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Abstract

While adversarial training can improve robust ac-
curacy (against an adversary), it sometimes hurts
standard accuracy (when there is no adversary).
Previous work has studied this tradeoff between
standard and robust accuracy, but only in the
setting where no predictor performs well on both
objectives in the infinite data limit. In this paper,
we show that even when the optimal predictor
with infinite data performs well on both objectives,
a tradeoff can still manifest itself with finite data.
Furthermore, since our construction is based on a
convex learning problem, we rule out optimization
concerns, thus laying bare a fundamental tension
between robustness and generalization. Finally,
we show that robust self-training mostly eliminates
this tradeoff by leveraging unlabeled data.

1. Introduction

Neural networks trained using standard training have very
low accuracies on perturbed inputs commonly referred to as
adversarial examples [12]. Even though adversarial training
[4, 6] can be effective at improving the accuracy on such
examples (robust accuracy), these modified training methods
decrease accuracy on natural unperturbed inputs (standard
accuracy) [6, 19]. Table 1 shows the discrepancy between
standard and adversarial training on CIFAR-10. While
adversarial training improves robust accuracy from 3.5% to
45.8%, standard accuracy drops from 95.2% to 87.3%.

One explanation for a tradeoff is that the standard and
robust objectives are fundamentally at conflict. Along these
lines, Tsipras et al. [14] and Zhang et al. [19] construct learn-
ing problems where the perturbations can change the output
of the Bayes estimator. Thus no predictor can achieve both
optimal standard accuracy and robust accuracy even in the
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Standard Adversarial

training training
Robust test 3.5% 45.8%
Robust train - 100%
Standard test 95.2% 87.3%
Standard train 100% 100%

Table 1. Train and test accuracies standard and adversarially-trained
models on CIFAR-10. Both have 100% training accuracy but very
different test accuracies. In particular, adversarial training causes
worse standard generalization.

infinite data limit. However, we typically consider perturba-
tions (such as imperceptible /., perturbations) which do not
change the output of the Bayes estimator, so that a predictor
with both optimal standard and high robust accuracy exists.

Another explanation could be that the hypothesis class is not
rich enough to contain predictors that have optimal standard
and high robust accuracy, even if they exist [9]. However,
Table 1 shows that adversarial training achieves 100%
standard and robust accuracy on the training set, suggesting
that the hypothesis class is expressive enough in practice.

Having ruled out a conflict in the objectives and expressivity
issues, Table 1 suggests that the tradeoff stems from the
worse generalization of adversarial training either due to (i)
the statistical properties of the robust objective or (ii) the dy-
namics of optimizing the robust objective on neural networks.
In an attempt to disentangle optimization and statistics, we
ask does the tradeoff indeed disappear if we rule out opti-
mization issues? After all, from a statistical perspective, the
robust objective adds information (constraints on the outputs
of perturbations) which should intuitively aid generalization,
similar to Lasso regression which enforces sparsity [13].

Contributions. We answer the above question negatively
by constructing a learning problem with a convex loss where
adversarial training hurts generalization even when the opti-
mal predictor has both optimal standard and robust accuracy.
Convexity rules out optimization issues, revealing a funda-
mental statistical explanation for why adversarial training
requires more samples to obtain high standard accuracy.
Furthermore, we show that we can eliminate the tradeoff in
our constructed problem using the recently-proposed robust
self-training [15, 1, 8, 18] on additional unlabeled data.
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In an attempt to understand how predictive this example is
of practice, we subsample CIFAR-10 and visualize trends in
the performance of standard and adversarially trained models
with varying training sample sizes. We observe that the gap
between the accuracies of standard and adversarial training
decreases with larger sample size, mirroring the trends
observed in our constructed problem. Recent results from [1]
show that, similarly to our constructed setting, robust
self-training also helps to mitigate the trade-off in CIFAR-10.

Standard vs. robust generalization. Recent work [11,
16, 5, 7] has focused on the sample complexity of learning
a predictor that has high robust accuracy (robust generaliza-
tion), a different objective. In contrast, we study the finite sam-
ple behavior of adversarially trained predictors on the stan-
dard learning objective (standard generalization), and show
that adversarial training as a particular training procedure
could require more samples to attain high standard accuracy.

2. Convex learning problem: the staircase

We construct a learning problem with the following proper-
ties. First, fitting the majority of the distribution is statistically
easy—it can be done with a simple predictor. Second,
perturbations of these majority points are low in probability
and require complex predictors to be fit. These two ingre-
dients cause standard estimators to perform better than their
adversarially trained robust counterparts with a few samples.
Standard training only fits the training points, which can be
done with a simple estimator that generalizes well; adver-
sarial training encourages fitting perturbations of the training
points making the estimator complex and generalize poorly.

2.1. General setup

We consider mapping € X C R to y € R where (z,y)
is a sample from the joint distribution P and conditional
densities exist. We denote by P, the marginal distribution
on X. We generate the data as y = f*(x) 4+ ov; where
v (0,1) and f* : X — R. For an example (x,y),
we measure robustness of a predictor with respect to an
invariance set B(x) that contains the set of inputs on which

the predictor is expected to match the target y.

The central premise of this work is that the optimal predictor
is robust. In our construction, we let f* be robust by
enforcing the invariance property (see Appendix A)
f(x)=f(x), VieDB(x). (D
Given training data consisting of n i.i.d. samples (x;,y;) ~P,
our goal is to learn a predictor f € F. We assume that the
hypothesis class F contains f* and consider the squared

loss. Standard training simply minimizes the empirical risk
over the training points. Robust training seeks to enforce

invariance to perturbations of training points by penalizing
the worst-case loss over the invariance set B(x; ) with respect
to target y;. We consider regularized estimation and obtain
the following standard and robust (adversarially trained)
estimators for sample size n:

£std 2
€argmin i) A ()

fn fgef ;1 —yi) >+ AP
frObEargmln E max (f(z i)—yi)Q—i—)\HfHQ. 3)

feF P 11: JEB(z;)

We construct a IP and f* such that both estimators above
converge to f*, but such that the error of the robust estimator
frb js larger than that of 3¢ for small sample size n.

2.2. Construction
In our construction, we consider linear predictors as “simple
predictors that generalize well and staircase predictors as

99

“complex” predictors that generalize poorly (Figure 1(a)).

Input distribution. In order to satisfy the property that a
simple predictor fits most of the distribution, we define f*
to be linear on the set X}, € X', where

‘)Cline:{07172a"'a3_1}7
IP>ac(-)€line) =1 _6; (4)

for parameters 6 € [0, 1] and a positive integer s. Any
predictor that fits points in Ajj,e will have low (but not
optimal) standard error when ¢ is small.

Perturbations. We now define the perturbations such that
that fitting perturbations of the majority of the distribution
requires complex predictors. We can obtain a staircase by
flattening out the region around the points in Xj;,e locally
(Figure 1(a)). This motivates our construction where we
treat points in Ajiye as anchor points and the set A5, . as local
perturbations of these points: x + € for x € &jj,.. Thisis a
simpler version of the commonly studied ¢, perturbations
in computer vision. For a point that is not an anchor point,
we define B(x) as the invariance set of the closest anchor
point | 2]. Formally, for some e € (0,3),

B(x)z{[;ﬂ{ﬂ—i—g[;ﬂ—e}. ®)
Output distribution. For any point in the support X,
[r(@)=m|z],VzeX, (6)

for some parameter m. Setting the slope as m = 1 makes
f* resemble a staircase. Such an f* satisfies the invariance
property (1) that ensures that the optimal predictor for
standard error is also robust. Note that f*(z) =ma (a simple
linear function) when restricted to x in Aj;,.. Note also that
the invariance sets B(x) are disjoint. This is in contrast to
the example in [19], where any invariant function is also
globally constant. Our construction allows a non-trivial
robust and accurate estimator.

We generate the output by adding Gaussian n01se to the opti-

mal predictor f*,i.e.,y= f*(2)+ov; where v; = N (0, 1).
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Figure 1. (a): An illustration of our convex problem with slope m = 1, with size of the circles proportional to probability under the
data distribution. The dashed blue line shows a simple linear predictor that has low test error but not robust to perturbations to nearby
low-probability points, while the solid orange line shows the complex optimal predictor f* that is both robust and accurate. (b): With
small sample size (n =40), any robust predictor that fits the sets B(z) is forced to be a staircase that generalizes poorly. (¢): With large
sample size (n = 25000), the training set contains all the points from Xjine and the robust predictor is close to f* by enforcing the right
invariances. The standard predictor also has low error, but higher than the robust predictor. (d): An illustration of our convex problem
when the slope m =0. The optimal predictor f* that is robust is a simple linear function. This setting sees no tradeoff for any sample size.

2.3. Simulations

We empirically validate the intuition that the staircase
problem is sensitive to robust training by simulating training
with various sample sizes and comparing the test MSE of
the standard and robust estimators (2) and (3). We report
final test errors here; trends in generalization gap (difference
between train and test error) are nearly identical. See
Appendix D for more details.

Figure 2 shows the difference in test errors of the two
estimators. For each sample size n, we compare the standard
and robust estimators by performing a grid search over
regularization parameters A that individually minimize
the test MSE of each estimator. With few samples, most
training samples are from Aj;,. and standard training learns
a simple linear predictor that fits all of Xj,.. On the other
hand, robust estimators fit the low probability perturbations
X . leading to staircases that generalize poorly. Figure 1(b)
visualizes the two estimators for small samples. However,
as we increase the size of the training set, the training set
contains all points from Aji,e, and robust estimators also
generalize well despite being more complex. Furthermore,
in this regime, robust estimators indeed see the expected
“regularization” benefit where the robust objective helps fit
points in the low probability regions X[ ., even when they
are not yet sampled in the training points. In general, we see
that robust training has higher test error with a small sample
size, but the difference in the test error of standard and robust
estimators decreases as sample size increases, and robust
training eventually obtains lower test error.

Another common approach to encoding invariances is
data augmentation, where perturbations are sampled from
B(x) and added to the dataset. Data augmentation is less
demanding than adversarial training which minimizes loss
on the worst-case point within the invariance set. We find

that for our staircase example, an estimator trained even with
the less demanding data augmentation sees a similar tradeoff
with small training sets, due to increased complexity of the
augmented estimator.

2.4. Robust self-training mostly eliminates the tradeoff

Section 2.3 shows that the gap between the standard errors of
robust and standard estimators decreases as training sample
size increases. Moreover, if we obtained training points span-
ning Ajiye, then the robust estimator (staircase) would also
generalize well and have lower error than the standard estima-
tor. Thus, a natural strategy to eliminate the tradeoff is to sam-
ple more training points. In fact, we do not need additional
labels for the points on Xjj,.—a standard trained estimator fits
points on A}, with just a few labels, and can be used to gener-
ate labels on additional unlabeled points. Recent works have
proposed robust self-training (RST) to leverage unlabeled
data for robustness [10, 1, 15, 8, 18]. RST is a robust variant
of the popular self-training algorithm for semi-supervised
learning [10], which uses a standard estimator trained on a
few labels to generate psuedo-labels for unlabeled data as
described above. See Appendix C for details on RST.

For the staircase problem (m = 1), RST mostly eliminates
the tradeoff and achieves similar test error to standard
training (while also being robust, see Appendix C.2) as
shown in Figure 2.

3. Experiments on CIFAR-10

In our staircase problem from Section 2, robust estimators
perform worse on the standard objective because these pre-
dictors are more complex, thereby generalizing poorly. Does
this also explain the drop in standard accuracy we see for
adversarially trained models on real datasets like CIFAR-107?
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Figure 2. Difference between test errors (robust - standard) as a
function of the # of training samples n. For each n, we choose
the best regularization parameter A for each of robust and standard
training and plot the difference. Positive numbers show that the
robust estimator has higher MSE than the standard estimator. (a)
For the staircase problem with slope m =1, we see that for small
n, test loss of the robust estimator is larger. As n increases, the gap
closes, and eventually the robust estimator has smaller MSE. (b)
On subsampling CIFAR-10, we see that the gap between test errors
(%) of standard and adversarially trained models decreases as the
number of samples increases, just like the staircase construction
in (a). Extrapolating, the gap should close as we have more samples.
(c) Robust self-training (RST), using 1000 additional unlabeled
points, achieves comparable test MSE to standard training (with
the same amount of labeled data) and mostly eliminates the tradeoff
seen in robust training. The shaded regions represent 1 STD.

We subsample CIFAR-10 by various amounts to study the
effect of sample size on the standard test errors of standard
and robust models. To train a robust model, we use the adver-
sarial training procedure from [6] against /., perturbations
of varying sizes (see Figure 2). The gap in the errors of
the standard and adversarially trained models decreases as
sample size increases, mirroring the trends in the staircase
problem. Extrapolating the trends, more training data should
eliminate the tradeoff in CIFAR-10. Similarly to the staircase
example, [1] showed that robust self-training with additional
unlabeled data improves robust accuracy and standard
accuracy in CIFAR-10. See Appendix C for more details.

4. Adversarial training can also help

One of the key ingredients that causes the tradeoff in the
staircase problem is the complexity of robust predictors.
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Figure 3. Difference between test errors (robust - standard) as a
function of the # of training samples n. For each n, we choose
the best regularization parameter A for each of robust and standard
training and take the difference. Negative numbers mean that
robust training has a lower test MSE than standard training. (a)
In the staircase problem with slope m = 0, the robust estimator
consistently outperforms the standard estimator, showing a
regularization benefit. (b) On MNIST , the adversarially trained
model has lower test error (%) than the standard model. The
difference in test errors is largest for small sample sizes and closes
with more training samples. Shaded regions represent 1 STD.

If we change our construction such that robust predictors
are also simple, we see that adversarial training instead
offers a regularization benefit. When m = 0, the optimal
predictor (which is robust) is linear (Figure 1(d)). We
find that adversarial training has lower standard error by
enforcing invariance on B(x) making the robust estimator
less sensitive to target noise (Figure 4(a)).

Similarly, on MNIST , the adversarially trained model has
lower test error than standard trained model. As we increase
the sample size, both standard and adversarially trained
models converge to obtain same small test error. We remark
that our observation on MNIST is contrary to that reported
in [14], due to a different initialization that led to better
optimization (see Appendix Section D.2).

5. Conclusion

In this work, we shed some light on the counter-intuitive
phenomenon where enforcing invariance respected by the
optimal function could actually degrade performance. Being
invariant could require complex predictors and consequently
more samples to generalize well. Our experiments support
that the tradeoff between robustness and accuracy observed in
practice is indeed due to insufficient samples and additional
unlabeled data is sufficient to mitigate this tradeoff.
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A. Consistency
of robust and standard estimators

‘We show that the invariance condition (restated, (7)) is a suffi-
cient condition for the minimizers of the standard and robust
objectives under P in the infinite data limit to be the same.

()= f*(2) Vi€ B(x), (7)
forallz e X.

Recall that y = f*(z) + ov; where v; S N(0,1), with
f*(x)=E[y|z]. Therefore, if f* is in the hypothesis class F,
then f* minimizes the standard objective for the square loss.

If both f;‘d (2) and f{{’b (3) converge to the same Bayes
optimal f* as n — oo, we say that the two estimators 54
and fI°° are consistent. In this section, we show that the

invariance condition (7) implies consistency of f™°° and f5'.

Intuitively, from (7), since f* is invariant for all z in B(x),
the maximum over B(z) in the robust objective is achieved
by the unperturbed input x (and also achieved by any other
element of B(z)). Hence the standard and robust loss of
f* are equal. For any other predictor, the robust loss upper
bounds the standard loss, which in turn is an upper bound
on the standard loss of f* (since f* is Bayes optimal).
Therefore f* also obtains optimal robust loss and ff}d and
ff;’b are consistent and converge to f* with infinite data.

Formally, let £ be the square loss function, and the population
loss be E(; ) ~p[€(f(2),y)]. In this section, all expectations
are taken over the joint distribution PP.

Theorem 1. (Regression) Consider the minimizer of the stan-
dard population squared loss, f* = argmin E[((f(x),y)]
where ((f(x),y) = (f(x) — y)% Assuming (7) holds,
we have that for any f, E[maxzcpn) ((f(x), y)] >
Elmaxze (o) L(f*(x),y)], such that f* is also optimal for
the robust population squared loss.

Proof. Note that the optimal standard model is the Bayes
estimator, such that f*(z) =E[y| z]. Then by condition (7),
f*(@)=Ely|z]=E[y | ] = f*(x) for all € B(z). Thus
the robust objective for f* is

E ;glgé)f(f*(w%y)]:]E ;Engé)(E[y\x]—y)
=E[(E[y|z]-y)?]
=E[((f"(2).y)]

where the first equality follows because f* is the Bayes
estimator and the second equality is from (7). Noting that for
any classifier £, E[max;c (o) ((f(2),9)] > E[0(f(2) )] >
E[¢(f*(x),y)], the theorem statement follows. O

For the classification case, consistency requires label
invariance, which is that

argmax p(y|z)=argmax p(y|z) Vz€ B(z), (8)
y y

such that the adversary cannot change the label that achieves
the maximum but can perturb the distribution.

The optimal standard classifier here is the Bayes opti-
mal classifier f7 = argmax, p(y | ). Assuming that
Jx =argmax, p(y|x) is in F, then consistency follows by
essentially the same argument as in the regression case.

Theorem 2. (Classification) Consider the minimizer of the
standard population 0-1 loss, f} = argmin ;E[((f(z),y)]
where ((f(z), y) = 1{argmaxj flx); =y}
Assuming (8) holds, we have that for any f,
E[maXiEB(a:)g(f(x)ay)] ZE[maXa":EB(w)E(f;(x)7y)]’ such
that f} is also optimal for the robust population 0-1 loss.

Proof. Replacing f* with f* and ¢(f(z), y) with the
zero-one loss 1{argmax; f(z); = y} in the proof of
Theorem 1 gives the result. O

In our staircase problem, from (1), we assume that the target y
. iid.

is generated as follows: y= f*(z)+ov; where v; = N(0,1),
we see that the points within an invariance sets B(z) have
the same target distribution (target distribution invariance).

[ (x)=f*(z) VieB(x) ©)
= p(y|z)=p(y|Z) VieB(z), (10)

forallz e X.

The target invariance condition above implies consistency
in both the regression and classification case.

B. Convex staircase example
B.1. Data distribution

Distribution of X. We focus on a 1-dimensional regres-
sion case. Let s be the total number of “stairs” in the staircase
problem. Let so < s be the number of stairs that have a large
weight in the data distribution. Define ¢ € [0,1] to be the
probability of sampling a perturbation point, i.e. x € A .,
which we will choose to be close to zero. The size of the
perturbations is € € [0, 3), which is bounded by % so that
|x+e] =z, for any € Ajjpe. The standard deviation of the
noise in the targets is o > 0. Finally, m € [0,1] is a parameter
controlling the slope of the points in Ajjpe.

Let w € A be a distribution over Xj,. where A is the proba-
bility simplex of dimension s. We define the data distribution
with the following generative process for one sample x.
First, sample a point ¢ from &}, according to the categorical
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distribution described by w, such that ¢ ~ Categorical(w).
Second, sample z by perturbing ¢ with probability & such that

1 w.p.1-6
r=qi—€ wp.0/2
i+e w.p.d/2.

Note that this is just a formalization of the distribution
described in Section 2. The sampled z is in AXjj,e with
probability 1 — ¢ and X[$,, with probability d, where we
choose ¢ to be small.

lme

In addition, in order to exaggerate the difference between
robust and standard estimators for small sample sizes, we set
w such that the first s stairs have the majority of probability
mass. To achieve this, we set the unnormalized probabilities

of w as
1
P
0.01

and define w by normalizing w = @/ >, w;. For our
examples, we fix so = 5. In general, even though we can
increase s to create versions of our example with more stairs,
so is fixed to highlight the bad extrapolation behavior of the
robust estimator.

J<so
J 250

Distribution of ). We define the target distribu-
tion as (Y | X = z) ~ N(m|z], 0?), where |z]
rounds z to the nearest integer. The invariance sets are
B(z) ={|z] —¢,|z],|x] +€}. We define the distribution
such that for any z, all points in B(x) have the same mean
target value m |z |. See Figure 1 for an illustration.

Note that B(x) is defined such that ((9)) holds, since for any
21,72 € B(x), [21] = [#2] and thus p(y | z1) = p(y | z2).
The conditional distributions are defined since p(Z) >0 for
any T € B(z).

B.2. Model

Our hypothesis class is the family of cubic B-splines
as defined in [3]. Cubic B-splines are piecewise cubic
functions, where the endpoints of each cubic function are
called the knots. In our example, we fix the knots to be
T=1[—€,0,€,...,(s—1)—€,s—1,(s— 1) +¢], which places a
knot on every point on the support of X'. This ensures that
the family is expressive enough to include f*, which is any
function in F which satisfies f*(z) =m/|z] for all z in X.
Cubic B-splines can be viewed as a kernel method with
kernel feature map ® : X — R3%*2 where s is the number
of stairs in the example.

For some regularization parameter A > 0 we optimize with the
penalized smoothing spline loss function over parameters 6,

0 fo(@) ) =(y— folx +A/ 2di (1)

=(y—®(x)70)>+ 20700, (12)

where Q; ; = [ ®"(t); 9" (t);dt measures smoothness in
terms of the second derlvatlve With respect to the regularized
objectives (2) and (3), the norm regularizer is || f||2 = 07 Q6.

We implement the optimization of the standard and robust
objectives using the basis described in [3]. The regularization
penalty matrix {2 computes second-order finite differences of
the parameters 6. Suppose we have n samples of training in-
puts X ={z1,...,z,, } and targets y = {y1,...,Y» } drawn from
P . The standard spline objective solves the linear system

'e(x)Ty,

where the i-th row of ®(X) € R"*(3s+2) is &(z;). The
standard estimator is then f399(x) = ® () f5q. We solve the
robust objective directly as a pointwise maximum of squared

losses over the invariance sets (which is still convex) using
CVXPY [2].

Oga=(D(X)T®(X)+AQ)~

B.3. Role of different parameters

To construct an example where robustness hurts general-
ization, the main parameters needed are that the slope m
is large and that the probability § of drawing samples from
perturbation points A|{ . is small. When slope m is large,
the complexity of the true function increases such that good
generalization requires more samples. A small ¢ ensures that
alow-norm linear solution has low test error. This example is
insensitive to whether there is label noise, meaning that o =0
is sufficient to observe that robustness hurts generalization.

If m~0, then the complexity of the true function is low and
we observe that robustness helps generalization. In contrast,
this example relies on the fact that there is label noise (o > 0)
so that the noise-cancelling effect of robust training improves
generalization. In the absence of noise, robustness neither
hurts nor helps generalization since both the robust and
standard estimators converge to the true function (f*(x)=0)
with only one sample.

B.4. Plots of other values

We show plots for a variety of quantities against number
of samples n. For each n, we pick the best regularization
parameter \ with respect to standard test MSE individually
for robust and standard training. in the m = 1 (robustness
hurts) and m = 0 (robustness helps) cases, with all the
same parameters as before. In both cases, the test MSE and
generalization gap (difference between training MSE and
test MSE) are almost identical due to robust and standard
training having similar training errors. In the m =1 case
where robustness hurts (Figure 6), robust training finds
higher norm estimators for all sample sizes. With enough
samples, standard training begins to increase the norm of its
solution as it starts to converge to the true function (which is
complex) and the robust train MSE starts to drop accordingly.
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Figure 4. Left: With small samples, the standard solution may
overfit to noise, while adversarial training has a noise cancelling
effect. Right: With large samples, both the robust and standard
predictors have low test error, but the standard predictor is still
more susceptible to noise.

In the m = 0 case where robustness helps (Figure 7), the
optimal predictor is the line f(z) = 0, which has 0 norm.
The robust estimator has consistently low norm. With small
sample size, the standard estimator has low norm but has
high test MSE. This happens when the standard estimator
is close to linear (has low norm), but the estimator has the
wrong slope, causing high test MSE. However, in the infinite
data limit, both standard and robust estimators converge to
the optimal solution.

C. Robust self-training algorithm

We describe the robust self-training procedure, which per-
forms robust training on a dataset augmented with unlabeled
data. The targets for the unlabeled data are generated from a
standard estimator trained on the labeled training data. Since
the standard estimator has good standard generalization, the
generated targets for the unlabeled data have low error on
expectation. Robust training on the augmented dataset seeks
to improve both the standard and robust test error of robust
training (over just the labeled training data). Intuitively,
robust self-training achieves these gains by mimicking the
standard estimator on more of the data distribution (by using
unlabeled data) while also optimizing the robust objective.

In robust self-training, we are given n samples of training
inputs X = {x1,...,x, } and targets y = {y1,...,yn } drawn
from PP . Suppose that we have additional m unlabeled
samples X,, drawn from P,.. Robust self-training uses the
following steps for a given regularization A:

1. Compute the standard estimator fffd (2) on the labeled
data (X, y) with regularization parameter A.

2. Generate pseudo-targets y,, = f5¢(X,,) by evaluating
the standard estimator obtained above on the unlabeled
data X,.
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Figure 5. Robust self-training (RST) improves test robust MSE
(not just standard test MSE) over both standard and robust
training. For each n, the regularization parameter ) is chosen with
respect to the best test MSE over a grid search for each of robust,
RST, and standard training. (a) shows that robust self-training
improves robust error over robust training. (b) confirms that robust
self-training also improves robust test error over standard training.

3. Construct an augmented dataset X,,o = X U X,
Yag=Y U Yu-

4. Return a robust estimator f{f’b (3) with the augmented
dataset (Xaug, Yaug) as training data.

C.1. Results on CIFAR-10

We present relevant results from the recent work of [1] on
robust self-training applied on CIFAR-10 augmented with
unlabeled data in Table 2. The procedure employed in [1]
is identical to the procedure describe above, using a modified
version of adversarial training (TRADES) [19] as the robust
estimator.

C.2. Robust self-training doesn’t sacrifice robustness

In Section 2.4, we show that if we have access to additional
unlabeled samples from the data distribution, robust
self-training (RST) can mitigate the tradeoff in standard error
between robust and standard estimators. It is important that
we do not sacrifice robustness in order to have better standard
error. Figure 5 shows that in the case where robustness hurts
generalization in our convex construction (m = 1), RST
improves over robust training not only in standard test error
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‘ Standard Adversarial

training training RST[1]
Robust test 3.5% 45.8% 62.5%
Standard test 95.2% 87.3% 89.7%

Table 2. Robust and standard accuracies for different training
methods. Robust self-training (RST) leverages unlabeled data in
addition to the CIFAR-10 training set to see an increase in both
standard and robust accuracies over traditional adversarial training.
To mitigate the tradeoff between robustness and accuracy, all we
need is (possibly large amounts of) unlabeled data.

(Section 2.4), but also in robust test error. Therefore, by
leveraging some unlabeled data, we can recover the standard
generalization performance of standard training using RST
while simultaneously improving robustness.

D. Experimental details

D.1. CIFAR-10

We train Wide ResNet 40-2 models [17] using standard and
adversarial training while varying the number of samples
in CIFAR-10. We sub-sample CIFAR-10 by factors of
{1,2,5,8,10,20,40}. For sub-sample factors 1 to 20, we
report results averaged from 2 trials each for standard and
adversarial training. For sub-sample factors greater than
20, we average over 5 trials. We train adversarial models
under the ¢, attack model with £..-norm constraints of sizes
e = {1/255,2/255,3/255,4/255} using PGD adversarial
training [6]. The models are trained for 200 epochs using
minibatched gradient descent with momentum, such that
100% standard training accuracy is achieved for both
standard and adversarial models in all cases and > 98%
adversarial training accuracy is achieved by adversarially
trained models in most cases. We did not include reuslts for
subsampling factors greater than 50, since the test accuracies
are very low (20-50%). However, we note that for very
small sample sizes (subsampling factor 500), the robust
estimator can have slightly better test accuracy than the
standard estimator. While this behavior is not captured by
our example, we focus on capturing the observation that
standard and robust test errors converge with more samples.

D.2. MNIST

The MNIST dataset consists of 60000 labeled exam-
ples of digits. We sub-sample the dataset by factors of
{1,2,5,8,10, 20, 40, 50, 80, 200, 500} and report results
for a small 3-layer CNN averaged over 2 trials for each
sub-sample factor. All models are trained for 200 epochs
and achieve 100% standard training accuracy in all cases.
The adversarial models achieve > 99% adversarial training
accuracy in all cases. We train the adversarial models under
the (., attack model with PGD adversarial training and
€=0.3. For computing the max in each training step, we use
40 steps of PGD, with step size 0.01 (the parameters used
in [6]). We use the Adam optimizer. The final robust test
accuracy when training with the full training set was 91%.

Initialization and trade-off for MNIST . We note here
that the tradeoff for adversarial training reported in [14] is be-
cause the adversarially trained model hasn’t converged (even
after a large number of epochs). Using the Xavier initializa-
tion, we get faster convergence with adversarial training and
see no drop in clean accuracy at the same level of robust accu-
racy. Interestingly, standard training is not affected by initial-
ization, while adversarial training is dramatically affected.
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Figure 6. Plots as number of samples varies for the case where robustness hurts (m = 1). For each n, we pick the best regularization
parameter A with respect to standard test MSE individually for robust and standard training. (a),(b) The standard estimator has lower
test MSE, but the gap shrinks with more samples. Note that the trend in test MSE is almost identical to generalization gap. (c) The robust
estimator has higher norm throughout training due to learning a more complex estimator. The norm of the standard estimator increases
as sample size increases as it starts to converge to the true function, which is complex. (d, e) The robust train and test MSE is smaller for

the robust estimator throughout. With larger sample size, the standard estimator improves in robust (train and test) MSE as it converges
to the true function, which is robust. Shaded regions are 1 STD.
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Figure 7. Plots as number of samples varies for the case where robustness helps (m = 0). For each n, we pick the best regularization
parameter A with respect to standard test MSE individually for robust and standard training. (a),(b) The robust estimator has lower test
MSE, and the gap shrinks with more samples. Note that the trend in test MSE is almost identical to generalization gap. (c¢) The robust
estimator has consistent norm throughout due to the noise-cancelling behavior of optimizing the robust objective. While the standard
estimator has low norm for small samples, it has high test MSE due to finding a low norm (close to linear) solution with the wrong slope.
(d, e) The robust train and test MSE is smaller for the robust estimator throughout. Shaded regions are 1 STD.



