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ABSTRACT: Modern performance-based earthquake engineering practices typically entail a large
number of time-consuming nonlinear time history simulations to appropriately incorporate excitation and
model uncertainties in the decision making process. Surrogate modeling techniques have emerged as
attractive tool for alleviating this computational burden, while allowing for the use of high-fidelity
numerical models to describe hysteretic structural response. A key challenge arises in this setting for
accurately capturing the aleatoric uncertainty associated with the seismic hazard. This uncertainty is
typically expressed as high-dimensional or non-parametric uncertainty (depending on the approach
adopted for modeling ground motion time histories), and so cannot be easily incorporated within standard
surrogate modeling frameworks. Recent work has shown how stochastic emulation techniques can be
leveraged to address this challenge, utilizing Gaussian Process regression (GP) as foundational surrogate
model technique. Established formulation requires, for some of the parametric configurations examined,
the replication of the simulations to capture the aleatoric response variability. The simulations with
replications are leveraged to inform a secondary GP to describe the heteroscedastic aleatoric variability,
whereas all simulations and the secondary GP are then used to establish a primary GP for predicting the
response distribution. This formulation has two challenges: (i) it requires replications for some of the
configurations; (ii) it only uses the configurations with replications to inform the secondary GP
development. Here, an enhancement is proposed to address both these challenges: a GP-based
approximation is first established for the median response, and leveraging this approximation, all
simulations are utilized for developing the secondary GP. Case study examples demonstrate the benefits
of the alternative formulation and the fact that it addresses both aforementioned challenges.

model developed using a small number of
judicially chosen simulations, frequently also
referenced as computer experiments. This
surrogate model ultimately establishes an
approximate mapping between inputs (i.e. the
parameters of earthquake and structural models)
and outputs of interest (structural responses), and

1. INTRODUCTION

Decision making for earthquake engineering
applications requires proper consideration of
various type of uncertainties for the seismic
hazard and the infrastructure models. Accurate
assessment of risk in this context entails a large

number of simulations (nonlinear time-history
analyses) of complex numerical models
(representing the infrastructure), creating a large
computational burden. One attractive approach to
alleviate such computational burden is to replace
the expensive numerical model with a surrogate

can significantly accelerate risk assessment.

The aleatoric uncertainty associated with the
seismic hazard, stemming from the complex
physical mechanism of earthquake generation and
propagation, creates significant challenges in such
surrogate modeling applications. Often only a
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limited number of parameters are used to describe
phenomenological causality, and the portion of
uncaptured uncertainty is described as aleatory
uncertainty, propagated to the model outputs as
requirement to estimate the distribution of the
responses (under this uncertainty). To properly
describe such stochasticity in responses, specially
designed surrogate modeling techniques have
been devised, often referred to as stochastic
emulators (Ankenman et al. 2010, Binois et al
2018). A branch of such approach quantifies the
output uncertainty by deliberately generating so-
called “replications” which refers to multiple
simulation response realizations for identical
input parameters. The variance estimate obtained
by the replications help to directly estimate the
variance in the response serving as the samples of
a heteroskedastic variance field. Although, it was
shown in the literature (Binois et al. 2018; Wang
and Haaland 2018) that replications are an
effective ~ way  of  disaggregating  the
heteroskedastic variance component from the
simulation results, it naturally demands higher
computational cost.

To mitigate some of the computational
burden of creating replications recent research
efforts (Kyprioti and Taflanidis, 2021; Kyprioti
and Taflanidis, 2022) investigated partial
replication strategies, formulating a framework
which incorporates both replicated and non-
replicated simulation experiments. In this
approach, the replicated samples are used to
obtain variance estimates at the sampled
locations, and these estimates are used to
construct a continuous mapping of a variance-
field across the sample space. Then one can
constrain the relative scales of the variance to train
the primary emulator, exploiting both replicated
and non-replicated samples. One drawback of this
approach is that only a fraction of the samples is
utilized when constructing the variance-field
because non-replicated samples solely cannot
provide any information on the response variance,
and that it requires a minimal number of
replications to be considered.

This work proposes a practical extension of
the prescribed partial replication strategy that
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addressed both aforementioned challenges. In
particular, previous works that investigated
seismic response emulators suggest that even
when high heteroskedasticity exists for the
aleatoric uncertainty, mean-field prediction is
quite robust to the choice of the variance model
(Kyprioti and Taflanidis, 2021). Motivated by
this, we establish a preliminary, primitive mean-
field approximation through a homoscedastic
stochastic emulator. Instead of using replication-
based samples, the variance-field mapping is
informed by the deviation of the simulations from
the mean response approximation (Marrel et al.
2012). This way, the information of unique
samples can be fully utilized not only in the mean-
field predictions but also in the variance-field
predictions. The framework can also be
implemented  without  considering any
replications, allowing the available computational
budget to be used for better exploration of the
parametric domain. In the presented numerical
examples, the proposed method shows excellent
performance in capturing the underlying
heteroskedastic trend compared to the considered
alternatives with the same training sample size.

2. PROBLEM FORMULATION

Let us consider a joint model for describing
ground motion excitation and structural response.
In the presentation, a stochastic ground motion
model will be used for the excitation, though ideas
can be extended to any desired approach for
describing seismic hazard. The ground motion
model entails two types of uncertainty. The first
type pertains to key ground motion features, for
example related to intensity, seismicity properties
or excitation characteristics (duration, frequency
content). This uncertainty source can be described
by a parametric formulation, with corresponding
variables denoted herein by xg. The second type
pertains to aleatoric variability of the excitation,
frequently referenced as ground-motion to
ground-motion variability. Depending on the
excitation model, this uncertainty source might
not have a parametric description (corresponds to
latent features of the excitation model), or might
correspond to a high-dimensional stochastic
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sequence w, when stochastic ground motion
models are utilized for describing the seismic
hazard (Kyprioti and Taflanidis, 2022).
Additionally, the structural model might entail its
own parameters, described by random variable
vector xs. We will denote by x=[xs, Xg] the vector
of model parameters for the joint excitation and
structural models. Objective of the stochastic
emulation is to approximate the distribution of the
structural response, denoted z herein, as function
of x while considering the influence of the
aleatoric hazard variability.

Adopting kriging as stochastic emulation
strategy, this is ultimately accomplished by
approximating z(x)~N( m(x), o> (x) ), where N(.,.)
stands for Gaussian distribution and m(x) and
o’(x) represent, respectively, the predictive
mean and variance of the surrogate model. In this
context, kriging emulation approximates the
response as a realization of a Gaussian process
(GP), utilizing formulation z(x)= y(x)+ &(x),
where y(x) is a GP with some chosen mean trend
[typically expressed as a linear regression
combining basis vector f(x) and coefficients ],
and a stationary correlation kernel (Williams and
Rasmussen 2006), and &(x) is the so-called
nugget parameter, assumed to follow a zero mean
Gaussian distribution with variance 7*(x). This
nugget is the component leveraged to address the
aleatoric uncertainties in the problem formulation
(Kyprioti and Taflanidis, 2021). When the nugget
variance is constant, the problem reduces to a
simpler homoscedastic case, though it has been
shown (Kyprioti and Taflanidis, 2021) that this is
a poor approximation for describing nonlinear
structural response. The emphasis is herein on
how to address a heteroscedastic nugget.

3. REVIEW OF STOCHASTIC EMULATION
WITH PARTIAL REPLICATION

This section briefly reviews the stochastic
emulation with partially replicated samples
(Kyprioti and Taflanidis 2021). This approach
leverages two GP models: the primary one with
heteroscedastic nugget approximates the response
z(x), while its nugget variance 73(x) is
approximated by the secondary GP.
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To formalize implementation, consider N,
training points that are replicated 7, times,
referred to as replicated points and additional N;
training points which are not replicated, denoted
as non-replication points. In such setting, a total
of Ni=Ns+Npnp high-fidelity simulations are
involved in this surrogate model training. The
replications pertain to different samples (different
realizations) for the aleatoric sources of
uncertainty, for example to different stochastic
sequences when stochastic ground motion model
is used for the excitation. Superscript i will be
used to denote the ith parametric configuration
and notation z/ will be used to describe the j-th
response realization for the training points with
replications. For the latter points we can obtain the
unbiased estimates for the mean and the variance,

respectively, as
) (1

P
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Using the results from Eq. (2) as observations, a
secondary GP is first established to predict the
continuous field of the response variance.
Assuming homoscedasticity for this GP, any
traditional calibration and prediction formulations
can be adopted (Williams and Rasmussen 2006).
Note that the homoscedastic nugget in this
auxiliary GP accounts for the variability in the
obtained sample variances of Eq. (2) [sample-
based estimation error].

Once the variance field is estimated, the final
predictive mean and variance can be estimated
using information for both the replicated samples,
x' and z' (i=l,...,Np), and the non-replicated
samples, x'and z' (i=1+Np,...,Ns+Np), as:

m(x)=f(x)"B+r(x) R (Z-FB) 3)

o’ (x) =77 (x)+ & [1+
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where R=R+5,A"'C,, p=F'R'F)'F'R'Z ,
y(x)=F'R'r(x)-f(x), C,is adiagonal matrix of
with elements 7°(x’), and A is a diagonal matrix
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Figure 1: Procedure of the stochastic kriging

with elements #; which represents the replication
size at i-th unique training points, i.e. either np or
1. F and Z are the matrices whose i-th row is
respectively f(x') (the basis functions for the
underlying GP regression) and z' (for points with
replications) or z  (for points without
replications). The scalar quantity &° is the
process variance and J, is the nugget scaling
parameter. The GP calibration can be done by
maximum likelihood estimation, with details
included in (Kyprioti and Taflanidis, 2021).

Drawbacks of this approach is that
replications are always needed and that the non-
replication points are not fully utilized when
estimating the variance field. The trade-off
between the number of point with and without
replication, and the number of replications
examined per points has been investigated in
detail in the numerical experiments performed in
Kyprioti and Taflanidis (2021), showing that the
overall accuracy improves as more non-
replication points are utilized, with a considerable
reduction of performance, though, as the number
gets close to N:. This performance reduction is
largely attributed to the limited information
available for the development of the variance-
field (secondary GP), since non-replication points
cannot be used for this development.

4. ENHANCED PARTIAL REPLICATION
APPROACH

An enhanced version of the stochastic emulation

framework [also shown in Figure 1] is described

here, with objective to utilize all points (even the

non-replication points) for the variance-field

approximation is proposed in this Section. Unlike

the previous approach which relied on the pure
sample variance [given by Eq. (2)] to construct
the secondary GP, the proposed method
introduces tertiary GP model for a quick
estimation of the underlying mean function,
which can be leveraged to obtain samples of the
variance from single observations. In particular,
this mean function is first obtained by fitting a
traditional homoscedastic kriging model, i.e.
assuming the nugget variance 7°(x) is a constant,
to the entire training dataset. Similar to the
secondary GP discussed in the previous section,
any standard formulation (Williams and
Rasmussen 2006) can be adopted for the tertiary
GP. Let us denote the predictive mean acquired by
this as m_(x). Then for both the non-replicated
and replicated points, an estimation of the sample
deviation from the mean can be obtained as:

(z%)" =(zi”—ﬁ12(xi))2, j=1..,n, (5)

where i=1,...,Ny+Ns.. The sample deviation (7*)"/
by definition can be used as an alternative to Eq.
(2) for the variance-field estimation. To account
for the fact that for the points with replications,
multiple observations are available for the sample
deviation from the mean, a partial replication-
based formulation [similar to the one given by in
Eq. (3) but with a homoscedastic nugget variance]
needs to be adopted to establish the mapping
between x and 7°(x) for the secondary GP using
dataset (z*)"/. Finally, the process of training the
primary GP model is the same, simply the updated
secondary GP predictions are utilized.

The major difference between the original
and alternative variance estimators, is that while
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the original [utilizing Eq. (2) as observations]
relies on the pure sample variance, the modified
one [utilizing Eq. (5) as observations] treats the
mean estimate obtained from the auxiliary GP
model as the true mean (population mean) and
variance is estimated as the sample deviation from
the mean. This difference allows the latter to
accommodate the non-replicated samples. This is
especially useful when there are only limited
replications available, or when the response trend
shows localized nonlinearities requiring better
space-filling exploration of the domain.

Of course, it should be noted that the
proposed method is heuristic in a way that it
assumes that the mean estimate obtained from the
crude homoscedastic nugget assumption, 7, (x),
gives a reasonably reliable estimate. This
assumption relies on past studies (Kyprioti and
Taflanidis, 2021; Kyprioti and Taflanidis, 2022),
that have shown that for seismic applications the
mean-field prediction is relatively robust to the
choice of the variance model, especially
compared to the level of variability observed in
the sample replications. This was also observed in
more  general, non-seismic, applications
investigated in Marrel et al. (2012).

Furthermore, note that if the final estimation
of mean m_(x) (from Step3 of Figure 1) is
significantly different from the initial estimate
m_(x) (from Stepl), then one may iterate Step 2-
3 by replacing m_(x) with the m_(x) until the two
functions become more similar. Note that, as
mentioned in Marrel et al. (2012), this iteration is
rather heuristic and is not guaranteed to converge.

Table 1 Structural parameters for surrogate training

Notation Parameter (model) Range
g, Rayleigh damping ratio (%) 3-8.2
; (c)
fcpfgzaf Compressive strength'® at 17-46.1

¢ each floor (MPa)

Strain at maximum strength®

€ 0.0012-0.0033

el ez e at each floor (MPa)
E, Elastic modulus® (GPa) 180-230
/, Yield stress® (MPa) 430-700
a Straining hardening ratio®  0.006-0.017

* (¢): Concrete02, (s): Steel02
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Finally note that one limitation from the
previous work still applies to the proposed
approach: for the secondary and tertiary kriging
models, point estimates corresponding to the
mean predictions are only used, omitting the
uncertainty in these predictions. Incorporating,
additionally, this epistemic source of uncertainty
could perhaps be beneficial for improving
accuracy of estimation.

5. NUMERICAL EXAMPLES

5.1. Model descriptions

The same case-study example as in (Kyprioti and
Taflanidis, 2021) is used. The structural model
corresponds to a three-story, four-bay benchmark
concrete structure modeled in  OpenSees
(McKenna, 2011), using material models of
Concrete02 and Steel02. The fundamental period
is 0.57 sec and Rayleigh damping is introduced
for 1st and 3rd modes. Ten structural parameters
are considered as random variables: Rayleigh
damping ratio, six concrete material model
parameters, and three steel material model
parameters. These structural parameters that
constitute xs are shown in Table 1. The excitation
model corresponds to a point source stochastic
ground motion models whose parametric
description (i.e. Xg definition) is based on the
magnitude, M, and rupture distance 7mp. The
ranges considered for them are respectively
Me[5,8] and rnp €[3,60] (km), respectively. The
total number of model parameters for x is nx= 12
and the surrogate model objective is to describe
the distribution for the peak inter-story drifts and
peak absolute floor accelerations at each story (n:
= 6 total number of output variables). The
proposed stochastic emulation is separately
established for each of these outputs.

5.2. Examined cases and validation metrics

The numerical investigation focuses on the
comparison of the baseline approach in Section 3
— referred to as original — and the proposed
approach that utilizes Eq. (5) to get the estimates
of the predictive variance. From the fact that the
two approaches both accommodate partial
replications, we further investigated the benefit
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Figure 2: Average KL divergence values. The ‘original’ refers to Kyprioti and Taflanidis (2021).

offered from replications by exploiting different
mixtures of replicated and non-replicated training
samples. In particular, two different values of
replication size (np,= 5 and 10) are investigated, as
well as the varying numbers of the total samples
size (N~=1500, 1000, and 500). Similarly, chosen
cases of Ns are Ny=200, 400, 600, 800, 1000, and
1500. Among the listed Ns and N: values, the pairs
that satisfy Ns<N: are investigated in the original
implementation, and Ns=N: cases (i.e. no
replications) are additionally included for the
proposed implementation, as the latter became
applicable after introducing the variation in Eq.
(5). Note that, for example, when (N~=1500,
Ns=200, np=10) is chosen, the number of
replicated  points  was  Ny=(Nt-Ns)/np=13.
Similarly, when (N=500, N;=500) is chosen,
regardless of np, all the samples in the training sets
are non-replication points and N, is zero.

The surrogate models are validated using
total of 200,000 test samples consisting of 1,000
randomly selected test locations across the
training domain, each having 200 replications.
The Monte Carlo estimates of the mean and
variance estimations at the 1,000 test locations are
compared with the estimations from the two
surrogate models. To evaluate the overall
prediction error in the response distribution,
Kullback-Leibler (KL) divergence metric which
measures the distance between the estimated and

reference probability distributions is calculated
following the formulation in Kyprioti and
Taflanidis (2021). Additionally, the individual
performance metrics for the predictive mean and
variance are examined by comparing correlations
between the prediction and exact test sample
mean and variances, respectively. The correlation
coefficients would ideally approach to 1, when the
surrogate predictions are perfect and abundant test
samples are available. To assess the robustness of
the surrogate model predictions, the training
process is repeated independently 15 times with
different random seed — different training sample
realizations and wvalidation statistics are
averaged across these repetitions.

5.3. Results and discussions

The test set validation results are presented in
Figures 2 and 3. Figure 2 shows the average KL
divergence metric — averaged over 6 response
quantities — for various examined cases. Each row
represents different total training sample sizes and
each column represents different replication sizes
examined. The x-axis is the percentage of non-
replication points among total training samples
(Ns/Nt x100). The variability of the validation
statistics across the 15 repetitions is presented
using box plots. Figure 3 shows the correlation
coefficient between predicted and the exact
responses. Both median and logarithmic variance
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Figure 3: Correlation coefficient metric for median (left) and logarithmic coefficient of variation (right) of the peak
floor acceleration ( n, =10, averaged across floors). The ‘original’ refers to Kyprioti and Taflanidis (2021).

(in terms of coefficient of variation, CV) are
examined for different training sample sizes and
the proportions of non-replication points. In
particular (a) and (b) are the peak floor
acceleration prediction results averaged across
over different floors and (c) and (d) are those of
peak inter-story drift. Only the case of n,=10 is
presented here, but n,=5 case also showed very
similar observations. In this case the average
performance across the 15 repetitions is shown.
It can be observed in Figure 2 that as the
proportion of non-replication points increases, the
error from the proposed method monotonically
decreases, reaching below the minimum error of
the original approach. This is consistently
observed across different training sizes () and
replication sizes (np). In particular, when the
proportion of the non-replication points is below
50-60%, the performance of the proposed method
is similar to the original approach. However, as
the percentage gets larger, the error kept
decreasing only in the proposed approach,
proving that the information from the non-
replicated experiments becomes essential in such
cases. Furthermore, the proposed approach shows

that there is no trade-off between replication and
non-replication samples. Rather, consisting of the
training set using only the non-replication
samples provided the most accurate predictions in
the investigated example cases.

Figure 3 further differentiates the error into
those in median and CV by introducing the
correlation coefficient metric. Furthermore, the
correlation coefficients are assessed separately for
acceleration and displacement outputs, which
demonstrates that the same trend applies to both
types of outputs. Looking at the performance of
the original approach, one can notice that the
prediction accuracy of mean function consistently
increases as the percentage of non-replication
points increases (shown in (a) and (c)) while that
of the variance decays (shown in (b) and (d)). The
latter can be explained by the reduction of
information on the variance, that is fed into the
secondary kriging. However, albeit the decay of
variance prediction, exploration offered by non-
replication points provides a larger benefit in the
mean prediction as evidenced by the increasing
trend of the accuracy. Still, the case of 80% non-
replication shows that a substantial error in the
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variance estimation can actually lead to the poor
mean prediction.

For the proposed approach, mean prediction
initially follows a similar trend to the original
approach, but it continues to increase until it
reaches 100% non-replication case. This is
explained by non-degraded performance in the
variance prediction. The variance performance is
similar when the replication points dominate the
training samples, suggesting that addition of non-
replication points does not benefit in such cases.
However, as the proportion of non-replication
points increases, they clearly dominate the
variance predictions and restore the level of
accuracy observed in the heavily replicated cases.

6. CONCLUSION

A new practical stochastic emulation formulation
was proposed for earthquake engineering
applications. The method advances previous
research on the use of a stochastic kriging
framework with partial replication. Original
framework leverages a secondary Gaussian
Process (GP) to estimate the heteroscedastic
variability of the primary GP model, with the
latter providing the desired approximation for the
response distribution. In this setting, among the
partially replicated training data, only the portion
with replications is utilized for the inference of the
variance-field. The proposed enhancement
additionally considers the non-replicated sample
portion for this objective, by training the
secondary GP based on observations of the
deviation of non-replication samples from an
approximate mean estimate. This mean estimate
is obtained leveraging a homoscedastic GP. The
proposed method can also be applied to fully non-
replicated training sets, utilizing more efficiently

the available computational budget for
performing  numerical simulations (no
replications needed).

The case study demonstrated that

engagement of non-replication points provides a
better overall performance. When the training set
consists of large replication points, the
performance of the proposed method was similar
to the original approach. However, noticeable
performance improvement was observed as the
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proportion of the non-replicated samples
increases. The observed findings were consistent
across different training sample sizes and
replication sizes, while the performance gap was
more evident when the training sample size was
small. One interesting future research topic would
be the adaptive selection of experiments for
improving prediction accuracy across both the
mean and variance stochastic fields.

7. ACKNOWLEDGEMENTS

This research was financially supported by the
National Science Foundation (NSF) under Grant
CMMI- 2131111. This support is gratefully
acknowledged. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not
necessarily reflect the views of the NSF.

8. REFERENCES

Ankenman, B., Nelson, B.L., Staum, J. (2010)
"Stochastic kriging for simulation meta-
modeling" Operations Research, 58, 371-382.

Binois, M., Gramacy, R.B., Ludkovski, M. (2018)
"Practical heteroscedastic gaussian process
modeling for large simulation experiments"
Journal of Computational and Graphical
Statistics. 27(4), 808-821.

Kyprioti, A.P., Taflanidis, A.A. (2021). “Kriging
metamodeling for seismic response distribution
estimation” Earthquake Engineering and
Structural Dynamics, 50(13), 3550-3576.

Kyprioti, A.P., Taflanidis, A.A. (2022). “Addressing
the different sources of excitation variability in
seismic response distribution estimation using
kriging metamodeling” Farthquake Engineering
and Structural Dynamics, 51(10), 2466-2495.

Marrel, A., looss, B., Da Veiga, S., Ribatet, M. (2012).
"Global sensitivity analysis of stochastic
computer models with joint metamodels"
Statistics and Computing, 22, 833-847.

McKenna F. (2011) "OpenSees: a framework for
earthquake engineering simulation" Computing
in Science & Engineering, 13(4), 58-66.

Wang, W., Haaland, B. (2018). Controlling sources of
inaccuracy in stochastic kriging. Techno-
metrics.

Williams, C. K., Rasmussen, C. E. (2006). “Gaussian
processes for machine learning”. Cambridge,
MA: MIT press.



