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Abstract

Many instances of algorithmic bias are caused by distributional shifts. For exam-
ple, machine learning (ML) models often perform worse on demographic groups
that are underrepresented in the training data. In this paper, we leverage this con-
nection between algorithmic fairness and distribution shifts to show that algorith-
mic fairness interventions can help ML models overcome distribution shifts, and
that domain adaptation methods (for overcoming distribution shifts) can mitigate
algorithmic biases. In particular, we show that (i) enforcing suitable notions of in-
dividual fairness (IF) can improve the out-of-distribution accuracy of ML models
under the covariate shift assumption and that (ii) it is possible to adapt representa-
tion alignment methods for domain adaptation to enforce individual fairness. The
former is unexpected because IF interventions were not developed with distribu-
tion shifts in mind. The latter is also unexpected because representation alignment
is not a common approach in the individual fairness literature.

1 Introduction

Although algorithmic bias and distribution shifts are often considered separate problems, there is a
recent body of empirical work that shows many instances of algorithmic bias are caused by distri-
bution shifts. Broadly speaking, there are two ways distribution shifts cause algorithmic biases [1]:
(i) The model is trained to predict the wrong target; (ii) The model is trained to predict the correct
target, but its predictions are inaccurate for demographic groups that are underrepresented in the
training data.

From a statistical perspective, the first type of algorithmic bias is caused by concept or posterior
drift between the training data and the real-world. This leads to a mismatch between the model’s
predictions and actual data. This type of algorithmic bias is also known as label choice bias [2]. The
second type of algorithmic biases arises when ML models are trained or evaluated with non-diverse
data, causing the models to perform poorly on underserved groups. This type of algorithmic bias
is caused by a covariate shift between the training data and the real-world data. In this paper, we
mostly focus on algorithmic biases caused by covariate shift. The overlap between the problems of
algorithmic bias and distribution shift suggests two questions:

1. Is it possible to overcome distribution shifts with algorithmic fairness interventions?
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2. Is it possible to mitigate biases caused by distribution shifts with domain adaptation methods?

For a concrete example, consider building an ML model to predict a person’s occupation from their
biography. For this task, Yurochkin et al. [3] showed that ML models trained on top of pre-trained
language models without any algorithmic fairness intervention can be unfair: they can change pre-
diction (e.g., from attorney to paralegal or vice versa), when the name and gender pronouns are
changed in the input biography. This is a violation of individual fairness (IF), in part caused by
underrepresentation of female attorneys in the train (source) data. Consequently, this model under-
performs on female attorneys, in particular when female attorneys are better represented in the target
domain. This is a type of distribution shift known as subpopulation shift in the domain adaptation
literature [4]. In this case, enforcing IF will not only result in a fairer model, but can also improve
performance in the target domain, i.e., solve the domain adaptation problem.

Now, under the same source and target domains, consider applying a domain adaptation (DA)
method that matches the distributions of representations on the domains (see Appendix G for a
brief review of DA and algorithmic fairness under distribution shifts). Assuming class marginals are
the same1, i.e., source and target have the same fraction of attorneys, any differences between the
source and the target distribution are due to different fractions of male to female attorneys. Learning
a feature (representation) extractor that is invariant to gender pronouns and names will align the
two domains and result in a model that is individually fair. For group fairness, Schumann et al. [5]
and Creager et al. [6] show that it is possible to leverage DA algorithms to enforce group fairness.
The goal of this paper is to complement these results by precisely characterizing the cases in which
enforcing IF achieves domain generalization and vice a versa. Our contributions can be summarized
as:

1. We show that methods designed for IF can help ML models adapt/generalize to new domains,
i.e., improve the accuracy of the trained ML model on out-of-distribution samples.

2. Conversely, we show that DA algorithms that align the feature distributions in the source and
target domains can be used to improve IF under certain probabilistic conditions on the features.

We verify our theory on the Bios [7] and the Toxicity [8] datasets: enforcing IF via the methods
of Yurochkin et al. [3] and Petersen et al. [9] improves accuracy on the target domain, and DA
methods [10]–[12] trained with appropriate source and target domains improve IF.

2 Overcoming Distribution Shift by Enforcing Individual Fairness

The goal of individual fairness is to ensure similar treatment of similar individuals. Dwork et al. [13]
formalize this notion using L-Lipschitz continuity of an ML model f : X → Y:

dY(f(x), f(x
′)) ≤ LdX (x, x′) (2.1)

for all x, x′ ∈ X . Here, dY is the metric on the output space quantifying the similarity of treatment
of individuals, and dX is the metric on the input space quantifying the similarity of individuals.

Algorithms for enforcing IF are similar to algorithms for domain adaptation/generalization. For
example, adversarial training/distributionally robust optimization can not only enforce IF [3], [14],
but can also be used for training ML models that are robust to distribution shifts [11], [15]. This
similarity is more than a mere coincidence: the goal in both enforcing IF and domain adapta-
tion/generalization is ignoring uninformative dissimilarity. In IF, we wish to ignore variation among
inputs that are attributed to variation of the sensitive attribute. In domain adaptation/generalization,
we wish to ignore variation among inputs that are attributed to the idiosyncracies of the domains.
Mathematically, ignoring uninformative dissimilarity is enforcing invariance/smoothness of the ML
model among inputs that are dissimilar in uninformative ways. For example, (2.1) requires the model
to be approximately constant on small dX -balls.

In this section, we exploit this connection between IF and domain adaptation/generalization to show
that enforcing IF can improve accuracy in target domain under covariate shift if the regression func-
tion is individually fair. In order words, if the inductive bias from enforcing IF is correct, then
enforcing IF improves accuracy in the target domain. More concretely, we consider the task of

1This setting corresponds to a domain shift assumption common in the DA literature.
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adapting an ML model from a source domain to a target domain. We have ns labeled samples from
the source domain {(xs,i, ys,i)}

ns

i=1 and nt unlabeled samples from the target domain {xt,i}
nt

i=1. Our

goal is to obtain a model f̂ ∈ F that has comparable accuracy on the source and target domains.

We assume the regression function f0(x) , E
[
yi | xi = x

]
in the source and target domains are

identical.
ye,i = f0(xe,i) + ǫe,i, e ∈ {s, t}, (2.2)

where ǫi’s are exogenous error terms with mean zero and variance σ2
e . This is a special case of

distribution shift called covariate shift [16]. The covariate shift problem is most challenging when
the model class is mis-specified (i.e., f0 /∈ F ) and this is the primary focus of this paper. As an
example, consider the Inclusive Images Challenge [17]. Publicly available image datasets often
lack geo-diversity. Thus, ML models trained on such datasets tend to make mistakes on images
from underrepresented countries. As a concrete example, while brides in western countries typically
wear white dresses at wedding ceremonies, brides in non-western countries may not. An ML model
trained on images from mostly western countries may not recognize brides from other parts of the
world that are not wearing white dresses. Although there is a function (on images) that recognizes
brides from non-western countries (e.g., the function humans implicitly use to recognize brides), the
ML model does not learn this function because either the function is not in the model class and/or
the inductive bias of the learning algorithm leads the algorithm to pick a different function (i.e.,
inductive bias of learning algorithm is mis-specified).

To warm up, we consider the transductive (learning) setting before moving on to the inductive setting.
Recall that, in the transductive setting, the learner is given a set of labeled samples and another set
of unlabeled samples. The goal is correctly predicting the labels of the given unlabeled samples;
the learner is unconcerned with the accuracy of the model on new test samples. This is different
from the inductive setting, where the goal is correctly predicting the labels of new test samples. The
features of the unlabeled samples (but not their labels) are used for training in both settings. We
provide theoretical results for both settings.

2.1 Warm Up: The Transductive Setting

In the transductive setting, we are only concerned with the accuracy of the predictions on the un-
labeled samples from the target domain in the training data. The distribution of unlabeled samples
is different from the (marginal) distribution of features in the source domain due to covariate shift.
Thus, the problem is similar to that of extrapolation/label propagation in which we wish to propa-
gate the labels/signal from the labeled samples in the source domain to the unlabeled samples in the
target domain. Towards this goal, we leverage the (labeled) source and (unlabeled) target samples
and the inductive bias on the smoothness of the regression function. We encode this inductive bias
in a regularizer R and solve the following regularized risk minimization problem

f̂ = argminf∈F

[
1
ns

∑ns

i=1 L (yi, f(xi)) + λRn (f(X))
]

(2.3)

where F is the model class, L is a loss function, and λ > 0 is a regularization parameter. In
the transductive setting, the regularizer Rn is a function of the vector of model outputs on the

source and target inputs: f(X) ,
[
f(Xs)

⊤, f(Xt)
⊤
]⊤

, where f(Xs) ∈ R
ns (resp. f(Xt) ∈ R

nt)
is the vector of outputs on the source (resp. target) inputs. Intuitively, the regularizer enforces
invariance/smoothness of the model outputs on the source and target inputs.

A concrete example of a such a regularizer is the graph Laplacian regularizer. A graph Lapla-
cian regularizer is based on a similarity symmetric kernel K on the input space X . For example,
Petersen et al. [9] take kernel K to be a decreasing function of a fair metric that is learned from
data [18], e.g., a metric in which the distance between male and female biographies with similar
relevant content is small. In domain adaptation, a similar intuition can be applied. For example,
suppose the source train data consists of Poodle dogs and Persian cats (the task is to distinguish cats
and dogs), and the target data consists of Dalmatians and Siamese cats [19]. Then, a meaningful
metric for constructing kernel K assigns small distances to different breeds of the same species.

Given the kernel, we construct the similarity matrix K = [K (Xi, Xj)]
n

i,j=1. Note that, here, we

are considering all the source and target covariates together. Based on the similarity matrix, the
(unnormalized) Laplacian matrix is defined as L = D − K where D is a diagonal matrix with
Di,i =

∑
j K(Xi, Xj), which is often denoted as the degree of the ith observation. There are also
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other ways of defining L (e.g., L = D
−1/2

KD
−1/2 or L = I −D

−1
K) which would also lead to

the similar conclusion, but we stick to unnormalized Laplacian for the ease of exposition. Based on
the Laplacian matrix L, we define the graph Laplacian regularizer R as:

Rn(f(X)) = 1
n2 f(X)⊤Lf(X) = 1

n2

∑
i,j K(Xi, Xj) (f(Xi)− f(Xj))

2
.

The above regularizer enforces that if K(Xi, Xj) is large for a pair (Xi, Xj) (i.e., they are similar),
f(Xi) must be close to f(Xj). As mentioned earlier, for individual fairness, K(Xi, Xj) is chosen
to be a monotonically decreasing function of dfair(Xi, Xj), which ensures that f(Xi) and f(Xj)
are close to each other when Xi is close to Xj with respect to the fair metric (for more details, see
Petersen et al. [9]). Recently, Lahoti et al. [20], Kang et al. [21], and Petersen et al. [9] used the
graph Laplacian regularizer to post-process ML models so that they are individually fair. This is
also widely used in semi-supervised learning to leverage unlabeled samples [22].

We focus on problems in which the model class F is mis-specified, i.e., f0 /∈ F . If the model is well-
specified (i.e., f0 ∈ F ), the optimal prediction rule in the training and target domains are identical
(both are f0). It is possible to learn the optimal prediction rule for the target domain from the training
domain (e.g., by empirical risk minimization (ERM)), and there is no need to adapt models trained
in the source domain to the target. On the other hand, if the model is mis-specified, the transfer
learning task is non-trivial because the optimal prediction rule model depends on the distribution of
the inputs (which differ in training and target domains). Here, we focus on the non-trivial case. We

show that, as long as f0 satisfies the smoothness structure enforced by the regularizer, f̂ from (2.3)
remains accurate at the target inputs {xt,i}

nt

i=1. First, we state our assumptions on the loss function
L and the regularizer Rn.

Assumption 2.1. We assume that the regression function is smooth with respect to the penalty Rn,
i.e., Rn(f0(X)) ≤ δ for some small δ > 0.

This is an assumption on the effect of the smoothness structure enforced by the regularizer being in
agreement with the regression function f0.

Assumption 2.2. We assume that R is
µRn

nt

-strongly convex with respect to the model outputs on the

target inputs and
LRn

n -strongly smooth. More specifically, for v1 ∈ R
ns , v2, v ∈ R

nt , ṽ, v0 ∈ R
n

Rn (v1, v2) ≥ Rn (v1, v) + 〈v2 − v, ∂tRn (v1, v)〉+
µRn

2nt
‖v2 − v‖

2
2 .

Rn (v1, v2) ≤ Rn (v, ṽ) +

〈(
v1 − v
v2 − ṽ

)
, ∂Rn (v, ṽ)

〉
+

LRn

2n

∥∥∥∥
[
v1 − v
v2 − ṽ

]∥∥∥∥
2

2

.

This is a regularity assumption on the regularizer to ensure the extrapolation map yt : R
ns → R

nt

y∗t (v) , argmint∈RntRn(v, t) (2.4)

is well-behaved. Intuitively, the extrapolation map extrapolates (hence its name) model outputs on
the source domain to the target domain in the smoothest possible way. Next, we state our assump-
tions on the loss function:

Assumption 2.3. The loss function L : R ×R → R+ satisfies L(a, b) ≥ 0 and = 0 if and only if
a = b. Furthermore, it is µL - strongly convex and LL - strongly smooth, i.e.,

L(x, y) ≥ L(x0, y0) + 〈(x, y)− (x0, y0), ∂L(x0, y0)〉+
µL

2 ‖(x, y)− (x0, y0)‖
2
2 .

L(x, y) ≤ L(x0, y0) + 〈(x, y)− (x0, y0), ∂L(x0, y0)〉+
LL

2 ‖(x, y)− (x0, y0)‖
2
2 .

Assumption 2.3 is standard in learning theory, which provides us control over the curvature of the
loss function.

Theorem 2.4. Suppose f̂ is the estimated function obtained from (2.3). Under Assumption 2.3 on
the loss function and Assumptions 2.1 and 2.2 on the regularizer, we have the following bound on
the risk in the target domain:

1
nt

∑nt

i=1 L
(
f̂(xt,i), f0(xt,i)

)
≤ αn

[
1
ns

∑ns

i=1 L
(
f̂(xs,i), f0(xs,i)

)
+λRn(f̂(X))

]
+ βnRn(f0(X)) .

(2.5)
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where

αn = max

{
LLL

2
R (µL + 3LL)

2µ2
RµL

ρn,
2 + LL

λµR
(1 + ρn)

}
, βn =

2 + LL + L2
L

µR
(1 + ρn) . (2.6)

with ρn = ns/nt.

We note that the right side of (2.5) does not depend on the yi,s’s in the target domain. Intuitively,

Theorem 2.4 guarantees the accuracy of f̂ on the inputs from the target domain as long as the
following conditions hold.

1. The model class F is rich enough to include an f that is not only accurate on the training domain,
but also satisfies the smoothness/invariance conditions enforced by the regularizer. This implies
the first term on the right side of (2.5) is small.

2. The exact relation between inputs and outputs encoded in f0 satisfies the smoothness structure
enforced by the regularizer. This implies the second term on the right side of (2.5) is small.

If the model is correctly specified (f0 ∈ F ) and the regression function perfectly satisfies the smooth-
ness conditions enforced by the regularizer (Rn(f0) = 0), then the bias term vanishes. In other
words, Theorem 2.4 is adaptive to correctly specified model classes.

Example: Laplacian regularizer We now show that the graph Laplacian regularizer satisfies As-
sumption 2.2. As Rn(f(X)) is a quadratic function of L, it is immediate that n∇2Rn(f(X)) = L.
Therefore, the strong convexity and smoothness of R depend on the behavior of the maximum and
minimum eigenvalues of L. The maximum eigenvalue of L is bounded above for the fixed design,
which plays the role of LL/2 in Assumption 2.2. For the lower bound, we note that we only assume
strong convexity with respect to the target samples fixing the source samples. If we divide the whole
Laplacian matrix into four blocks, then the value of the regularizer in terms of these blocks will be:

Rn(f(X)) =
∑

i,j∈{s,t} f(Xi)
⊤
Lijf(Xj) .

Therefore, the Hessian of Rn with respect to the model outputs in the target domain is LTT whose
minimum eigenvalue is bounded away from 0 as long as the graph is connected, i.e., source inputs
have a degree of similarity with target inputs. Thus, Rn satisfies Assumption 2.2. Graph Laplacian
regularizer is often used to achieve individual fairness [9], [20], [21] and our Theorem 2.4 shows
that it can also be used for domain adaptation. We further verify this empirically in Section 2.4.

Proof Sketch of Theorem 2.4. To keep things simple, we focus on the case in which the loss function
is quadratic (L(x, y) = 1

2 (x− y)2). We have

1
2nt

‖f̂(Xt)− f0(Xt)‖
2
2 . 1

2nt

‖f̂(Xt)− y∗t (f̂(Xs))‖
2
2 +

1
2nt

‖y∗t (f̂(Xs))− y∗t (f0(Xs))‖
2
2

+ 1
2nt

‖y∗t (f0(Xs))− f0(Xt)‖
2
2. (2.7)

The first term depends on the smoothness of the model outputs across the source and target domain

f̂(X): it measures the discrepancy between the model outputs in the target domain f(Xt) and the
smoothest extrapolation of the model outputs in the source domain to the target domain y∗t (f(Xs)).
Similarly, the third term depends on the smoothness of the regression function (across the source

and target domains). In Appendix B.1, we bound the two terms with R(f̂(X)) and R(f0(X)).

It remains to bound the second term in (2.7). Intuitively, stability of the extrapolation map (2.4)
implies the extrapolation operation is similar to a projection onto smooth functions, so the second

term satisfies 1
2nt

‖y∗t (f̂(Xs))−y∗t (f0(Xs))‖
2
2 . 1

2ns
‖f̂(Xs)−f0(Xs)‖

2
2. See Appendix B.1.

2.2 The Inductive Setting

We now consider the inductive setting. Previously, in Section 2.1, we focused on the accuracy of the

fitted model f̂ on the inputs from the test domain {xt,i}
nt

i=1. Here we instead consider the expected

loss of f̂ at a new (previously unseen) input point in the target domain. We consider a problem setup
similar to that in Section 2.1: the ns labeled samples from the source domain are independently
drawn from the source distribution P , while the nt unlabeled samples from the target domain are
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independently drawn from (the marginal of) the target distribution Q. We also assume the covariate

shift condition (2.2). The method remains the same as before: we learn f̂ from (2.3).

The main difference between the inductive and transductive settings is in the population version of
the regularizer: In the transductive setting, we are only concerned with the output of the ML model
for the inputs in the source and target domains; thereby, the population version of the regularizer
remains a function of (the vector of) model outputs on the inputs in the source and target domains.
In the inductive setting, we are also concerned with the output of the ML model on previously unseen
points; thus, we consider the regularizer as a functional (i.e., a higher order function): R : F×F →
R (the two arguments corresponds to f(Xs) and f(Xt) in the transductive case). For example, the
population version of the graph Laplacian regularizer (in the inductive setting) is

R(f, g) , E
[
1
2 (f(Xs)− g(Xt))

2K(Xs, Xt)
]
,

where Xs ∼ PX and Xt ∼ QX . The population version of (2.3) in the inductive setting is

f̃ , argminf∈FE[L(Ys, f(Xs))] + λR (f, f) . (2.8)

Now we state the assumptions to extend Theorem 2.4 to the inductive setting.

Assumption 2.5. The function f0 satisfies R(f0, f0) ≤ δ for some small δ > 0.

Assumption 2.6. The (population) regularizer R satisfies the following strong convexity condition:

R(f, g1) ≥ R(f, g2) + ∂2R ((f, g2); g1 − g2) +
µR

2
‖g1 − g2‖

2
Q ,

and the following Lipschitz condition on the partial derivative of R with respect to the second
coordinate, i.e., for any two f1, f2:

|∂2R((f1, g);h)− ∂2R((f2, g);h)| ≤ LR‖f1 − f2‖P ‖h‖Q ,

for some constants µR,LR > 0. Here, ∂2R((f, g);h) indicates the Gateaux derivative of R with
respect to the second coordinate along the direction h.

Assumptions 2.5 and 2.6 are analogues of Assumptions 2.1 and 2.2 in the inductive setting. In fact,
it is possible to show that Assumptions 2.5 and 2.6 imply Assumptions 2.1 and 2.2 with high prob-
ability by appealing to (uniform) laws of large numbers (see Appendix D). The following theorem

provides a bound on the population estimation error of f̃ on the target domain:

Theorem 2.7. Under Assumptions 2.3, 2.5, and 2.6, we have:

EQ[L(f̃(x), f0(x)] ≤ C1

[
EP [L(f̃(x), f0(x)] + λR(f̃ , f̃)

]
+ C2R(f0, f0) .

for some constants C1, C2 defined in the proof.

The bound obtained in Theorem 2.7 is comparable to (2.5): the right side does not depend on
the distribution YQ | XQ. The second term denotes the aptness of regularizer R, i.e., how well
it captures the smoothness of f0 over the domains. Similar to (2.5), we note that the bound in
Theorem 2.7 is adaptive to correctly specified model classes.

To wrap up, we compare our theoretical results to other theoretical results on domain adaptation.
There is a long line of work started by Ben-David et al. [23] on out-of-distribution accuracy of ML
models [10], [24]–[27]. Such bounds are usually of the form

EQ

[
L(f(x), f0(x)

]
. EP

[
L(f(x), f0(x)

]
+ disc(P,Q) (2.9)

for any f ∈ F , where disc(P,Q) is a measure of discrepancy between the source and target domains.
For example, Zhang et al. [26] show (2.9) with

disc(P,Q) , supf,f ′∈F

{
EQ

[
L(f(X), f ′(X)

]
−EP

[
L(f(X), f ′(X)

] }
.

A key feature of these bounds is that it is possible to evaluate the right side of the bounds with
unlabeled samples from the target domain (and labeled samples from the source domain). Compared
to our bounds, there are two main differences:
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1. Equation 2.9 applies to any f ∈ F (while our bound only applies to a specific f̃ from (2.8)).
Although this uniform applicability is practically desirable (because it allows practitioners to
evaluate the bound a posteriori to estimate the out-of-distribution accuracy of the trained model),
it precludes the bounds from adapting to correct specification of the model class.

2. The uniform applicability of the bound (to any f ∈ F ) also precludes (2.9) from capturing the
effects of the regularizer.

Remark 2.8. Although our theoretical analysis in the main paper is under the assumption of co-
variate shift, our results can certainly be extended to the case when the conditional mean function
E[Y | X ] is different on different domains. We present an extension of Theorem 2.7 to this effect in
Appendix E. Other theorems (e.g., Theorem 2.4) can also be extended using analogous arguments.

2.3 Extension to Domain Generalization

In this subsection, we further extend our results to the domain generalization setup, i.e., when we
have no observations from the target domain. In the previous domain adaptation setup, when we
had access to unlabeled data from the target domain, we used a suitable regularizer to extrapolate
the prediction performance from the source domain to the target domain. However, when we do not
have unlabeled data from the target domain, we need to alter the regularizer appropriately, so that
we have some uniform guarantee over all domains in the vicinity of the source domain. Here is an
example of a regularizer that seeks to improve domain generalization:

R(f, g) =
{
maxT EX∼P

[
(f(X)− g(T (X)))

2
]

s.t. EX∼P [‖X − T (X)‖] ≤ ǫ. (2.10)

T here can be thought as an adversarial map that maps X to an adversarial example X ′ = T (X)
that maximizes the difference f(X) − g(X ′). As we need some uniform guarantees across all
domains in the vicinity of the source domain, T produces the adversarial test domain example. This
regularizer is similar to the SenSeI regularizer originally proposed and studied by Yurochkin et
al. [3] for enforcing individual fairness. In fact, R(f, f) is exactly the (Mongé form) of the SenSeI
regularizer. Note that we can further generalize this regularizer by incorporating a general loss
function L in the first equation or a general metric d in the second equation. However, as this
does not add anything to the underlying intuition, we confine ourselves to the ℓ2 metric here. Next,
we present our theoretical findings with respect to this regularizer. To this end, we define the set
of transformations Tǫ = {T : Ex∼P [‖x− T (x)‖] ≤ ǫ} and the corresponding set of measures
Qǫ = {Q : T#P = Q, T ∈ Tǫ}. We show that it is possible to generalize the performance of the

estimator f̂ obtained in (2.3) uniformly over the measures in Qǫ. As mentioned previously, we only
work with the quadratic loss function, but our result can be extended to the general loss function. The

following theorem establishes a uniform bound on the estimation error of the population function f̃
obtained from (2.3) with the regularizer as defined in (2.10):

Theorem 2.9. The population estimator f̃ satisfies the following bound on the estimation error:

supQ∈Qǫ
Ex∼Q

(
f̃(x)− f0(x)

)2

≤ 4

[
R(f̃ , f̃) +R(f0, f0) + Ex∼P

(
f̃(x)− f0(x)

)2
]
.

The bound obtained in the above is the same as the one obtained in Theorem 2.7 (up to constants)
and has analogous interpretation: it consists of the minimum training error achieved on F and the
smoothness of f0 quantified in terms of the regularizer. Moreover, the bound holds uniformly over

all the domains Q ∈ Qǫ, i.e., the performance of the estimator f̂ can be extrapolated to all the
domains in Qǫ, provided that R(f0, f0) is small.

2.4 Empirical Results

We verify our theoretical findings empirically. Our goal is to improve performance under distribution
shifts using individual fairness methods. We consider SenSeI [3], Sensitive Subspace Robustness
(SenSR) [14], Counterfactual Logit Pairing (CLP) [28], and GLIF [9]. GLIF, similar to domain
adaptation methods, requires unlabeled samples from the target. The other methods only utilize the
source data as in the domain generalization scenario. Our theory establishes guarantees on the target
domain performance for SenSeI (Section 2.3) and GLIF (Section 2.1).
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Datasets and Metrics We experiment with two textual datasets, Toxicity [8] and Bios [7]. In
Toxicity, the goal is to identify toxic comments. This dataset has been considered by both the
domain generalization community [4], [6], [29] (under the name Civil Comments) as well as the
individual fairness community [3], [9], [28]. The key difference between the two communities are
in the comparison metrics. In domain generalization, it is common to consider performance on
underrepresented groups (or simply worst group performance). In individual fairness, a common
metric is prediction consistency, i.e., a fraction of test samples where predictions remain unchanged
under certain modifications to the inputs, which maintain a similarity from the fairness standpoint.

In Toxicity, the group memberships can be defined either with respect to human annotations provided
with the dataset, or with respect to the presence of certain identity tokens. Both groupings aim at
highlighting comments that refer to identities that are subject to online harassment. To quantify
domain generalization, we evaluate average per group true negative (non-toxic) rate, where each
group is weighted equally. We choose true negative rate (TNR) because underrepresented groups
tend to have a larger fraction of toxic comments in the train data, thus being spuriously associated
with toxicity by the model yielding poor TNR. This is similar to how the background is spurious
in the popular domain generalization Waterbirds benchmark [15]. We weigh each group equally
to ensure that performance on underrepresented groups is factored in (a more robust alternative to
worst group performance). We consider both groupings, i.e., TNR (Annotations) and TNR (Identity
tokens).

In Bios, the task is to predict the occupation of a person from their biography. This dataset has
been mostly studied in the fairness literature [3], [7], [30], [31], but it can also be considered from
the domain generalization perspective. Many of the occupations in the dataset exhibit large gender
imbalance associated with historical biases, e.g., most nurses are female and most attorneys are male.
Thus, gender pronouns and names can introduce spurious relations with the occupation prediction.
To quantify this effect from the domain generalization perspective, we report the average of the worst
accuracies with respect to the gender for each occupation (Worst per gender). Since both datasets
are class-imbalanced, we also report balanced (by class) test accuracy (BA) on source to ensure that
in-distribution performance remains reasonable.

Results In Table 1, we compare methods for enforcing individual fairness with an ERM base-
line. IF methods require a fair metric that encodes that changes in identity tokens result in similar
comments in Toxicity, and changes in gender pronouns and names result in similar biographies in
Bios (except for CLP which instead uses this intuition for data augmentation). We obtained the fair
metric as in the original studies of the corresponding methods. We can observe that IF methods con-
sistently improve domain generalization metrics supporting our theoretical findings. They also tend
to maintain reasonable in-distribution performance, supporting their overall applicability in practical
use-cases where both in- and out-of-distribution performance is important. Among the IF methods,
SenSeI performs slightly better overall. We refer to Appendix F for additional results verifying that
the considered methods also achieve IF.

Table 1: Enforcing domain generalization using individual fairness methods. Means and stds over 10 runs.

Bios Toxicity

BA Worst p. gender BA TNR (Annot.) TNR (Id. tokens)

Baseline 84.2% ± 0.2% 77.9% ± 0.4% 80.7% ± 0.2% 79.4% ± 2.2% 75.0% ± 2.3%

GLIF 84.6% ± 0.3% 77.6% ± 1.0% 70.5% ± 7.1% 87.0% ± 9.8% 84.5% ± 9.8%

SenSeI 84.3% ± 0.3% 80.2% ± 0.4% 79.1% ± 0.5% 83.5% ± 1.7% 79.4% ± 1.5%

SenSR 84.2% ± 0.3% 80.2% ± 0.4% 79.4% ± 0.3% 81.5% ± 1.1% 77.2% ± 0.9%

CLP 84.1% ± 0.3% 79.9% ± 0.3% 79.5% ± 0.6% 81.6% ± 1.7% 78.0% ± 1.8%

3 Individual Fairness via Domain Adaptation

In the previous section, we established that it is possible to use IF regularizers for domain adaptation
problems provided that the true underlying signal satisfies some smoothness conditions. In this
section, we investigate the opposite direction, i.e., whether the techniques employed for DA can be
leveraged to enforce IF. Many DA methods aim at finding a representationΦ(X) of the input sample
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X , such that the source and the target distributions of Φ(X) are aligned. In other words, the goal
is to make it hard to distinguish Φ(XSi

)′s from Φ(XTi
)′s. For example, Ganin et al. [10] proposed

the Domain Adversarial Neural Network (DANN) for learning Φ(X), such that the discriminator
fails to discriminate between Φ(XS) and Φ(XT ). Shu et al. [11] assume that the target distribution
is clustered with respect to the classes and consequently the optimal classifier should pass through
the low density region. To promote this condition, they modify the previous objective [10] with
additional regularizers to ensure that the final classifier (which is built on top of Φ(X)) has low
entropy on the target and is also locally Lipschitz. Sun et al. [32] learn a linear transformation of
the source distribution (which was later extended to learn non-linear transformations [33]), such
that the first two moments of the transformed representations are the same in source and target
distributions. Shen et al. [12] learn domain invariant representations by minimizing the Wasserstein
distance between the distributions of source and target representations induced by Φ(X).

A common underlying theme of all of the above methods is to find Φ(X) which has a similar
distribution on both the source and the target. In this section, we show that learning this domain
invariant map indeed enforces individual fairness under suitable choice of domains. We demonstrate
this by the following factor model: suppose we want to achieve individual fairness against a binary
protected attribute Z (say sex). We define two domains as two groups corresponding the protected
attribute, e.g., the source domain may consist of all the observations corresponding to the males and
the target domain may consist of all the observations corresponding to the females. We assume that
the covariates follow a factor model structure X = AU + bZ + ǫ for three independent random
variables (U,Z, ǫ) where U denotes the relevant attribute, Z denotes the protected attributes and ǫ is
the noise. Therefore, according to our design:

XS
L
= AU + b+ ǫ , (3.1) XT

L
= AU + ǫ . (3.2)

In the following theorem, we establish that if we estimate some linear transformation Φ ∈ R
q×p

(with q < p, p being the ambient dimension of X) of X such that ΦXS and ΦXT has same distribu-
tion, then Φb = 0. Therefore, ΦX ignores the direction corresponding to the protected attribute and
consequently is an individually fair representation.

Theorem 3.1. Suppose the source and target distributions satisfy (3.1) and (3.2). If some linear

transformation ΦX satisfies ΦXS
L
= ΦXT , then Φb = 0.

This theorem implies any classifier built on top of the linear representation Φx will be individually
fair because Φx = Φx′ for any x, x′ that share relevant attributes U . The proof of the theorem can
be found in the appendix. The above theorem constitutes an example of how domain adaptation
methods can be adapted to enforce individual fairness when the covariates follow a factor structure.

3.1 Empirical Results

In this section, our goal is to train individually fair models using methods popularized in the do-
main adaptation (DA) literature. We experiment with DANN [10], VADA [11], and a variation of
the Wasserstein-based DA (WDA) [12] discussed in Section 3. We present experimental details in
Apx. F.

Datasets and Metrics We consider the same two datasets as in our domain generalization experi-
ments in Section 2.4. We use prediction consistency (PC) to quantify individual fairness following
prior works studying these datasets [3], [9]. For the Toxicity dataset, we modify identity tokens in
the test comments and compute prediction consistency with respect to all 50 identity tokens [8]. A
pair of comments that only differ in an identity token, e.g., “gay” vs “straight”, are intuitively sim-
ilar and should be assigned the same prediction to satisfy individual fairness. For the Bios dataset,
we consider prediction consistency with respect to changes in gender pronouns and names. Such
changes result in biographies that should be treated similarly.

In these experiments, we have one labeled training dataset, rather than labeled source and unlabeled
target datasets typical for DA setting. As shown in Section 3, the key idea behind achieving individ-
ual fairness using DA techniques is to split the available train data into source and target domains
such that aligning their representations pertains to the fairness goals. To this end, in the Bios dataset
we split the train data into all-male and all-female biographies, and the Toxicity dataset we split into
a domain with comments containing any of the aforementioned 50 identity tokens and a domain
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with comments without any identity tokens. The ERM baseline is trained on the complete training
dataset.

Table 2: Enforcing individual fairness using domain adaptation methods. Means
and standard deviations over 10 runs.

Bios Toxicity

BA PC BA PC

Baseline 84.2% ± 0.2% 94.2% ± 0.1% 80.7% ± 0.2% 62.1% ± 1.4%

DANN 84.0% ± 0.3% 94.8% ± 0.3% 80.8% ± 0.2% 62.8% ± 1.1%

VADA 84.0% ± 0.3% 94.8% ± 0.3% 80.8% ± 0.2% 62.0% ± 1.4%

WDA 83.3% ± 0.3% 95.5% ± 0.3% 80.5% ± 0.3% 65.4% ± 1.3%

SenSeI 84.3% ± 0.3% 97.7% ± 0.1% 79.1% ± 0.5% 77.3% ± 4.3%

Results We summa-
rize the results in Ta-
ble 2. Among the con-
sidered DA methods,
WDA achieves best in-
dividual fairness im-
provements in terms
of prediction consis-
tency, while maintain-
ing good balanced ac-
curacy (BA). Compar-
ing to a method de-
signed for training individually fair models, SenSeI, prediction consistency of DA methods is worse;
however, the subject understanding required to apply them is milder. Individual fairness methods
require a problem-specific fair metric, which can be learned from the data, but even then requires
user to define, e.g., groups of comparable samples [18]. The domain adaptation approach requires
a fairness-related splitting of the train data. In our experiments, we adopted straightforward data
splitting strategies and demonstrated improvements over the baseline. More sophisticated data split-
ting approaches can help to achieve further individual fairness improvements. We present additional
experimental details in Appendix F.

4 Conclusion

We showed that algorithms for enforcing individual fairness (IF) can help ML models generalize to
new domains and vice versa. From the lens of algorithmic fairness, the results in Section 2 show
that enforcing IF can mitigate algorithmic biases caused by covariate shift as long as the regression
function satisfies IF. This complements the recent results on mitigating algorithmic biases caused
by subpopulation shift with group fairness [34]. On the other hand, compared to existing results
on out-of-distribution accuracy of ML models, the results in Section 2 demonstrate the importance
of inductive biases in helping models adapt to new domains. One limitation of our analysis is the
assumption of covariate shift. We have relaxed this assumption in Appendix E (see Theorem E.1),
where we establish results for more general distribution shifts (e.g. label shift, posterior drift etc.).

In Section 3, we showed a probabilistic connection between domain adaptation (DA) and IF. As we
saw, it is possible to enforce IF by aligning the distributions of the features under a factor model.
This factor model is implicit in some prior works on algorithmic fairness [18], [35], but we are not
aware of any results that show it is possible to enforce IF using DA techniques.

Recent DA methods typically leverage many inductive biases through data augmentations and reg-
ularizers, and our results suggest that IF can also be leveraged. For example, utilizing annotations
to identify similar images [36] can be used to learn a “fair” metric for an IF-based regularizer. We
also note that our approach is similar to that of consistency regularization for DA (e.g. see [37],
[38], [39], [40]) where the key idea is to ensure that similar samples should yield similar labels. We
show that regularizer for enforcing IF can also be used as a consistency regularizer for extrapolation
on the test domain. Finally, from the perspective of achieving IF, a study of different strategies for
data partitioning in combination with modern DA best practices is an interesting direction for future
work.
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A Appendix

A.1 Proof of Theorem 2.4

For the proof of this theorem, we need few auxiliary lemmas, which we state below:

Lemma A.1. Define the extrapolation map y∗t : Rns 7→ R
nt as:

y∗t (v) = argmint∈RntRn(v, t) .

Then under our assumptions on Rn:

• y∗t is Lipschitz with Lipschitz constant LR

µR
.

• For any vector (vs, vt) we have: ‖vt − y∗t (vs)‖
2
≤ 2n

µR
R(vs, vt) .

Lemma A.2. Under Assumption 2.3 we have:

‖f(Xs)− f0(Xs)‖
2
2 ≤

2

µL
L (f(Xs), f0(Xs))

for any function f . Furthermore, if ∂1L and ∂2L denotes the first and second partial derivative of
L respectively, then we have:

|∂1L(a, b)| ≤ LL|a− b| ,

|∂2L(a, b)| ≤ LL|a− b| .

The proof of Lemma A.1 can be found in Section B.1 and the proof of Lemma A.2 can be found in
Section B.2. For the rest of the proof, we introduce some notations for the ease of presentation: for
any two vector v1, v2 of the same dimension we use L(v1, v2) or its partial derivatives to denote the
coordinate wise sum, i.e.,

∑
j L(v1,j , v2,j). From the strong smoothness condition on L we have:

1

nt
L
(
f̂(Xt), f0(Xt)

)
≤

1

nt
L
(
y∗t (f̂(Xs)), f0(Xt)

)

+
1

nt

〈
f̂(Xt)− y∗t (f̂(Xs)), ∂1L

(
y∗t (f̂(Xs)), f0(Xt)

)〉

+
LL

2nt

∥∥∥f̂(Xt)− y∗t (f̂(Xs))
∥∥∥
2

2
(A.1)

We can further bound the first term on the RHS of the above equation as follows:

1

nt
L
(
y∗t (f̂(Xs)), f0(Xt)

)
≤

1

nt
L
(
y∗t (f̂(Xs)), y

∗
t (f0(Xs))

)

+
1

nt

〈
f0(Xt)− y∗t (f0(Xs)), ∂2L

(
y∗t (f̂(Xs)), y

∗
t (f0(Xs))

)〉

+
LL

2nt
‖f0(Xt)− y∗t (f0(Xs))‖

2
(A.2)
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Combining the bounds on Equations (A.1) and (A.2) we obtain:

1

nt
L
(
f̂(Xt), f0(Xt)

)
≤

1

nt
L
(
y∗t (f̂(Xs)), y

∗
t (f0(Xs))

)

︸ ︷︷ ︸
T1

+
1

nt

〈
f0(Xt)− y∗t (f0(Xs)), ∂2L

(
y∗t (f̂(Xs)), y

∗
t (f0(Xs))

)〉

︸ ︷︷ ︸
T2

+
1

nt

〈
f̂(Xt)− y∗t (f̂(Xs)), ∂1L

(
y∗t (f̂(Xs)), f0(Xt)

)〉

︸ ︷︷ ︸
T3

+
LL

2nt
‖f0(Xt)− y∗t (f0(Xs))‖

2

︸ ︷︷ ︸
T4

+
LL

2nt

∥∥∥f̂(Xt)− y∗t (f̂(Xs))
∥∥∥
2

︸ ︷︷ ︸
T5

(A.3)

The term T4, T5 can be bounded directly by Lemma A.1 as:

T4 ≤
LL n

µR nt
R (f0(Xs), f0(Xt)) (A.4)

T5 ≤
LL n

µR nt
R

(
f̂(Xs), f̂(Xt)

)
(A.5)

To bound T2, using ab ≤ (a2 + b2)/2 we have:

T2 =
1

nt

〈
f0(Xt)− y∗t (f0(Xs)), ∂2L

(
y∗t (f̂(Xs)), y

∗
t (f0(Xs))

)〉

≤
1

nt
‖f0(Xt)− y∗t (f0(Xs))‖

2 +
1

nt

∥∥∥∂2L
(
y∗t (f̂(Xs)), y

∗
t (f0(Xs))

)∥∥∥
2

≤
2n

µR nt
R (f0(Xs), f0(Xt)) +

L2
L

4nt

∥∥∥y∗t (f̂(Xs))− y∗t (f0(Xs))
∥∥∥
2

[Lemma A.2]

≤
2n

µR nt
R (f0(Xs), f0(Xt)) +

L2
LL

2
R

4µ2
R nt

∥∥∥f̂(Xs)− f0(Xs)
∥∥∥
2

[Lemma A.1]

≤
2n

µR nt
R (f0(Xs), f0(Xt)) +

L2
LL

2
R

2µ2
RµL

×
ns

nt
×

1

ns
L
(
f̂(Xs), f0(Xs)

)
[Lemma A.2]

The bound on T3 follows from a similar line of argument:

T3 =
1

nt

〈
f̂(Xt)− y∗t (f̂(Xs)), ∂1L

(
y∗t (f̂(Xs)), f0(Xt)

)〉

≤
1

nt

∥∥∥f̂(Xt)− y∗t (f̂(Xs))
∥∥∥
2

+
1

nt

∥∥∥∂1L
(
y∗t (f̂(Xs)), f0(Xt)

)∥∥∥
2

≤
2n

µR nt
R

(
f̂(Xs), f̂(Xt)

)
+

L2
L

4nt

∥∥∥y∗t (f̂(Xs))− f0(Xt)
∥∥∥
2

[Lemma A.2]

≤
2n

µR nt
R

(
f̂(Xs), f̂(Xt)

)
+

L2
L

2nt

∥∥∥y∗t (f̂(Xs))− y∗t (f0(Xs))
∥∥∥
2

+
L2
L

2nt
‖y∗t (f0(Xs))− f0(Xt)‖

2

≤
2n

µR nt
R

(
f̂(Xs), f̂(Xt)

)
+

L2
L n

µR nt
R (f0(Xs), f0(Xt))+

+
L2
LL

2
R

µ2
RµL

×
ns

nt
×

1

ns
L
(
f̂(Xs), f0(Xs)

)
[Lemma A.2]
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Finally to bound T1 we use again Assumption 2.3, i.e., strong convexity and strong smoothness of
L as follows:

T1 =
1

nt
L
(
y∗t (f̂(Xs)), y

∗
t (f0(Xs))

)

≤
LL

2nt

∥∥∥y∗t (f̂(Xs))− y∗t (f0(Xs))
∥∥∥
2

2

≤
LLL

2
R

2µ2
R nt

∥∥∥f̂(Xs)− f0(Xs)
∥∥∥
2

2

≤
LLL

2
R

2µ2
R

×
ns

nt
×

1

ns
L
(
f̂(Xs), f0(Xs)

)

Suppose ρn = ns/nt. Then we have n/nt = 1 + ρn. Using this notation and combining the bound
on all {Ti}

5
i=1, we obtain:

1

nt
L
(
f̂(Xt), f0(Xt)

)
≤

LLL
2
R (µL + 3LL)

2µ2
RµL

ρn
1

ns
L
(
f̂(Xs), f0(Xs)

)

+
2 + LL

µR
(1 + ρn)R(f̂ (X)) +

2 + LL + L2
L

µR
(1 + ρn)R(f0(X))

≤ αn

[
1

ns
L
(
f̂(Xs), f0(Xs)

)
+ λR(f̂ (X))

]
+ βnR(f0(X)) , (A.6)

with the values of αn and βn being:

αn = max

{
LLL

2
R (µL + 3LL)

2µ2
RµL

ρn,
2 + LL

λµR
(1 + ρn)

}
, (A.7)

βn =
2 + LL + L2

L

µR
(1 + ρn) . (A.8)

This completes the proof.

A.2 Proof of Theorem 2.7

First, note that, from Assumption 2.3 we have:

EQ

[
L(f̃(x), f0(x))

]

≤
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0

EQ [L(f0(x)), f0(x))] +

✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0

E

[
(f̃(x)− f0(x)))∂1L(f0(x), f0(x))

]
+

LL

2

∥∥∥f̃(x) − f0(x)
∥∥∥
2

Q

=
LL

2

∥∥∥f̂(x)− f0(x)
∥∥∥
2

Q
. (A.9)

and

EP

[
L(f̃(x), f0(x))

]

≥
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0

EP [L(f0(x)), f0(x))] +

✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0

EP

[
(f̃(x) − f0(x)))∂1L(f0(x), f0(x))

]
+

µL

2

∥∥∥f̃(x) − f0(x)
∥∥∥
2

P

=
µL

2

∥∥∥f̂(x) − f0(x)
∥∥∥
2

P
. (A.10)

Therefore, it is enough to bound ‖f̂(x) − f0(x)‖
2
Q. As per Assumption 2.6, R is strongly convex

with respect to its second coordinate, i.e.,

R(f, g) ≥ R(f, g̃) + ∂2R((f, g); g − g̃) +
µR

2
‖g − g̃‖

2
Q .
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We now define an operator M along the line of y∗t as M(f) = argmingR(f, g). As M(f) is the

minimizer over of the second coordinate, we have ∂2R(f,M(f)) = 0 and consequently from the
strong convexity of R we have:

R(f, f) ≥ R(f,M(f)) +
µR

2
‖f −M(f)‖

2
Q .

The above inequality implies:

‖f −M(f)‖
2
Q ≤

2

µL
[R(f, f)−R(f,M(f))] ≤

2

µL
R(f, f) .

which will be used later in our proof.

M is Lipschitz: By definition of M we have ∂2R(f,M(f)) = 0, which further implies for
any two functions f1, f2:

0 = ∂2R((f1,M(f1)); (M(f1)−M(f2)))− ∂2R((f2,M(f2)); (M(f1)−M(f2)))

= ∂2R((f1,M(f1)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

+ ∂2R((f1,M(f2)); (M(f1)−M(f2)))− ∂2R((f2,M(f2)); (M(f1)−M(f2)))

Changing side we obtain:

∂2R((f2,M(f2)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

= ∂2R((f1,M(f1)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

≥ µR ‖M(f1)−M(f2)‖
2
Q (A.11)

where the last inequality follows from the strong convexity of R (Assumption 2.6). Furthermore,
we have:

∂2R((f2,M(f2)); (M(f1)−M(f2))) − ∂2R((f1,M(f2)); (M(f1)−M(f2)))

≤ LR ‖f1 − f2‖P ‖M(f1)−M(f2)‖Q . (A.12)

This follows from the second part of Assumption 2.6. Combining Equation (A.11) and (A.12), we
conclude:

‖M(f1)−M(f2)‖Q ≤
LR

µR
‖f1 − f2‖P .

We now return to the main proof:
∥∥∥f̃Q − f0

∥∥∥
2

Q
≤

∥∥∥f̃Q −M(f̃Q)
∥∥∥
2

Q
+
∥∥∥M(f̃Q)−M(f0)

∥∥∥
2

Q
+ ‖f0 −M(f0)‖

2
Q

≤
2

µR

(
R(f0) +R(f̃Q)

)
+

LR

µR

∥∥∥f̃Q − f0

∥∥∥
2

P

:= C0

[∥∥∥f̃Q − f0

∥∥∥
2

P
+ λR(f̃Q)

]
+ C2R(f0)

≤ C1

[
EP

[
L(f̃ (x), f0(x))

]
+ λR(f̃Q)

]
+ C2R(f0)

where the first term on the right hand side is the minimum training error (population version, i.e.,
in presence of infinite sample) and the second term quantifies the smoothness of f0 in terms of the
regularizer R. The last inequality follows from the strong convexity of the loss function ((A.10)).

A.3 Proof of Theorem 2.9

In this section, we prove Theorem 2.9. Fix Q ∈ Qǫ. Then there exists some T ≡ T (Q) ∈ Tǫ such
that T#P = Q. Define an operator MT as:

MT (f) = argmingRT (f, g)

where RT (f, g) = Ex∼P

[
(f(x)− g(T (x)))

2
]
. The proof of the strong convexity of RT with re-

spect to its second coordinate is straightforward as we have the following double Gateaux derivative:

∂2
2R((f, g) : h1, h2) = 2Ex∼P [h1(T (x))h2(T (x))] .
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Fix f ∈ F and define ∆ = f ◦ T −MT (f) ◦ T . A two step Taylor expansion yields:

RT (f, f) = RT (f,MT (f)) +
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✿

0

∂2RT ((f,MT (f));∆) +
1

2
∂2RT ((f, f

∗);∆,∆)

= RT (f,MT (f)) + E[∆2]

= RT (f,MT (f)) + ‖f −MT (f)‖
2
Q .

where the derivative is canceled because MT (f) is the minimizer. Therefore, we have:

‖f −MT (f)‖
2
Q = RT (f, f)−RT (f,MT (f)) ≤ RT (f, f) . (A.13)

We use the above bound in our subsequent calculation:

∥∥∥f̃ − f0

∥∥∥
2

Q
≤ 4

[∥∥∥f̃ −MT (f̃)
∥∥∥
2

Q
+
∥∥∥MT (f̃)−MT (f0)

∥∥∥
2

Q
+ ‖f0 −MT (f0)‖

2
Q

]

≤ 4

[
RT (f̃ , f̃) +

∥∥∥MT (f̃)−MT (f0)
∥∥∥
2

Q
+RT (f0, f0)

]
[From (A.13)] (A.14)

We now bound the second term of the RHS of the above equation. Following the similar calculation
as in (A.11) and (A.12) we have for any function f1, f2:

‖M(f1)−M(f2)‖Q ≤ ‖f1 − f2‖P .

In particular for f1 = f̃ and f2 = f0 we have:
∥∥∥M(f̃)−M(f0)

∥∥∥
Q
≤

∥∥∥f̃ − f0

∥∥∥
P
. (A.15)

Combining the bound in (A.14) and (A.15) we conclude that for any Q ∈ Qǫ:

∥∥∥f̃ − f0

∥∥∥
2

Q
≤ 4

[
RT (f̃ , f̃) +RT (f0, f0) +

∥∥∥f̃ − f0

∥∥∥
2

P

]

Taking the supremum with respect to Q on both sides, we conclude the proof of the theorem.

A.4 Proof of Theorem 3.1

The proof follows from analyzing the characteristic function of Xs and Xt. Note that by definition:

φΦXs
(t) = E

[
eit

⊤ΦXs

]

= E

[
eit

⊤(ΦAU+Φb+Φǫ)
]

= φU (A
⊤Φ⊤t) φǫ(Φ

⊤t) eit
⊤Φb

Similarly, for Xt we have:

φΨXt
(t) = E

[
eit

⊤(ΦAU+Φǫ)
]
= φU (A

⊤Φ⊤t) φǫ(Φ
⊤t) = φΦXs

(t) eit
⊤Φb .

Therefore, if ΦXs
L
= ΦXt, φΨXt

(t) = φΦXs
(t) for all t, which further implies eit

⊤Φb = 1 for all t,
which implies Φb = 0. This completes the proof.

B Proof of Auxiliary Lemmas

B.1 Proof of Lemma A.1

The proof of the second part of the above lemma follows directly from the strong convexity of Rn

with respect to the second coordinate, as the strong convexity assumption yields:

R(vs, vt) ≥ R(vs, y
∗
t (vs)) + 〈vt − y∗t (vs), ∂tR(vs, y

∗
t (vs))〉+

µR

2n
‖vt − y∗t (vs)‖

2
.
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The second term of the RHS of the above equation is 0 as ∂tR(vs, y
∗
t (vs)) = 0 (as the derivative of

a smooth function is 0 at minima). Therefore, changing sides of the terms, we conclude:

‖vs − y∗t (vs)‖
2 ≤

2n

µR
(R(vs, vt)−R(vs, y

∗
t (vs))) ≤

2n

µR
R(vs, vt)

where the last inequality follows from the non-negativity of Rn. This completes the proof of the
second part of the lemma.

For the first part of the lemma, first note that we have :

〈y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v1))− ∂tRn(v2, y

∗
t (v2))〉 = 0

as ∂tRn(v1, y
∗
t (v1)) = ∂tRn(v2, y

∗
t (v2)) = 0 (derivative is 0 at minima). Adding and subtracting

∂tRn(v1, y
∗
t (v2)) from the above equation yields:

〈y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v1))− ∂tRn(v1, y

∗
t (v2))

+∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))〉 = 0

Changing sides, we have:

〈y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))〉

≥ 〈y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v2))− ∂tRn(v1, y

∗
t (v1))〉

≥
µR

2n
‖y∗t (v2)− y∗t (v1)‖

2 . (B.1)

On the other hand, a simple application of the Cauchy-Schwarz inequality yields:

〈y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))〉

≤ ‖y∗t (v2)− y∗t (v1)‖ ‖∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))‖

≤
LR

2n
‖y∗t (v2)− y∗t (v1)‖ ‖v1 − v2‖ . (B.2)

Combining the bounds of Equation (B.1) and (B.2), we have:

‖y∗t (v2)− y∗t (v1)‖ ≤
LR

µR
‖v1 − v2‖ ,

which completes the proof.

B.2 Proof of Lemma A.2

The proof follows directly from the following properties of the L:

1. L(f0(Xs), f0(Xs)) = 0.

2. ∂1L(f0(Xs), f0(Xs)) = ∂2L(f0(Xs), f0(Xs)) = 0

3. L is strongly convex.

From strong convexity of L we have:

L
(
f̂(Xs), f0(Xs)

)
≥ L (f0(Xs), f0(Xs))

+
〈
f̂(Xs)− f0(Xs), ∂1L (f0(Xs), f0(Xs))

〉

+
µL

2

∥∥∥f̂(Xs)− f0(Xs)
∥∥∥
2

The first and second term on the RHS will be 0 by the first and second properties of L mentioned
above. Therefore, we have:

L
(
f̂(Xs), f0(Xs)

)
≥

µL

2

∥∥∥f̂(Xs)− f0(Xs)
∥∥∥
2

which completes the proof.
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C Similarity Kernel-based Regularizer

A similarity kernel-based regularizer R is defined as:

R(f, g) = EX∼P
X′∼Q

[
(f(X)− g(X ′))2K(X,X ′)

]

where K is the kernel of similarity. In particular, if an x from the source domain is similar to an
x′ in the target domain in the sense that f0(x) ≈ f0(x

′), then we expect the value of K(x, x′) to
be large. In this section, we show that under some mild regularity condition on K , this regularizer
satisfies Assumption 2.2.

Assumption C.1 (Assumption on kernel). Define KQ(x
′) = Ex∼P [K(x, x′)] and Kmax =

maxx,x′ K(x, x′). Assume that Kmax < ∞ and

inf
h

‖h
√
KQ‖Q

‖h‖Q
≥ φ > 0 .

Gateaux derivatives of R(f, g): The first order Gateaux derivative of R in the direction of a func-
tion h is defined as:

∂2R((f, g);h) = lim
t↓0

R(f, g + th)−R(f, g)

t

= 2EX∼P
X′∼Q

[(g(X ′)− f(X))h(X ′)K(X,X ′)]

Similarly, the second order Gateaux derivative at direction (h1, h2) is defined as:

∂2
2R((f, g);h1, h2) = lim

t↓0

∂2R((f, g + th2);h1)− ∂2R((f, g);h1)

t

= 2EX∼P
X′∼Q

[h1(X
′)h2(X

′)KQ(X
′)]

where KQ(X
′) = EX∼P [K(X,X ′)]. Therefore, the strong convexity follows from Assumption

C.1.

We next show that R also satisfies the second condition of Assumption 2.6. Towards that direction:

∂2R((f2,M(f2)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

= 2EX∼P
X′∼Q

[(f1(X)− f2(X))(M(f1)(X
′)−M(f2)(X

′))K(X,X ′)]

≤ Kmax ‖f1 − f2‖P ‖M(f1)−M(f2)‖Q .

This concludes that the similarity kernel-based population regularizer R satisfies Assumption 2.6
under Assumption C.1 on the kernel function.

D Population and Sample Version of the Regularizer

In this section, we show that under a fairly general condition, if Rn (the sample version of the reg-

ularization) satisfies Assumptions 2.1 and 2.2 and R is the asymptotic limit of Rn, i.e., Rn
a.s.
→ R

as ns, nt → ∞, then R will satisfy Assumption 2.5 and 2.6. Towards that if Rn satisfies As-
sumption 2.1 for all n, then taking the limit n → ∞, it is immediate that R satisfies Assumption 2.5.

For the other assumption, suppose Rn satisfies the first part of Assumption 2.2, i.e., it is
strongly convex with respect to its second coordinates (the coordinates corresponding to the target
samples), then again, simply taking the limit n → ∞, we conclude that R is also strongly convex
with µR = lim infn→∞ µRn

(as long as µR > 0). By similar argument, the second part of
Assumption 2.6 is also satisfied if Rn satisfies the strong smoothness assumption and LRn

does not
diverge to infinity.
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E Bound for Non-Covariate Shift

In this section, we extend the result of Theorem 2.7 to the setup when the mean function f0 is
different on source and target domain. More precisely, we assume the following data generative
process:

ys = fs(xs) + ǫs, yt = ft(xt) + ǫt . (E.1)

The following theorem extends the bounds obtained in Theorem 2.7 for the estimator obtained
via (2.3):

Theorem E.1. Suppose we observe (Y1, X1), . . . , (Xn, Yn) from the source domain and

X̃1, . . . , X̃n from the target domain. The estimator f̃ obtained via Equation (2.3) satisfied the
following generalization error bound on the target domain:

EQ

[
L(f̃(x), ft(x))

]
≤ C1

[
EP

[
L(f̃(x), fs(x))

]
+ λR(f̃ )

]

+ C2 min
{
R(ft) + ‖fs − ft‖

2
P ,R(fs) + ‖fs − ft‖

2
Q

}
,

for some constants C1, C2 mentioned explicitly in the proof.

Proof. The proof is quite similar to the proof of Theorem 2.7, hence we will only highlight here the
key difference for the sake of brevity. From the proof of Theorem 2.7 we have:

EQ

[
L(f̃(x), ft(x))

]
≤

LL

2

∥∥∥f̃(x) − ft(x)
∥∥∥
2

Q
, (E.2)

EP

[
L(f̃(x), fs(x))

]
≥

µL

2

∥∥∥f̃(x)− fs(x)
∥∥∥
2

P
(E.3)

‖f −M(f)‖
2
Q ≤

2

µL
[R(f, f)−R(f,M(f))] ≤

2

µL
R(f, f) , (E.4)

‖M(f1)−M(f2)‖Q ≤
LR

µR
‖f1 − f2‖P . (E.5)

An application of triangle inequality yields:

∥∥∥f̃ − ft

∥∥∥
2

Q
≤ 8

[∥∥∥f̃ −M(f̃)
∥∥∥
2

Q
+
∥∥∥M(f̃)−M(fs)

∥∥∥
2

Q
+ ‖M(fs)−M(ft)‖

2
Q + ‖M(ft)− ft‖

2
Q

]

≤
16

µR

(
R(ft) +R(f̃)

)
+

8LR

µR

(∥∥∥f̃ − fs

∥∥∥
2

P
+ ‖fs − ft‖

2
P

)

:= C̄0

[∥∥∥f̃ − fs

∥∥∥
2

P
+ λR(f̃ )

]
+ C̄2R(ft) + C̄3 ‖fs − ft‖

2
P

≤ C̄1

[
EP

[
L(f̃(x), fs(x))

]
+ λR(f̃ )

]
+ C̄2R(ft) + C̄3 ‖fs − ft‖

2
P (E.6)

where the first term on the right hand side is the minimum training error (population version, i.e.,
in presence of infinite sample) and the second term quantifies the smoothness of f0 in terms of the
regularizer R. The last inequality follows from the strong convexity of the loss function (A.10).
Another version of telescoping sum yields:

∥∥∥f̃ − ft

∥∥∥
2

Q
≤ 8

[∥∥∥f̃ −M(f̃)
∥∥∥
2

Q
+
∥∥∥M(f̃)−M(fs)

∥∥∥
2

Q
+ ‖M(fs)− fs‖

2
Q + ‖fs − ft‖

2
Q

]

≤
16

µR

(
R(fs) +R(f̃)

)
+

8LR

µR

∥∥∥f̃ − fs

∥∥∥
2

P
+ 8 ‖fs − ft‖

2
Q

:= C̃0

[∥∥∥f̃ − fs

∥∥∥
2

P
+ λR(f̃ )

]
+ C̃2R(fs) + C̃3 ‖fs − ft‖

2
Q

≤ C̃1

[
EP

[
L(f̃(x), fs(x))

]
+ λR(f̃ )

]
+ C̃2R(fs) + C̃3 ‖fs − ft‖

2
Q (E.7)

Therefore, combining Equations (E.6) and (E.7) yields the result of the theorem.
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F Experimental Details

In Table 3 we compare prediction consistency [3], [14] of the methods compared in Table 1 of the
main text to verify that they also achieve individual fairness as intended.

Table 3: Comparison of prediction consistency in the experiment corresponding to Table 1.

Bios Toxicity

Baseline 94.2%±0.1% 62.1%±1.4%
GLIF 98.8%±0.2% 84.4%±1.3%
SenSeI 97.7%±0.1% 77.3%±4.3%
SenSR 97.6%±0.1% 72.9%±4.4%
CLP 97.4%±0.1% 76.3%±4.8%

We summarize some additional details regarding the implementation of domain adaptation methods
in the experiments in Section 3.1.

• Since the target domains are labeled (they consist of labeled samples from the train data), we also
add a loss term to the objective corresponding to the target domain performance when training the
domain adaptation methods. Recall that the main mechanisms for achieving individual fairness
are the representation alignment regularizers, thus adding loss in the target domain is simply a
way to utilize the available labels to improve performance.

• For DANN, we use a ReLU-activated two-layer base model with 2000 hidden neurons and 768
output neurons. Further, we use a ReLU-activated two-layer base model with 100 hidden neurons
and one logistically activated neuron as the discriminator. As the prediction head, we use a ReLU-
activated two-layer model with 2000 hidden neurons.

• For VADA, we use the same models as for DANN, and the primary difference is the additional
virtual adversarial training (VAT) loss.

• For WDA, we replaced the Wasserstein distance utilized by Shen et al. [12] with the Sinkhorn
divergence [41]. The Sinkhorn divergence is a computationally more efficient analogue of the
Wasserstein distance regularizer. We used the Geomloss package [42] in our code.

G Background on Domain Adaptation and Algorithmic Fairness

Domain adaptation generally refers to the problem of semi-supervised learning under distribu-
tion shift. More precisely, in the semi-supervised setting the learner is given a labeled dataset
{(Xi, Yi)}

n
i=1 and an unlabeled dataset {Xi}

m
i=n+1. In domain adaptation, we typically assume

the labeled samples and unlabeled samples are drawn from a source P and target distribution Q that
are similar but non-identical. The goal of the learner is to find a prediction rule f : X → Y such
that EQ

[
ℓ(f(X), Y )

]
is small. This goal is impossible without additional assumptions restricting

the differences between P and Q. In light of the available data, a natural assumption is covariate
shift: EP

[
Y | X = x

]
= EQ

[
Y | X = x

]
. The standard approach to this problem is importance

weighing [43]. It is based on the observation that

EQ

[
ℓ(f(X), Y ))

]
= EP

[
w(X)ℓ(f(X), Y )

]
], (G.1)

where w(x) , dQX

dPX
(x) is the likelihood ratio between the marginal distribution of inputs in the

target and that in the source domains. It is possible to estimate w from the inputs in the labeled and
unlabeled datasets [44], which allows the learner to estimate the right side of (G.1).

It is known that many instances of algorithmic bias are caused by distribution shift between the
training data and real-world data encountered by the model during deployment. Broadly speaking,
research has identified two types of algorithmic bias caused by distributional shifts [1]:

1. the model is trained to predict the wrong target;

2. the model is trained to predict the correct target, but its predictions are inaccurate for demographic
groups that are underrepresented in the training data.
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In statistical terms, the first type of algorithmic bias is caused by posterior drift between the training
and real-world data. This leads to a mismatch between the model’s predictions and the correct
values of the target in the real world. The second type of algorithmic biases arises when ML models
are trained or evaluated in non-diverse training data, so the models perform poorly on underserved
groups. In statistical terms, this type of algorithmic bias is caused by covariate shift between the
training and real-world data.

Several prior works study the effects of enforcing algorithmic fairness under distribution shift.
Blum et al. [45] consider the effects of enforcing demographic parity and equalized odds under two
forms of distribution shift they call under-representation bias and labeling bias. Maity et al. [34]
consider the effects of enforcing group fairness in a domain generalization setting when there is
subpopulation shift between the source and target domains. Another line of work considers how
fairness guarantees (instead of performance guarantees) transfer under distribution shift [5], [46],
[47]. Singh et al. [48] and Rezaei et al. [49] consider both transferability of performance and fair-
ness guarantees under covariate shift.
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