


stop. If detecting one pedestrian vs. a group of pedestrians

results in the same planning outcome of the car coming to

a stop, then accounting for every missed pedestrian in the

quantitative analysis would not accurately reflect the actual

probability that the car behaves safely. Therefore, we argue

that metrics for evaluating object detection models must

be carefully chosen depending on the downstream planning

logic and the system-level safety specifications. Note that this

still allows for the design and evaluation of the detection

module to be independent from the rest of the autonomy

stack Ð only the choice of metrics is informed by the

system-level specification and the decision-making module.

Given this context, our contributions are the following. We

focus on the object detection task of perception, and use it

to refer to both the tasks of detecting an object and correctly

classifying it. First, we propose a distance-parametrized vari-

ation of the traditional confusion matrix to account for the

effect of distance on object detection performance. Second,

we define a proposition-labeled confusion matrix. Third, we

use the proposed metrics to evaluate a pre-trained YoLov3

model [22] on the NuScenes [23] dataset. The probability

that the overall system satisfies its specifications is then

computed using probabilistic model checking via methods

introduced in prior work [20], [21], [24]. Finally, we provide

an empirical comparison of the quantitative analysis resulting

from the different metrics for object detection on a car-

pedestrian example. We show that the detection metrics that

are distance-parametrized and proposition-labeled lead to

less conservative outcomes in the system-level evaluation.

II. RELATED WORK

Evaluating and monitoring perception for safety-critical

errors is an emerging research topic [14], [25], [26]. Per-

ception is a complex subsystem responsible for tasks such

as detection, localization, segmentation. These recent works

have focused on evaluating object detection in the context

of system-level safety. We follow this early work and focus

on object detection task of perception, which refers to both

detecting an object and classifying it correctly. As an initial

stage of this study, we assume a static environment and

perfect object localization. These assumptions can potentially

be relaxed based on an analysis that takes into account

partial observability of the environment [27], as discussed

in Section VI.

The use of Markov chains for probabilistic reasoning about

the correctness of high-level robot behaviors in the presence

of perception errors was studied in [24]. However, the

algorithms in [24] assumed knowledge of the probabilistic

sensor model. Rigorously constructing these sensor models

from confusion matrices was presented in [20]. In [21],

this approach was further extended by providing confidence

intervals on the probabilistic sensor models and was applied

to a case study on guiding aircraft on taxiways introduced

by Boeing [28].

For runtime monitoring of perception systems, Timed

Quality Temporal Logic (TQTL) is used to specify spatio-

temporal requirements on perception [29], [30] . However,

to specify these requirements, the user has to label each

scenario with critical objects that need to be detected. This

approach is useful in evaluating perception in isolation with

respect to the requirements defined on a specific scenario.

In [26], temporal diagnostic graphs are proposed to identify

failures in object detection during runtime.

In [25], Hamilton-Jacobi reachability was used to account

for closed-loop interactions with agents in the environment

to identify safety-critical perception zones in which correct

detection is crucial. Our work can be viewed as a comple-

mentary approach to [25] by allowing crucial misclassifica-

tions, according to system-level analysis, to be identified.

III. PRELIMINARIES

In this section, we give an overview of temporal logic,

which is useful in specifying system-level requirements

formally. We then provide a background of performance

metrics used to evaluate object detection and classification

models in the computer vision community. Finally, we setup

a simple discrete-state car-pedestrian system as a running

example to illustrate the role of these different concepts.

Note that our approach can be applied to more complex

systems, including those with continuous state, by applying

state-space discretization as later explained in Remark 2.

A. Temporal Logic for Specifying System-level Properties

System Specification. We use the term system to refer

to refer to the autonomous agent and its environment. The

agent is defined by variables VA, and the environment is

defined by variables VE . The valuation of VA is the set of

states of the agent SA, and the valuation of VE is the set of

states of the environment SE . Thus, the states of the overall

system is the set S := SA × SE . Let AP be a finite set of

atomic propositions over the variables VA and VE . An atomic

proposition a ∈ AP is a statement that can be evaluated to

true or false over states in S.

We specify formal requirements on the system in LTL (see

[11] for more details). An LTL formula is defined by (a) a set

of atomic propositions, (b) logical operators such as: negation

(¬), conjunction (∧), disjunction (∨), and implication ( =⇒
), and (c) temporal operators such as: next (⃝), eventually

(⋄), always (□), and until (U ). The syntax of LTL is defined

inductively as follows: (a) An atomic proposition p is an LTL

formula, and (b) if φ and ψ are LTL formulae, then ¬φ, φ∨ψ,

⃝φ, φU ψ are also LTL formulae. Further operators can be

defined by a temporal or logical combination of formulas

with the aforementioned operators. For an infinite trace σ =
s0s1 . . ., where si ∈ 2AP , and an LTL formula φ defined

over AP , we use σ |= φ to denote that σ satisfies φ. For

example, the formula φ = □p represents that the atomic

proposition p ∈ AP is satisfied at every state in the trace,

i.e., σ |= φ if and only if p ∈ st, ∀t. In this work, these

traces σ are executions of the system, which we model using

a Markov chain.

Definition 1 (Markov Chain [11]). A discrete-time Markov

chain is a tuple M = (S, Pr, ιinit, AP, L), where S is a

non-empty, countable set of states, Pr : S × S → [0, 1]





localize whether the detected object is on the crosswalk.

The evaluation framework presented in this paper is valid

for any discrete-state control strategy, both deterministic and

probabilistic. To concretize the setup, we consider a car

controller that acts corresponding to the detection model’s

prediction of the environment at the crosswalk. If the car at

time step t detects a pedestrian, then it chooses its speed

according to a control strategy for φped to come to a stop

before the crosswalk at cell Ck−1. If the state of the car

is such that it is impossible to find a controller that will

bring it to a stop at cell Ck−1, then it decelerates as fast

as possible. Similarly, if an obstacle or empty sidewalk is

detected, then the car chooses its speed according to a control

strategy designed correct-by-construction for φk.

Remark 2. This paper proposes evaluation metrics for object

detection in safety-critical autonomous systems to provide

a probabilistic guarantee of the correctness of the overall

closed-loop system with respect to its system-level specifica-

tions. These systems typically comprise of both continuous

dynamics for low-level control of the physical system and

discrete logic responsible for high-level decision-making. A

common approach to integrate the reasoning of discrete and

continuous behaviors is to construct a finite state model that

serves as an abstract model of the physical system (which

typically has infinitely many states), and formally verify the

resulting finite state abstraction [31]±[38]. However, in this

work, we focus on the high-level logic and we assume that

the system has been abstracted using a finite state model.

IV. METRICS FOR EVALUATING OBJECT DETECTION

In this section, we present the construction of proposition-

labeled and distance parameterized confusion matrices. The

distance parametrization can be augmented to both the

proposition-labeled confusion matrix and the more traditional

class-labeled confusion matrix, as outlined in Algorithms 1

and 2, respectively. While the confusion matrix provides

useful metrics for evaluating object detection models, we

would like to use these metrics in evaluating the performance

of the system with respect to formal constraints in temporal

logic. In [20], an algorithm was provided for system-level

analysis by accounting for classification performance using

the canonical confusion matrix. For each confusion matrix,

we evaluate the system using the framework introduced in

[20], and compare the results.

A. Proposition-labeled Confusion Matrix

In many instances, the planner need not require correct

detections of every object to find a high-level strategy that is

consistent with system-level specifications. For instance, for

the planner to decide to stop for a group of pedestrians 20m

away, the object detection does not need to correctly detect

each and every pedestrian. In terms of quantifying system-

level satisfaction of safety requirements, it is sufficient for

the object detection to identify that there are pedestrians

20m away, and not necessarily to correctly detect the precise

number of pedestrians. Thus, we introduce the notion of

using atomic propositions as class labels in the confusion

matrix instead of the object classes themselves.

Let pi be the atomic proposition: ªthere exists an object

of class ci ∈ Cº, and let P = {p1, . . . , pn} denote the

set of all atomic propositions. Let D0 < D1 < . . . <

Dk < . . . < Dkmax
denote progressively increasing distances

from the autonomous vehicle. Let Dk ⊂ D be the subset

of the dataset that includes objects that are in the distance

interval zk = (Dk−1, Dk) from the autonomous system. Let

Ek denote the predictions of the object detection algorithm

corresponding to dataset Dk. For each parameter k, we

define the proposition-labeled confusion matrix CMprop,k =
CMprop(2

P , Ek,Dk) where the classes are characterized by

the powerset of atomic propositions 2P . Algorithm 1 shows

the construction of the proposition-labeled confusion matrix.

Algorithm 1 Proposition-labeled Confusion Matrix

1: procedure PropCM(Dataset D = {(fi, bi, di, xi)}
N
i=1,

Classes C, Distance Parameters {Dk}
kmax

k=0)

2: From {Dk}
kmax

k=0, define distance intervals {zk}
kmax

k=1

3: Run object detection algorithm to get predictions E ,

4: Initialize D1, . . . ,Dkmax
as empty sets

5: Initialize E1, . . . , Ekmax
as empty sets

6: for (fi, bi, di, xi) ∈ D do

7: if di ∈ zk then

8: Dk ← Dk ∪ {(fi, bi, di, xi)}
9: Ek ← Ek ∪ {(b̃i, x̃i)}

10: for cj ∈ C do

11: pj ≡ ªthere exists an object of class cj”

12: P ←
⋃

j{pj} ▷ Set of atomic propositions

13: for k ∈ {1, . . . , kmax} do

14: Denote CMprop(2
P , Ek,Dk) as CMprop,k

15: CMprop,k ← zero matrix

16: for f ∈ F do ▷ Loop over image frames

17: Group objects in Dk with image token f .

18: Group predictions in Ek with image token f .

19: Pi ← Predicted set of propositions

20: Pj ← True set of propositions

21: CMprop,k[Pi, Pj ]← CMprop,k[Pi, Pj ] + 1

22: CMprop(2
P , E ,D)= {CMprop(2

P , Ek,Dk)}
kmax

k=0

23: return CMprop(2
P , E ,D)

The true environment is associated with a set of atomic

propositions evaluating to true. Suppose, there is a pedestrian

and a trash can in the distance interval zk from the ego,

then the true class label is {pped, pobs} in the distance-

parametrized confusion matrix CMprop,k. Note that for every

possible environment, there is only one corresponding class

in the proposition-labeled confusion matrix. Thus, for a given

true environment, the predicted class of the environment at

distance interval zk could be any element of the set 2P .

Therefore, at each time step, the set of detection outcomes

is Outc = 2P . The tuple (Outc, 2Outc) forms a σ-algebra for

defining a probability function over the proposition-labeled

confusion matrix. Since the set Outc is countable, we can



define a probability function µ : Outc → [0, 1] such that∑
e∈Outc µ(e) = 1. For a distance-parametrized confusion

matrix CMprop,k with class labels in the set Outc, and

for every true environment class label Pj , we can define

a probability function µprop,k(·, Pj) : Outc → 2Outc as

follows,

µprop,k(Pi, Pj) =
CMprop,k[Pi, Pj ]

∑|2P |
l=1 CMprop,k[Pl, Pj ]

, ∀Pi ∈ 2P ,

(4)

where CMprop,k[Pi, Pj ] is the element of the confusion

matrix CMprop,k with predicted class label Pi and true class

label Pj . That is, for every confusion matrix CMprop,k where

k ∈ {1, . . . , kmax}, we define a total of 2|P| different prob-

ability functions, one for each possible true environmentPj .

Thus, the probability function µprop,k that characterizes the

probability of detecting an environment satisfying propo-

sitions Pi, given that the true environment at zk satisfies

propositions Pj . This helps to formally define the state

transition probability of the overall system as follows.

Definition 3 (Transition probability function for proposi-

tion-labeled confusion matrices). Let xe be the true envi-

ronment state corresponding to propositions Pj evaluating

to true, and let sa,1, sa,2 ∈ S be states of the car. Let

O(s1, s2) denote the set of all predictions of the environment

that prompt the system to transition from s1 = (sa,1, xe) to

s2 = (sa,2, xe). At state s1, let zk be the distance interval

of objects in the environment causing the agent to transition

from sa,1 to sa,2. The corresponding confusion matrix is

CMprop,k. Then, the transition probability from state s1 to

s2 is defined as follows,

Pr(s1, s2) :=
∑

Pi∈O(s1,s2)

µprop,k(Pi, Pj). (5)

Remark 3. For simplicity, we assume that objects at a

specific distance interval influence the agent to transition

from sa,1 to sa,2. However, Definition 3 can be extended

to cases in which objects at multiple distances can influence

transitions.

B. Class-labeled, distance-parametrized Confusion Matrix

This performance metric builds on the class-labeled con-

fusion matrix defined in Definition 2. As denoted previously,

let C = {c1, . . . , cn} be the set of different classes of objects

in dataset D. For every object in Dk, the predicted class of

the object will be one of the class labels c1, . . . , cn. For each

distance interval zk, we define the class-labeled confusion

matrix as CMclass,k := CM(C, Ek,Dk). Algorithm 2 shows

the construction of the class-labeled, distance-parametrized

confusion matrix. Therefore, the outcomes of the object

detection algorithm will be defined by the set Outc =
{c1, . . . , cn}

m, where m is the total number of objects in

the true environment in the distance interval zk. The tuple

(Outc, 2Outc) forms a σ-algebra for defining a probability

function over the class-labeled confusion matrix CMclass,k.

Similar to the definition of a probability function, for ev-

ery class label cj , the probability function µclass,k(·, cj) :
Outc→ [0, 1] is defined as follows,

µclass,k(ci, cj) :=
CMclass,k[ci, cj ]∑n

l=1 CMclass,k[cl, cj ]
. (6)

Algorithm 2 Class-labeled Confusion Matrix

1: procedure ClassCM(Dataset D = {(fi, bi, di, xi)}
N
i=1,

Classes C, Distance Parameters {Dk}
kmax

k=0)

2: From {Dk}
kmax

k=0, define distance intervals {zk}
kmax

k=1

3: Run object detection algorithm to get predictions E ,

4: Initialize D1, . . . ,Dkmax
as empty sets

5: Initialize E1, . . . , Ekmax
as empty sets

6: for (fi, bi, di, xi) ∈ D do

7: if di ∈ zk then

8: Dk ← Dk ∪ {(fi, bi, di, xi)}
9: Ek ← Ek ∪ {(b̃i, x̃i)}

10: for k ∈ {0, . . . , kmax} do

11: Denote CMclass(C, Ek,Dk) as CMclass,k

12: CMclass,k ← zero matrix

13: for fi ∈ {f1, . . . , fm} do ▷ Loop over images

14: for object in Dk do

15: ci ← Predicted class label of object

16: cj ← True class label of object in Ek
17: CMclass,k(ci, cj)← CMclass,k(ci, cj) + 1

18: CMclass(C, E ,D)= {CMclass(C, Ek,Dk)}
kmax

k=0

19: return CMclass(C, E ,D)

Definition 4 (Transition probability function for class-labeled

confusion matrix). Let the true environment be represented

as a tuple xe corresponding to class labels in the region

zk (class labels can be repeated in a tuple xe when multiple

objects of the same class are in region zk). Let sa,1, sa,2 ∈ S
be states of the car, and let O(s1, s2) denote the set of all

predictions of the environment that prompt the system to

transition from s1 = (sa,1, xe) to s2 = (sa,2, xe). Likewise,

the tuple ye represents the object detection model’s predic-

tions of the environment. Then, the transition probability

function from state s1 to s2 is defined as follows,

Pr(s1, s2) :=
∑

ye∈O(s1,s2)

|ye|∏

i=1

µclass,k(ye(i), xe(i)). (7)

For both transition probability functions (7) and (5), we

can check (by construction) that ∀s1 ∈ S,
∑

s2
Pr(s1, s2) =

1. In the running example, if the crosswalk were to have

another pedestrian and a non-pedestrian obstacle, then the

probability of detecting each object is considered indepen-

dently of the others. This results in the product of probabil-

ities µclass,k(·, xe(i)) in equation (7).

C. Markov Chain Construction [20]

For each confusion matrix, we can synthesize a corre-

sponding Markov chain of the system state evolution as per
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