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Abstract

We consider the task of training machine learning models with data-dependent
constraints. Such constraints often arise as empirical versions of expected value
constraints that enforce fairness or stability goals. We reformulate data-dependent
constraints so that they are calibrated: enforcing the reformulated constraints
guarantees that their expected value counterparts are satisfied with a user-prescribed
probability. The resulting optimization problem is amendable to standard stochastic
optimization algorithms, and we demonstrate the efficacy of our method on a
fairness-sensitive classification task where we wish to guarantee the classifier’s
fairness (at test time).

1 Motivation

In machine learning (ML) practice, accuracy is often only one of many training objectives. For exam-
ple, algorithmic fairness considerations may require a credit scoring system to perform comparably
on men and women. Here are a few other examples.

Churn rate and stability The churn rate of an ML model compared to another model is the fraction
of samples on which the predictions of the two models differ [21, 30]. In ML practice, one may wish
to control the churn rate between a new model and its predecessor because a high churn rate can
disorient users and downstream system components. One way of training models with small churn is
to enforce a churn rate constraint during training.

Precision, recall, etc. Classification and information retrieval models must often balance precision
and recall. To train such models, practitioners carefully trade off one metric for the other by optimizing
for one metric subject to constraints on the other.

Resource constraints Practitioners sometimes wish to control how often a classifier predicts a
certain class due to budget or resource constraints. For example, a company that uses ML to select
customers for a targeted offer may wish to constrain the fraction of customers selected for the offer.
Another prominent example of a stochastic optimization problem with resource constraints is the
newsvendor problem, which we come back to in section 4.

Unlike constraints on the structure of model parameters (e.g., sparsity), the constraints encoding the
preceding training objectives are data-dependent. This leads to the issue of constraint generalization:
whether the constraints generalize out-of-sample. For example, if a classifier is trained to have
comparable accuracy on two subpopulations in the training data, will it also have comparable
accuracy on samples from the two subpopulations at test time?
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In this paper, we consider the out-of-sample generalization of expected-value constraints. To keep
things simple, consider a stochastic optimization problem with a single expected-value constraint:

θ? ∈

{
arg minθ∈Θ EP0

[
f(θ;Z)

]
=
∫
Z f(θ; z)dP0(z)

subject to EP0

[
g(θ;Z)

]
=
∫
Z g(θ; z)dP0(z) ≤ 0

}
, (1.1)

where Θ is a (finite-dimensional) parameter space, f, g : Θ×Z → R are (known) cost and constraint
functions, and Z ∈ Z is a random variable that represents a sample. The distribution of Z is unknown,
so we cannot solve (1.1) directly. Instead, we obtain IID training samples {Zi}ni=1 from the true
underlying distribution P0 and solve the empirical version of (1.1):

θ̂n ∈

{
arg minθ∈Θ

1
n

∑n
i=1 f(θ;Zi)

subject to 1
n

∑n
i=1 g(θ;Zi) ≤ 0

}
. (1.2)

The estimator θ̂n (of θ?) is guaranteed to satisfy the empirical constraint (i.e., 1
n

∑n
i=1 g(θ̂n;Zi) ≤ 0),

but it is unclear whether θ̂n satisfies the actual (population) constraint EP0

[
g(θ;Z)

]
≤ 0. As

we shall see, under standard assumptions on (1.1), θ̂n only satisfies the actual constraint with
probability approaching 1

2 (see corollary 2.2). This is especially problematic for constraints that
encode algorithmic fairness goals. For example, the 80% rule published by the US Equal Employment
Opportunity Commission, interpreted in the machine learning context, requires the rate at which a
classifier predicts the advantaged label in minority groups to be at least 80% of the rate at which the
classifier predicts the advantaged label in the majority group [3].

In this paper, we propose a distributionally robust version of (1.2) that guarantees the actual constraint
EP0

[
g(θ;Z)

]
≤ 0 will be satisfied with probability 1− α:

θ̂n ∈

{
arg minθ∈Θ

1
n

∑n
i=1 f(θ;Zi)

subject to supP :Dϕ(P‖P̂n)≤ ραn
EP
[
g(θ;Z)

]
≤ 0

}
, (1.3)

where Dϕ is a ϕ-divergence (see section 2 for details), P̂n is the empirical distribution of the training
samples, and

√
ρα is the 1− α quantile of a standard normal random variable. More concretely, we

show that θ̂n achieves asymptotically exact constraint satisfaction

lim
n→∞

P
{
EP0

[
g(θ̂n;Z)

]
≤ 0
}

= 1− α. (1.4)

Here the inner expectation is with respect to Z; the outer probability is with respect to the training
samples {Zi}ni=1. Three desirable properties of (1.3) are

1. exact constraint satisfaction: If the actual probability of constraint satisfaction exceeds 1− α,
then the method is too conservative. This may (unnecessarily) increase the cost of the model. By
picking ρα in (1.3) carefully, constraints are satisfied with asymptotically exact probability 1− α.

2. computationally efficient: As we shall see, the computational cost of solving (1.3) is comparable
to the cost of solving distributionally robust sample average approximation (SAA) problems.

3. pivotal: There are no nuisance parameters to estimate (e.g., asymptotic variances) in (1.3). The
user merely needs to look up the correct quantile of the standard normal distribution for their
desired level of constraint generalization.

The rest of this paper is organized as follows. In Section 2, we develop method, theory, and algorithm
for stochastic optimization problems with single constraint. In Section 3, we extend our method,
theory, and algorithm to stochastic optimization problems with multiple constraints. In Section 4,
we validate our theory by simulating a resource-constrained newsvendor problem. In Section 5, we
demonstrate the efficacy of our method by using it to train an algorithmically fair income classifier.
In addition, we show how to apply our method to a fairness constrained learning problem and discuss
two practical considerations for fair ML application scenarios. Finally, we summarize our work in
Section 6 and point out an interesting avenue of future work.

1.1 Related work

The closest work to our work is [27]. They seek to pick a (data-dependent) uncertainty set U such
that

lim
n→∞

P
{

supθ
{
EP0

[
g(θ;Z)

]
− supP∈U EP

[
g(θ;Z)

]}
≤ 0
}

= 1− α. (1.5)
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This condition is stronger than necessary: we only require

lim
n→∞

P
{
EP0

[
g(θ̂n;Z)

]
− supP∈U EP

[
g(θ̂n;Z)

]
≤ 0
}

= 1− α (1.6)

where θ̂n is a (data-dependent) estimator (not necessarily (1.2) or (1.3)). [27] study (asymptotic)
constraint satisfaction (1.4) for all deterministic objective functions (see [27], §1.1 for details). They
advocate picking a KL divergence ball with radius that depends on the excursion probability of a
certain χ2 process.

Another closely related line of work is on data-splitting approaches for ensuring constraint gener-
alization [37, 7]. At a high level, they split the training data into a training and validation subsets
and use the validation subset to tune models trained on the training subset so that they satisfy the
constraints. Although (computationally) simple and intuitive, their approach does not allow users to
precisely control the constraint violation probability.

[27] is the latest in a line of work on distributionally robust optimization (DRO) that show the optimal
value of DRO problems

minθ∈Θ supP∈U EP
[
g(θ;Z)

]
, (1.7)

where U is a (data-dependent) uncertainty set of probability distributions, are upper confidence
bounds for the optimal values of stochastic optimization problems. Common choices of uncertainty
sets in DRO include uncertainty sets defined by moment or support constraints [6, 12, 22], ϕ-
divergences [4, 26, 31], and Wasserstein distances [34, 5, 18, 28, 35]. This line of work is motivated
by Owen’s seminal work on empirical likelihood [32]. In recent work, [26, 15] show that the optimal
value of DRO problems with empirical likelihood uncertainty sets leads to asymptotically exact
upper confidence bounds for the optimal value of stochastic optimization problems ([15] consider
more general ϕ-divergence uncertainty sets). [5] establish similar coverage results for Wasserstein
uncertainty sets.

Our work is also closely related to the work on the variance regularization properties of DRO
[31], which uses DRO to approximate the variance regularization cost function (see (2.4)). [20]
establish similar results for Wasserstein DRO. Lastly, we relate our work to the literature on chance
constrained optimization (see [24] and the references therein). The general goal of chance constrained
optimization is to minimize a loss function subject to the probability of satisfying uncertain constraints
is above a prescribed level. While our methods reformulate expected value constraints and we show
that the solution of the reformulated problem enjoys an asymptotically exact probabilistic guarantees
of constraint satisfaction. In addition, the data-dependent constraints in our work are also unknown in
practice, which differs from the common setup in the chance constrained optimization literature.

2 Single expected value constraint

We motivate (1.3) by considering a few alternatives. First, we note that the results later in this section
show that (1.2) violates the actual constraint in (1.1) approximately half the time (see corollary
2.2). The most straightforward modification of (1.2) to ensure θ̂n satisfies the (actual) constraint
EP0

[
g(θ;Z)

]
≤ 0 is to add a “margin” in (1.3); i.e. enforce the constraint

1
n

∑n
i=1 g(θ;Zi) + εn ≤ 0 (2.1)

in (1.2). If we pick the slack term εn such that

P
{

supθ∈Θ

{
EP0

[
g(θ;Z)

]
− 1

n

∑n
i=1 g(θ;Zi)

}
> εn

}
≤ α,

then it is not hard to check that the resulting θ̂n satisfies the (actual) constraint with probability
greater than 1−α [36, 29]. However, this approach is most likely conservative because the constraint
is unnecessarily stringent for θ’s such that 1

n

∑n
i=1 g(θ;Zi) is less variable. It is also not pivotal:

εn is often set using bounds from (uniform) concentration inequalities, which typically depend on
unknown problem parameters.

To relax the empirical constraint in a way that adapts to the variability of the empirical constraints,
we replace the uniform margin in (2.1) with a parameter-dependent margin:

1
n

∑n
i=1 g(θ;Zi) + zα

σ̂(θ)√
n
≤ 0, (2.2)

3



where zα is the 1− α quantile of a standard normal random variable and σ̂2(θ) is an estimate of the
asymptotic variance of g(θ;Z). We recognize the (parameter-dependent) margin as (a multiple of)
the standard error of the empirical constraint. It is possible to show that enforcing (2.2) achieves
asymptotically exact constraint generalization (1.4) [27].

The main issue with this method is it is not amenable to standard stochastic optimization algorithms.
In particular, even if the original constraint in (1.2) is convex, (2.2) is generally non-convex. Another
issue is that it is not pivotal: the user must estimate the asymptotic variance of g(θ;Z).

To overcome these two issues, we consider a distributionally robust version of (1.2); i.e. enforcing

supP :Dϕ(P‖P̂n)≤ ραn
EP
[
g(θ;Z)

]
≤ 0, (2.3)

where Dϕ(P‖Q) ,
∫
ϕ( dPdQ )dQ is a ϕ-divergence. Common choices of ϕ include ϕ(t) = (t− 1)2

(which leads to the χ2-divergence) and ϕ(t) = − log t+ t− 1 (which leads to the Kullback-Leibler
divergence). Although there are many other choices for the uncertainty set in (2.3), we pick an
ϕ-divergence ball because (i) (2.3) with an ϕ-divergence ball is asymptotically equivalent to (2.2):

supP :Dϕ(P‖P̂n)≤ ραn
EP
[
g(θ;Z)

]
≈ 1

n

∑n
i=1 g(θ;Zi) + zα

σ̂(θ)√
n
, (2.4)

and (ii) it leads to pivotal uncertainty sets. For theoretical analysis, we always use ϕ(t) = (t− 1)2

and χ2-divergence in the remainder of this paper.

Before we state the asymptotically exact constraint satisfaction property of (1.3) rigorously, we
describe our assumptions on the problem.

1. smoothness and concentration: f and g are twice continuously differentiable with respect to θ,
and f(θ?;Z), ∇f(θ?;Z), g(θ?;Z), ∇g(θ?;Z) are sub-Gaussian random variables.

2. uniqueness: the stochastic optimization problem with a single expected value constraint (1.1) has
a unique optimal primal-dual pair (θ?, λ?), and θ? belongs to the interior of the compact set Θ.

3. strict complementarity: λ? > 0.
4. positive definiteness: The Hessian of the Lagrangian evaluated at (θ?, λ?) is positive definite.

The preceding assumptions are not the most general, but they are easy to interpret. The smoothness
conditions on f and g with respect to θ, the concentration conditions of f(θ?;Z) and g(θ?;Z),
and the uniqueness condition facilitate the use of standard tools from asymptotic statistics to study
the large sample properties of the constraint value. The strict complementarity condition rules out
problems in which the constraint is extraneous; i.e. problems in which the unconstrained minimum
coincides with the constrained minimum.

We are ready to state the asymptotically exact constraint satisfaction property of (1.3) rigorously. The
main technical result characterizes the limiting distribution of the constraint value.

Theorem 2.1. Let θ̂n be an optimal solution of (1.3) converging in probability as n → ∞ to θ?.
Under the standing assumptions, we have
√
n
(
EP0

[
g(θ̂n;Z)

]
−
�������
EP0

[
g(θ?;Z)

]) d→ N
(
−
√
ρα VarP0

[g(θ?;Z)],VarP0
[g(θ?;Z)]

)
.

We translate this result on the constraint value to a result on constraint generalization.
Corollary 2.2. Let

√
ρα be the 1 − α quantile of a standard normal random variable. Under the

conditions of theorem 2.1, we have

lim
n→∞

P
{
EP0

[
g(θ̂n;Z)

]
≤ 0
}

= P {U ≤ √ρα} = 1− α,

where U ∼ N (0, 1) is a standard Gaussian random variable.

From theorem 2.1 and corollary 2.2 (see proofs in Appendix A), we find that

1. picking ρα = 0 (i.e., equivalently solving (1.2)) leads to a constraint violation probability that
approaches 1

2 in the large sample limit.
2. the relation between the mean and variance of the limiting distribution of the constraint value in

Theorem 2.1 allows us to pick ρα in a pivotal way (i.e. does not depend on nuisance parameters).
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2.1 Stochastic approximation for (1.3)

In the rest of this section, we derive a stochastic optimization algorithm to solve (1.3) efficiently. As
we shall see, the computational cost of this algorithm is comparable to the cost of solving a DRO
problem. The key insight is that the robust constraint function has a dual form (see Appendix J):

supP :Dϕ(P‖P̂n)≤ρ EP
[
g(θ;Z)

]
= infµ≥0,ν∈R

{
1
n

∑n
i=1 µϕ

∗( g(θ;Zi)−ν
µ

)
+ µρ+ ν

}
, (2.5)

where ϕ∗(s) , supt{st− ϕ(t)} is the convex conjugate of ϕ. As we use χ2-squared divergence and
ϕ(t) = (t− 1)2, the corresponding ϕ∗(s) = s2

4 + s. The Lagrangian of (1.3) is

L(θ, λ) , 1
n

∑n
i=1 f(θ;Zi) + λ supP :Dϕ(P‖P̂n)≤ ραn

EP
[
g(θ;Z)

]
= 1

n

∑n
i=1 f(θ;Zi) + λ infµ≥0,ν∈R

{
1
n

∑n
i=1 µϕ

∗( g(θ;Zi)−ν
µ

)
+ µραn + ν

}
.

We see that evaluating the dual function infθ L(θ, λ) (at a fixed λ) entails solving a stochastic
optimization problem that is suitable for stochastic approximation. This suggests a dual ascent
algorithm for solving (1.3):

1. evaluate the dual function at λt by solving a stochastic optimization problem.
2. update λt with a dual ascent step.

We summarize this algorithm in Algorithm 1. The main cost of Algorithm 1 is incurred in the third
line: evaluating the dual function. Fortunately, this step is suitable for stochastic approximation, so
we can leverage recent advances in the literature to reduce the (computational) cost of this step. The
total cost of this algorithm is comparable to that of distributionally robust optimization.

Algorithm 1 Dual ascent algorithm for (1.3)

1: Input: starting dual iterate λ0 ≥ 0
2: repeat
3: Evaluate dual function:

(θt, µt, νt)← arg minθ,µ≥0,ν
1
n

∑n
i=1 f(θ;Zi)+λt

{
1
n

∑n
i=1 µϕ

∗( g(θ;Zi)−ν
µ

)
+ µραn + ν

}
4: Dual ascent update: λt+1 ←

[
λt + ηt

{
1
n

∑n
i=1 µtϕ

∗( g(θt;Zi)−νt
µt

) + µt
ρα
n + νt

}]
+

5: until converged

3 Multiple expected value constraints

In this section, we extend the results from the preceding section to stochastic optimization problems
with multiple data-dependent constraints. Consider a stochastic optimization problem with K
expected value constraints

θ? ∈

{
arg minθ∈Θ EP0

[
f(θ;Z)

]
subject to

{
EP0

[
gk(θ;Z)

]
≤ 0
}K
k=1

}
, (3.1)

Following the development in Section 2, we enforce the expected value constraints with robust
versions of the sample average constraints:

θ̂n ∈


arg minθ∈Θ

1
n

∑n
i=1 f(θ;Zi)

subject to
{

supP :Dϕ(P‖P̂n)≤ ρkn
EP
[
gk(θ;Z)

]
≤ 0
}K
k=1

 , (3.2)

where ρ = (ρ1, . . . , ρK)> are uncertainty set radii for the constraints. There are other approaches to
enforcing multiple constraints that result in constraint generalization; we focus on (3.2) here because
it allows the user to adjust the constraint generalization probability for different constraints.

First, we extend theorem 2.1 and corollary 2.2 to problems with multiple (expected value) constraints.
We assume

5



1. smoothness and concentration: for k ∈ [K], f, gk are twice continuously differentiable with
respect to θ, and f(θ?;Z),∇f(θ?;Z), gk(θ?;Z),∇gk(θ?;Z) are sub-Gaussian random variables.

2. uniqueness: the stochastic optimization problem with K expected value constraints (3.1) has a
unique optimal primal-dual pair (θ?,λ?), and θ? belongs to the interior of the compact set Θ.

3. strict complementarity: λ? ∈ int(RK+ ), i.e., each component of λ? is strictly positive.
4. positive definiteness: The Hessian of the Lagrangian evaluated at (θ?,λ?) is positive definite.

The strict complementarity constraint seems especially strong here because it requires all the con-
straints to be active. It is possible (with extra notational overhead) to state the result in terms of just
the active constraints. We refer to Section 5.1 for more information about the unknown active set.
Further, as long as the sample size is large enough, the active constraints in (3.2) coincide with the
active constraints in (3.1). To keep things simple, we assume all the constraints are active.

Theorem 3.1. Let θ̂n be an optimal solution of (3.2) converging in probability as n → ∞ to θ?.
Under the standing assumptions, we have

√
n

EP0

[
g1(θ̂n;Z)

]
...

EP0

[
gK(θ̂n;Z)

]
 d→ N

−

√
ρ1 VarP0

[g1(θ?;Z)]
...√

ρK VarP0 [gK(θ?;Z)]

 ,VarP0

 g1(θ?;Z)
...

gK(θ?;Z)


 .

Corollary 3.2. Under the conditions of theorem 3.1, we have

lim
n→∞

P


EP0

[
g1(θ̂n;Z)

]
...

EP0

[
gK(θ̂n;Z)

]
 ∈ −RK+

 = P{U ≤ √ρ},

where
√
ρ = (

√
ρ1, . . . ,

√
ρK)>, andU is a Gaussian random vector with mean zero and covariance

CorrP0

 g1(θ?;Z)
...

gK(θ?;Z)

 , D− 1
2 CovP0

 g1(θ?;Z)
...

gK(θ?;Z)

D− 1
2 ,

D , diag
(
{VarP0 [gk(θ?, Z)]}Kk=1

)
.

(3.3)

From theorem 3.1 and corollary 3.2 (see proofs in Appendix B and C), we find that the probability
of constraint satisfaction decreases exponentially as the number of constraints increases. We also
see that our method is no longer pivotal for multiple expected value constraints: the uncertainty set
radii depends on the (unknown) correlation structure among the constraint values. Fortunately, it is
not hard to estimate this correlation structure. The most straightforward way is with the empirical
correlation matrix. Let Σ̂n be the empirical covariance matrix of the constraint values. The empirical
correlation matrix is then given by R̂n , diag(Σ̂n)−

1
2 Σ̂n diag(Σ̂n)−

1
2 .

Finally, it is straightforward to extend the algorithm for solving (1.3) to (3.2). The Lagrangian of
(3.2) is

L(θ,λ) , 1
n

∑n
i=1 f(θ;Zi) +

∑K
k=1 λk supP :Dϕ(P‖Pn)≤ ρkn

EP
[
gk(θ;Z)

]
= 1

n

∑n
i=1 f(θ;Zi) +

∑K
k=1 λk infµk≥0,νk∈R

{
1
n

∑n
i=1 µkϕ

∗( gk(θ;Zi)−νk
µk

) + µk
ρk
n + νk

}
,

where we recalled the dual form of the robust constraint function (2.5) in the second step. We see
that evaluating the dual function infθ L(θ,λ) (at a fixed λ) entails solving a stochastic optimization
problem that is suitable for stochastic approximation. This suggests a similar dual ascent algorithm
for solving (1.3); we skip the details here (see Algorithm 2 in Appendix D).

4 Simulations

We simulate the frequency of constraint satisfaction for the following multi-item newsvendor problem:

maxθ∈Θ EP0

[
p>min{Z, θ} − c>θ

]
subject to EP0

[(‖Z(1)‖22 − ‖θ(1)‖22)+] ≤ ε1

EP0 [(‖Z(2)‖22 − ‖θ(2)‖22)+] ≤ ε2

(4.1)
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where c ∈ Rd+ is the manufacturing cost, p ∈ Rd+ is the sell price, θ ∈ Θ = [0, 100]d is the number
of items in stock, Z ∈ Rd is a random variable with probability distribution P0 representing the
demand, and there are d items in total. The distribution P0 is unknown but we observe IID samples
Z1, . . . , Zn from P0. All of the items have been partitioned into two groups so that the corresponding
demand and stock can be written as Z = (Z(1), Z(2)) and θ = (θ(1), θ(2)). The constraints in the
problem exclude stock levels that underestimate the demand too much for each group of items, where
ε1, ε2 > 0 indicate tolerance level of such underestimation. The target of the problem is to maximize
the profit while satisfying the constraints. It is easy to rewrite the maximization problem (4.1) as a
minimization problem with expected value constraints in the form of (3.1) so that we can apply our
method (3.2). We pick P0 as multivariate Gaussian with independent components so that the two
constraints are generally uncorrelated with each other (see Appendix E for details).

Throughout the simulations, we solve (3.2) with ρ = (zα, zα)> for α ∈ {0.4, 0.25, 0.1, 0.05, 0.005}.
As suggested by our asymptotic theory in Section 3, the nominal probability of constraint satisfaction
is 1− α for each constraint and (1− α)2 for both constraints due to the independence setup.

In Figure 1, we plot frequencies of constraint satisfaction for each constraint and both constraints, all of
which are averaged over 1000 replicates. As the sample size n grows, the frequency versus probability
curve converges to the theoretical dashed line of limiting probability of constraint satisfaction,
validating our theory in the large sample regime. For more simulations (e.g., single constraint, two
dependent constraints) we refer to Appendix E.
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Figure 1: Frequency versus limiting probability of constraint satisfaction of the first constraint (left),
the second constraint (middle), and both of the constraints (right).

5 Application to fair machine learning

As ML models are deployed in high-stakes decision making and decision support roles, the fairness
of the models has come under increased scrutiny. In response, there is a flurry of recent work on
mathematical definitions of algorithmic fairness [16, 23, 25] and algorithms to enforce the definitions
[1, 10, 38].

A prominent class of fairness definitions is group fairness; such definitions require equality of certain
metrics (e.g. false/true positive rates) among demographic groups. For example, consider a fair binary
classification problem. Let X ⊂ Rd be the input space, {0, 1} be the set of possible labels, and A be
the set of possible values of the protected/sensitive attribute. In this setup, training and test examples
are tuples of the form (X,A, Y ) ∈ X ×A× Y , and a classifier is a map f : X → {0, 1}. A popular
definition of algorithmic fairness for binary classification is equality of opportunity [23].
Definition 5.1 (equality of opportunity). Let Y = 1 be the advantaged label that is associated with
a positive outcome and Ŷ , f(X) be the output of the classifier. Equality of opportunity entails
P{Ŷ = 1 | A = a, Y = 1} = P{Ŷ = 1 | A = a′, Y = 1} for all a, a′ ∈ A.

Equality of opportunity, or true positive rate parity, means that the prediction Ŷ = h(X) conditioned
on the advantaged label Y = 1 is statistically independent of the protected attribute A. Furthermore,
an approximate version of equality of opportunity can be readily defined. We say that Ŷ = h(X)

satisfies ε-equality of opportunity if P{Ŷ = 1 | A = a, Y = 1} − P{Ŷ = 1 | A = a′, Y = 1} ≤ ε
for for all a, a′ ∈ A. In this case, ε > 0 represents a practitioner’s tolerance for fairness violations.
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Given a parametric model spaceH = {fθ(·) : θ ∈ Θ} and loss function ` : Θ×X × Y → R+, an
in-processing fair ML routine is to minimize the (empirical) risk E [`(θ;X,Y )] while satisfying some
fairness constraints. Most commonly, definitions of group fairness (including equality of opportunity,
demographic parity, and more) can be written as a special example of a general set of linear constraints
[1, 2] of the form Mµ(θ) ≤ c, where matrix M ∈ RK×T and vector c ∈ RK encode the constraints;
µ(θ) : Θ → RT is a vector of (conditional) moments µt(θ) = E [ht(X,A, Y, θ) | Et] for t ∈ [T ];
gt : X ×A× Y ×Θ→ R; event Et is defined with respect to (X,A, Y ).

This framework fits to our methodology if we note that each (conditional) moment can be written as

µt(θ) =
E(X,A,Y )∼P0

[
ht(X,A, Y, θ)× 1 {Et(X,Y,A)}

]
E(X,A,Y )∼P0

[
1 {Et(X,Y,A)}

] . (5.1)

Here the indicator 1 {Et} takes value 1 if the event Et happens, and 0 otherwise. Moreover, we use
Et(X,A, Y ) to emphasize that Et only depends on (X,Y,A) but not on θ in any way.

Note that (5.1) is a ratio of expected values, which is a non-linear statistical functional of P0. To use
our method, we first replace the denominator of µt(θ) with an estimator, such as the unbiased estimator
P̂(Et) = 1

n

∑n
i=1 1 {Et(Xi, Ai, Yi)}. The resulting plug-in estimation of µt(θ) then becomes linear

in P0, allowing us to apply our method (see similar tricks in [8]). We describe the application of our
method to ε-equality of opportunity in Appendix F.

5.1 A two-stage method for unknown active set

In practice, it is probable that only a subset of the constraints are active. Furthermore, we do not
know beforehand whether or not a constraint is active in the true population problem. To handle this
scenario, we propose a two-stage method:

1. At the first stage, we solve the sample average approximation (SAA) problem (3.2) with ρ = 0K .
By doing so, we identify the active set of the SAA problem.

2. At the second stage, we solve (3.2) with ρ such that ρk is a positive number only if the k-th
constraint, k ∈ [K], was identified as active at the first stage.

In Appendix G, we show that the two-stage method also enjoys the calibration property (similar
to Theorem 3.1 and Corollary 3.2) under standard assumptions (i.e., strict complementarity). At a
high level, the limiting probability of satisfying the true constraints depends solely on the correlation
structure between active constraints and the uncertainty set radii for active constraints, as long as the
SAA problem identifies active constraints with probability tending to 1.

5.2 Proxy dual function for non-differentiable constraints

Constraint functions in fair ML are often non-differentiable. For instance, fairness metrics are
typically linear combinations of indicators that result in non-differentiable rate constraints [8–10].
This prevents the use of any gradient-based optimization algorithms. Fortunately, only the dual
function evaluation step in Algorithm 1 requires access to gradients. Therefore, we can modify the
algorithm by: (1) introducing proxy dual function, which uses a differentiable surrogate g̃ instead of
the non-differentiable g in the dual function evaluation step; (2) keeping g in the dual ascent step. For
an indicator function h(t) = 1{t > 0}, one can replace it by sigmoidal function h1(t) = (1+e−at)−1

or hinge upper bound h2(t) = max{0, t+ 1} to produce smooth surrogates for non-differentiable
rate constraints [11, 17, 9]. We summarize the proxy dual ascent algorithm in Appendix H.

5.3 Adult experiments

We compare the frequency of constraint satisfaction (at test time) of the sample average approximation
and our methods with nominal probability 0.60, 0.75, 0.90, 0.95 using the Adult dataset from UCI
[13]. The classification task is to predict whether an individual’s income per year is higher than $50K.
The fairness goal is ε-demographic parity (ε-DP): |P(Ŷ = 1 | A = 1) − P(Ŷ = 1 | A = 0)| ≤ ε,
where A = 1 for male is the advantaged group and A = 0 for female is the disadvantaged group. We
use a logistic regression model for classification and techniques in this section for implementation.

In Figure 2, we have line plots for frequency of constraint satisfaction and box plots for classification
error rate, all of which are summarized over 100 replicates. The left panel shows that solving (3.1)
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directly leads to one half chance of constraint violation, while our method’s constraint satisfaction
frequency matches its nominal value. The price of a higher chance of test-time fairness satisfaction is
an increase in classification error rate as shown in the right panel. From the baseline to 95% chance
of fairness satisfaction, we basically trade off 2% increase in error rate. We refer to Appendix I and K
for details and more experiments.
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Figure 2: Frequency of constraint satisfaction (left) and classification error rate (right) for different
demographic parity tolerance ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Baseline (sample average approxi-
mation, SAA) and our methods (with nominal probability 0.60, 0.75, 0.90, 0.95) are compared.

6 Summary and discussion

We explore the problem of exact constraint satisfaction probability in stochastic optimization with
expected-value constraints. We propose a distributionally robust reformulation of data-dependent
constraints and provide a theoretical guarantee of constraint satisfaction with an asymptotically
exact probability specified by the user. For solving the reformulated problem, a scalable dual ascent
algorithm and its variants are proposed. The computational cost of our algorithm is comparable
to that of a standard distributionally robust optimization problem. Our theory on exact constraint
satisfaction probability is validated via simulations on the resource-constrained newsvendor problem.
The efficacy of our methods is empirically demonstrated on fair machine learning applications.

Some data-dependent constraints are by nature non-linear in the underlying probability measure.
For example, (5.1) is a ratio of expected values. An intriguing direction for future research is to
generalize the methods and theory developed in this work to constraints on non-linear functions of
expected values. Such forms of constraints are known as statistical functionals in statistics literature
[19]. The non-linear dependence of the constraint function on the probability measure precludes the
stochastic approximation as a general way of evaluating the dual function, as the constraint function
no longer admits a dual form (2.5), calling for the development of a new algorithm.
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Abstract

In Section A, B, C, we present proofs of theoretical results. In Section D, we
summarize the dual ascent algorithm for solving (3.2). In Section E, we provide
details for simulations on the multi-item newsvendor problem with independent
constraints and run additional simulations. In Section F, we demonstrate how our
method can be applied to ε-equality of opportunity. In Section G, we show the
theoretical properties of the two-stage method for unknown active set. In Section
H, we summarize the proxy dual ascent algorithm for handling non-differentiable
constraints. In Section I, we provide details for Adult experiments. In Section J,
we provide a standard derivation for the dual form of the robust constraint function
(2.5). In Section K, experiments on additional baseline and dataset are conducted.

A Proofs of Theorem 2.1 and Corollary 2.2

Note that Theorem 3.1 implies Theorem 2.1 and Corollary 3.2 implies Corollary 2.2 by letting K = 1.
Therefore, it is sufficient to prove Theorem 3.1 and Corollary 3.2, whose proofs can be found in
Appendix B and C respectively. �

B Proof of Theorem 3.1

Consider a stochastic optimization problem with K expected value constraints

(P0) : θ? ∈ arg minθ∈Θ {EZ∼P0 [f(θ;Z)] : EZ∼P0 [gk(θ;Z)] ≤ 0, k ∈ [K]} .

Our proposed robust constraint method solves

(Pn) : θ̂n,ρ ∈ arg minθ∈Θ

{
EZ∼Pn [f(θ;Z)] : sup

Dϕ(Q‖Pn)≤ρk/n
EZ∼Q [gk(θ;Z)] ≤ 0, k ∈ [K]

}
,

where ρ = (ρ1, . . . , ρK)> is the collection of critical radii of uncertainty sets. Here we denote the
empirical distribution P̂n by Pn for notation simplicity.

As a special case of our robust method, the sample average approximation (SAA) or empirical risk
minimization (ERM) solves

θ̂n,0K ∈ arg minθ∈Θ {EZ∼Pn [f(θ;Z)] : EZ∼Pn [gk(θ;Z)] ≤ 0, k ∈ [K]} .

We denote
F (θ) = EZ∼P0

[f(θ;Z)] and F̂n(θ) = EZ∼Pn [f(θ;Z)] ,
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Gk(θ) = EZ∼Pn [gk(θ;Z)] and Ĝkn(θ) = sup
Dϕ(Q‖Pn)≤ρk/n

EZ∼Q [gk(θ;Z)] for k ∈ [K],

and

G(θ) =

 G1(θ)
...

GK(θ)

 and Ĝn(θ) =

 Ĝ1n(θ)
...

ĜKn(θ)

 .

Note that F̂n(·) and Ĝkn(·)’s are random functions serving as approximations to F (·) and Gk(·)’s.
Consider the Lagrangian functions

L(θ,λ) = F (θ) + λ>G(θ) = F (θ) +
K∑
k=1

λkGk(θ)

and

L̂n(θ,λ) = F̂n(θ) + λ>Ĝn(θ) = F̂n(θ) +
K∑
k=1

λkĜkn(θ)

of the programs (P0) and (Pn) respectively.
Lemma B.1 (Theorem 6.6.2 in [33]). Suppose that:

(i) The functions F (θ) and Gk(θ), k ∈ [K], are twice continuously differentiable.
(ii) The true program (P0) has a unique optimal solution θ? and a unique vectorλ? of the Lagrange

multipliers with θ? being an interior point of Θ.
(iii) The Hessian matrix∇2L(θ?,λ?) is positive definite.
(iv) The random functions Ĝkn(θ),k ∈ [K], are Lipschitz continuous in a neighborhood of θ? and

differentiable at θ? with probability 1.
(v)

‖∆in(θ?)‖2 = Op(n
−1/2), i = 1, 2, 3

and there is a neighborhood U of θ? such that

sup
θ∈U

‖∆in(θ)−∆in(θ?)‖2
n−1/2 + ‖θ − θ?‖2

= op(1), i = 1, 2, 3.

Here we define random mappings ∆1n(θ) = ∇F̂n(θ) − ∇F (θ), ∆2n(θ) = Ĝn(θ) −G(θ),
and ∆3n(θ) = ∇Ĝn(θ)−∇G(θ).

(vi) Random vectors
√
n(∇L̂n(θ?,λ?), Ĝn(θ?)) converge in distribution as n→∞ to a random

vector Y = (Y1,Y2).

Let θ̂n be an optimal solution of (Pn) converging in probability as n→∞ to θ?. Then
√
n(θ̂n − θ?)

d−→ x̄(Y )

where x̄ = x̄(Y ) is the optimal solution to the quadratic programming problem

minimize
x

x>Y1 + 1
2x
>∇2L(θ?,λ?)x

subject to ∇G(θ?)>x+ Y2 = 0
.

From now on, we use ϕ(t) = (t− 1)2, which gives the χ2-divergence. Lemma B.1 is adapted from
Theorem 6.6.2 in [33] under the strict complementarity assumption. Recall the standing assumptions,
(i), (iv), (v) are guaranteed by the smoothness and concentration assumption, (ii) is postulated by the
uniqueness assumption, and (iii) is ensured by the positive definiteness assumption. Now we derive
the limiting distribution required in (vi).

Let B denote the `2-ball of radius 1 in Rd. According to Lemma 24 in [14], for each k ∈ [K] there
exists εk > 0 such that, with probability 1, there exists an Nk such that n ≥ Nk implies

Ĝkn(θ) = EPn [gk(θ;Z)] +

√
ρk VarPn [gk(θ;Z)]

n
for all θ ∈ θ? + εkB.
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Taking ε0 = min{εk : k ∈ [K]} and N0 = max{Nk : k ∈ [K]}, we have the following uniform
expansion holds, that is,

Ĝkn(θ) = EPn [gk(θ;Z)] +

√
ρk
n

VarPn [gk(θ;Z)] for all k ∈ [K] and θ ∈ θ? + ε0B

P0-almost surely given n ≥ N0.

Therefore, for sufficiently large n, for k ∈ [K] we have

Ĝkn(θ?) = EPn [gk(θ?;Z)] +

√
ρk
n

VarPn [gk(θ;Z)]

= EP [gk(θ?;Z)] + {EPn [gk(θ?;Z)]− EP0
[gk(θ?;Z)]}+

√
ρk
n

(VarP0
[gk(θ?;Z)] + oP (1))

= Gk(θ?) + {EPn [gk(θ?;Z)]− EP0
[gk(θ?;Z)]}+

√
ρk
n

VarP0
[gk(θ?;Z)] + oP (n−1/2)

and

∇Ĝkn(θ?) =EPn [∇gk(θ?;Z)] +∇
√
ρk
n

VarPn [gk(θ;Z)]

=EP [∇gk(θ?;Z)] + {EPn [∇gk(θ?;Z)]− EP0
[∇gk(θ?;Z)]}+√

ρk
n

EPn [(∇gk(θ?, X)− EPn [∇gk(θ?;Z)]) (gk(θ?;Z)− EPn [gk(θ?;Z)])]√
VarPn [gk(θ?;Z)]

=∇EP0
[gk(θ?;Z)] + {EPn [∇gk(θ?;Z)]− EP0

[∇gk(θ?;Z)]}+√
ρk
n

(
CovP0

(∇gk(θ?;Z), gk(θ?;Z))√
VarP0

[gk(θ?;Z)]
+ oP (1)

)
=∇Gk(θ?) + {EPn [∇gk(θ?;Z)]− EP0 [∇gk(θ?;Z)]}+√

ρk
n

CovP0
(∇gk(θ?;Z), gk(θ?;Z))√

VarP0 [gk(θ?;Z)]
+ oP (n−1/2).

For the objective function and its empirical counterpart, we have

F̂ (θ?) = EPn [f(θ?;Z)] = F (θ?) + {EPn [f(θ?;Z)]− EP0
[f(θ?;Z)]}

and

∇F̂ (θ?) = EPn [∇f(θ?;Z)] = ∇F (θ?) + {EPn [∇f(θ?;Z)]− EP0
[∇f(θ?;Z)]}.

Now we derive the the limiting distribution of random vectors
√
n(∇L̂n(θ?,λ?), Ĝn(θ?)). For

simplicity of notations, we denote Pnm = EPn [m(θ?;Z)] and P0m = EP0
[m(θ?;Z)] for

any random function m(θ;Z), Cov(∇gk, gk) = CovP0
(∇gk(θ?;Z), gk(θ?;Z)) and Var[gk] =
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VarP0 [gk(θ?;Z)]. Then we have

[
∇L̂n(θ?,λ?)

Ĝn(θ?)

]

=


∇F̂n(θ?) +

∑K
k=1 λ

?
k∇Ĝkn(θ?)

...
Ĝkn(θ?)

...



=



∇F (θ?) +
K∑
k=1

λ?k∇Gk(θ?)︸ ︷︷ ︸
=0 due to KKT condition

+(Pn∇f − P0∇f) +
∑K
k=1 λ

?
k(Pn∇gk − P0∇gk) + 1√

n

∑K
k=1

λ?k
√
ρk Cov(∇gk,gk)√

Var[gk]

...
Gk(θ?)︸ ︷︷ ︸

=0 due to active constraint

+(Pngk − P0gk) +
√

ρk
n Var[gk]

...


+ oP

(
1√
n

)

=
1√
n


∑K
k=1

λ?k
√
ρk Cov(∇gk,gk)√

Var[gk]

...√
ρk Var[gk]

...

+

Pn

∇f +

∑K
k=1 λ

?
k∇gk

...
gk
...

− P0


∇f +

∑K
k=1 λ

?
k∇gk

...
gk
...


+ oP

(
1√
n

)
.

By central limit theorem,

√
n

Pn

∇f +

∑K
k=1 λ

?
k∇gk

...
gk
...

− P0


∇f +

∑K
k=1 λ

?
k∇gk

...
gk
...




d−→ N
(
0,

[
Σ11 Σ12

Σ21 Σ22

])
,

where

Σ11 = VarP0

[
∇f(θ?;Z) +

K∑
k=1

λ?k∇gk(θ?;Z)

]
∈ Rd×d,

Σ12 = CovP0

(
∇f(θ?;Z) +

K∑
k=1

λ?k∇gk(θ?;Z),G(θ?;Z)

)
∈ Rd×K ,

Σ21 = Σ>12,

Σ22 = VarP0
[G(θ?;Z)] ∈ RK×K .
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By Slutsky’s theorem,

√
n

[
∇L̂n(θ?,λ?)

Ĝn(θ?)

]

=


∑K
k=1

λ?k
√
ρk Cov(∇gk,gk)√

Var[gk]

...√
ρk Var[gk]

...

+
√
n

Pn

∇f +

∑K
k=1 λ

?
k∇gk

...
gk
...

− P0


∇f +

∑K
k=1 λ

?
k∇gk

...
gk
...


+ oP (1)

d→N
([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

where

µ1 =
K∑
k=1

λ?k
√
ρk CovP0

(∇gk(θ?;Z), gk(θ?;Z))√
VarP0 [gk(θ?;Z)]

∈ Rd,

µ2 =


√
ρ1 VarP0 [g1(θ?;Z)]

...√
ρK VarP0

[gK(θ?;Z)]

 ∈ RK .

Therefore, we conclude that the limiting distribution of
√
n(∇L̂n(θ?,λ?), Ĝn(θ?)) is

(Y1,Y2) ∼ N
([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

By Lemma (B.1), we have
√
n(θ̂n − θ?)

d−→ x̄,

where x̄ is given by the linear system[
∇2L(θ?,λ?) ∇G(θ?)
∇G(θ?)> 0

]
︸ ︷︷ ︸

,B

[
x̄
λ̄

]
= −

[
Y1

Y2

]
∼ N

(
−
[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

or [
x̄
λ̄

]
∼ N

(
−B−1

[
µ1

µ2

]
, B−1

[
Σ11 Σ12

Σ21 Σ22

]
B−1

)
, (B.1)

which implies
√
n(θ̂n − θ?)

d−→ x̄ ∼ N (µ̄, Σ̄) for some µ̄ and Σ̄ determined by (B.1).

By delta method, we have

√
n

EP0
[g1(θ̂n;Z)]

...
EP0

[gK(θ̂n;Z)]

 =
√
nG(θ̂n) =

√
n{G(θ̂n)−G(θ?)︸ ︷︷ ︸

=0

} d−→ N (∇G(θ?)>µ̄,∇G(θ?)>Σ̄∇G(θ?)).

Now we calculate∇G(θ?)>µ̄ and ∇G(θ?)>Σ̄∇G(θ?)).

For notation simplicity, we denote ∇2L = ∇2L(θ?,λ?),∇G = ∇G(θ?) and H =
(∇2L)−1∇G[∇G>(∇2L)−1∇G]−1. By block matrix inversion, we have

B−1 =

[
(∇2L)−1 −H∇G>(∇2L)−1 H

H> −[∇G>(∇2L)−1∇G]−1.

]
By (B.1), we have

µ̄ = −
{

(∇2L)−1 −H∇G>(∇2L)−1
}
µ1 −Hµ2.

Note that∇G>H = IK and ∇G>
{

(∇2L)−1 −H∇G>(∇2L)−1
}

= 0K×K . We have

∇G(θ?)>µ̄ = −∇G>
{

(∇2L)−1 −H∇G>(∇2L)−1
}
µ1 −∇GHµ2 = −µ2
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and

∇G(θ?)>Σ̄∇G(θ?)

=∇G>
[{

(∇2L)−1 −H∇G>(∇2L)−1
}

Σ11 +HΣ21

] {
(∇2L)−1 − (∇2L)−1∇GH>

}
∇G︸ ︷︷ ︸

=0K×K

+∇G>
{

(∇2L)−1 −H∇G>(∇2L)−1
}︸ ︷︷ ︸

=0K×K

Σ12H
>∇G+∇G>HΣ22H

>∇G

=Σ22.

Therefore, we conclude that

√
n

EP0 [g1(θ̂n;Z)]
...

EP0
[gK(θ̂n;Z)]

 d→ N (−µ2,Σ22)
d

== N

−

√
ρ1 VarP0 [g1(θ?;Z)]

...√
ρK VarP0

[gK(θ?;Z)]

 ,VarP0

 g1(θ?;Z)
...

gK(θ?;Z)


 .

Hence we complete the proof of Theorem 3.1. �

C Proof of Corollary 3.2

Recall that D = diag(VarP0
[g1(θ?;Z)], . . . ,VarP0

[gK(θ?;Z)]). According to Theorem 3.1, we
have

lim
n→∞

P
{
θ̂n is feasible

}

= lim
n→∞

P


EP0 [g1(θ̂n;Z)]

...
EP0

[gK(θ̂n;Z)]

 ∈ −RK+


= lim
n→∞

P

√n
EP0 [g1(θ̂n;Z)]

...
EP0

[gK(θ̂n;Z)]

 ≤ 0K


=P

N
−


(ρ1 VarP0 [g1(θ?;Z)])

1
2

...
(ρK VarP0

[gK(θ?;Z)])
1
2

 ,VarP0

 g1(θ?;Z)
...

gK(θ?;Z)


 ≤ 0K


=P

N
−D− 1

2


(ρ1 VarP0 [g1(θ?;Z)])

1
2

...
(ρK VarP0 [gK(θ?;Z)])

1
2

 , D− 1
2 Var

 g1(θ?;Z)
...

gK(θ?;Z)

D− 1
2

 ≤ D− 1
20K


=P

N
−


√
ρ1

...√
ρK

 ,CorrP0

 g1(θ?;Z)
...

gK(θ?;Z)


 ≤ 0K


=P

N
0K ,CorrP0

 g1(θ?;Z)
...

gK(θ?;Z)


 ≤


√
ρ1

...√
ρK


 .

Hence we complete the proof of Corollary 3.2. �

D Dual ascent algorithm for (3.2)

We summarize the dual ascent algorithm for solving (3.2) in Algorithm 2. Similar to Algorithm
1, the main cost of Algorithm 2 is incurred in the evaluation of dual function. The dual function
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evaluation step is still suitable for stochastic approximation. Therefore, the total cost of Algorithm 2
is comparable to that of a standard distributionally robust optimization problem.

Algorithm 2 Dual ascent algorithm for (3.2)

1: Input: starting dual iterate λ0 = (λ01, . . . , λ0K)> ∈ RK+
2: repeat
3: Evaluate dual function:

(θt,µt,νt)← arg minθ,µ∈RK+ ,ν
1
n

∑n
i=1 f(θ;Zi)+

∑K
k=1 λtk

{
1
n

∑n
i=1 µtkϕ

∗( gk(θ;Zi)−νtk
µtk

) + µtk
ρk
n + νtk

}
4: Dual ascent update:

λt+1,k ←
[
λtk + ηt

{
1
n

∑n
i=1 µtkϕ

∗( gk(θt;Zi)−νtk
µtk

) + µtk
ρα
n + νtk

}]
+
, k ∈ [K]

5: until converged

E Simulations: details and more

In this section, we provide details for simulations on the multi-item newsvendor problem with
independent constraints (which we present in the main text), and conduct more simulations on: (1)
multi-item newsvendor problem with dependent constraints, and (2) single-item newsvendor problem
with a single constraint.

E.1 Multi-item newsvendor problem

First recall that in Section 4, we simulate the frequency of constraint satisfaction for the following
multi-item newsvendor problem:

maxθ∈Θ EP0

[
p>min{Z, θ} − c>θ

]
subject to EP0

[(‖Z(1)‖22 − ‖θ(1)‖22)+] ≤ ε1

EP0 [(‖Z(2)‖22 − ‖θ(2)‖22)+] ≤ ε2

(E.1)

where c ∈ Rd+ is the manufacturing cost, p ∈ Rd+ is the sell price, θ ∈ Θ = [0, 100]d is the number
of items in stock, Z ∈ Rd is a random variable with probability distribution P0 representing the
demand, and there are d items in total. The distribution P0 is unknown but we observe IID samples
Z1, . . . , Zn from P0. All of the items have been partitioned into two groups so that the corresponding
demand and stock can be written as Z = (Z(1), Z(2)) and θ = (θ(1), θ(2)). The constraints in the
problem exclude stock levels that underestimate the demand too much for each group of items, where
ε1, ε2 > 0 indicate tolerance level of such underestimation. The target of the problem is to maximize
the profit while satisfying the constraints.

We can rewrite the maximization problem (E.1) as a minimization problem with expected value
constraints in the form of (3.1), that is,

minθ∈Θ EP0

[
c>θ − p>min{Z, θ}

]
subject to EP0 [(‖Z(1)‖22 − ‖θ(1)‖22)+ − ε1] ≤ 0

EP0
[(‖Z(2)‖22 − ‖θ(2)‖22)+ − ε2] ≤ 0

(E.2)

so that we can apply our method (3.2).

We generate Z1, . . . , Zn IID from multivariate normal distribution N (µ,Σ). In addition, we set the
number of items d = 4, the mean of the normal distribution µ = (10, 10, 10, 10)>, the cost c =
(1, 1, 1, 1)>, the price p = (2, 2, 2, 2)>, and the tolerance level of underestimation (ε1, ε2) = (1, 1).
Moreover, we partition the items into the group of the first two items and the group of the last two
items. We solve the empirical problem with robust constraint:

minθ∈Θ EP̂n
[
c>θ − p>min{Z, θ}

]
subject to supDϕ(P‖P̂n)≤ρ/n EP [(‖Z(1)‖22 − ‖θ(1)‖22)+ − ε1] ≤ 0

supDϕ(P‖P̂n)≤ρ/n EP [(‖Z(2)‖22 − ‖θ(2)‖22)+ − ε2] ≤ 0

(E.3)
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using samples of size n ∈ {30, 300, 3000}.
For the covariance of the multivariate normal distribution, we consider a exchangeable correlation
structure

Σ = 9×

1 r r r
r 1 r r
r r 1 r
r r r 1


We solve (E.3) with ρ = (ρ, ρ)> = (zα, zα)> for α ∈ {0.4, 0.25, 0.1, 0.05, 0.005}, of which the
corresponding

√
ρ ∈ {0.253, 0.674, 1.281, 1.644, 2.575}.

Independent constraints In Section 4, we consider r = 0 so that the two constraints are generally
uncorrelated with each other. As suggested by the asymptotic theory in Section 3, the nominal
probability of constraint satisfaction is 1− α for each constraint and (1− α)2 for both constraints
due to the independence of two constraints. The results are discussed in Section 4.

Dependent constraints Now we consider r = 0.6 so that the two constraints are generally corre-
lated with each other. As suggested by the asymptotic theory in Section 3, the nominal probability of
constraint satisfaction is 1− α for each constraint. The nominal probability of constraint satisfaction
for both constraints is no longer (1−α)2 due to the dependence of two constraints, but the probability
is given by

P
{
N
([

0
0

]
,

[
1 CorrP0

(g1(θ?;Z), g2(θ?;Z))
CorrP0

(g1(θ?;Z), g2(θ?;Z)) 1

])
≤R2

[√
ρ√
ρ

]}
.

In Figure 3, we plot frequencies of constraint satisfaction for each constraint and both constraints, all of
which are averaged over 1000 replicates. As the sample size n grows, the frequency versus probability
curve converges to the theoretical dashed line of limiting probability of constraint satisfaction,
validating our theory in the large sample regime. We note that in this example, the frequency of
constraint satisfaction is higher than that of the experiments with independent constraints, for each ρ.
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Figure 3: Frequency versus limiting probability of constraint satisfaction of the first constraint (left),
the second constraint (middle), and both of the constraints (right).

E.2 Single-item newsvendor problem

In this subsection, we consider the following single-item newsvendor problem:

maxθ∈Θ EP0

[
pmin{Z, θ} − cθ

]
subject to EP0

[
(Z − θ)+

]
≤ ε

where c > 0 is the manufacturing cost, p ≥ c is the sell price, θ ∈ Θ = [0, 100] is the number of items
in stock, and Z is a random variable with probability distribution P0 representing the demand. The
distribution P0 is unknown but instead we observe IID samples Z1, . . . , Zn from P . The constraint in
the problem excludes stocking levels that underestimate the demand too much, where ε > 0 indicates
tolerance level of such underestimation. The target of the problem is to maximize the profit while
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satisfying the constraint. Note that the problem is equivalent to

minθ∈Θ EP0

[
cθ − pmin{Z, θ}

]
subject to EP0

[
(Z − θ)+ − ε

]
≤ 0

which is a particular case of (1.1).

We generate Z1, . . . , Zn IID from exponential distribution with mean 10. In addition, we set the cost
c = 1, the price p = 2, and the tolerance level of underestimation ε = 1. We solve the empirical
problem with robust constraint:

minθ∈Θ EP̂n
[
cθ − pmin{Z, θ}

]
subject to supDϕ(P‖P̂n)≤ρ/n EP

[
(Z − θ)+ − ε

]
≤ 0

using samples of size n ∈ {300, 3000, 30000}.
In Figure 4, we plot frequencies of constraint satisfaction which are averaged over 1000 replicates. As
the sample size n grows, the frequency versus probability curve converges to the theoretical dashed
line of limiting probability of constraint satisfaction, validating our theory in the large sample regime.
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Figure 4: Frequency versus limiting probability of constraint satisfaction.

F Application of our method to ε-equality of opportunity

Continuing with Section 5.1, we demonstrate how to apply our method to enforce ε-equality of
opportunity. To keep things simple, we assume there are only two demographic groups; i.e. |A| = 2.
Without loss of generality, we refer to one group as advantaged (A = 1) and the other as disadvantaged
(A = 0). First we estimate rates P {A = 1, Y = 1} and P {A = 0, Y = 1} consistently by

p̂1 = 1
n

∑n
i=1 1 {Ai = 1, Yi = 1} and p̂0 = 1

n

∑n
i=1 1 {Ai = 0, Yi = 1} .

Then, we construct a robust constraint

supP :Dϕ(P‖P̂n)≤ρ/n E(X,A,Y )∼P

[
1{Ŷ=1,A=1,Y=1}

p̂1
− 1{Ŷ=1,A=0,Y=1}

p̂0
− ε
]
≤ 0,

or equivalently

supp:
∑n
i=1 ϕ(npi)≤ρ

∑n
i=1 pi

[
1{fθ(Xi)=1,Ai=1,Yi=1}

p̂1
− 1{fθ(Xi)=1,Ai=0,Yi=1}

p̂0
− ε
]
≤ 0.

G Two-stage method for unknown active set

In this section, we show that the two-stage method in Section 5.1 also has the calibration property
(similar to Theorem 3.1 and Corollary 3.2) if the true program (P0), i.e. (3.1), is not ill-behaved.

First we recall the two-stage method:

1. At the first stage, we solve the program (Pn) with ρ = 0K , that is, the sample average approxi-
mation (SAA) problem. We identify that Ĵ+,n ⊂ [K] is the active set of the SAA problem, that is,
the j-th constraint of the SAA problem is active if and only if j ∈ Ĵ+,n.
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2. At the second stage, we solve the program (Pn) with ρ such that ρj is some positive number if
j ∈ Ĵ+,n. This means that at the second stage we replace the sample mean approximation to the
constraint by its distributionally robust counterpart if such constraint was identified as active at the
first stage.

The index set [K] can be partitioned into three parts:

J+(θ?,λ?) = {k ∈ [K] : EP0
[gk(θ?;Z)] = 0, λ?k > 0},

J0(θ?,λ?) = {k ∈ [K] : EP0
[gk(θ?;Z)] = 0, λ?k = 0},

J−(θ?,λ?) = {k ∈ [K] : EP0
[gk(θ?;Z)] < 0, λ?k = 0},

where J+ is the active set with positive Lagrange multipliers, J0 is the active set with zero Lagrange
multipliers, and J− is the inactive set. We assume the strict complementarity holds in the sense that
J0(θ?,λ?) = ∅.

Proposition G.1 (Preservance of active constraints). Assume the strict complementarity holds. We
have Ĵ+,n = J+(θ?,λ?) with probability converging to 1 as n→∞.

Proof of Proposition G.1. Let θ̂(SAA)
n be a solution to the sample average approximation problem at

the first stage. Let λ̂n be the associated Lagrange multiplier. It is known by the consistency of SAA
[33] that

λ̂k,n = λ?k + op(1) for k ∈ J+(θ?,λ?)

and
EP [gk(θ̂(SAA)

n ;Z)] = EP [gk(θ?;Z)] + op(1) for k ∈ J−(θ?,λ?)

Therefore, with probability converging to 1, λ̂k,n > 0, k ∈ J+(θ?,λ?) and EP [gk(θ̂
(SAA)
n ;Z)] < 0,

k ∈ J−(θ?,λ?). Hence we complete the proof of Proposition G.1. �

Theorem G.2. Suppose the true program (P0) has m active constraints with positive Lagrange
multipliers and K −m inactive constraints (without loss of generality we let J+ = {1, . . . ,m} and
J− = {m+ 1, . . . ,K}). Let θ̂n be the two-stage estimator. Under the standing assumptions, we have

lim
n→∞

P


EP0

[g1(θ̂n;Z)]
...

EP0 [gK(θ̂n;Z)]

 ∈ −RK+
 = P

N
0m,CorrP0

 g1(θ?;Z)
...

gm(θ?;Z)


 ≤


√
ρ1

...√
ρm


 .

This result shows that the limiting probability of satisfying the true constraints only depends on the
correlation structure between active constraints and the uncertainty set radii for the active constraints.

Proof of Theorem G.2. At the first stage, we identify J ⊂ [K] as active set with probability pJ . Here
the randomness is introduced by the data samples Z1, . . . , Zn. Let 2[K] be the power set of [K]. We
have ∑

J∈2[K]

pJ = 1.

By Proposition G.1, as n→∞ we have
pJ+ → 1

and
pJ → 0 for any J ∈ 2[K] and J 6= J+.

By Corollary 3.2, we have

lim
n→∞

P
{
θ̂n is feasible | identify J+ as active set

}
= P

N
0m,CorrP0

 g1(θ?;Z)
...

gm(θ?;Z)


 ≤


√
ρ1

...√
ρm


 .
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Therefore,

P
{
θ̂n is feasible

}
=
∑
J∈2[K]

P
{
θ̂n is feasible | identify J as active set

}
P {identify J as active set}

= pJ+︸︷︷︸
→1

P
{
θ̂n is feasible | identify J+ as active set

}
+
∑
J 6=J+

pJP
{
θ̂n is feasible | identify J as active set

}
︸ ︷︷ ︸

→0

→P

N
0m,CorrP0

 g1(θ?;Z)
...

gm(θ?;Z)


 ≤


√
ρ1

...√
ρm


 .

Hence we complete the proof of Theorem G.2. �

H Proxy dual ascent algorithm for non-differentiable constraints

We summarize in Algorithm 3 the proxy dual ascent algorithm for solving a stochastic optimization
problem with single non-differentiable constraint. The difference between Algorithm 3 and 1 is in the
step of evaluating (proxy) dual function: Algorithm 3 uses a differentiable surrogate g̃ (highlighted in
orange) instead of the non-differentiable g in Algorithm 1 in this step.

Algorithm 3 Proxy dual ascent algorithm for single non-differentiable constraint

1: Input: starting dual iterate λ0 ≥ 0
2: repeat
3: Evaluate proxy dual function:

(θt, µt, νt)← arg minθ,µ≥0,ν
1
n

∑n
i=1 f(θ;Zi)+λt

{
1
n

∑n
i=1 µϕ

∗( g̃(θ;Zi)−ν
µ

)
+ µραn + ν

}
4: Dual ascent update: λt+1 ←

[
λt + ηt

{
1
n

∑n
i=1 µtϕ

∗( g(θt;Zi)−νt
µt

) + µt
ρα
n + νt

}]
+

5: until converged

Algorithm 4 summarizes the proxy dual ascent algorithm for solving a stochastic optimization problem
with multiple non-differentiable constraints. In contrast to Algorithm 2, Algorithm 4 replaces the
non-differentiable functions gk’s by their differentiable surrogates g̃k’s (highlighted in orange) in the
(proxy) dual function evaluation step.

Algorithm 4 Proxy dual ascent algorithm for multiple non-differentiable constraints

1: Input: starting dual iterate λ0 = (λ01, . . . , λ0K)> ∈ RK+
2: repeat
3: Evaluate proxy dual function:

(θt,µt,νt)← arg minθ,µ∈RK+ ,ν
1
n

∑n
i=1 f(θ;Zi)+

∑K
k=1 λtk

{
1
n

∑n
i=1 µtkϕ

∗( g̃k(θ;Zi)−νtk
µtk

) + µtk
ρk
n + νtk

}
4: Dual ascent update:

λt+1,k ←
[
λtk + ηt

{
1
n

∑n
i=1 µtkϕ

∗( gk(θt;Zi)−νtk
µtk

) + µtk
ρα
n + νtk

}]
+
, k ∈ [K]

5: until converged

I Real data experiments: details and more

In this section, we provide details for experiments on Adult dataset with ε-demographic parity as
the fairness goal (which we present in the main text), and conduct additional experiments on Adult
dataset with ε-false positive rate parity as the fairness goal.
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I.1 Adult with ε-demographic parity

Recall that in Section 5.3 the fairness goal is ε-demographic parity (ε-DP):∣∣P(Ŷ = 1 | A = 1)− P(Ŷ = 1 | A = 0)
∣∣ ≤ ε,

where A = 1 for male is the advantaged group and A = 0 for female is the disadvantaged group. We
use a logistic regression model for classification by predicting Ŷ = 1{θ>X ≥ 0} and training such
model parameterized in θ by logistic loss. We implement the two-stage method and proxy dual ascent
algorithm by replacing indicator function by the sigmoidal function h1(t) = (1 + e−at)−1 for a = 2.
We do bootstrap evaluation by treating the full dataset as the true probability measure and sample
such probability measure with replacement as the training distribution (with sampling rate 50%).

I.2 Adult with ε-false positive rate parity

Similar to the preceding subsection, now we consider the fairness goal to be ε-false positive rate
parity: ∣∣P(Ŷ = 1 | Y = 0, A = 1)− P(Ŷ = 1 | Y = 0, A = 0)

∣∣ ≤ ε,
where A = 1 for male is the advantaged group and A = 0 for female is the disadvantaged group.

In Figure 5, we have line plots for frequency of constraint satisfaction and box plots for classification
error rate, all of which are summarized over 100 replicates. The patterns shown in the left and
right panels are similar to that in Figure 2. We observe more variation in frequencies of constraint
satisfaction across different false positive rate tolerance designs due to the label and demographic
attribute imbalance of Adult dataset.
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Figure 5: Frequency of constraint satisfaction (left) and classification error rate (right) for different
false positive rate parity tolerance ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Baseline (sample average ap-
proximation, SAA) and our methods (with nominal probability 0.60, 0.75, 0.90, 0.95) are compared.

J Dual form of the robust constraint function (2.5)

In this section, we provide a standard derivation for the dual form of the robust constraint function
(2.5).

We introduce the likelihood ratio L(Z) = dP (Z)/dP̂n(Z). By change of variable, we can rewrite
the robust constraint function (2.5) as

supP :Dϕ(P‖P̂n)≤ρ EP
[
g(θ;Z)

]
= supL≥0{EP̂n

[
L(Z)g(θ;Z)

]
| EP̂n

[
ϕ(L(Z))

]
≤ ρ,EP̂n

[
L(Z)

]
= 1},

where the supremum takes over measurable functions. This gives us a constrained optimization
problem. Let µ ≥ 0 be the Lagrange multiplier for EP̂n

[
ϕ(L(Z))

]
≤ ρ and ν ∈ R be the Lagrange

multiplier for EP̂n
[
L(Z)

]
= 1. The corresponding Lagrangian is

L(L, µ, ν) = EP̂n
[
(g(θ;Z)− ν)L(Z)− µϕ(L(Z))

]
+ µρ+ ν.
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For regular ϕ-divergence, we have

supP :Dϕ(P‖P̂n)≤ρ EP
[
g(θ;Z)

]
= inf
µ≥0,ν∈R

sup
L≥0
L(L, µ, ν)

= inf
µ≥0,ν∈R

sup
L≥0

{
n∑
i=1

[
(g(θ;Zi)− ν)L(Zi)− µϕ(L(Zi))

]
+ µρ+ ν

}

= inf
µ≥0,ν∈R

sup
L≥0

{
n∑
i=1

µ

[
g(θ;Zi)− ν

µ
L(Zi)− ϕ(L(Zi))

]
+ µρ+ ν

}

= inf
µ≥0,ν∈R

{
n∑
i=1

µ sup
ti≥0

{
g(θ;Zi)− ν

µ
ti − ϕ(ti)

}
+ µρ+ ν

}

= inf
µ≥0,ν∈R

{
n∑
i=1

µϕ∗
(
g(θ;Zi)− ν

µ

)
+ µρ+ ν

}
.

Here the last equality holds according to the definition of the convex conjugate ϕ∗(·).

K Experiments on additional baseline and dataset

In this section, we conduct more experiments using two-dataset approach of [8] as an additional
baseline and default of credit card clients dataset from UCI [13] as an additional dataset.

K.1 Adult with ε-demographic parity (continued)

We continue the experiments on Adult dataset with ε-demographic parity in Section 5.3 and I.1 by
adding two-dataset approach of [8] as an additional baseline.

The two dataset approach of [8] splits the training set into two parts, one for updating the model
parameters and the other for updating the Lagrangian multipliers, with the goal to improve the
generalization of fairness constraints. Figure 6 demonstrates that the two-dataset approach marginally
improves the frequency of constraint satisfaction over the SAA. The cost of such an improvement is
increased variation in classification error rate. Due to the fact that the two-dataset approach does not
use the entire training set to update the model parameters, statistical efficiency is sacrificed. Although
the two-dataset approach outperforms the SAA in terms of constraint satisfaction frequency, both are
inferior to our methods, which achieve the user-prescribed level of frequency.
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Figure 6: Frequency of constraint satisfaction (left) and classification error rate (right) for dif-
ferent demographic parity tolerance ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Baseline (sample average
approximation, SAA), our methods (with nominal probability 0.60, 0.75, 0.90, 0.95), and two-dataset
approach [8] are compared.
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K.2 Adult with ε-false positive rate parity (continued)

We continue the experiments on Adult dataset with ε-false positive rate parity in Section I.2 by adding
two-dataset approach of [8] as an additional baseline.

Figure 7 demonstrates similar patterns as Figure 6. The two-dataset approach improves constraint
satisfaction frequency over the SAA, but has a worse classification error rate or one comparable to it.
Our methods achieve desired frequency of constraint satisfaction at the user-prescribed level.
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Figure 7: Frequency of constraint satisfaction (left) and classification error rate (right) for different
false positive rate parity tolerance ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Baseline (sample average
approximation, SAA), our methods (with nominal probability 0.60, 0.75, 0.90, 0.95), and two-dataset
approach [8] are compared.

K.3 Credit with ε-demographic parity

Predicting whether or not an individual defaulted on a loan is the classification task of the UCI default
of credit card clients (Credit) dataset. Membership in the demographic group is determined by an
individual’s level of education: A = 1 if a person has earned a graduate degree; otherwise, A = 0.

We consider the fairness goal to be ε-demographic parity:∣∣P(Ŷ = 1 | A = 1)− P(Ŷ = 1 | A = 0)
∣∣ ≤ ε,

where A = 1 for individuals with a graduate degree is the advantaged group.

As depicted in Figure 8, our methods achieve the level of constraint satisfaction frequency specified
by the user at the expense of a slight increase in classification error.
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Figure 8: Frequency of constraint satisfaction (left) and classification error rate (right) for differ-
ent demographic parity tolerance ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Our methods (with nominal
probability 0.75, 0.90, 0.95), sample average approximation (SAA) and two-dataset approach [8] are
compared.
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K.4 Credit with ε-true positive rate parity

Similar to the preceding subsection, now we consider the fairness goal to be ε-true positive rate
parity: ∣∣P(Ŷ = 1 | Y = 1, A = 1)− P(Ŷ = 1 | Y = 1, A = 0)

∣∣ ≤ ε,
where A = 1 for individuals with a graduate degree is the advantaged group.

The patterns shown in Figure 9 are similar to that in Figure 8. The SAA has the lowest error rate but
the worst generalization of constraint satisfaction. The two-dataset approach increases the SAA’s
frequency of constraint satisfaction at the cost of an increase in classification error rates. Our methods
can achieve the desired high probability of constraint satisfaction, whereas neither of the two baselines
can.
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Figure 9: Frequency of constraint satisfaction (left) and classification error rate (right) for different
true positive rate parity tolerance ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Our methods (with nominal
probability 0.75, 0.90, 0.95), sample average approximation (SAA) and two-dataset approach [8] are
compared.
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