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Abstract

We introduce the self-Relative Binding Free Energy (self-RBFE) approach to eval-

uate the intrinsic statistical variance of dual-topology alchemical binding free energy

estimators. The self-RBFE is the relative binding free energy between a ligand and a

copy of the same ligand, and its true value is zero. Nevertheless, because the two copies

of the ligand move independently, the self-RBFE value produced by a finite-length sim-

ulation fluctuates and can be used to measure the variance of the model. The results

of this validation provide evidence that a significant fraction of the errors observed in

benchmark studies reflect the statistical fluctuations of unconverged estimates rather
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than the models’ accuracy. Furthermore, we find that ligand reorganization is a sig-

nificant contributing factor to the statistical variance of binding free energy estimates

and that metadynamics-accelerated conformational sampling of torsional degrees of

freedom of the ligand can drastically reduce the time to convergence.

Introduction

Advances in computational models and computer hardware are revolutionizing the role of

molecular simulations in chemical research, opening new avenues for exploring molecular

interactions at an unprecedented level of detail. Atomistic simulations of molecular binding,

in particular, are playing a pivotal role in understanding fundamental biological regulatory

processes and in assisting in the rational design of drugs.1–6 The accurate estimation of

protein-ligand binding-free energies by computer simulations, which is the subject of this

study, is becoming an important ingredient in elucidating molecular recognition mechanisms,

identifying potential drug candidates, and developing novel therapeutics.

However, the accurate determination of binding-free energies by physics-based atomistic

computer simulations remains a formidable challenge due to the size and complexity nature of

biological systems, the dynamical nature of molecular recognition mechanisms, and the high

dimensionality of the conformational space to explore. The presence of many energy basins

separated by high energy barriers is a serious obstacle for traditional molecular dynamics

(MD) conformational sampling algorithms, which are limited to the narrow band of thermal

energies. The negative impact of conformational trapping due to limited MD conformational

sampling is further exacerbated in simulations of molecular association processes where the

populations of conformational states of the receptor and ligand often shift as they form

interactions.7,8 Poor equilibration between stable configurations of the system and failure

to capture the free energy of conformational reorganization upon the formation of receptor-

ligand interactions causes biased and noisy free energy estimates that do not reflect the

actual binding affinity trends, leading to incorrect predictions about the relative potency of
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drug candidates.

Alchemical models of the Relative Binding Free Energies (RBFE) of protein-ligand com-

plexes have emerged as the leading computational methods for lead optimization in industrial

and academic pharmaceutical research.9–20 RBFE models estimate the ratio of the dissoci-

ation constants, K ′

d/Kd, of a pair of ligands to the same protein receptor, or, equivalently,

their relative standard binding free energies, ∆∆G◦

b by considering a non-physical path that

progressively modifies the potential energy function of the system in such a way that at the

beginning it describes the receptor bound to the first ligand and at the end it describes the

receptor bound to the other ligand. The relative binding free energy is then the reversible

work along the alchemical path.20–23

While increasingly popular, as evidenced by extensive large-scale benchmarking valida-

tion studies against experimental data,10,12,15,17,19 RBFE models do not always yield correct

predictions. The causes of mispredictions are often unclear; primarily because the ground

truth value of the models is not known, and the relative contributions of model accuracy

and statistical fluctuations on the prediction accuracy are uncertain. Are prediction errors

caused by inaccuracies in the models or our inability to calculate the models’ predictions

with sufficient precision? In this work, we investigate the causes of slow convergence and

large statistical fluctuations of relative binding free energy estimates on a large and challeng-

ing library of protein-ligand complexes. We do so by investigating calculations that connect

equivalent complexes and should then yield zero. We can then explore the models’ bias and

variance independently. We find that the conformational reorganization of the ligand is a

leading cause of poor convergence and that an accelerated conformational sampling approach

based on metadynamics can significantly reduce statistical fluctuations.

Alchemical RBFE models are still a work in progress as structure-based drug discovery

aids in many respects. RBFE tools tend to be very complex, require extensive expertise,

and display inconsistent performance if not deployed correctly.12 Probably some fraction

of the RBFE prediction errors that are observed in applications are caused by erroneous
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chemical representations, such as the incorrect assignment of protonation, tautomerization,

and chirality. Inaccuracies of molecular mechanics potential energy functions are also likely

a significant source of errors.22,24 Technical difficulties exist in many alchemical RBFE im-

plementations with charge-changing and scaffold-hopping transformations, and in modeling

variations of hydration patterns. However, as discussed above, limited conformational sam-

pling likely remains one of the primary sources of mis-predictions. The system often stays

trapped near the initial conformation, and alternative poses of the receptor and the ligands,

including the conformational reorganization processes occurring upon binding, are not fully

captured during the relatively short molecular dynamics runs.

There are many alchemical RBFE implementations in current use. The Double Decou-

pling Method (DDM),25 which is probably the most popular, does not connect the end states

directly. Rather it relies on an indirect route involving multiple simulations that morph the

electrostatic and non-electrostatic interaction of one ligand into the other in the solution

and receptor environments separately.26 The implementation of DDM typically requires cus-

tomized MD energy routines that allow the tuning of the parameters of the potential energy

function as the alchemical transformation takes place and incorporate modified soft-core

interaction pair-potentials to reduce numerical instabilities near the endpoints.

The treatment of the transformation of the chemical topology of one ligand into the other

is an important differentiating factor of alchemical RBFE implementations. In a single-

topology implementation, the system holds a single representation of the ligands’ atoms and

their assigned force field parameters in such a way that the atoms of the initial molecule

are converted into those of the final molecule during the alchemical transformation. Dummy

atoms are used to treat atoms that are not present at either end state.11,27–29 Conversely,

in a dual-topology RBFE implementation, the two ligands are represented by distinct non-

interacting standard chemical topologies whose interactions with the environment are turned

off and on during the alchemical process.30 Hybrid topologies, where the constant parts of the

ligands are treated within the single-topology formalism and the variable parts are described
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by dual-topology, are also in use. Single- and dual-topology approaches are more or less

suitable depending on the circumstances. Generally, single-topology RBFE is more efficient,

especially when the difference between the two ligands is small, and dual-topology RBFE

formulations are more versatile and easier to implement.

We recently introduced the Alchemical Transfer Method (ATM) to address some of the

complexities and limitations of traditional alchemical methods. ATM is a dual-topology

RBFE implementation based on a coordinate rather than a potential energy function per-

turbation. ATM is free of the complexities of traditional alchemical methods. It supports

absolute and relative binding free energy calculations in a unified way, it computes free en-

ergies directly employing a single simulation box with standard chemical topologies, and it

natively supports standard as well as charge-changing and scaffold-hopping transformations

without correction factors and ancillary calculations. Furthermore, since it does not use pa-

rameter interpolation or custom soft-core pair potentials, ATM is more easily implemented

and transferable across MD engines because it uses the unmodified energy routines of the

underlying molecular dynamics engine. For the same reason, it applies to any molecular

energy function, including the next generation of more accurate polarizable,31–34 quantum-

mechanical,35–38 and machine-learning potentials39–41 that are just starting to be employed

in alchemical macromolecular simulations. The current fully open-source software release of

ATM employs the OpenMM molecular dynamics engine and has been successfully tested on

a series of medicinal targets by us and academic and industrial partners.19,42

In this work, we study the bias and variance of ATM by estimating the binding free

energies of a series of complexes from the benchmark set of Schindler et al.12 relative to

themselves (self-RBFEs). A self-RBFE is obtained when the two ligands considered in an

ATM RBFE calculation are the same ligand. Obviously, in this case, the true value of the

RBFE is zero. Nevertheless, because the dual-topology copies of the ligand act indepen-

dently, the free energy value produced by a finite-length ATM simulation fluctuates and is

not guaranteed to be zero. The advantage of investigating self-RBFEs is that their true
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value (zero) is known, allowing the bias and variance of the model to be investigated inde-

pendently. We measure the bias by asking how much the average of a sequence of the ATM

self-RBFE replicates differs from zero. The variance is then measured from the distribution

of the replicate’s estimates. While a large and consistent bias reflects an implementation

error that should be corrected, a level of variance is unavoidable and reflects the minimum

amount of statistical noise that would affect actual ATM’s RBFE predictions between pairs

of different ligands.

We observe that ATM’s self-RBFE variance is a significant fraction of the mean squared

error of ATM RBFE estimates relative to experimental free energies in recent large-scale

validation studies,19,42 suggesting that, to some degree, those errors reflect statistical noise

rather than model’s defects that can be addressed by improving the chemical realism of the

model by, for example, adopting a potential energy model at a higher level of theory. Rather,

improved predictions could be achieved by reducing statistical noise by more extensive con-

formational sampling. This conclusion is supported by the observation that the self-RBFE’s

variance is strongly correlated to the reorganization free energy of the ligand; the induced-fit

free energy cost for the ligand to reorganize into the binding-competent conformational state

from the range of conformations it occupies in solution. A link between these two quantities

suggests that ligand conformational reorganization contributes significantly to the errors ob-

served in validation studies and that errors can be reduced by improving the sampling of the

ligands’ intramolecular degrees of freedom.

In this work, we employ metadynamics-based sampling43 to speed up the sampling of

slow torsional degrees of freedom during ATM RBFE calculations. Metadynamics is an al-

gorithm that adaptively builds up a biasing potential function that disfavors conformations

that have already been visited. By doing so, it tends to equalize the populations of con-

formational states along a chosen coordinate and lower energy barriers that hamper rapid

interconversions. In keeping with the philosophy of simplicity and transferability of ATM,

we employ the metadynamics implementation in OpenMM by Peter Eastman41 that, unlike
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other conformational acceleration algorithms such as replica exchange with solute tempering

(REST),44 apply to arbitrary many-body potential and does not require modifications to

the core energy routines of the MD engine.

The work is organized as follows, we first review ATM, then introduce the concepts of self-

RBFE and reorganization free energies, and describe the metadynamics algorithm as used

in this study. We then present the analysis of the self-RBFE and reorganization free energy

values we obtain on the benchmark sets. We conclude with a discussion of the implications

of the findings of this study for the future directions of alchemical binding free energy models

in structure-based drug discovery.

Theory and Methods

The Alchemical Transfer Method for Relative Binding Free Energy

Estimation

The Alchemical Transfer Method (ATM, for short) estimates the binding free energies of

molecular complexes by relating the bound and unbound states by a coordinate displacement

transformation that brings the ligand from the solution environment to the binding site of

the receptor. Alternatively, it estimates the relative binding free energy (RBFE) of two

complexes of the same receptor with two different ligands by translating one ligand into

the binding site while another is simultaneously translated from the binding site to the

solution. In this sense, ATM is a dual-topology free energy method because it employs

distinct topologies for each ligand rather than modifying one topology as in single-topology

formulations.22 ATM and its applications are described in detail in published works.23,45

Only a brief account is provided here to introduce the notation and the essential features

relevant to the present work.

A typical system for an ATM RBFE calculation consists of a protein receptor R bound

to a ligand A and a second ligand B placed in the solvent displaced from ligand A by
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a displacement vector h, such that it is at a sufficient distance from the receptor to be

considered not bound to it (Figure 1). ATM computes the potential energy functions of

the system and their gradients before and after translating by a vector h ligand A from

the binding site to the solvent while simultaneously translating ligand B by the opposite

displacement. The first potential energy function, called U0(x), describes the system when

ligand A is bound to the receptor, and the second, called U1(x), corresponds to the state in

which the ligand B is bound. Here, x represents collectively the coordinates of the receptor,

the ligands, the solvent, and whatever other chemical species is present in the system. The

free energy difference between the states 1 and 0 is the RBFE between ligands A and B to

receptor R.

To calculate the RBFE, the potential energy function is progressively morphed from

U0(x) to U1(x) by defining an alchemical potential energy function Uλ(x) that goes from

U0(x) to U1(x) as the alchemical progress parameter λ goes from 0 to 1. As an example, the

linear alchemical potential energy function

Uλ(x) = U0(x) + λu(x) , (1)

where

u(x) = U1(x) − U0(x) , (2)

is the perturbation energy function, is one such interpolating function. However, as thor-

oughly discussed in published works,46,47 non-linear alchemical potential energy functions

are vastly more efficient than linear interpolating functions. ATM adopts the expression

Uλ(x) = U0(x) + Wλ[u(x)] , (3)
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where Wλ(u) is the soft-core softplus alchemical perturbation function

Wλ(u) =
λ2 − λ1

α
ln
{

1 + e−α[usc(u)−u0]
}

+ λ2usc(u) + w0. , (4)

the parameters λ2, λ1, α, u0, and w0 are functions of λ (see Computational Details), the

function

usc(u) =















u u ≤ uc

(umax − uc)fsc

[

u−uc
umax−uc

]

+ uc u > uc

(5)

with

fsc(y) =
z(y)a − 1

z(y)a + 1
, (6)

and

z(y) = 1 + 2y/a + 2(y/a)2 (7)

is the soft-core perturbation energy function designed to avoid singularities near the initial

state of the alchemical transformation.46,47 The parameters umax, uc, and a are set to cap

the perturbation energy u(x) to a maximum positive value without affecting it away from

the singularity. The specific values of uc, umax, and of the scaling parameter a used in this

work are listed in the Computational Details.

For efficiency reasons elaborated elsewhere,23,45 Eq. (3) is not employed to span the

entire alchemical pathway from λ = 0 to λ = 1. Rather, the process is divided into two

legs: one starting at λ = 0 using the alchemical potential in Eq. (3), and a second leg

starting from the bound state U1(x) morphing in the other direction towards the unbound

state using the alchemical potential Uλ(x) = U1(x) + W1−λ[−u(x)]. Both legs terminate at

λ = 1/2 at the ATM symmetric alchemical intermediate with the potential energy function

U1/2(x) = [U0(x)+U1(x)]/2 that is an equally weighted average of the endstates. The relative

binding free energy is then given by the differences of the free energies corresponding to the
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two legs

∆∆Gb = ∆Gb(B) − ∆Gb(A) = ∆Gleg1 − ∆Gleg2 (8)

Self-Relative Binding Free Energy Calculations

In this work, we investigate self-RBFE ATM estimates; that is the outcomes of RBFE

calculations when the ligands A and B are the same ligand. The true value of the binding

free energy of a ligand relative to itself is obviously zero. However, because of statistical

fluctuations, the self-RBFE obtained from a finite-length ATM calculation will not be exactly

zero. Below we will employ the statistical fluctuations of self-RBFE estimates to understand

the statistical fluctuations of RBFEs between unlike ligands.

It should be recognized that the concept of a self-RBFE applies only to dual-topology

binding free energy formulations such as ATM. The single-topology process of morphing

a ligand to the same ligand is inherently a null transformation with necessarily zero free

energy. In ATM theory, the true value of a self-RBFE is zero because the two legs of the

ATM alchemical process have the same initial and final states and thus have the same free

energy. The initial state of either leg is the state in which one copy of the ligand is bound to

the receptor, and the other copy is in solution. The final state is the symmetric alchemical

intermediate, which is again shared by the two legs. However, the free energy of each leg is

not zero, and random differences between the estimates of the two legs cause the self-RBFE

estimate to differ from zero.

We measure the statistical fluctuations of self-RBFEs for a set simulation length by

running replicates of the simulations of the same length. The standard deviation of the

distribution of self-RBFEs is a measure of the statistical fluctuation of the self-RBFE of a

ligand. The deviation of the mean of the self-RBFE of the distribution of self-RBFEs from

zero is a measure of the bias of the ATM estimate.
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Estimation of the Ligand Binding Reorganization Free Energy

The ligand reorganization free energy for binding measures the free energy cost for the lig-

and in solution to assume the binding-competent conformation.48 This quantity, also known

in the literature as the conformational free energy penalty or strain energy,49,50 is an im-

portant element considered in lead optimization because a molecule predisposed for binding

with small reorganization free energy is more likely to bind strongly to the receptor. Con-

versely, reorganization opposes the binding of flexible molecules that spend most of their

time in solution in conformations away from the bioactive conformation. Even though drug

development typically focuses on strengthening receptor-ligand interactions, the ligand re-

organization element can be crucial in determining binding specificity,51 especially when

binding energy variations are minimal. In such cases, optimizing binding affinity can be

achieved by strategies that focus on preorganizing the ligand for binding, thereby reducing

unfavorable reorganization.

Computer models are uniquely positioned to probe ligand reorganization free energies.

While experimental structures of protein-ligand complexes often yield the bound structure

of ligands, they do not provide information about their distribution of conformations in

solution. The ligand component of the reorganization free energy for binding of ligand A,

∆Greorg(A), is formally related to the population pA of the ligand’s bioactive conformation

in solution

∆Greorg(A) = −kBT ln pA . (9)

Hence, the binding affinity of a ligand could be significantly overestimated if the reorganiza-

tion free energy is not taken into account, especially if pA is small and ∆Greorg(A) is large

and positive.

It is challenging to obtain a good estimate of the reorganization free energy of a ligand

by unbiased molecular simulations if the bioactive conformation is rarely visited in solution

or it is separated by the other solution conformations by large energy barriers that are rarely
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crossed. For example, if the ligand remains trapped in the initial bound conformation because

transitions to more stable conformations in solution are rare, one would incorrectly deduce

that the ligand reorganization free energy is small. The equilibration between conformational

states separated by free energy barriers greater than 5 kcal/mol is generally considered

difficult within routine MD simulation timescales. Conversely, the reorganization free energy

could be grossly overestimated if the population of the bioactive conformation is so small that

is almost never visited when the ligand is in solution. The reorganization of the receptor can

also be a major contributing factor for binding that is equally or harder to model than ligand

reorganization. In this work, we focus on the ligand reorganization under the assumption

that the receptor does not reorganize or it does not reorganize differently depending on the

bound ligand.

Taken together, conformational reorganization processes that accompany binding can

be a major convergence bottleneck for binding free energy calculations. One way to probe

their effect is to see whether ligands with self-RBFEs with large statistical fluctuations are

predominantly those that reorganize upon binding. This would be the case because ligand

molecules that suffer large reorganization in solution and rarely interconvert between the

bound and unbound conformations in solution are more likely to display random fluctuations

in one alchemical leg than the other, causing self-RBFEs to deviate from zero.

In this work, we estimate the reorganization free energy of a ligand A by measuring

the RBFE between the ligand and a version of the same ligand restrained within the state

corresponding to the bioactive conformation Ab. The bound state is identified by means of

ranges of torsional angles of the ligand. According to the two-step process

R + A ⇀↽ R + Ab ∆Greorg(A) (10)

R + Ab ⇀↽ RAb ∆Gb(R,Ab)

where Ab is the restrained ligand pre-reorganized for binding, ∆Greorg(A) is the reorganization
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completely removed, well-tempered metadynamics biasing potential yields the potential of

mean force of the system along the selected CVs.43 The results reported here were obtained

with the implementation of well-tempered metadynamics by Peter Eastman packaged with

the OpenMM library.56,57

As described in detail in Computational Details, our approach involves first obtaining

the torsional flattening biasing potentials Ubias by running well-tempered metadynamics on

the free ligands in water. We then perform the ATM alchemical calculation with the bias-

ing potentials added to the intramolecular potential energy functions of the ligands. The

resulting biased free energy is unbiased using a book-ending approach37,58 by computing the

free energy differences of the system without the biasing potential from samples collected

with the biasing potential at the endpoints of the alchemical path. In this work, we used a

simple unidirectional exponential averaging formula to evaluate the free energy corrections

for unbiasing at each endpoint (Figure 2). For example, in the notation of Figure 2

∆G1 = −kBT ln〈exp(Ubias/kBT )〉biased (12)

where Ubias is the metadynamics-derived flattening biasing potential and 〈. . .〉biased is the

ensemble average of the RA+B biased state. The exponential averaging estimator converges

quickly in this case because the biased ensemble is a subset of the unbiased one.

The ATM protocol augmented with metadynamics (hereafter ATM+MetaD) was applied

to the calculation of ligand reorganization free energies (see above) and to the self-RBFE

calculations. As shown in the Results, metadynamics sampling reduces significantly the

statistical fluctuations of the self-RBFE estimates by accelerating the transitions of the

ligands.
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Benchmark Systems

We illustrate the application of the self-RBFE and reorganization free energy analysis on

four benchmark systems. The first set, composed of two non-nucleoside inhibitors (NNRTIs)

(TMC125 and TMC278) of HIV-1 reverse transcriptase (HIV-RT) whose conformational re-

organization properties have been studied computationally (Figure 3),59,60 has been chosen

as one of the clearest examples of conformational reorganization. TMC278, sold as rilpivirine,

is known to undergo an extensive conformational reorganization from an extended conforma-

tion to a compact U-shaped conformation to bind HIV-RT. In contrast, the similar TMC125

compound (sold as etravirine) is mostly in the binding-competent U-shaped conformation in

solution and does not reorganize for binding.

The other three case study systems (c-Met, Syk, and CDK8) were taken from the RBFE

benchmark set prepared by Schindler et al.12 The RBFEs estimates of these systems were

recently reported by Chen et al.42 using the same ATM free energy protocol and force field

employed here. Chen et al.42 reported average unsigned errors relative to the experiments

of 0.98, 1.13, and 1.50 kcal/mol, respectively, relative to the experiments for these sets.

Schindler et al.12 obtained similar prediction performance with the commercial FEP+ pack-

age.10,61 Here we report the self-RBFE estimates for all of the 101 complexes in these sets

and perform a detailed statistical fluctuation and reorganization free energy analysis on a

randomly picked subset of 11 complexes.

Simulation Settings

We employed the structures of the c-Met, Syk, and CDK8 complexes posted by Schindler et

al.12,62 prepared and parameterized for ATM RBFE calculations as described by Chen et al.42

and posted on the GitHub repository https://github.com/EricChen521/ATM MerckSet.

We used the 3MEC63 and 2ZD164 crystal structures for the complexes of TMC125 and

TMC278 bound to HIV-RT. The HIV-RT receptor structures were processed using the Pro-

tein Preparation Wizard in Maestro (Schrödinger, Inc). The calculations used a simplified
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model of the receptor, incorporating any receptor residue with atoms within 12 Å of any

ligand atom. This streamlined model was chosen for computational ease. The 12 Å limit

for non-bonded interactions and the receptor’s rigidity ensured that predictions don’t de-

pend on atomic interactions outside this modeled zone. The receptor model consisted of 114

residues (from positions 88 - 112, 171 - 195, 220 - 243, 314 - 323, 347 - 350, and 378 - 385 in

the p66 subunit, and 132 - 142 in the p51 subunit), totaling 1905 atoms. We adopted the

AMBER FF14SB force field for the protein and the TIP3P model for water. TMC125 and

TMC278 were parametrized using the GAFF1.8/AM1-BCC forcefield. The solvated systems

were neutralized using Na+/Cl− and K+/Cl− ions for HIV-RT protein-ligand and Schindler

et. al benchmark sets respectively. ATM ligand alignment restraints30 were employed with

force constants kr = 2.5 kcal/(mol Å2) and kθ = kψ = 25.0 kcal/mol for the positional and

orientational restraints, respectively. The receptors’ Cα atom positions were kept near their

starting values using flat-bottom harmonic restraints with a 1.5 Å allowance and a force

constant of 25 kcal/(mol Å2). The LEaP program65 was used to combine the receptor and

the ligands and solvate the system. The second ligand of each ligand pair was translated

by 34 Å along the diagonal of the solvent box. This distance was sufficient to maintain a

minimum separation of three water layers between the ligand in solution and the receptor’s

atoms. The resulting system was solvated with a 10 Å buffer.

The prepared systems were energy-minimized, thermalized, and equilibrated at 300 K and

1 bar of constant pressure. This was followed by slow annealing to the λ = 1/2 alchemical

intermediate for 250 ps. The resulting structure served as the initial configuration for the

subsequent alchemical replica exchange simulations.

For all the protein-ligand complexes, we employed 22 replicas, with 11 for each of the two

legs from λ = 0 to λ = 1/2. The schedules of the softplus alchemical parameters in Equation 4

were: λ1 = 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, λ2 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

for the Schindler et. al. protein-ligand systems. For HIV-RT complexes, the parameters were

λ1 = 0, 0, 0, 0, 0, 0, 0.10, 0.20, 0.30, 0.40, 0.50, λ2 = 0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50.
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For all λ-states for both sets, we used α = 0.1 (kcal/mol)−1 and u0 = 100 kcal/mol.

The asynchronous Hamiltonian replica exchange molecular dynamics conformational sam-

pling,66 was executed with a timestep of 2 fs. Perturbation energy samples were collected

every 40 ps. The relative binding free energies were determined using replica trajectories

that were a minimum of 5 ns in length. The first third of the samples were discarded for

equilibration for free energy analysis. We used UWHAM, multi-state free energy estimator,67

for free energy, and statistical error estimation.

For the calculation of ligand reorganization energy, one copy of the ligand in the bound

state was restrained to its torsions in the bound state. The torsional distribution at λ =

1 with ATM for the ligand was obtained. The majority of the torsion values with their

fluctuations in the distributions were recorded to set the torsional restraints for the ligand in

the bound state. The specifications for torsional restraints for each ligand in this study can

be found at (https://github.com/sheenam1509/self-rbfe.git). The second copy of the

ligand was unrestrained and was modeled with the metadynamics-derived biasing potential

described below. The bias potential was applied to the unrestrained ligand in order to prevent

it from conformational trapping (if present) and eventually sample all conformations relative

to the bound state. Unbiasing was done at the end using the book-ending approach, that

has been discussed in Theory and Methods.

We employed the well-tempered metadynamics43 utility available in OpenMM41 to op-

tionally accelerate the sampling of the torsional degrees of the ligands. Torsional potential

energy flattening biasing potentials were obtained by simulating each ligand in a water solu-

tion. Metadynamics MD was conducted for 50 ns with a well-tempered metadynamics bias

factor of 9, Gaussian height 0.3 kJ/mol, 10 degrees Gaussian width, and a deposition rate

of 0.2 ps. The biasing potential was added to the potential energy function of the ligands

for a subset of the self-RBFE ATM calculations, and the resulting free energy estimates

were unbiased as described in Methods. Torsional flattening biasing potentials derived from

metadynamics were also used in the ATM calculations for the reorganization free energies
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of the ligands in the same subset.

Results

The self-RBFE estimates from five replicates for the complexes of HIV-RT with TMC125 and

TMC278 with and without accelerated metadynamics sampling are reported in Table 1. The

average and variance over the five replicates measure the bias and statistical fluctuations of

the ATM self-RBFE estimator for a simulation length of 5 ns per replica. With the exception

of the complex with TMC278 with metadynamics sampling, the bias of the self-RBFE with

respect to the true value is zero within statistical uncertainty. However, a small but consistent

bias towards positive self-RBFE values is evident as the averages over the replicates are

positive in all cases, and the average self-RBFE is outside the uncertainty window in the

case of TMC278 with metadynamics. We interpret this residual bias as the tendency of the

copy of the ligand started in solution to move away from the bound-competent conformation

in the early phases of the simulation (see Discussion below).

As measured by the variance, metadynamics conformational sampling reduces the sta-

tistical fluctuations of the self-RBFEs in the case of TMC278 but increases it for TMC125

(Table 1). As further discussed below, this is one of several examples we encountered where

the more extensive conformational exploration afforded by metadynamics does not necessar-

ily benefit ligands that do not significantly reorganize upon binding. The reorganization free

energy estimates we obtained (Table 2) confirm that TMC278 suffers a much larger reorga-

nization penalty than TMC125. Hence, accelerated conformational sampling helps reduce

the statistical fluctuations of TMC278 by increasing the rate of interconversions between the

E and L conformations predominant in solution (Figure 4) to the U conformations required

for binding. In contrast, TMC125 is already predominantly in the bound U-shaped confor-

mation in solution (Figure 4), and exploring minor conformational states hurts convergence

rather than enhances it.
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Table 1: Self-RBFE replicates for the complexes of HIV-RT with TMC125 and TMC278.

Replicate ∆∆Gb(ATM)a ∆∆Gb(ATM+MetaD)a

TMC125
1 0.05 1.12
2 -0.81 -0.25
3 -0.33 1.80
4 0.83 -0.64
5 0.75 0.17
averagea 0.10 ± 0.62 0.44 ± 0.90
varianceb 0.49 1.01

TMC278
1 1.80 0.03
2 1.07 1.35
3 1.06 0.44
4 3.75 0.79
5 -3.40 0.46
averagea,c 0.86 ± 2.34 0.61 ± 0.44
varianceb 6.88 0.24

aIn kcal/mol bIn (kcal/mol)2 cErrors are reported as twice the standard error of the mean.

Table 2: Reorganization free energy estimates for TMC125 and TMC278

Ligand ∆∆Gb(ATM+MetaD)a,b

TMC125 0.37 ± 0.70
TMC278 3.97 ± 0.60

aIn kcal/mol. bErrors are reported as twice the standard error of the mean.
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With this knowledge in mind, we tested whether metadynamics-based accelerated con-

formational sampling reduces the statistical uncertainty of the RBFE between TMC125 and

TMC278 binding to HIV-RT. Since biasing the sampling of the dihedral angles of TMC125

proved ineffective, in these calculations we applied the metadynamics flattening potential

only to TMC278 to better address its large conformational reorganization in solution. In-

deed, as the results in Table 3 show, metadynamics sampling yields an RBFE estimate

with a much smaller statistical uncertainty (a variance of 0.16 compared to 1.92 (kcal/mol)2

without metadynamics) at essentially the same computational cost. The reduction of the

model variance, in this case, is due to the frequent transitions of TMC278 from solution to

bound conformational states with metadynamics. With standard MD sampling, in contrast,

TMC278 remains trapped in the extended solution conformations while in solution and is

unable to equilibrate with the bound state of the complex (Figure 5).

Experimentally, TMC278 is a slightly better or equivalent inhibitor of HIV-RT than

TMC125.68 Without metadynamics sampling, ATM predicts that TMC125 is instead signif-

icantly more potent than TMC278 (∆∆Gb = −1.49 kcal/mol) albeit with a large uncertainty.

With metadynamics sampling, the RBFE estimate is much closer to the expected value and

with significantly smaller uncertainty. The overestimation of the potency of TMC125 rela-

tive to TMC278 without accelerated conformational sampling is attributed to the reduced

ability of TMC278 to visit bound-competent conformations while in solution without the

help of the metadynamics flattening potential.

The self-RBFE estimates for the benchmark sets from Schindler et al. are shown in

Tables 4, 5 and 6. To compare with the results of Chen et al.,42 these calculations did not

employ metadynamics accelerated conformational sampling. The model bias measured as

the average of the self-RBFEs is within statistical uncertainty for all three sets. However,

the statistical spread of the estimates as measured by the average unsigned error (AUE in

Tables 4, 5, and 6) is relatively large (0.87, 0.85, and 0.80 kcal/mol for the c-Met, Syk, and

CDK8 sets, respectively) and comparable to the AUEs relative to the experiments of the

23





RBFEs between dissimilar ligands of the same sets obtained by Chen at al.42 (0.98, 1.13,

and 1.50 kcal/mol, respectively) using the same setup and force field employed here.

Table 4: Self-RBFE estimates for the c-Met complexes.

Ligand ∆∆Gb(ATM)a

CHEMBL3402741 0.78
CHEMBL3402742 -1.80
CHEMBL3402743 0.43
CHEMBL3402744 -0.32
CHEMBL3402745 -0.57
CHEMBL3402747 -0.97
CHEMBL3402748 2.29
CHEMBL3402749 0.39
CHEMBL3402750 -0.91
CHEMBL3402751 -0.77
CHEMBL3402752 0.09
CHEMBL3402753 0.37
CHEMBL3402755 -2.12
CHEMBL3402756 -0.82
CHEMBL3402757 -0.17
CHEMBL3402758 -0.28
CHEMBL3402759 -0.33
CHEMBL3402760 0.20
CHEMBL3402761 0.02
CHEMBL3402762 1.21
CHEMBL3402763 -0.55
CHEMBL3402764 -2.08
CHEMBL3402765 -2.63
AUEa 0.87
averagea,c −0.37 ± 0.46
varianceb 1.25

aIn kcal/mol. bIn (kcal/mol)2 cErrors are reported as twice the standard error of mean.

To gain a better understanding of the sources of statistical noise affecting the self-RBFE

estimates, we performed a similar analysis as for the TMC125 and TMC278 inhibitors of

HIV-RT above on a small subset of randomly picked ligands of the c-Met, Syk, and CDK8

sets. We conducted five self-RBFE replicates for each complex in the subset to estimate

the model bias and variance with and without metadynamics accelerated conformational

25









It is often found, for example, that increasing the level of accuracy of the force field does

not significantly change the average deviation from the experimental data,18,69 raising the

possibility that statistical uncertainties, rather than inaccuracy of the model, dominate the

observed model errors. One largely uncontrollable source of noise is the target experimental

activity data, which varies depending on the conditions and does not always reliably report

the actual binding strength.70,71 However, a likely more pervasive source of statistical noise

is the random variation of the free energy models’ predictions due to incomplete confor-

mational sampling8,72 during the relatively short simulations that are the norm in applied

work. Thus, to truly appreciate the performance of binding free energy models, it is critical

to investigate not only the models’ biases but also their variances.

In this work, we studied the statistical properties of relative binding free energy cal-

culations for a ligand relative to itself (self-RBFE) to assess the bias and variance of the

Alchemical Transfer Method (ATM) for systems relevant to structure-based drug discovery.

Because the true value of a self-RBFE is known to be zero, we were able to estimate the

bias and the variance independently by running a series of replicate calculations of the same

length. We found that, while ATM’s self-RBFE bias is generally small, its variance can be

occasionally quite large. We found, in fact, that the magnitudes of the self-RBFE statistical

errors we measured here account for 50 to 90% the average ATM errors of recent RBFE

benchmarks on the same systems.42 This result is even more remarkable, considering that

self-RBFEs are more straightforward transformations and likely suffer less bias than RBFEs

between dissimilar ligands. Overall, the results obtained here raise the tantalizing possibility

that a significant reduction of ATM’s model error can be achieved by better conformational

sampling alone.

To begin along this path, we found that, for ligands that reorganize upon binding, large

statistical fluctuations are caused by conformational trapping of the ligands in their solution

conformations, thereby preventing proper equilibration between unbound and bound states.

As a further confirmation, we established that accelerated metadynamics conformational
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sampling along torsional degrees of the ligand can significantly reduce the statistical variance

of self-RBFEs, and, in one case (TMC125 vs. TMC278), it yielded an RBFE estimate in

closer agreement with the experiment.

The reorganization free energy of binding,48–50,73 also known in the literature as induced-

fit and intramolecular strain,74,75 has a profound effect on binding affinities.60,76–80 It origi-

nates from the free energy cost for the ligand and the receptor81 to assume binding-competent

conformations from their conformational ensembles when free in solution. Thus, it is impor-

tant to capture reorganization effects in alchemical binding free energy calculations. Often,

this requires accelerated conformational sampling algorithms to avoid conformational trap-

ping.44 In this work, we accelerated the sampling of the intramolecular torsional degrees of

the ligand by employing a biasing potential derived from metadynamics82 that flattens the

conformational landscape of the ligand in solution. This approach significantly enhanced

the convergence of binding free energy estimates for ligands that reorganize upon binding.

However, the more thorough exploration of the degrees of freedom of the ligand unnecessar-

ily expanded the conformational sampling of ligands that do not reorganize upon binding,

resulting in a slowdown rather than an enhancement of their rate of convergence. This ap-

proach also does not directly address the equally important reorganization of the receptor.81

Nevertheless, here accelerated metadynamics conformational sampling had a significant net

positive effect in general, mostly by removing large outliers.

Conclusions

We evaluated the self-RBFE technique to assess the intrinsic statistical fluctuations of the

Alchemical Transfer Method (ATM) relative binding free energy estimator. We illustrate

the approach to a small set of HIV-RT inhibitors and apply it to large datasets often used to

benchmark the accuracy of alchemical relative binding free energy methods. We thoroughly

examined the variance and bias of the self-RBFE calculations to gain insights into the source
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of errors often observed when comparing calculated RBFEs to experimental values. We find

evidence that a significant fraction of these errors could be due to statistical noise. Hence,

the reduction of statistical fluctuations should be taken as a priority when attempting to

use the results of benchmarking studies to improve the accuracy of free energy models. Self-

RBFE tests are limited to the validation of dual- and hybrid-topology alchemical relative

binding free energy methods. However, the results obtained here confirm the benefits of

assessing free energy models in general by means of validation tests on transformations with

known true values, such as cycle-closure,22 to assess the inherent statistical fluctuations of

free energy estimators.

Notably, we find that ligand reorganization is a significant contributing factor to the

statistical variance of binding free energy estimates and that accelerated conformational

sampling of the degrees of freedom of the ligand can drastically reduce the time to conver-

gence. In this work, we employ a metadynamics-based approach to enhance the sampling of

slow torsional degrees of freedom of the ligand that often cause conformational trapping.

The additional computational cost of self-RBFE tests and metadynamics-based confor-

mational sampling and analysis of ligand conformational variability in solution is relatively

minor compared to the already high demands of relative binding free energy campaigns and

the substantial benefits coming from the greater reliability and the deeper assessment of the

predictions. We recommend wide adoption of these practices.
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Sparks, S.; Lin, Z.; McGee, T. D.; Kolossváry, I.; Lin, C.; Shechter, S.; Soutter, H.;

Bastos, C.; Taimi, M.; Lai, S.; Petrin, A.; Kane, T.; Swann, S.; Gardner, H.; Winter, C.;

Sherman, W. Design of a systemic small molecule clinical STING agonist using physics-

based simulations and artificial intelligence. bioRxiv 2022,

(5) Ganguly, A.; Tsai, H.-C.; Fernández-Pendás, M.; Lee, T.-S.; Giese, T. J.; York, D. M.

AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-

Energy Simulation Setup and Analysis (ProFESSA). J. Chem. Inf. Model. 2022, 62,

6069–6083.

32



(6) Xu, H. The slow but steady rise of binding free energy calculations in drug discovery.

J. Comp.-Aid. Mol. Des. 2022, 1–8.

(7) Mobley, D. L. Let’s get honest about sampling. J Comput Aided Mol Des 2012, 26,

93–95.

(8) Procacci, P. Solvation free energies via alchemical simulations: let’s get honest about

sampling, once more. Phys. Chem. Chem. Phys. 2019,

(9) Gallicchio, E.; Deng, N.; He, P.; Perryman, A. L.; Santiago, D. N.; Forli, S.; Olson, A. J.;

Levy, R. M. Virtual Screening of Integrase Inhibitors by Large Scale Binding Free

Energy Calculations: the SAMPL4 Challenge. J. Comput.-Aided Mol. Des. 2014, 28,

475–490.

(10) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robin-

son, S.; Dahlgren, M. K.; Greenwood, J.; Romero, D. L.; Mass, C.; Knight, L. J.;

Steinbrecher, T.; Beuming, T.; Damm, W.; Harder, E.; Sherman, W.; Brewer, M.;

Wester, R.; Murcho, M.; Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, W. L.;

Berne, B. J.; Friesner, R. A.; Abel, R. Accurate and Reliable Prediction of Relative Lig-

and Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy

Calculation Protocol and Force Field. J. Am. Chem. Soc. 2015, 137, 2695–2703.

(11) Zou, J.; Tian, C.; Simmerling, C. Blinded prediction of protein–ligand binding affin-

ity using Amber thermodynamic integration for the 2018 D3R grand challenge 4. J.

Comput.-Aided Mol. Des. 2019, 33, 1021–1029.

(12) Schindler, C. E.; Baumann, H.; Blum, A.; Böse, D.; Buchstaller, H.-P.; Burgdorf, L.;
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Table 5: Self-RBFE estimates for the Syk complexes.

Ligand ∆∆Gb(ATM)a

CHEMBL3259820 -0.95
CHEMBL3264994 -1.22
CHEMBL3264995 -0.93
CHEMBL3264996 0.97
CHEMBL3264997 -0.48
CHEMBL3264998 -1.26
CHEMBL3264999 1.17
CHEMBL3265000 0.29
CHEMBL3265001 -0.02
CHEMBL3265002 -1.49
CHEMBL3265003 0.41
CHEMBL3265004 0.37
CHEMBL3265005 0.16
CHEMBL3265006 -2.75
CHEMBL3265008 0.51
CHEMBL3265009 -1.07
CHEMBL3265010 -3.77
CHEMBL3265011 -0.05
CHEMBL3265012 -0.51
CHEMBL3265013 -0.64
CHEMBL3265014 -0.05
CHEMBL3265015 -0.79
CHEMBL3265016 -0.96
CHEMBL3265017 0.03
CHEMBL3265018 1.39
CHEMBL3265019 -1.71
CHEMBL3265020 -0.42
CHEMBL326502 -1.15
CHEMBL3265022 0.15
CHEMBL3265023 0.56
CHEMBL3265024 -0.43
CHEMBL3265025 -0.64
CHEMBL3265026 -0.42
CHEMBL3265027 -1.19
CHEMBL3265028 0.37
CHEMBL3265029 -0.34
CHEMBL3265030 0.59
CHEMBL3265031 -1.05
CHEMBL3265032 1.40
CHEMBL3265033 -0.66
CHEMBL3265034 2.55
CHEMBL3265035 1.25
CHEMBL3265036 -0.57
CHEMBL3265037 0.21
AUEa 0.86
averagea,c −0.30 ± 0.34
varianceb 1.23
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Table 6: Self-RBFE estimates for the CDK8 complexes.

Complex Pair ∆∆Gb(ATM)a

13 0.01
14 0.16
15 -1.32
16 -0.27
17 -2.17
18 0.03
19 2.93
20 -0.65
21 0.85
22 1.75
23 0.44
24 -2.03
25 -0.87
26 0.48
27 0.50
28 -0.16
29 0.19
30 -0.38
31 -0.11
32 2.42
33 -0.14
34 -0.93
35 0.14
36 -1.05
37 -0.97
38 -0.95
39 1.25
40 0.25
41 -0.79
42 0.12
43 -0.37
44 -1.55
45 0.15
AUEa 0.80
averagea,c −0.09 ± 0.38
varianceb 1.23

aIn kcal/mol. bIn (kcal/mol)2 cErrors are reported as twice the standard error of the mean.
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Table 7: Self-RBFE replicates for a subset of the c-Met complexes.

Replicate ∆∆Gb(ATM)a ∆∆Gb(ATM+MetaD)a

CHEMBL3402742
1 -1.80 -0.79
2 0.12 0.21
3 -0.04 0.19
4 1.03 -0.21
5 0.76 0.47
averagea,c 0.01 ± 0.98 −0.03 ± 0.44
varianceb 1.22 0.24

CHEMBL3402749
1 0.39 -0.10
2 1.49 0.20
3 2.39 -0.79
4 1.07 -0.90
5 1.20 -0.45
averagea,c 1.31 ± 0.64 −0.41 ± 0.42
varianceb 0.53 0.21

CHEMBL3402755
1 -2.12 0.52
2 0.18 0.35
3 0.77 -0.07
4 0.91 0.54
5 -0.96 -0.49
averagea,c −0.39 ± 1.04 0.17 ± 0.40
varianceb 1.38 0.20

aIn kcal/mol. bIn (kcal/mol)2 cErrors are reported as twice the standard error of the mean.
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Table 8: Self-RBFE replicates for a subset of the Syk complexes.

Replicate ∆∆Gb(ATM) ∆∆Gb(ATM+MetaD)

CHEMBL3264999
1 1.17 2.15
2 -1.79 -0.32
3 0.93 0.83
4 -1.09 -2.65
5 0.71 -1.00
averagea,c −0.01 ± 1.20 −0.20 ± 1.60
varianceb 1.79 3.31

CHEMBL3265004
1 0.37 -0.46
2 -0.91 0.33
3 -0.26 -0.81
4 0.15 -0.48
5 1.44 0.70
averagea,c 0.16 ± 0.78 −0.14 ± 0.56
varianceb 0.75 0.40

CHEMBL3265034
1 2.55 0.56
2 -0.16 0.77
3 0.77 -0.90
4 -0.47 0.26
5 0.26 -0.01
averagea,c 0.59 ± 1.06 0.14 ± 0.58
varianceb 1.42 0.42

CHEMBL3265037
1 0.21 0.59
2 -1.00 -1.00
3 -0.47 1.10
4 0.21 0.02
5 0.02 -0.01
averagea,c −0.21 ± 0.46 0.14 ± 0.70
varianceb 0.27 0.61

aIn kcal/mol. bIn (kcal/mol)2 cErrors are reported as twice the standard error of the mean.
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Table 9: Self-RBFE replicates for a subset of the CDK8 complexes.

Replicate ∆∆Gb(ATM) ∆∆Gb(ATM+MetaD)

Ligand 17
1 -2.17 0.72
2 1.75 0.68
3 0.55 -0.61
4 -0.58 -1.11
5 1.09 -0.44
averagea,c 0.13 ± 1.38 −0.15 ± 0.74
varianceb 2.38 0.67

Ligand 19
1 2.93 1.18
2 1.58 -0.66
3 -1.39 0.21
4 3.34 0.29
5 -1.67 -1.34
averagea,c 0.96 ± 2.12 −0.07 ± 0.84
varianceb 5.61 0.93

Ligand 37
1 −0.97 1.52
2 0.26 0.55
3 0.34 −0.65
4 −0.26 −1.15
5 −0.40 −0.13
averagea,c −0.21 ± 0.48 0.03 ± 0.94
varianceb 0.28 1.09

Ligand 38
1 −0.95 1.27
2 0.50 −0.52
3 −0.14 0.81
4 −0.13 −1.08
5 −0.32 0.20
averagea,c −0.21 ± 0.46 0.14 ± 0.84
varianceb 0.28 0.91

aIn kcal/mol. bIn (kcal/mol)2 cErrors are reported as twice the standard error of the mean.
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Table 10: Reorganization free energy estimates for a subset of the c-Met complexes.

Ligand ∆∆Gb(ATM+MetaD)a,b

CHEMBL3402742 0.76 ± 0.90
CHEMBL3402749 2.65 ± 0.80
CHEMBL3402755 2.74 ± 0.76

aIn kcal/mol. bErrors are reported as twice the standard error of the mean.

Table 11: Reorganization free energy estimates for a subset of the Syk complexes.

Ligand ∆∆Gb(ATM+MetaD)a,b

CHEMBL3264999 3.45 ± 0.90
CHEMBL3265004 1.50 ± 0.80
CHEMBL3265034 1.90 ± 0.83
CHEMBL3265037 1.80 ± 0.80

aIn kcal/mol. bErrors are reported as twice the standard error of the mean.

Table 12: Reorganization free energy estimates for a subset of the CDK8 complexes.

Ligand ∆∆Gb(ATM+MetaD)a,b

17 3.35 ± 0.76
19 3.80 ± 0.74
37 1.23 ± 0.82
38 0.42 ± 0.80

aIn kcal/mol. bErrors are reported as twice the standard error of the mean.
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