
d(B0, B?)||w ∗ ||22, (A.169)

which is as desired. We repeat the same thing for Equation A.160 to get Equation A.133 in the Theorem
statement.

A.4 LP vs. FT (OOD), non-asymptotic result for Gaussian covariates

Theorem 3.5 showed an asymptotic result: if the error d(B0, B?) → 0, then linear probing (LP) achieves
better out-of-distribution (OOD) error than fine-tuning (FT). Here we give a more quantitative version of
Theorem 3.5 for Gaussian covariates. The result can be extended to the case there each entry of Pz is
independent and identically distributed, mean-zero, constant non-zero variance, but instead of Gaussian
is sub-Gaussian with constant sub-Gaussian variance / moment—this can be shown using Theorem 1.1
in Rudelson & Vershynin (2009), which is a different matrix concentration inequality.

We show that LP does better than FT out-of-distribution if the error is less than a specific quantity (in terms
of the representation dimension k, and the angles between the ID subspace S and the important pretrained
directions R∗ = rowspace(B?)).

Theorem A.15. In the linear overparameterized setting, under the ID subspace assumption, assume the
non-degeneracy conditions cos θmax(R∗, S) > 0 and cos θmax(R∗, S

⊥) > 0 where R∗ = rowspace(B?).
Suppose the covariates are generated from a Gaussian distribution on the ID subspace S, so Pz = N (0, Im).
Let ‖w?‖2 be a fixed constant. Given failure probability 1 ≤ δ > 0, for all w?, B0, n, d, k, ε, if n ≥ 5m, and
n ≥ 10 log 1

δ , if the error of the pretrained representation is not too high:

d(B0, B?) < O
(cos θmax(R∗, S

⊥)(cos θmax(R∗, S))2δ2√
k log(n/δ)

)
, (A.170)

then with probability at least 1− δ, the OOD error of linear probing is lower (better) than for fine-tuning at
all time steps t ≥ 0 in the fine-tuning trajectory:

Lood(v∞lp
i, Bi

0) < inf
t≥0

Lood(v∞lp
i, Bi

0). (A.171)

Proof. Let ε = d(B0, B?). We first note that the condition in Equation A.170 implies that d(B0, B?) <
O(cos θmax(R∗, S

⊥)) and d(B0, B?) < O(cos θmax(R∗, S)). This is because the cosine angles are between
0 and 1, δ is between 0 and 1, and k and n are at least 1. We now simplify and combine the linear probing
and fine-tuning bounds.

Let R0 = rowspace(B0). Warning: note that the Equation A.170 in the Theorem statement assumes

39

conditions on the angles between R∗ (corresponding to the optimal representation) and the ID subspace S.
However, our results that bounded the fine-tuning (Theorem 3.3) and linear probing (Lemma A.133) errors
require conditions on the angles between R0 (corresponding to the representation that linear probing and
fine-tuning use) and S. So we have to be careful about this distinction, and use Lemma A.9 to relate the two,
which we do below.

Fine-tuning: From Theorem 3.3, we get:√
Lood(vft(t), Bft(t)) ≥ O

(cos θmax(R0, S
⊥)√

k

min(ϕ,ϕ2/‖w?‖2)
(1 + ‖w?‖2)2

)
− ε. (A.172)

Where ϕ is the head-error, which we lower bounded in Lemma A.12—subtituting this bound and noting that
min(ϕ,ϕ2) = O(ϕ2), ‖v?‖2= ‖w?‖2 (which we assumed is a constant), this gives us:√

Lood(vft(t), Bft(t)) ≥ O
(cos θmax(R0, S

⊥)√
k

δ2
)
− ε (A.173)

Now, since d(B0, B?) = ε, we use Lemma A.9 to get that:

cos θmax(R0, S
⊥) ≥ cos θmax(R∗, S

⊥)− ε (A.174)

Subtituting this into Equation A.173, we get (notice the R∗ instead of R0 below):√
Lood(vft(t), Bft(t)) ≥ O

(cos θmax(R∗, S
⊥)− ε√

k
δ2
)
− ε (A.175)

Since ε ≤ O(cos θmax(R∗, S
⊥)), this can be simplified to:√
Lood(vft(t), Bft(t)) ≥ O

(cos θmax(R∗, S
⊥)√

k
δ2
)
− ε (A.176)

Linear probing: From Lemma A.133, we get:√
Lood(v∞lp , B0) ≤ O

(log(n/δ)

(cos θmax(R0, S))2
ε‖w?‖2

)
(A.177)

Again, we use Lemma A.9 to get:

cos θmax(R0, S) ≥ cos θmax(R∗, S)− ε (A.178)

Substituting into Equation A.177, and using the fact that ε ≤ O(cos θmax(R∗, S)), and since we assumed
‖w?‖2 is a constant, we get: √

Lood(v∞lp , B0) ≤ O
(log(n/δ)

(cos θmax(R∗, S))2
ε
)

(A.179)

Combining the two: We want to show that the OOD error of LP is less than for fine-tuning:

O
(log(n/δ)

(cos θmax(R∗, S))2
ε
)
≤ O

(cos θmax(R∗, S
⊥)√

k
δ2
)
− ε (A.180)

We can bring the ε to the LHS, so this is equivalent to showing:

O
(log(n/δ)

(cos θmax(R∗, S))2
ε
)

+ ε ≤ O
(cos θmax(R∗, S

⊥)√
k

δ2
)

(A.181)

40

Since log(n/δ) ≥ 1 and cos θmax(R∗, S))2 is between 0 and 1, this is equivalent to folding the ε inside the
big-oh on the LHS:

O
(log(n/δ)

(cos θmax(R∗, S))2
ε‖w?‖2

)
≤ O

(cos θmax(R∗, S
⊥)√

k
δ2
)

(A.182)

But assuming the condition on ε in Equation A.170 of the Theorem statement, this is easy to show with a bit
of algebra.

A.5 Principal angles are likely non-zero

In Theorems 3.3, 3.5, and 3.6, we assumed the cosine of the largest principal angle between the representations
and ID subspace (or complement of the ID subspace) was non-zero. For example, Theorem 3.5 assumed
the largest principal angle between R∗ = rowspace(B?) and the ID subspace S is non-zero, and similarly
for the angle between R∗ and S⊥. Having an angle of 0 is a degenerate condition. As an example, look at
Figure 2—here the input dimension d = 2, the representation dimension k = 1, and the ID subspace S has
dimension 1. The only way these angles can be 0 is if B>? is exactly in the same direction as S or S⊥, which
seems like too much of a coincidence. intuitively, if nature introduces even a small amount of randomness in
either the optimal representation or ID subspace, the angle will be non-zero.

This example was in two dimensions—to make this intuition a bit more formal in higher dimensions, we
prove a simple claim. Lemma A.16 shows that if the S is a randomly selected m dimensional subspace, then
the angles cos θmax(R∗, S) and cos θmax(R∗, S

⊥) are non-zero (and we get quantitative lower bounds on
them).

Lemma A.16. Let R be a fixed k dimensional subspace, and let S be a uniformly random m dimensional
subspace (formally, a uniform measure on the Grassmannian manifold) in Rd with m > k. Then with
probability at least 1− δ,

cos θmax(R,S) ≥
√
m−

√
k −

√
2 log 1

δ√
d log 2d

δ

(A.183)

In addition, we get that cos θmax(R,S) > 0 almost surely (with probability 1).

If m ≥ 5k and m ≥ 10 log 1
δ , then we get with probability at least 1− δ:

cos θmax(R,S) ≥ O
(√ m

d log 2d
δ

)
(A.184)

Recall that big-oh notation here means that the RHS is true for some universal constant (independent of any
other problem parameters).

Proof. Note that principal angles are invariant if we rotate R and S by the same rotation matrix U . That is, if
we let U ∈ Rd×d be a rotation matrix, and E ∈ Rd×k, F ∈ Rd×m have orthonormal columns which form a
basis for R and S respectively, then we have:

cos θmax(R,S) = σk(E
>F) = σk((UE)>(UF)) (A.185)

41

This symmetry means that we can fix S and instead consider R to be a uniform random k dimensional
subspace on the Grassmannian manifold. Without loss of generality, we can also fix S to be the span of the
first m standard basis vectors: (e1, . . . , em), where ei ∈ Rd has a 1 in the i-th entry and a 0 in every other
entry.

Equivalently, let MR be a d-by-k matrix, where each column is sampled independently from N(0, Id)—since
the columns of MR span a uniformly random k-dimensional subspace, we can let R be range of MR. This is
equivalent to sampling each entry of MR from N(0, 1).

Let c = cos θmax(R,S). From Lemma A.2, c can be written as:

c = min
r∈R,‖r‖2=1

‖F>r‖2= min
r∈R,‖r‖2≥1

‖F>r‖2 (A.186)

Since R is the range of MR, any r ∈ R can be written as r = MRλ for some λ ∈ Rk. We first show that
‖λ‖2 cannot be much smaller than ‖r‖2. This is because:

‖r‖2= ‖MRλ‖2≤ σmax(MR)‖λ‖2 (A.187)

So this gives us:

‖λ‖2≥
‖r‖2

σmax(MR)
(A.188)

So every r ∈ R can be written as MRλ where ‖λ‖2 is lower bounded as above.

We now simplify the definition of c, starting from Equation A.186.

c = min
r∈R,‖r‖2≥1

‖F>r‖2 (A.189)

≥ min
‖λ‖≥1/σmax(MR)

‖F>MRλ‖2 (A.190)

≥ min
‖λ‖≥1/σmax(MR)

σmin(F>MR)‖λ‖2 (A.191)

=
σmin(F>MR)

σmax(MR)
(A.192)

So now we want to lower bound the ratio of two random matrices. We note that F>MR is a matrix of size
(m, k) with each entry sampled independently from N(0, 1) (this is because F> simple selects the first m
rows of MR). MR is a matrix of size (d, k) with each entry sampled independently from N(0, 1).

Now, as in the Gaussian assumption step of the proof of Lemma A.14, we can apply standard matrix
concentration bounds (page 4, below Equation 1.11, in Rudelson & Vershynin (2009) for the bound on σmin,
and Theorem 4.1.1 in Tropp (2015) for the bound on σmax). We get that with probability at least 1− δ:

σmin(F>MR) ≥
√
m−

√
k −

√
2 log

1

δ
(A.193)

σmax(MR) ≤
√
d log

2d

δ
(A.194)

Note that we can use alternate bounds for σmin in Rudelson & Vershynin (2009) that are sometimes tighter.

42

For the ratio of the two, we get that with probability at least 1− δ, we have:

c ≥ σmin(F>MR)

σmax(MR)
≥
√
m−

√
k −

√
2 log 2

δ√
d log 2d

δ

(A.195)

For interpretability, ignoring log factors this is approximately:

c '

√
m−

√
k√

d
(A.196)

The result when m ≥ 5k and n ≥ 10 log 2
δ follows with simple algebra.

For the result where we show cos θmax(R,S) > 0 almost surely, we recall that F>MR is a matrix of size
(m, k) with each entry sampled independently from N(0, 1). Then applying Lemma 3 in Xie et al. (2021a),
we get that σmin(F>MR) > 0 almost surely. Since σmax(MR) is finite, this gives us cos θmax(R,S) > 0
almost surely.

In our case, the dimension of the ID subspace S is m, and the dimension of R∗ = rowspace(B?) is k, with
k < m and k < d − m. If S is a uniformly random m-dimensional subspace, then S⊥ is a uniformly
random d − m dimensional subspace. In this case, Lemma A.16 tells us that cos θmax(R∗, S) > 0 and
cos θmax(R∗, S

⊥) > 0 almost surely, and gives us quantitative lower bounds for these angles.

A.6 LP vs. FT (ID)

We prove Proposition 3.6, where we show that if the representation is imperfect, then fine-tuning does better
than linear probing, in-distribution.

Restatement of Proposition 3.6. In the linear overparameterized setting, under the ID subspace assump-
tion (Assumption 3.4), let R0 = rowspace(B0), and Raug = Span({w?} ∪ R0). Suppose w? 6∈ R0,
cos θmax(S,Raug) 6= 0, and that fine-tuning converges to a local minimum of its loss, then fine-tuning does
better ID almost surely: Lid(v∞ft , B

∞
ft) < Lid(v∞lp , B0) with probability 1 (over the randomness of the training

examples).

Proof. Fine-tuning gets 0 ID loss: It is well known from prior work (Laurent & von Brecht, 2018) that all
local minima are global for optimizing two layer linear networks under convex losses (which is our setting),
so if fine-tuning converges to a local minimum, it actually converges to a global minimum of the train loss.
Since there exists parameters that achieve 0 loss on the training data (namely, B?, v?), this means fine-tuning
gets 0 loss on the training data as well. So for all training examples x (that is, rows of X):

v∞ft
>B∞ft x = w>? x. (A.197)

Since the models are linear, this implies that fine-tuning gets all examples in the span of the training examples
correct as well. Since Pz has density, and the number of training examples n is at least as large as the ID
subspace dimension m, the training examples span the ID subspace almost surely, so fine-tuning gets every
example in x ∈ S correct almost surely, giving us:

Lid(v∞ft , B
∞
ft) = 0 (A.198)

43

Linear probing gets positive ID loss: Lemma A.19 shows that the ID error of linear probing is greater than
zero under the same assumptions as this Proposition, so

Lid(v∞lp , B0) > 0, (A.199)

which finishes the proof.

We now state and prove the Lemmas that we used to lower bound the ID error of linear probing.

Lemma A.17 gives conditions for when the projection F>w of a vector w is not contained in the projection
Range(F>E0) of the column space of a matrix E0.

Lemma A.17. Let w ∈ Rd be a vector and F ∈ Rd×m, E0 ∈ Rd×k, Eaug ∈ Rd×(k+1) have orthonormal
columns, with Range(Eaug) = Span({w} ∪ Range(E0)). If m > k, we have:

F>Eaug is full rank (A.200)
(a)
=⇒F>Eaug has higher rank than F>E0 (A.201)

(b)⇐⇒F>w 6∈ Range(F>E0) (A.202)

Proof. The proof of (a) is clear—F>Eaug ∈ Rm×(k+1) has rank k + 1 (since it is full rank and m ≥ k + 1),
but F>Eaug ∈ Rm×k has rank at most k and is therefore lower rank. The assumption that m > k is crucial
here.

For (b), let a1, . . . , ak be the columns ofE0, which form a basis for Range(E0). ThenF>a1, . . . , F>ak, F>w
spans Range(F>Eaug), while F>a1, . . . , F>ak spans Range(F>E0). So (notice the first list of vectors
has an additional F>w) this means that dim(Range(F>Eaug)) 6= dim(Range(F>E0)) iff F>w is linearly
independent from the rest, that is, F>w 6∈ Range(F>E0). Note that the rank of a matrix is the dimension of
its range (column space), that is, dim(Range(A)) = rank(A) so this is what we wanted to show.

The next Lemma says that if the projection F>w? of the optimal linear model w? onto the ID subspace S, is
not contained in the projection Range(F>E0) of the features, then linear probing incurs non-zero ID error.

Lemma A.18. In the linear overparameterized setting, under the ID subspace assumption, if F>w? 6∈
Range(F>E0), then Lid(v∞lp , B0) > 0, where E0 ∈ Rd×k and F ∈ Rd×m have orthonormal columns that
form a basis for the feature rowspace R0 = rowspace(B0) and ID subspace S respectively.

Proof. We prove the contrapositive. Suppose Lid(v∞lp , B0) = 0. This means that:

Lid(v∞lp , B0) = E
x∼Pid

[(v>? B?x− v∞lp
>B0x)2] = 0 (A.203)

Since the squared error is always non-negative, this means that v∞lp
>B0x = w>? x almost surely when x ∼ Pid

(recall that we defined w? = B>? v?). Recall Pid is defined as: first pick z ∈ Pz (which has density) and then
output x = Fz. Since Pz has density, this implies that we get all examples in the ID subspace S correct:

v∞lp
>B0x = w>? x for all x ∈ S. (A.204)

44

Since the columns of F form an orthonormal basis for S, this gives us (since each column of F is in S):

v∞lp
>B0F = w>? F. (A.205)

Note that the rows of B0 also form an orthonormal basis for R0 just like the columns of E0. So we can
choose v with v>E>0 = v∞lp

>B0. Then we have:

v>E>0 F = w>? F ⇔F>E0v = F>w? (A.206)

⇔F>w? ∈ Range(F>E0), (A.207)

where we took the transpose of both sides in the first step. This finishes the proof of the contrapositive.

Finally, Lemma A.19 combines Lemma A.17 and Lemma A.18 to give a more interpretable condition for the
ID error of linear probing: when the ID subspace S has some components along the optimal linear model
w? and the feature rowspace R0, then linear probing has non-zero error. This is measured in terms of the
principal angle cos θmax(Raug, S) between the ID subspace S and Raug which is the span of R0 combined
with w?. This angle will typically be non-zero—as an illustrative example, from Lemma A.16 we have that
this angle will be non-zero almost surely if the ID subspace S is a uniformly random subspace.

Lemma A.19. In the linear overparameterized setting, under the ID subspace assumption, let R0 =
rowspace(B0), and Raug = Span({w?} ∪R0). If w? 6∈ R0 and cos θmax(Raug, S) > 0, then Lid(v∞lp , B0) >
0.

Proof. After a bit of setup, the proof simply combines Lemma A.17 and Lemma A.18. If w? 6∈ R0, then
Raug has dimension k + 1. Let Eaug ∈ Rd×(k+1), F ∈ Rd×m have orthonormal columns which form a
basis for Raug and S respectively. We assumed cos θmax(Raug, S) = σmin(F>Eaug) > 0 which means
that F>Eaug is full rank. The ID subspace assumption assumes that m > k. So from Lemma A.17,
F>w? 6∈ Range(F>E0) where E0 ∈ Rd×k has orthonormal columns that form a basis for R0. Then from
Lemma A.18, Lid(v∞lp , B0) > 0.

A.7 LP-FT

We start by showing a simple proposition, that if the initial feature extractor is perfect, then linear probing
recovers the optimal weights.

Proposition A.20. In the overparameterized linear setting, let R = rowspace(B0). If B0 = B?, and
cos θmax(S,R) > 0, then Lood(v∞lp , B0) = 0 for all t.

Proof. We first show that because cos θmax(R,S) > 0, the training loss for linear probing is strongly convex.
Recall that the training loss is:

L̂(v,B) = ‖XB>v − Y ‖22 (A.208)

Linear probing keeps B fixed as B0 = B? and only tunes v, so we are interested in the Hessian of the loss
with respect to v evaluated at v,B?:

Hessv L̂(v,B?) = 2(B?X
>)(B?X

>)> (A.209)

45

For strong convexity, it suffices to show that the min singular value of the Hessian is bounded away from 0 by
a constant. Recall the definition of cos θmax(R,S). For some F whose columns form an orthonormal basis
for S, we have (since the rows of B? form an orthonormal basis for R):

σk(B?F) = cos θmax(R,S) > 0 (A.210)

Note that B?F is a k-by-n matrix, so if the k-th singular value is positive it must be full rank. Since the
columns of X> span F (since we defined F to be such that the columns of F are an orthonormal basis for S,
i.e. the rows of X), this means B?X> is rank k. But that means the Hessian (B?X

>)(B?X
>)> is rank k as

well. So the linear probing loss is strongly convex.

Since the loss is strongly convex, there is a unique minimizer, and gradient flow converges to that. However,
since we are in the well-specified setting, we know the training loss is:

L̂(v,B?) = ‖XB>? v −XB>? v?‖22 (A.211)

So v = v? achieves 0 loss and must be the (unique) minimizer. Therefore we have shown that linear probing
converges to the unique minimizer v∞lp = v?, which attains 0 loss, as desired.

Note that the entire proof works out if B0 = UB? for some rotation matrix U . In that case, the Hessian
becomes 2U(B?X

>)(B?X
>)>U> which is still rank k, since multiplying by square rotation matrices does

not change the rank. In this case, the minimizer of the loss is v = Uv?, since (UB?)
>(Uv?) = B>? v?. So

linear probing converges to v∞lp = Uv?, which achieves 0 loss, as desired.

Restatement of Proposition 3.7. Suppose we have perfect pretrained features B0 = UB? for some rotation
U . LetR0 = rowspace(B0). Under the non-degeneracy conditions cos θmax(R0, S) 6= 0, cos θmax(R0, S

⊥) 6=
0:

∀t, Lood(Bft(t)
>vft(t)) > 0, if v0 ∼ N (0, σ2I) is randomly initialized (FT), (A.212)

∀t, Lood(Bft(t)
>vft(t)) = 0, if v0 is initialized to v∞lp (LP-FT). (A.213)

Proof. We first use Proposition A.20, which in the proof we showed still works ifB0 = UB? for some rotation
matrix U (which doesn’t have to be identity). We get that v∞lp = Uv?. Then we have B>0 v

∞
lp = B>? v? = w?.

We now just show that the gradients with respect to the training loss L̂ at (v∞lp , B0) is 0, so gradient flow does
not update the parameters at all.

The training loss is:
L̂(v,B) = ‖XB>v −XB>? v?‖22 (A.214)

The derivative with respect to v is:

∂vL̂(v,B) = 2BX>(XB>v −XB>? v?) (A.215)

Then since B>0 v
∞
lp = B>? v?, we have:

∂vL̂(v∞lp , B0) = 0 (A.216)

Next, the derivative with respect to B is:

∂BL̂(v,B) = 2v(XB>v −XB>? v?)>X (A.217)

46

Table 3: OOD accuracies with 90% confidence intervals over 3 runs, for each of the three OOD domains in
the split of DomainNet used by Tan et al. (2020); Prabhu et al. (2021). LP does better than FT across the
board, and LP-FT does the best.

Real Painting Clipart

Fine-tuning 55.29 (0.52) 50.26 (0.98) 60.93 (2.15)
Linear probing 87.16 (0.18) 74.50 (0.58) 77.29 (0.12)

LP-FT 86.82 (0.51) 75.91 (0.73) 79.48 (0.90)

Then since B>0 v
∞
lp = B>? v?, we have:

∂BL̂(v∞lp , B0) = 0 (A.218)

So since both the derivatives are 0, we have ∂tvft(t) = 0 and ∂BBft(t) = 0, which means the parameters
don’t change at all—at all times t we have vft(t) = Uv? and Bft(t) = UB? which gives us zero OOD loss:
Lood(Bft(t)

>vft(t)) = 0 as desired.

B More information on experiments

In this Appendix, we include more details on the datasets, pretraining methods, and adaptation methods. We
also include the OOD accuracies for fine-tuning and linear-probing if we early stop and choose the learning
rate based on OOD data, where we see that linear-probing is still typically better than fine-tuning OOD.
Finally, we include results for additional baselines, pretraining models, and conclude with a discussion about
the effective robustness of LP-FT.

B.1 Dataset and method details

We use a diverse range of datasets and pretraining strategies.

• CIFAR-10 → STL: We fine-tune or linear probe on CIFAR-10 (Krizhevsky, 2009) and test on
STL (Coates et al., 2011). This is a benchmark used in domain adaptation papers (French et al., 2018).
CIFAR-10 and STL share 9 classes, so we follow the common practice of omitting the unshared class
in STL (which is the ‘monkey’ class) when reporting accuracies. We use a publicly available MoCo-v2
ResNet-50 checkpoint pretrained on unlabeled examples from ImageNet-1k (Russakovsky et al., 2015),
and fine-tune for 20 epochs.

• DomainNet: We use the dataset splits in Tan et al. (2020) which is also used by follow-up work, e.g.,
in Prabhu et al. (2021). This is different from the original version of the DomainNet dataset (Peng
et al., 2019), specifically Tan et al. (2020) note that some domains and classes contain many mislabeled
outliers, so they select the 40 most common classes from the ‘sketch’, ‘real’, ‘clipart’ and ‘painting’
domains. We use the ‘sketch’ domain as ID, and all other domains (‘real’, ‘clipart’, ‘painting’) as OOD,
and in the main paper we report the average accuracies across the OOD domains. In Table 3 we see
that the same trends hold for each of the three OOD domains. We use a CLIP (Radford et al., 2021)
pretrained ResNet-50 model, and fine-tune for 50 epochs (since this is a smaller dataset).

47

• Living-17 and Entity-30: We use a publicly available MoCo-v2 ResNet-50 checkpoint pretrained on
unlabeled examples from ImageNet-1k (Russakovsky et al., 2015), and fine-tune for 20 epochs. Note
that Living-17 and Entity-30 are subpopulation shifts derived from ImageNet, but the pretraining is
done on unlabeled data and does not see any OOD labels, following the pretraining and fine-tuning
strategy in Cai et al. (2021). Entity-30 is a relatively large dataset that contains around 140K training
examples.

• FMoW Geo-shift: We adapt the version of the dataset from (Koh et al., 2021). We use training data
from ‘North America’ to fine-tune or linear probe, and then evaluate on validation data from Africa
and Europe. We use a MoCo-TP (Ayush et al., 2020) checkpoint, pretrained on unlabeled FMoW
satellite images. We fine-tune for 50 epochs here since the ID training dataset is smaller (around 20K
examples).

• CIFAR-10→ CIFAR-10.1 (Recht et al., 2018): We follow the same protocols as CIFAR-10→ STL,
except we test on CIFAR-10.1.

• ImageNet: we linear probe or fine-tune on ImageNet (Russakovsky et al., 2015), and evaluate on
ImageNetV2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2020), ImageNet-A (Hendrycks
et al., 2019b), and ImageNet-Sketch (Wang et al., 2019). We use a CLIP pretrained ViT-B/16 (vision
transformer), the largest publicly available CLIP model (Radford et al., 2021). We ran fine-tuning for
10 epochs, linear probing for 10 epochs. To equalize the runtime for LP-FT, we ran the linear probing
stage for 5 epochs, and then the fine-tuning stage for 5 epochs. We used a batch size of 128 for all
methods.

Tuning for ImageNet experiments. We swept over three learning rates for fine-tuning (0.0001, 0.0003,
0.001) and linear probing (0.01, 0.03, 0.1)—as is standard we use larger learning rates for linear probing. For
LP-FT, we swept over 3 learning rates (0.01, 0.03, 0.1) for the 5-epoch linear probing step. We took the run
that had the best ImageNet (ID) validation accuracy, and then swept over 3 learning rates (0.00001, 0.00003,
0.0001) for the 5-epoch fine-tuning step—we use a lower learning rate for LP-FT since the experiments on
the other datasets suggested that the optimal learning rate that maximizes ID validation accuracy for LP-FT
is smaller. We did not find the comparisons to be particularly sensitive to learning rate choice.

Augmentations for ImageNet experiments. We used augmentations for fine-tuning, and no augmentations
for linear probing, following Kornblith et al. (2019). This might raise a question of whether linear probing
and LP-FT do better OOD because of the lack of augmentations. So as an ablation we also tried fine-tuning
without augmentations, however that led to worse accuracy (than fine-tuning with augmentations) both ID
and OOD. We now give details on the preprocessing and augmentations that we used. On ImageNet, for
linear probing and LP-FT, we used no augmentations—we just resized each image so that the smaller side
has size 224 with bicubic interpolation, and then center-crop to a 224-by-224 image. For fine-tuning, we used
augmentations: specifically we use RandomResizedCrop in TorchVision, with the default arguments and
setting the size of the crop to 224, and then apply a random horizontal flip.

Notes on pretrained model choice. We note that our results say that the pretraining has to be good (e.g., at
least get reasonable accuracy ID) for linear probing to outperform fine-tuning OOD. So, for example, we use
a model pretrained on unlabeled satellite images for the satellite image dataset—if we pretrain the model on
ImageNet, we expect that fine-tuning might do better. Similarly, for DomainNet we use a CLIP pre-trained

48

Table 4: OOD accuracies with 90% confidence intervals over 3 runs, when fine-tuning gets to choose
learning rate and early stop, and linear probing gets to choose `2 regularization weights, on OOD data. We
see that linear probing still typically does better OOD (the only flip from before is on FMoW).

CIFAR-10.1 STL Ent-30 Liv-17 DomNet FMoW

FT 92.27 (0.36) 85.97 (0.38) 64.09 (0.19) 78.63 (0.53) 59.43 (2.49) 40.23 (3.12)
LP 82.67 (0.22) 86.53 (0.01) 69.15 (0.13) 82.39 (0.14) 79.91 (0.24) 37.12 (0.01)

ImNetV2 ImNet-R ImNet-Sk ImNet-A Average

FT 71.5 (-) 52.4 (-) 40.5 (-) 27.8 (-) 61.3
LP 69.7 (-) 70.9 (-) 46.4 (-) 46.1 (-) 67.1

model, which is pretrained on the very large WebImageText dataset, and sees a variety of photo and sketch
like images. Pretraining on ImageNet alone does not lead to high accuracies on DomainNet (features are not
very good), so we do not necessarily expect linear probing to outperform fine-tuning with these lower quality
features (for example, see the MoCo ablation in our main paper where we used a worse pretrained model,
and fine-tuning did better OOD).

Sanity check of fine-tuning implementation. As a sanity check of our implementation, fine-tuning did
substantially better than training from scratch on all datasets (both ID and OOD) and matched existing
fine-tuning numbers where available (e.g. ResNet50 on CIFAR-10 (Chen et al., 2020b) and Entity-30 (Cai
et al., 2021)). Fine-tuning and linear probing also both do substantially better than training from scratch, ID
and OOD, across the datasets. For example, on Living-17, training from scratch gets 89.3% ID and 58.2%
OOD (Santurkar et al., 2020) which is over 5% worse ID and nearly 20% worse OOD, than all the adaptation
methods. For reference linear probing gets 96.5% ID and 82.2% OOD, and fine-tuning gets 97.1% ID and
77.8% OOD. This is even though training from scratch was run for 300 epochs, which is 15 times longer than
fine-tuning and LP-FT.

B.2 Target early stopping

In the main paper, one ablation we mention is early stopping each fine-tuning method and choose the best
learning rate based on target validation accuracy. As expected, fine-tuning does improve a little, but linear
probing (average accuracy: 67.1%) is still better than fine-tuning (average accuracy: 61.3%). Table 4 shows
the full results for all datasets.

B.3 Feature change

We examine how much the features changed for ID and OOD examples in each dataset. Specifically, for each
dataset, for each input example in the held out validation set, we computed the Euclidean distance of the
ResNet-50 features before and after fine-tuning. We averaged these numbers across the dataset, showing the
results for ID validation examples in Table 5, and for OOD examples in Table 6.

The feature distortion theory predicts that the features for ID examples change more than for OOD examples.
This bears out in 9 out of 10 cases, that is all cases except for FT on FMoW. To see this, compare each cell in
Table 5 with the corresponding cell in Table 6—the former is higher in 9 out of 10 cases.

49

Table 5: In-distribution (ID): Average distance that features move before and after fine-tuning or LP-FT,
multiplied by 100 to make things easier to read. For linear probing the numbers are all 0, since the features
are not tuned. As predicted by our theory, we see that features for ID examples (this table) move more than
features for OOD examples (Table 6). Both sets of features change substantially less for LP-FT. As usual we
show 90% confidence intervals over three runs.

CIFAR-10 Entity-30 Living-17 DomainNet FMoW

FT 2.23 (0.03) 3.05 (0.02) 1.88 (0.01) 207.6 (12.31) 4.87 (0.15)
LP-FT 0.07 (0.00) 0.03 (0.01) 0.11 (0.01) 0.19 (0.03) 0.57 (0.19)

Table 6: Out-of-distribution (OOD): Average distance that features move before and after fine-tuning or
LP-FT, multiplied by 100 to make things easier to read. For linear probing the numbers are all 0, since the
features are not tuned. As predicted by our theory, we see that features for ID examples (Table 5) move more
than features for OOD examples (this table). Both sets of features change substantially less for LP-FT. As
usual we show 90% confidence intervals over three runs.

STL Entity-30 Living-17 DomainNet FMoW

FT 1.70 (0.04) 2.60 (0.02) 1.67 (0.01) 159.97 (16.23) 5.62 (0.30)
LP-FT 0.04 (0.00) 0.02 (0.00) 0.09 (0.01) 0.18 (0.02) 0.54 (0.17)

The feature distortion theory says that this large feature change is caused because the head is randomly
initialized—since the head needs to be updated by a large amount, the feature extractor is also updated a lot
because the updates are coupled. Our theory predicts that if the head is initialized via linear probing then the
feature extractor should change a lot less for both ID and OOD examples. As predicted by the theory, across
all the datasets in Table 5 and Table 6, the features change a lot less for LP-FT than for FT. For example, on
CIFAR-10, the features change 30× less for LP-FT than for FT.

These results suggest that fine-tuning underperforms OOD, and LP-FT does well ID and OOD, for the reasons
predicted by the feature distortion theory.

B.4 Additional architectures, fine-tuning methods

The main contributions of our paper are conceptual understanding and theory. However, to strengthen the
empirical investigation we ran two additional models (a CLIP vision transformer and CLIP ResNet-50), as
well as three additional fine-tuning heuristics. We focus on the Living-17 dataset because some of these
ablations require lots of compute and can take a long time to run on all the datasets.

Architectures and pretraining source: In the main paper, we showed results when initializing with a
MoCo-v2 ResNet-50 model pretrained on unlabeled ImageNet examples. Here we examine how the results
change when we 1. Use a ResNet-50 model pretrained on CLIP’s WebImageText dataset (Table 7), and,
2. Use a much larger vision transformer model (ViT-B/16) pretrained on CLIP’s WebImageText dataset
(Table 8)—this is the largest publicly available CLIP model at the time of writing. We see that similar findings
to our main paper hold—fine-tuning does better than linear probing ID, but does worse than linear probing

50

Table 7: ID and OOD accuracies on Living-17 using a CLIP ResNet-50 model pretrained on the WebImage-
Text dataset, instead of unlabeled ImageNet examples. Similar findings hold—here fine-tuning does similarly
to linear probing ID, but does worse than linear probing OOD. LP-FT does better than both ID, and closes
86% of the gap OOD. As usual we show 90% confidence intervals over three runs.

ID OOD

LP 94.7 (0.2) 78.6 (0.5)
FT 94.7 (0.1) 67.3 (0.8)

LP-FT 95.6 (0.2) 77.0 (0.6)

Table 8: ID and OOD accuracies on Living-17 using a CLIP ViT-B/16 (Vision Transformer) model pretrained
on the WebImageText dataset, instead of unlabeled ImageNet examples. This is the largest publicly available
CLIP model that we could find. The same findings hold—fine-tuning does better than linear probing ID, but
does worse than linear probing OOD. LP-FT does better than both ID, and closes 75% of the gap OOD. As
usual we show 90% confidence intervals over three runs.

ID OOD

LP 97.5 (0.1) 87.6 (0.5)
FT 97.8 (0.0) 81.5 (2.1)

LP-FT 98.0 (0.0) 86.1 (0.1)

(‘underperforms’) OOD. Finally, LP-FT does better than both methods ID, and closes most (75%-90%) of
the gap OOD.

These results are from early stopping on ID validation data. If we early stop on OOD validation data, LP-FT
achieves 87.9±0.4% OOD accuracy, and LP gets 88.3±0.2% OOD accuracy and here there is no statistically
significant difference between the two. On the other hand, even if we early stop on OOD validation data,
fine-tuning gets 84.4± 0.5% OOD accuracy which is lower.

Fine-tuning heuristics: Transfer learning (initializing with a pretrained model, and then adapting it to a
downstream task) is the standard way to build modern ML models, because it improves accuracy and speeds
up training. Since this paradigm is so widely used, there are many heuristics people use when training their
models (as mentioned in the main paper, LP-FT has sometimes been used as a heuristic as well, although not
in the context of OOD). We showed that LP-FT is one way to do well ID and OOD, but we hope that our
theory leads to even better fine-tuning algorithms.

In this section, we compare LP-FT with additional fine-tuning heuristics: using a larger learning rate for the
head layer, regularizing the features towards their original values, and side-tuning (Zhang et al., 2020) where
we freeze the features but add a side-network.

The intuitions from our theory suggest two other potential ways to improve OOD accuracy: 1. We could use
a higher learning rate on the linear layer, so that the linear layer learns quicker and the features do not get as
distorted, and 2. We could regularize the weights of the feature extractor towards the pretrained initialization,
to prevent feature distortion. These heuristics have been used in prior work on fine-tuning as well, for example

51

method 2 corresponds to L2-SP in (Li et al., 2018).

We run these two approaches on Living-17. For approach (1), we use a 10× higher learning rate for the
linear layer, and for approach (2) we regularize the Euclidean distance between the current feature extractor
weights (so ignoring the linear head) from the pretrained weights, multiplying by a hyperparameter λ. We
grid search over the same learning rates as fine-tuning for both methods, and in addition for (2) we grid
search over λ ∈ {1.0, 0.1, 0.01, 0.001, 0.0001}, so this amounts to sweeping over 30 hyperparameters as
opposed to just 6 for fine-tuning and LP-FT. For each hyperparameter configuration we run 3 replication runs
with different seeds to reduce the estimation variance, and early stop and model select using ID data just like
for fine-tuning and LP-FT. Just like for fine-tuning and LP-FT, we use a cosine learning rate decay and train
for the same number of epochs. Indeed, we find that both (1) and (2) are able to close part of the OOD gap
between fine-tuning and linear-probing. However, LP-FT does better than both methods ID and OOD. The
full results are in Table 9.

We also compare with another method, (3) side-tuning (Zhang et al., 2020). Side-tuning freezes the pretrained
features g(x) but trains another ‘side’ model s(x), and then outputs v>(g(x) + h(x)), where the head v and
the parameters of the side model s are tuned. The intuition for trying this is that side-tuning also preserves
the pretrained features which likely reduces feature distortion. In the supplementary of Zhang et al. (2020)
they use a ResNet-50 for both the original model and the side model in their vision experiments, so we do
the same. We sweep over twelve learning rates (3 · 10−5, 1 · 10−4, 3 · 10−4, . . . , 1.0, 3.0, 10.0), with three
replication runs with different seeds for each learning rate. Just like for fine-tuning and LP-FT, we use a
cosine learning rate decay and train for the same number of epochs, and we early stop and model select
using ID validation data. We checked that the best learning rate was not at the boundary of the grid search.
On OOD, side-tuning (81.0%) improves over fine-tuning (77.7%). However, side-tuning doesn’t do as well
ID. LP-FT did better ID and OOD. This could be because side-tuning does not get to refine the pretrained
features for the ID task—while the side-network is powerful enough to learn good features, it is initialized
randomly and effectively trained from scratch, so it might not be able to learn these good features on the
limited sized training dataset (around 40K examples). The results are also in Table 9.

We also include results for training from scratch in Table 9—these results are from Santurkar et al. (2020).
Note that training from scratch was done for 450 epochs, whereas fine-tuning was done for 20 epochs. As a
sanity check, all the fine-tuning methods and linear probing do substantially better than training from scratch,
both ID and OOD.

B.5 Discussion of effective robustness

LP-FT gets higher OOD accuracy than fine-tuning, but it sometimes gets higher ID accuracy as well. Taori
et al. (2020) and Miller et al. (2021) show that OOD accuracy can often be correlated with ID accuracy, and
suggest examining the effective robustness: intuitively the extra gain in OOD accuracy than can be predicted
from improved ID accuracy alone. Is LP-FT simply better in-distribution, or does it have higher effective
robustness as well?

We start out by noting that linear probing clearly has higher effective robustness in most of our datasets.
Linear probing does worse than fine-tuning ID so based on the effective robustness framework we would
expect it to do worse than fine-tuning OOD as well. However, linear probing does better than fine-tuning
OOD and therefore has higher effective robustness.

52

Table 9: ID and OOD accuracies on Living-17 including three additional fine-tuning heuristics, where we (1)
Use a 10× larger learning rate for the head, or (2) Regularize the Euclidean distance of the feature extractor
weights to the pretrained initialization, and (3) side-tuning where we freeze the pretrained model but add
a side network that is fine-tuned. As a sanity check, all methods do better than training from scratch ID
and OOD, and we show 90% confidence intervals over three runs. As per the intuitions from the feature
distortion theory, these methods do mitigate feature distortion to some extent and improve OOD accuracy
over fine-tuning. LP-FT does better than all methods ID and OOD—nonetheless, we believe that LP-FT is
just the first step and hope that our theory can be used to inspire or derive better algorithms.

ID OOD

Scratch 92.4 (1.3) 58.2 (2.4)
LP 96.5 (0.1) 82.2 (0.2)
FT 97.1 (0.1) 77.7 (0.7)

FT (10x Linear) 97.2 (0.2) 80.4 (0.3)
FT (regularized) 97.1 (0.2) 80.0 (0.4)

Side-tuning 95.5 (0.4) 81.0 (0.7)
LP-FT 97.8 (0.1) 82.6 (0.3)

The solutions found by LP-FT also appear to have higher effective robustness than fine-tuning, because when
they have similar ID accuracy, LP-FT does much better OOD. For a few pieces of evidence:

1. On CIFAR-10→ STL, there is no statistically significant difference between FT and LP-FT on ID, but
LP-FT gets 8% higher accuracy OOD in Table 2.

2. If we look at checkpoints earlier in training for CIFAR-10→ STL we can exactly equalize ID accuracy
and compare OOD accuracies. In-distribution, LP-FT and FT both get 97.2% accuracy, but OOD,
LP-FT (90.2%) is much better than FT (81.8%).

3. Finally, in Figure 3 we plot the OOD accuracy against the ID accuracy for fine-tuning and LP-FT
on Living-17. We plot these for three different pretrained models (CLIP ResNet-50, CLIP ViT-B/16,
MoCo-V2 ResNet-50). We see that the ID-OOD line for LP-FT is above the line for FT indicating
effective robustness.

Note that higher effective robustness does not mean a method is better. For example, a method A can have
higher effective robustness B by doing a lot worse in-distribution even when they have the same OOD
accuracy. In this case, A is clearly inferior since it does worse ID and same OOD, but has higher effective
robustness because of its worse ID accuracy.

We believe the finding that linear probing and LP-FT has higher effective robustness than fine-tuning when
the distributon shift is large is particularly interesting because Taori et al. (2020) and Miller et al. (2021)
show that it is uncommon for methods to have higher effective robustness. In our case linear probing and
LP-FT appear to consistently have higher effective robustness which suggests that with good transfer learning
methods we can get both high in-distribution accuracy and higher effective robustness.

53

Figure 3: We plot the OOD accuracy against ID accuracy on Living-17 for the three methods we consider,
when we start from three different pretrained models (CLIP ResNet-50, CLIP ViT-B/16, MoCo-V2 ResNet-
50). The line for linear probing and LP-FT lie above fine-tuning which suggests that they have higher effective
robustness. Each point is produced by averaging over three random seeds.

C Additional related work

Theoretical analysis of overparameterized models. Modern deep learning presents an interesting paradigm
for theoretical analysis where the number of parameters is much larger than the number of training points.
The model class is highly expressive and several solutions obtain zero training loss even in the presence of
noise. Such overparameterized models have received a lot of interest recently especially with a focus on
understanding “benign overfitting” or the phenomenon where fitting noisy training data to zero loss leads to
classifiers that generalize well. By analyzing different linear overparameterized settings Belkin et al. (2019);
Hastie et al. (2019); Bartlett et al. (2019); Muthukumar et al. (2020); Mei & Montanari (2019); Bibas et al.
(2019) study various statistical properties such as the “double descent curve” in addition to benign overfitting.
One important aspect of overparameterized models is that there is no unique minimizer of the training loss.
We need some inductive bias which is typically implicit via the optimization procedure. Prior works study the
statistical properties of the explicit inductive bias of minimum norm interpolation. In contrast, we study the
effect of gradient based optimization from a particular pretrained initialization where we effectively capture
the exact implicit inductive bias of gradient based fine tuning.

54

	1 Introduction
	2 Setup
	3 Theory: fine-tuning distorts pretrained features
	3.1 Linear overparameterized setting
	3.2 Fine-tuning distorts pretrained features
	3.2.1 Key intuitions
	3.2.2 General result on the OOD error of fine-tuning

	3.3 Linear probing vs. fine-tuning
	3.4 Linear probing then fine-tuning: a simple variant to mitigate tradeoffs

	4 Experiments
	4.1 Linear probing vs. fine-tuning
	4.2 Linear probing then fine-tuning (LP-FT)
	4.3 Examining the feature distortion theory

	5 Related work and discussion
	6 Conclusion.
	A Proofs for Section 3
	A.1 Preliminaries on Important Notations and Principal Angles
	A.2 Feature distortion theorem
	A.3 LP vs. FT (OOD)
	A.3.1 Convergence of principal angle
	A.3.2 Bounding the head error
	A.3.3 Upper bounding linear probing error

	A.4 LP vs. FT (OOD), non-asymptotic result for Gaussian covariates
	A.5 Principal angles are likely non-zero
	A.6 LP vs. FT (ID)
	A.7 LP-FT

	B More information on experiments
	B.1 Dataset and method details
	B.2 Target early stopping
	B.3 Feature change
	B.4 Additional architectures, fine-tuning methods
	B.5 Discussion of effective robustness

	C Additional related work

