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Abstract

The implicit bias towards solutions with favorable properties is believed to be
a key reason why neural networks trained by gradient-based optimization can
generalize well. While the implicit bias of gradient flow has been widely studied
for homogeneous neural networks (including ReLU and leaky ReLU networks),
the implicit bias of gradient descent is currently only understood for smooth neural
networks. Therefore, implicit bias in non-smooth neural networks trained by
gradient descent remains an open question. In this paper, we aim to answer this
question by studying the implicit bias of gradient descent for training two-layer
fully connected (leaky) ReLU neural networks. We showed that when the training
data are nearly-orthogonal, for leaky ReLLU activation function, gradient descent
will find a network with a stable rank that converges to 1, whereas for ReLU
activation function, gradient descent will find a neural network with a stable rank
that is upper bounded by a constant. Additionally, we show that gradient descent
will find a neural network such that all the training data points have the same
normalized margin asymptotically. Experiments on both synthetic and real data
backup our theoretical findings.

1 Introduction

Neural networks have achieved remarkable success in a variety of applications, such as image and
speech recognition, natural language processing, and many others. Recent studies have revealed that
the effectiveness of neural networks is attributed to their implicit bias towards particular solutions
which enjoy favorable properties. Understanding how this bias is affected by factors such as network
architecture, optimization algorithms and data used for training, has become an active research area
in the field of deep learning theory.

The literature on the implicit bias in neural networks has expanded rapidly in recent years (Vardi,
2022), with numerous studies shedding light on the implicit bias of gradient flow (GF) with a wide
range of neural network architecture, including deep linear networks (Ji and Telgarsky, 2018, 2020;
Gunasekar et al., 2018), homogeneous networks (Lyu and Li, 2019; Vardi et al., 2022a) and more
specific cases (Chizat and Bach, 2020; Lyu et al., 2021; Frei et al., 2022b; Safran et al., 2022). The
implicit bias of gradient descent (GD), on the other hand, is better understood for linear predictors
(Soudry et al., 2018) and smoothed neural networks (Lyu and Li, 2019; Frei et al., 2022b). Therefore,
an open question still remains:

What is the implicit bias of leaky ReLU and ReLU networks trained by gradient descent?

In this paper, we will answer this question by investigating gradient descent for both two-layer leaky
ReLU and ReLU neural networks on specific training data, where {x;}?_; are nearly-orthogonal
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(Frei et al., 2022b), i.e., ||x;]|3 > Cnmaxy; |(x;,x))| with a constant C. Our main results are
summarized as follows:

* For two-layer leaky ReLU networks trained by GD, we demonstrate that the neuron activation
pattern reaches a stable state beyond a specific time threshold and provide rigorous proof of the
convergence of the stable rank of the weight matrix to 1, matching the results of Frei et al. (2022b)
regarding gradient flow.

* For two-layer ReLU networks trained by GD, we proved that the stable rank of weight matrix can
be upper bounded by a constant. Moreover, we present an illustrative example using completely
orthogonal training data, showing that the stable rank of the weight matrix converges to a value
approximately equal to 2. To the best of our knowledge, this is the first implicit bias result for
two-layer ReLLU networks trained by gradient descent beyond the Karush—Kuhn—Tucker (KKT)
point.

* For both ReLLU and leaky ReLU networks, we show that weight norm increases at the rate of
O(log(t)) and the training loss converges to zero at the rate of ©(¢t~1), where ¢ is the number of
gradient descent iterations. This improves upon the O(t~'/2) rate proved in Frei et al. (2022b)
for the case of a two-layer smoothed leaky ReLLU network trained by gradient descent and aligns
with the results by Lyu and Li (2019) for smooth homogeneous networks. Additionally, we prove
that gradient descent will find a neural network such that all the training data points have the same
normalized margin asymptotically.

2 Related Work

Implicit bias in neural networks. Recent years have witnessed significant progress on implicit
bias in neural networks trained by gradient flow (GF). Lyu and Li (2019) and Ji and Telgarsky (2020)
demonstrated that homogeneous neural networks trained with exponentially-tailed classification losses
converge in direction to the KKT point of a maximum-margin problem. Lyu et al. (2021) studied
the implicit bias in two-layer leaky ReLU networks trained on linearly separable and symmetric
data, showing that GF converges to a linear classifier maximizing the /> margin. Frei et al. (2022b)
showed that two-layer leaky ReLU networks trained by GF on nearly-orthogonal data produce a
{2-max-margin solution with a linear decision boundary and rank at most two. Other works studying
the implicit bias of classification using GF in nonlinear two-layer networks include Chizat and
Bach (2020); Phuong and Lampert (2021); Sarussi et al. (2021); Safran et al. (2022); Vardi et al.
(2022a,b); Timor et al. (2023). Although implicit bias in neural networks trained by GF has been
extensively studied, research on implicit bias in networks trained by gradient descent (GD) remains
limited. Lyu and Li (2019) examined smoothed homogeneous neural network trained by GD with
exponentially-tailed losses and proved a convergence to KKT points of a max-margin problem. Frei
et al. (2022b) studied two-layer smoothed leaky ReL.U trained by GD and revealed the implicit bias
towards low-rank networks. Other works studying implicit bias towards rank minimization include Ji
and Telgarsky (2018, 2020); Timor et al. (2023); Arora et al. (2019); Razin and Cohen (2020); Li
et al. (2021). Lastly, Vardi (2022) provided a comprehensive literature survey on implicit bias.

Benign overfitting and double descent in neural networks. A parallel line of research aims to
understand the benign overfitting phenomenon (Bartlett et al., 2020) of neural networks by considering
a variety of models. For example, Allen-Zhu and Li (2020); Jelassi and Li (2022); Shen et al. (2022);
Cao et al. (2022); Kou et al. (2023) studied the generalization performance of two-layer convolutional
networks on patch-based data models. Several other papers studied high-dimensional mixture models
(Chatterji and Long, 2021; Wang and Thrampoulidis, 2022; Cao et al., 2021; Frei et al., 2022a).
Another thread of work Belkin et al. (2020); Hastie et al. (2022); Wu and Xu (2020); Mei and
Montanari (2019); Liao et al. (2020) focuses on understanding the double descent phenomenon first
empirically observed by Belkin et al. (2019).

3 Preliminaries

In this section, we introduce the notation, fully connected neural networks, the gradient descent-based
training algorithm, and a data-coorrelated decomposition technique.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters
to denote scalars, vectors, and matrices respectively. For a vector v = (vy,--- ,v4) ', we denote by



[[v]|2 := (Z‘;zl vjz) Y2 s {5 norm. For a matrix A € R™*™, we use ||A||r to denote its Frobenius
norm and || A ||z its spectral norm. We use sign(z) as the function that is 1 when z > 0 and —1
otherwise. For a vector v € R%, we use [v]; € R to denote the i-th component of the vector. For
two sequence {ay, } and {by }, we denote ay, = O(by,) if |ai| < C|b| for some absolute constant C,
denote ay, = Q(by) if by, = O(ay), and denote ay, = O(by) if ap = O(bg) and ay, = Q(by). We also
denote ax = o(by) if lim |ay /bg| = 0.

Two-layer fully connected neural newtork. We consider a two-layer neural network described
as follows: its first layer consists of m positive neurons and m negative neurons; its second layer
parameters are fixed as +1/m and —1/m respectively for positive and negative neurons. Then the
network can be written as f(W,x) = F1(W41,x) — F_1(W_1, x), where the partial network
function of positive and negative neurons, i.e., F'11 (W1,x), F_1(W_1,x), are defined as:

m

(W) = = (w1, %) G.1)

r=1

for j € {£1}. Here, o(z) represents the activation function. For ReLU, o(z) = max{0, z}, and
for leaky ReLU, o(2) = max{7yz,z}, where v € (0,1). W, € R™*4 is the collection of model
weights associated with F;, and w; . € R? denotes the weight vector for the r-th neuron in W;. We
use W to denote the collection of all model weights.

Gradient Descent. Given a training data set S = {(x;,y;)}"; C R? x {41}, instead of consid-
ering the gradient flow (GF) that is commonly studied in prior work on the implicit bias, we use
gradient descent (GD) to optimize the empirical loss on the training data

Ls(W) = 3~ tlyi - F(W.x1),

where £(z) = log(1 4 exp(—=z)) is the logistic loss, and S = {(x;,y;)}; is the training data set.
The gradient descent update rule of each neuron in the two-layer neural network can be written as

Jr Js gy

wi ) — Wj(ti — 1 Ve, , Ls(W®) = w) _ % ng(t) (Wi xi) gy (B2)
i=1

forall j € {£1} and r € [m], where we introduce a shorthand notation E;(t) =y - F(W® x;)]
and assume the derivative of the ReLU activation function at 0 is o/(0) = 1 without loss of generality.
Here n > 0 is the learning rate. We initialize the gradient descent by Gaussian initialization, where
all the entries of W(?) are sampled from i.i.d. Gaussian distributions N'(0, 02) with o3 being the
variance.

4 Main Results

In this section, we present our main theoretical results. For the training data set S = {(x;,y;)}7~; C
R? x {£1}, let Ryin = min; [|X;]|2, Rmax = max; |X;]|2, p = max; - |(X;, Xx)|, and suppose
R = Ryuax/Rmin is at most an absolute constant. For simplicity, we only consider the dependency on
t when characterizing the convergence rates of the weight matrix related quantities and the training

loss, omitting the dependency on other parameters such as m, n, 0¢, Rmin, Bmax-

Theorem 4.1 (Leaky ReLU Networks). For two-layer neural network defined in (3.1) with leaky
ReLU activation o(z) = max{vyz,2},7 € (0,1). Assume the training data satisfy R2, >

CR?>y~*np for some sufficiently large constant C. For any 6 € (0,1), if the learning rate
n < (CRZ,./nm)~" and the initialization scale o9 < 7(CRmax+/ log(mn/(S))_l, then with

max

probability at least 1 — ¢ over the random initialization of gradient descent, the trained network
satisfies:

* The {5 norm of each neuron increases to infinity at a logarithmic rate: ||w§t2 l2 = ©(log(t)) for all
j€{+1}andr € [m].



* Throughout the gradient descent trajectory, the stable rank of the weights W](-t) forall j € {£1}
satisfies ® ®
Jim W2/ W3 =1,

with a convergence rate of O(1/log(t)).

* Gradient descent will find W (*) such that all the training data points possess the same normalized
margin asymptotically:

i [y f(WO /WO g, %) — e (WO WO | 5, x| = 0, Wi k € [n].

If we assume that W(®) converges in direction, i.e., the limit of W® /||W®)|| z exists, denoted
by W, then there exists a scaling factor v > 0 such that W satisfies the Karush-Kuhn-Tucker
(KKT) conditions for the following max-margin problem:

1
min [WIIE, st yif(Wxi) > 1, Vi € [n]. 4.1)

« The empirical loss converges to zero at the following rate: Lg(W®)) = Q(¢t~1).

Remark 4.2. In Theorem 4.1, we show that when using the leaky ReLU activation function on nearly
orthogonal training data, gradient descent asymptotically finds a network with a stable rank of W
equal to 1. Additionally, we demonstrate that gradient descent will find a network by which all the
training data points share the same normalized margin asymptotically. Moreover, if we assume the
weight matrix converges in direction, then its limit will satisfy the KKT conditions of the max-margin
problem (4.1). Furthermore, we analyze the rate of weight norm increase and the convergence rate of
the stable rank for gradient descent, both of which exhibit a logarithmic dependency in ¢.

Theorem 4.3 (ReLU Networks). For two-layer neural network defined in (3.1) with ReLU activation
o(z) = max{0, z}. Assume the training data satisfy R, > CRZ?np for some sufficiently large

constant C. For any 6 € (0,1), if the neural network width m > C'log(n/d), learning rate
n < (CR2,,,/nm)~" and initialization scale o9 < (C'Ruax/log(mn/d)) !, then with probability

max

at least 1 — § over the random initialization of gradient descent, the trained network satisfies:

* The Frobenious norm and the spectral norm of weight matrix increase to infinity at a logarithmic
rate: [|[W'" || = ©(log(t)) and [W" ||, = ©(log(t)) for all j € {1}.

» Throughout the gradient descent trajectory, the stable rank of the weights W](»t) forall j € {£1}
satisfies,
. t t
tim sup [ W75/ W” | < c.

where c is an absolute constant.

* Gradient descent will find a W(*) such that all the training data points possess the same normalized
margin asymptotically:

Jim [y f(WO /WO, %) = 5 f (WO /WO p,x1)| = 0, Vi | € [n].

+ The empirical loss converges to zero at the following rate: Lg(W®) = @(t~1).

Remark 4.4. For ReL.U networks, we provide an example in the appendix concerning fully orthogo-
nal training data and prove that the activation pattern during training depends solely on the initial
activation state. Specifically, when training a two-layer ReLU network with gradient descent using
such data, the stable rank of the network’s weight matrix W converges to approximately 2. It
is worth noting that this stable rank value is higher than the stable rank achieved by leaky ReLLU
networks, which is 1.

Comparison with previous work. One notable related work is Lyu et al. (2021), which also
investigates the implicit bias of two-layer leaky ReLU networks. The main distinction between our
work and Lyu et al. (2021) is the optimization method employed. We utilize gradient descent, whereas
they utilize gradient flow. Additionally, our assumption is that the training data is nearly-orthogonal,



while they assume the training data is symmetric. Our findings are more closely related to the
work by Frei et al. (2022b), which investigates both gradient flow and gradient decent. In both our
study and Frei et al. (2022b), we examine two-layer neural networks with leaky ReL.U activations.
However, they focus on networks trained via gradient flow, while we investigate networks trained
using gradient descent. For the gradient descent approach, Frei et al. (2022b) provide a constant
stable rank upper bound for smoothed leaky ReL.U. In contrast, we prove that the stable rank of leaky
ReLU networks converges to 1, aligning with the implicit bias of gradient flow proved in Frei et al.
(2022b). Furthermore, they presented an O(t~'/2) convergence rate for the empirical loss, whereas
our convergence rate is @(t_l). Another related work is Lyu and Li (2019), which studied smooth
homogeneous networks trained by gradient descent. Our results on the rate of weight norm increase
and the convergence rate of training loss match those in Lyu and Li (2019), despite the fact that
we study non-smooth homogeneous networks. It is worth noting that Lyu and Li (2019); Lyu et al.
(2021); Frei et al. (2022b) demonstrated that neural networks trained by gradient flow converge to a
Karush-Kuhn-Tucker (KKT) point of the max-margin problem. We do not have such a result unless
we assume the directional convergence of the weight matrix.

5 Overview of Proof Techniques

In this section, we discuss the key techniques we invent in our proofs to analyze the implicit bias of
ReLU and leaky ReLU networks.

5.1 Refined Analysis of Decomposition Coefficient

Signal-noise decomposition, a technique initially introduced by Cao et al. (2022), is used to analyze the
learning dynamics of two-layer convolutional networks. This method decomposes the convolutional
filters into a linear combination of initial filters, signal vectors, and noise vectors, converting the
neural network learning into a dynamical system of coefficients derived from the decomposition. In
this work, we extend the signal-noise decomposition to data-correlated decomposition to facilitate
the analysis of the training dynamic for two-layer fully connected neural networks.

®

Definition 5.1 (Data-correlated Decomposition). Let w; ©,

j € {1}, r € [m] be the weights of

first-layer neurons at the ¢-th iteration of gradient descent. There exist unique coefficients p(.t) . such

that o
Wi = w4 3ol x|z - xi. (5.1)
=1

By defining 5527 = pgti, ]l(pgti ;> 0), p(t) = pgt) ]l(pgtz ; < 0), (5.1) can be further written as

t 0 t
Wil = ”+Zp§,lz Il x,+zpm 152 - x. 52)

As an extension of the signal-noise decomposition first proposed in Cao et al. (2022) for analyzing
two-layer convolutional networks, data-correlated decomposition defined in Definition 5.1 can be

used to analyze two-layer fully-connected network, where the normalization factors ||x;|5 2 are

introduced to ensure that p§ 2 e (wgtz, ;). This is also inspired by previous works by Lyu and Li

(2019); Frei et al. (2022b), which demonstrate that W converges to a KKT point of the max-margin
problem. This implies that w(oo) / ||w i °°) |l2 can be expressed as a linear combination of the training

data {x;}?_,, with the coefficient \; corresponding to p( ) in our analysis. This technique does not
rely on the strictly increasing and smoothness propertles of the activation function and will serve as

the foundation for our analysis. Let us first investigate the update rule of the coefficient p p i p(tz

gt

Lemma 5.2. The coefficients ﬁgtiz, Bgtii defined in Definition 5.1 satisfy the following iterative

equations:

P84, =0, (53)



_(t+1 _(t n t t .

A =P = e (wxa) - il s = ), (5.4)
Ui t t .

D = pl) o (Wi ) - [l - Ly = ), (5.5)

forallr € [m], j € {£1} and i € [n].

To study implicit bias, the first main challenge is to generalize the decomposition coefficient analysis
to infinite time. The signal-noise decomposition used in Cao et al. (2022); Kou et al. (2023) requires
early stopping with threshold 7™ to facilitate their analysis. They only provided upper bounds of

4log(T™) for ﬁ;ti i | p(t) ;| (See Proposition 5.3 in Cao et al. (2022), Proposition 5 2 in Kou et al.
(2023)), and then carried out a two-stage analysis. To obtain upper bounds for p p ) T i |p | they
used an upper bound for |¢; /(¢ )| and directly plugged it into (5.4) and (5.5) to demonstrate that p( )

R

and | p(t ;| would not exceed 4 log(7™), which is a fixed value related to the early stopping threshold.

Therefore dealing with infinite time requires new techniques. To overcome this difficulty, we propose
a refined analysis of decomposition coefficients which generalizes Cao et al. (2022)’s technique. We
first give the following key lemma.

Lemma 5.3. For non-negative real number sequence {x; }32, satisfying
Cyexp(—xt) < wpy1 — o < Corexp(—ay), (5.6)
it holds that
log(exp(—xo) + C1 - t) < xy < log(exp(—zg) + Co exp(Cs) - t). (5.7
‘We can establish the relati(()gship between (5.4), (5.5) and inequality (5.6) if we are able to express

|€;(t)| using coefficients p; ;. ; and | BE%\‘ To achieve this, we can first approximate e§t> using
Jims (t

the margin y; f(W® x;) and then approximate Fj(W; ),
approximation is given as follows:

x;) using the coefficients p(t), .. The

2,75

0 = O(exp(—yi/ (W, x:)) = O (exp (Ff (WU x) = F, (W), (58)
1 m
ROV )= 0] < 3 (5 k), 59)
r=1 i #£i

From (5.9), one can see that we need to decouple Egt) from | pgtzl, |(i" # 7). In order to accomplish
this, we also prove the following lemma, which demonstrates that the ratio between Y - | \p il
and )" | pﬁ)i, |(i" # i) will maintain a constant order throughout the training process. Here, we
present the lemma for leaky ReL.U networks.

Lemma 5.4 (leaky ReLU automatic balance) For two-layer leaky ReLU network defined in (3.1),
for any ¢t > 0, we have > \p] J = e |pJ” | forany j € {£1} and 4, € [n], where ¢
is a constant.

By Lemma 5.4, we can approximate the neural network output using (5.9). This approximation

expresses the output F} (VV;”7 x;) as a sum of the coefficients pgtiz

1+ cy?R2 pn
Fj (W x;) & —— T TminPE N7 (0 (5.10)
r=1

By combining (5.4), (5.5), (5.8), and (5.10), we obtain the following relationship:

R TR T IR N nllxill3 1+ 2R 7 pn
— S ) o= @)<7) . _ 2= minl"
m;:lipj,m | m;:lipj,r,zl =) exp - E 1o’ Pjri

li(:'yzR;?npn Z

m

1)

This relationship aligns with the form of (5.6), if we set x; = e | pj , Z| Thus, we
can directly apply Lemma 5.3 to gain insights into the logarithmic rate of increase for the average



magnitudes of the coefficients - > | | p] ’ Z\ which in turn implies that ||w ||2 = O(logt) and
[W®| = = ©(logt). In the case of ReLU networks, we have the following lemma that provides
automatic balance:

Lemma 5.5 (ReLU automatic balance). For two layer ReLU network defined in (3.1), there exists a
constant ¢ such that for any ¢t > 0, we have |py il = c|pJ .| forany j € {£1},r € Si(o) ={re
m] : (Wi, x;) > 0}, 7 € [m] and i, € [n].

The automatic balance lemma guarantees that the magnitudes of coefficients related to the neurons of
class y;, which are activated by x; during initialization, dominate those of other classes. With the
help of Lemma 5.5, we can get the following approximation for the margin y; f (W), x;):

1EcR,}
Fyi(wg(/i)7x) F_. (W(t) )N 1 E vy pn Z p(t) Ny (5.11)

—VYi ) X m Yi,Ty
TESi(O)

By combining (5.4), (5.5), (5.8) and (5.11), we obtain the following relationship:

21¢(0) -2
Z (t+1)) Z O | _ ofmxill3lSi L+ cR ;,pn Z )
‘py“rz Ipyi,r,il - @( nm : ceXp |\ — mmln pyi,'r,i )
TESEO) rESf/O) TESEO)

1icR;i2npn
m

which precisely matches the form of (5.6) by setting x; = ZT cs©® pl(/i)” Therefore, we

can directly apply Lemma 5.3 and obtain the logarithmic increasing rate of | p;t)m| forr € SZ-(O).
Consequently, this implies that || W) ||z = ©(log ).

5.2 Analysis of Activation Pattern

One notable previous work (Frei et al., 2022b) provided a constant upper bound for the stable rank
of two-layer smoothed leaky ReLLU networks trained by gradient descent in their Theorem 4.2. To
achieve a better stable rank bound, we characterize the activation pattern of leaky ReLLU network
neurons after a certain threshold time 7" in the following lemma.

Lemma 5.6 (leaky ReL.U activation pattern). Let 7' = Cn~nmR, 2, . For two-layer leaky ReLU

network defined in (3.1), for any ¢ > T, it holds that sign({ 52, i) = jy; forany j € {+1} and
r € [m].

Lemma 5.6 indicates that the activation pattern will not change after time 7. Given Lemma 5.6, we
can get O'/(<W(t) i) = v forj # y; and o/ ((w (*) x;)) = 1 for j = y,. Plugging this into (5.4)

and (5.5) can él(/e the following useful lemma. Yo

Lemma 5.7. Let T be defined in Lemma 5.6. For ¢ > T, it holds that

78 5D 5 S(T) () T _ (T)
Pyisri ™ Pyisri = Pyirri = Py, T/i’p—yzvz B—ym«z p—yu '5i B—ymrﬁi’
t
Prori = Pyrors = 00, 0= 0% L )

forany ¢ € [n] and r, " € [m)].

This lemma reveals that beyond a certain time threshold 7, the increase in p( ) is consistent across

neurons within the same positive or negative class. However, for neurons belonging to the oppose
(t)

class, this increment in p; i

is scaled by a factor equlvalent to the slope of the leaky ReLU function
wid)

~. From this and (5.1), we can demonstrate that ||Wj77, W

constant, leading to the following inequalities:

|l2(r # ) can be upper bounded by a

D12+ mOlw |z +mCa, [W3 > mllw 12 — mCs w2 — mCy.

t
W13 < milw)
Considering that ||w](t2, ll2 = ©(logt), the stable rank of Wﬁo naturally converges to a value of 1.
For ReLLU networks, we can partially characterize the activation pattern as illustrated in the following
lemma.



Lemma 5.8. (ReLU activation pattern) For two-layer ReLU networks defined in (3.1), for any ¢ € [n],
we have S € S for any ¢ > 0, where S := {r € [m] : (w"),.,x;) > 0}.

Lemma 5.8 suggests that once the neuron of class y; is activated by x;, it will remain activated
throughout the training process. Leveraging such an activation pattern, we can establish a lower

bound for ||W§-t) l2 as 2(log(t)). Together with the trivial upper bound for \|W§-t> ||z of order
O(log(t)), it provides a constant upper bound for the stable rank of ReLU network weight.

5.3 Analysis of Margin and Training Loss

Notably, Lyu and Li (2019) established in their Theorem 4.4 that any limit point of smooth homoge-
neous neural networks f(W,x) trained by gradient descent is along the direction of a KKT point
for the max-margin problem (4.1). Additionally, Lyu and Li (2019) provided precise bounds on the
training loss and weight norm for smooth homogeneous neural networks in their Theorem 4.3 as

follows:
1

(t(log t)2-2/L ) ’

where L is the order of the homogeneous network satisfying the property f(cW,x) = ¢’ f(W,x)
for all ¢ > 0, W, and x. It is worth noting that the two-layer (leaky) ReLU neural network analyzed
in this paper is 1-homogeneous but not smooth. In Section 5.1, we have already demonstrated that
[W®| |z = ©(logt), and in this subsection, we will discuss the proof technique employed to show a
convergence rate of ©(¢~1) for the loss and establish the same normalized margin for all the training
data points asymptotically. These results align with those presented by Lyu and Li (2019) regarding
smooth homogeneous networks.

By the nearly orthogonal property, we can bound the increment of margin as follows:

Ls(W®) =0 WO r = 6((logt)/*),

1O 52 < e FOWED 500 — o FOWE %) < ST 17O 1 12 5.12
SO Il < WO ) i f WO ) < 2L O3 6.12)

Given (5.8) and (5.12), we can apply Lemma 5.3 and obtain
[y (W, x;) — log t — log(n[xi[|3/nm) | < Cs, (5.13)

where C5 is a constant. Utilizing (5.13) and the inequality z — 22 /2 < log(1 + z) < z for z > 0, we
can derive:

Ls(WO) < -3 exp (— 3 f (W, x,))
=1
1 n
<= —logt —1 |13 =0t !
< 2w (gt —oglolx/rm) + C) = O~

Ls(W®) > %En:exp (—yif (W %)) —exp (= 25 f(WW x)) =Q(t 7).
i=1

To demonstrate that all the training data points attain the same normalized margin as ¢ goes to infinity,
we first observe that (5.12) provides the following bounds for the increment of margin difference:

Y (WD 1xp) — 4 fW D %))

<y fOWO,30) = e (W) + 2100 g3 = 2100l o

Now, we consider two cases:

* If the ratio |€;(t) |/\£;€(t)\ is relatively large, then y;, f(W) x;.) — v; f(W®) | x;) will not increase.

* If the ratio \E;(t)\/|€;(t)| is relatively small, then y f(W®) x;) — v f(W®) x;) will also be
relatively small. In fact, it can be bounded by a constant due to the fact that |£;(t)| / |€;€(t)|
can be approximated by exp(yx f(W®,x;.) — 1:f(W®, x;)). By (5.14), we can show that
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Figure 1: Stable ranks and training loss for different leaky ReLU slopes v across multiple runs. A
slope of 1 corresponds to linear activation, while a slope of 0 corresponds to ReLU activation. Each
line represents the mean stable rank or training loss for a given leaky ReLU slope, while the shaded
regions indicate the variability of the values (+3 times the standard deviation) across the 5 runs.

Y f(WED x) — gy f(W D x;) can also be bounded by a constant, provided that the learning
rate 7 is sufficiently small.

By combining both cases, we can conclude that both [¢}'") \/|€;C(t) |and vy, f(W® x1) = f (W x;)
can be bounded by constants. This result is formally stated in the following lemma.

Lemma 5.9. For two-layer neural networks defined in (3.1) with (leaky) ReLU activation, the
following bounds hold for any ¢ > 0:

yif (WO, %) =g (WO i) < €y, 69 /00 < @, (5.15)
for any ¢, k € [n], where C7, Cs are positive constants.

By Lemma 5.9, which shows that the difference between the margins of any two data points can
be bounded by a constant, and taking into account that ||[W®)||» = ©(logt), we can deduce the
following result:

Jim [y f[(WO /WO, %) = 5 f (WO /WO p,x1)| = 0,¥i, k € [n].

This demonstrates that gradient descent will asymptotically find a neural network in which all the
training data points achieve the same normalized margin.

6 Experiments

In this section, we present simulations of both synthetic and real data to back up our theoretical
analysis in the previous section.

Synthetic-data experiments. Here we generate a synthetic mixture of Gaussian data as follows:
Let o € R? be a fixed vector representing the signal contained in each data point. Each data point
(x,y) with predictor x € R? and label y € {—1,1} is generated from a distribution D, which we
specify as follows:

1. The label y is generated as a Rademacher random variable, i.e. Ply = 1] =Ply = —1] = 1/2.

2. A noise vector £ is generated from the Gaussian distribution A/(0, Ugld). And x is assigned as
y - o+ & where p is a fixed feature vector.

Specifically, we set training data size n = 10,d = 784 and train the NN with gradient descent
using learning rate 0.1 for 50 epochs. We set 4 to be a feature randomly drawn from A/(0, 10~41,).
We then generate the noise vector £ from the Gaussian distribution A/(0, agI) with fixed standard
deviation 0}, = 1. We train the FNN model defined in Section 3 with ReLU (or leaky-RelU) activation
function and width m = 100. As we can infer from Figure 1, the stable rank will decrease faster for
larger leaky ReLU slopes and have a smaller value when epoch ¢ — oo.

Real-data experiments on MNIST dataset. Here we train a two-layer feed-forward neural
network defined in Section 3 with ReLU (or leaky-ReLU) functions. The number of widths is
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Figure 2: Stable ranks and test errors for different weight variances across multiple runs (ReLU
Activation Function). Each line represents the mean stable rank or test accuracy for a given weight
variance, while the shaded regions indicate the variability of the values (£3 times the standard
deviation) across the 5 runs.
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Figure 3: Stable ranks and test errors for different weight variances across multiple runs (leaky-ReLU
Activation Function with slope 0.1). Each line represents the mean stable rank or test accuracy for a
given weight variance, while the shaded regions indicate the variability of the values (£3 times the
standard deviation) across the 5 runs.

set as m = 1000. We use the Gaussian initialization and consider different weight variance
oo € {0.00001,0.00005,0.0001,0.0005,0.001}. We train the NN with stochastic gradient de-
scent with batch size 64 and learning rate 0.1 for 10 epochs. As we can infer from Figures 2 and 3,
the stable rank of ReLLU or leaky ReLU networks will largely depend on the initialization and the
training time. When initialization is sufficiently small, the stable rank will quickly decrease to a small
value compared to its initialization values.

7 Conclusion and Future Work

This paper employs a data-correlated decomposition technique to examine the implicit bias of two-
layer ReLU and Leaky ReL.U networks trained using gradient descent. By analyzing the training
dynamics, we provide precise characterizations of the weight matrix stable rank limits for both ReLU
and Leaky ReLU cases, demonstrating that both scenarios will yield a network with a low stable rank.
Additionally, we present an analysis for the convergence rate of the loss function. An important future
work is to investigate the directional convergence of the weight matrix in neural networks trained
via gradient descent, which is essential to prove the convergence to a KKT point of the max-margin
problem. Furthermore, it is important to extend our analysis to fully understand the neuron activation
patterns in ReLU networks. Specifically, we will explore whether certain neurons will switch their
activation patterns by an infinite number of times throughout the training or if the activation patterns
stabilize after a certain number of gradient descent iterations.
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A Additional Experiments
In this section, we conduct additional experiments on the nearly orthogonal and MINIST datasets.
A.1 Additional Experiment on Nearly Orthogonal Dataset

In this subsection, we conduct additional experiments on a nearly orthogonal dataset for long epochs
to support our main Theorems 4.1 and 4.3.

Stable Ranks for Different Leaky ReLU Slopes Stable Ranks - 1 for Different Leaky ReLU Slopes (Semilogy)

10
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Figure 4: (Left) Stable ranks for different leaky ReLU slopes ~y across multiple runs. A slope of
1 corresponds to linear activation, while a slope of 0 corresponds to ReLU activation. Each line
represents the mean stable rank for a given leaky ReLU slope, while the shaded regions indicate the
variability of the values (3 times the standard deviation) across the 20 runs. The red dashed line
indicates a stable rank of 1. (Right) The difference between stable rank and 1 from the left figure is
visualized on a semilog y-axis.
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Figure 5: fully orthogonal data: (Left) Stable ranks for different leaky ReLU slopes ~ across
multiple runs. A slope of 1 corresponds to linear activation, while a slope of 0 corresponds to ReLU
activation. Each line represents the mean stable rank for a given leaky ReLU slope, while the shaded
regions indicate the variability of the values (£3 times the standard deviation) across the 20 runs.
The red dashed line indicates a stable rank of 1. (Right) The difference between stable rank and 1
from the left figure is visualized on a semilog y-axis.

Figure 4: Under the same setting of the synthetic data introduced in Section 6, we train the NN
with full batch gradient descent with a learning rate 0.1 for 1000 epochs. We set p to be a feature
randomly drawn from A/(0,107*I,). We then generate the noise vector ¢ from the Gaussian
distribution A/(0, aﬁ I,;) with fixed standard deviation o, = 1. We train the FNN model defined in
Section 3 with ReLLU (or leaky-ReL.U) activation function and width m = 100. As we can see from
Figure 4, the stable rank for the leaky ReLU network with large slopes v will converge to 1 when
epoch t — oo. In comparison, the stable rank for the ReLLU network will not converge to 1.

Figure 5: To further illustrate the behavior of the ReLU network, we generate the synthetic training
data with fully orthogonal input. Each data point (x, ) with input x € R? and label y € {—1,1} is
generated from a distribution D, which we specify as follows:

1. The label y is generated as a Rademacher random variable, i.e., Ply = 1] = Ply = —1] = 1/2.
2. Input x is randomly generated from the basis {ej, ea, ..., eq}.

Specifically, we set training data size n = 20,d = 40 and train the NN with full batch gradient
descent with a learning rate 0.1 for 1000 epochs. We train the FNN model defined in Section 3 with
ReLU (or leaky-ReLU) activation function and width m = 10000. As we can observe from Figure 5,
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the stable rank for the leaky ReLU network with large slopes «y will converge to 1 when epoch t — oo.
In comparison, the stable rank for the large-width ReLU network will not converge to 1 but to 2.

A.2 Additional Experiment on MINIST

Our focus is the training of a two-layer feed-forward neural network, as discussed in Section 3,
utilizing either ReLU or leaky-ReLU activation functions. We examine different widths, specifically
choosing from {10, 50, 100, 500, 1000}.

The network initialization process follows a Gaussian distribution, with a variance of o9 = 0.00001.
Training is executed using stochastic gradient descent, a batch size of 64, and a learning rate of 0.1,
for a total of 10 epochs. As discerned from Figures 6 and 7, the stable rank of networks utilizing
either ReLU or leaky ReLLU is weakly influenced by the width. For an exceedingly small width such
as 10, the weight matrix is low rank with a correspondingly small stable rank. However, this also
results in low test accuracy as the network cannot effectively learn all necessary features. As the
width increases, the test accuracy and final stable rank will increase. However, for sufficiently large
widths, an increase in width no longer corresponds to stable rank or test accuracy increases.

Stable Ranks for Different Weight Variances Test Accuracy for Different Weight Variances
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Figure 6: Stable ranks and test errors for different width across multiple runs (ReLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (+3 times the standard deviation) across the 5
runs.
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Figure 7: Stable ranks and test errors for different width across multiple runs (leaky-ReLLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (+3 times the standard deviation) across the 5
runs.

B Preliminary Lemmas

In this section, we present some pivotal lemmas that illustrate some important properties of the
data and neural network parameters at their random initialization and provide the update rule of
coefficients from data-correlated decomposition.

Now turning to network initialization, the following lemma studies the inner product between a
randomly initialized neural network neuron wfr) (j € {£1} and r € [m]) and the training data. The
calculations characterize how the neural network at initialization randomly captures the information
in training data.
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Lemma B.1. Suppose that d = Q(log(mn/é)), m = Q(log(1/§)). Then with probability at least
1-4,
ogd/2 < ||w )12 < 302d/2,
(W' x;)| < /21og(8mn /) - o0 Rimax

7577

forallr € [m], j € {£1} and i € [n].

Proof of Lemma B.1. First of all, the initial weights w]( r) N(0,00I). By Bernstein’s inequality,
with probability at least 1 — ¢ /(4m) we have
‘HW ||2 - Uod| -y/dlog(8m/d)).

Therefore, if we set appropriately d = Q(log(m/ 5)), we have with probability at least 1 — 6/2, for
all j € {£1} and r € [m],

o2d/2 < ||w%|3 < 303d/2.
Under definition, we have ||x;||2 < Rmax for all i € [n]. It is clear that for each j, 7, (w ( T) ) isa
Gaussian random variable with mean zero and variance o3||x;||3. Therefore, by Gaussmn tail bound

and union bound, with probability at least 1 — §/2,
1w x;)| < /21log(8mn/d) - 0o Rumax-

]aT’

O

Next, we denote S,i(o) as {r € [m] : <wg(,??r,xi> > 0}. We give a lower bound of |Si(0)| in the

following two lemmas.
Lemma B.2. Suppose that § > 0 and m > 501og(2n/¢). Then with probability at least 1 — 4,

0.4m < [S] < 0.6m, Vi € [n).

Proof of Lemma B.2. Note that \Si(o)\ =", ]l[(w?(,?,)r,&) > 0] and P((wé??,«,xﬁ >0)=1/2,
then by Hoeffding’s inequality, with probability at least 1 — & /n, we have

2

517 1] _  [log(2n/5)
- 2m

Therefore, as long as m > 501og(2n/4), by applying union bound, with probability at least 1 — 4,
we have
0.4m < [S”] < 0.6m, Vi € [n).

O

Now we give the update rule of coefficients from data-correlated decomposition. We will begin
by analyzing the coefficients in the data-correlated decomposition in Definition 5.1. The following
lemma presents an iterative expression for the coefficients.

Lemma B.3. (Restatement of Lemma 5.2) The coefficients pgtzﬂ B;tii defined in Definition 5.1

satisfy the following iterative equations:

0

p§21,p§°21—0

_(t+1 _(t n t t .
A =0 = 0o (wl ) -l 1w = ),
(t+1) _ (%) noopw . (t) e 112 o
B]Tz Bjrv nm g’L 0(< ]r7x>) ||X’L||2 ]]'(y’b .7))

forallr € [m], j € {£1} and i € [n].
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Proof of Lemma B.3. First, we iterate the gradient descent update rule (3.2) ¢ times and get

Wgtjl) ? ZZE j LX) - gy

5011

According to the definition of p(.t)

J,re’

t 0 _
) = wi me 152 - ;.

Therefore, we have the unique representation

we have

,rz Z ]r’ l>)||xl||§]y1
s=0
Now with the notation pg 7) ;= pﬁ? i ]l(p§t2 ;> 0), Bﬁ, — PE’? ; ]1(p5t2 ; < 0) and the fact
E;(S) < 0, we get
—(t 77 s s .
P = Zf“ o ((wio)xi)) - il - 1w = ), (B.1)
p) = 1 o (Wi x)) -2 Ly = —j
= Zé (W) %)) - 1xill3 - 2w = —9). (B.2)
Writing out the iterative versions of (B.1) and (B.2) completes the proof. ]

C Coefficient Analysis of Leaky ReL.U

In this section, we establish a series of results on the data-correlated decomposition for two-layer
leaky ReL.U network defined as

FW® x) = FH(wi‘?,) Fy (WY x)

m

1 m
Z ng)lr’ - E;J«W(j)l,rvxnv (Cl)

o(z) = max{’yz,z},'y € (0,1).

The results in Section C, D and G are based on Lemma B.1, which hold with high probability. Denote
by Eprelim the event that Lemma B.1 in Section B holds (for a given 0, we see P(Eprelim) > 1 — 9).
For simplicity and clarity, we state all the results in Section C, D and G conditional on Eprelim-

Denote 5 - maXz]r{K Jgaxzﬂ} Rmax - InaXZE HX2H2, min — minie[n,] ||XiH2’ p =

max;zj, |(X;, Xx)| and suppose R = Rpyax/Rmin i8 at most an absolute constant. Here we list
the exact conditions for 7, 0¢, Rmin, Fmax, p required by the proofs in this section.

oo < ’y(C’Rmax\/log(mn/(S))_l, (C.2)
(OR?nax/nm)‘l, (C3)
R2., > Cr *R?np, (C4)

where C'is a large enough constant. By Lemma B.1, we can upper bound 3 by 2/log(12mn/§) -
00Rmax. Then, by (C.2) and (C.4), it is straightforward to verify the following inequality:

B <, (C.5)
YR 2 np <, (C.6)
v 4R R*np < c, (C.7)
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where c is a sufficiently small constant.
Suppose the conditions listed in (C.2) and (C.4) hold, we claim that for any ¢ > 0 the following
property holds.

Lemma C.1. Under the same conditions as Theorem 4.1, for any ¢ > 0, we have that

m
Z 1P
r=1

where ¢ is a constant.

2N W, e (1), V4, € [l (C.8)

r=1

To prove Lemma C.1, we divide it into two lemmas, each addressing a specific case: 0 <t < T}

(Lemma C.2) when the logit \€Et)| = 0(1),and t > 77 (Lemma C.3) when the logit |£§t)| is smaller
than constant order. Here, T} = C’ n_lnmRmix, and C’ is a constant. For each case, we apply
different techniques to establish the proof.

Lemma C.2 (0 < t < T7). Under the same conditions as Theorem 4.1, forany 0 < ¢t < T} =
C'n~'nmR-2,, where C' is a constant, we have that

01> el o1 Wi, 5 € {1}, Ve, 0" € [m), ¥i, 1" € [n], (C.9)

where c5 is a constant.

Proof of Lemma C.2. In this lemma, we first show that (C.8) hold for t < 77 = C'n~*nmR_2,
where C’ = ©(1) is a constant. Recall from Lemma B.3 that

P =0~ O (wl) x)) - a3 - L = ),

Jsmyi Js nm
n t t .
P = g0+ =L 0o (wll)xa)) - il - 2w = =),
we can get
Pt =0, (C.10)
and
2
_(t+1 —(t n —(t anax
Py _pf,,),”+%'|\xvi||§ < Py (€11
(t+1) (t) (t) 77R2
P <10 1l < ) e (C.12)
Therefore, we have maxj,r,i{ﬁgg’i, | B§t31|} = O(1) for any ¢ < T; and hence

max;{Fy1 (Wfﬂ, X;), F_1 (W(_t)17 x;)} = O(1) for any ¢ < Tj. Thus there exists a positive constant
¢ such that |€;(t)| > ¢forany t < Ty. And it follows for any j € {£1},r € [m],i € [n] that

(t+1 t t can
P 2 10500+ L 10O Il 2 o0+ S E - B 0 < ¢ < T
C t c len
5040 = S8 i3 > > Ol o <y < 7y, (C.13)
nm nm

On the other hand, by (C.10), (C.11) and (C.12), we have for any j' € {£1},' € [m],i’ € [n] that

RZ .t
| ] rz’l—n — 7v0§t§TI (C14)
nm
Dividing (C.14) by (C.13), we can get for any j,j' € {£1},r,r" € [m],4,i’ € [n] that

p® | > C’YRmm| ®

: AR
1,7, % R?ndx j T,
which indicates that the first bullet holds for time ¢ < T} as long as ¢ < ¢R2; R 2. . O
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Lemma C.3 (t > T7). Let T be defined in Lemma C.2. Under the same conditions as Theorem 4.1,
for any ¢t > T, we have that

lemw >03v22|pf)” V4, j" € {£1},Vi, ' € [n], (C.15)

r=1
where c3 = O(1) is a constant. Moreover, we also have the following increasing rate estimation of

t t
1Py il 101, il

12 2B

1 xm () —1.-1 mllxill3ese®?
m Zr:l ‘p—yi,’f‘7i‘ < G Y log ( + 7m21 : t),

. 1L xm (1) -1 ynllxi|[3cee” TS
- Yoy Pyiri = Co log (1 + acee 1,

t _ i (v+1)B
1 Zr ) ‘p( Ll,r,i‘ > o 1710g (1 + nllx: ”207551 . t>’

where c4, cs5, cg are constants.

Proof of Lemma C.3. We prove this lemma by induction. By Lemma C.2, we know that (C.15) holds
for time ¢t = T} as long as ¢ < co. Suppose that there exists t > T such that (C.15) holds for all
time 0 < t <t — 1. We aim to prove that they also hold for t = ¢. For any 0 < ¢t < t — 1, we have

(W§,7) z) = iz ylrﬂ

m
1
i 2 i)
m
t _
N Z ( ?(’?)T’ + Z pz(h),r,z‘/ oll5? <Xi’7xi>>
/=1
' (C.16)
t
=z E Z (p?(Jz)Ti Z |pyl r,i/ mmp> B
r=1 =
1 ) 1™ "
t t -2
= E pyiﬂ”ﬂ' - Z (m Zpyi,r,i’)Rminp - ﬁ
r=1 ) r=1
1-— fy’ZCS_IR;ﬂznpn " ®)
- m Z Yi,myt /6’
r=1

where the first inequality is by o(z) > z; the second equality is by (5.1); the third inequality is
by triangle inequality and the definition of 3, p, R,,in; the fourth inequality is by the induction
hypothesis (C.15). Besides, for any 0 < ¢ < ¢ — 1, we also have the following upper bound of
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F, (WY x,):

%Wﬁm:ij Wi i)

Z(1W&+Z%mmwﬁmm)

/=1
-2
S Z <pyum+z|py, T?,’|Rminp+/6>
) e (C.17)
_ (t) (t)
_mZ<Uu7‘Z+Z|py,r7/ m1np+ﬁ)
r=1 i £
1\ (t) (t)
:E py’ivrl Z Zpy i’ m1np+/8
r=1 i/ #i =
14+~ 203 1Rmmp (t) + ﬂ
- !!1,77"5 ’
m r=1

where the first inequality is by triangle inequality and the definition of 3, p, R.nip; the second

inequality is by the induction hypothesis (C.15). On the other hand, for any 0 < ¢ < ¢, we can give

()

following upper and lower bounds for F_,, (W x;) by applying similar arguments like (C.16)

Zuo
and (C.17):
t Y < t
Py (W xi) > 23 7wl i)
r=1
7 < _
Z E Z (p Yi,Tyi Z "O(—tg/iﬂ“,i’lRm?np - 6);
r=1 i #£i
1 2 —1R_2 m
> W6 Foun) © i =B, (C.18)
m
r=1
and
1 m
r=1 /752
1 m
t t _
SmZ[ p(zlurl +U(Z|p(—z/ rz’ m1np>+o-(ﬁ):|
r=1 1/751
AN 0 )
Ezp—yum Z < Z |P_y“” )
r=1 i £ r=1
(=BG R ) < (1)
B m Py + 5, (C.19)

where the second inequality is by a property of leaky ReLU function that o(a + b) < o(a) +
o(b),Va,b e R.
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Next, we can bound M;(t)\ for0<t<ft-—1:

A

1
- ® .y _ ®
1 + eXp{F 1(Wyz 7xl) F*yi (W _,Xl)}

—Yi

gexp{_F.(w<t> xi) 4+ Fop, (WY x)}

—yi?

1- C3 - lenp _3071R:ni2npn) -
<on{- S0 WG 5 ) )
r=1

(C.20)

where the second inequality is by (C.16) and (C.19). And
4]
B 1
o (t) o\ _ t) o
1 + exp{Fyi (W.% 7X1) nyf, (W Xl)}

1+v—2¢; *R-2 pn m 1+v—2¢; 'R n
e [ i e T s )

L {_1+v—2c31Rmmm o 1A+ PG R ) S~

m Yi, Tyt m —Yi,Tyt
r=1 r=1

—(7+1)5},

(C.21)
where the first inequality is by (C.17) and (C.18); the last inequality is by 1/(1 + exp(z)) >
exp(—z)/2if z > 0. By (C.20), we can get for 0 < ¢ < ¢ — 1 that

O] < exp { 1= ’y*%ilR;l?npn i”; oy 25} o
6] < exp {7(1 - 77323—13;3“]3 ")y P it 26} (C.23)
r=1
By (C.21) and vpg)’m < |p(_tim| < 7_4pél)r ;> we can get for 0 < ¢t <t — 1 that
60] > S e { -2 Rt) §5 50 (4 1)6}, (C24)
r=1
O] > %exp { ' +9a +;’2051R;?npn) S © 4 1)ﬁ}
r=1

= ;QXP{ SR ?;lRmmpn S -+ 1)5}- (C.25)

r=1
By (5.4), (5.5) and 0’ € [y, 1], we have for 0 < ¢ < t — 1 that

t+1 t n t
Pyt < Py + 16|

t+1) 5 5O 4 ﬂ : |£/-(t)| Ixill3,

Xi”;

'Olh i = Py;,ra .
(C.26)
t+1 t
Iyl < |p_W| + 6] i3,
t+1) 77) t)
|p(—y,7rz| - |p—y1 rz| + |£l( | H 1”%
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By plugging (C.22), (C.24), (C.23) and (C.25) into (C.26), we have for 0 < ¢ < t — 1 that

m m 2 283 2 —1p-2 m

(t+1) 77||X H 1 Y Tc R : pn "
> Py Z Pyi,r 7’71 cexpd{ — 2 —mn= S P b (C.27)
r=1 r=1 r=1

t+1 L lbxll3e*” (1 =773 'RyE pn) &
j{j\pﬁyh21\<:j£j| PO al + TR exp L jg:| RO
r=1

(C.28)

m

m (120—(1+1)8 —2,-1p=2 oy T
(t+1) 4 Dlixillze 21+ g Ryiupn) ¢
Z ul,rz Z y“rz - m TeXpy — m i Zpg(;l),rz ’

r=1 r=1
(C.29)
Zm: ’ L amlxilBe” 08 20y Refpn) in] ®
—Yi Tt —yza'f' 7/ m ym —Yi,Tt !
r=1 r=1
(C.30)
By applying Lemma H.1 to (C.27) and taking
o= Lo G RS g )
t = Yi,T,00
m r=1
we can get for 0 < ¢ < t that
1 « i||2cae? |I2cae28
Zﬁkgfmoﬁmeempwmw}a
m © nm nm
r=1 (C.31)

nl|xil[3ecse®” »
nm ’

< ch log (1 +

where ¢; 1= 1 — v 2c; ' R% pn and the last inequality is by n < (CR2,,./nm)~" and C is a
sufficiently large constant.
By applying Lemma H.1 to (C.28) and taking

71— "R2 pn)
Ty = 7; Z| —yum|

r=1

we can get for 0 <t < t that

112,28 N2 .28
ZV’“L < e og (1 L nlxillzese exp{wlllez%e }t)
i7" nm

nm
12 28
< 0517—1log <1+ M 't>’
nm

(C.32)

where c5 := 1 — vy 3¢; ' R_2 pn and the last inequality is by n < (CRZ2,. /nm)~' and C is a
sufficiently large constant.

By applying Lemma H.2 to (C.29) and taking

min

2(1+72¢5'Ry2 pn) <~ (1)

e = Yi, 1)
m r=1
we can get
N2cae=(r+1)8
- Zp% i > (26) log (1 + lpallcoc -t), (€33)
nm
where cg := 1 + W_chlR;ﬂnpn.
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By applying Lemma H.2 to (C.30) and taking

Tty =

2(1+7 " "c5 ' Ryfpn) i (1)
min | v |

—yi,myil
ym r=1
we can get
% ||2eqe— (VDB
p- Zl P il = (205) My log (1 , ’”ﬂfm -t), (C.34)
where ¢g := 1+ V*QCglRI;inpn.

In order to apply Lemma H.4 (requiring b > a), we loosen the bounds in (C.31), (C.32), (C.33) and
(C.34) as follows:

1 & R2.cse?f -
— 5T <ty og (1+WWC56 -t),VO <t<1, (C.35)
m p— ©h nm
R2 23 _
Z|p )l Sty M og (1+W-t>,vogt§t, (C.36)
v nm
(v+1)B .
Zpif)m > (2¢5) ' vlog ( 4 Minincoc” ~t)7v0 <t<i, (C.37)
: 79 nm
—(v+1)B "
1> (2¢6) Tylog [ 1+ M HninCoC ), Vo<t<7 (C.38)
y 7"1 Y
v nm

where (C.35) is by Bernoulli’s inequality that 14+~ 1z < (1 —i—ars)”f1 for every real number 0 < r < 1
and x > —1; (C.37) is by Bernoulli’s inequality that 1 + vz > (1 + x)” for every real number
0<r<landzx > -1.1If aninc(;e’(””l)ﬁ > ’)/ernax6562ﬁ, we have

m 206 1C4
> Z| P i (C.39)

1
Z| ]’l"’L
r=1

If R?2, cee” (18 < yR2  c5e?P, by Lemma H.4, we have

(t) t
mln{ Zr 1 py, 7,97 % 77:”:1 ‘p(—z;,;,r,i‘}

1 ()
ma’X{ Zr 1P yl/ i m :n:l |p7yi/,r,i’|}
nR2. cge— (YA
' 1Og (1 + min ;)Lm .

log (1 + I Raxcse?? t)

)

7 (2¢6) e

nm
(v+1)B
© g1, Jog (14 MHaicoe 20 )
> 7" (2¢6) ca TR eneP

log(1 + R™2cge~(VHDBCY)

2 1
9 )
7" (2e6) " e log(1 + yese2BC)

Therefore, we can get for 0 < ¢ < t that

m

Z 0801 > 72 S 1080, |, Vi, € {£1}, V4,1 € [n], (C.40)

r=1

as long as

log(1 + R™2cge~ (VDB }

1 .
¢3 < (2¢6) " c4 - min {1’ log(1 + ~yese28C7)
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This condition holds under the following conditions:

1 1
Y 303 1Rm1npn 2 = C4,Cs Z 5706 S
log(1 4+ R2e~ (DB }

C3 6mln{ ) log(l—i_’yezﬁc/)

7

N W

This implies that induction hypothesis (C.15) holds for ¢ = ¢.

O

Lemma C.4 (Implication of Lemma C.1). Under the same condition as Theorem 4.1, if (C.8) hold

for time t, then we have that

|p]7rz| 2 v ‘p] r! 'L"

where c¢; is the same constant as defined in Lemma C.1.

Proof of Lemma C.4. By o' € [y,1], (5.4) and (5.5), we have

P12 16500+ 21001 i3, € {1} ¥ € [l Vi € [n),

2,75

1 . .
P < o0l + = 169] - lxil3, ¥ € {1}, € [m], Vi € [n].

Thus, we have

|J’l"’L—
s=1

77||Xz||2 Z‘él(t |,Vj € {£1},Vr € [m],Vi € [n].

s=1

| JT’L‘—

Therefore, )

mlp; .l >

7rz

t t
S 1ol = m’ylﬂ}?w,m

r=1

Plugging (C.41) back into (C.8) completes the proof.

12 t—1
> % 1Y) V5 € {£1},Vr € [m), ¥i € [n],

il > ’y|p] . ;| forany j,j" € {£1},r',r € [m] and i € [n], and hence

(C41)

O

Lemma C.5. Let T} be defined in Lemma C.2. Every neuron will never change its activation pattern

after time 77, i.e.,
. t . T
sign((w"), x;)) = sign((w{™", x;)),
forany t > Ty, j € {£1} and r € [m]. Moreover, it holds that

Sign(<W§-2»Xi>) = JYi,
forany ¢t > Ty, j € {£1} and r € [m].

Proof of Lemma C.5. For j = y; andt > 0, we have Bﬁ-t,)ni =0, and so

t
(wit) xi) = (Wi, x +Z@ ol - (e, i)
=1
0
_<W§T)’ +pj7’l+zpj7“z/ |Xz’||2 (X, Xq)

/#,L

—(t (t) -2
; )ﬂ - Z ‘pj,r,i"Rminp - ﬂ
e
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() —1-(t) p-2
= dard v cl Pjr, szinpn - 5

= (1_7 G 1Rm1npn)ﬁ_§?’2‘1_ﬁ7

—4, 1(t)

where the first inequality is by triangle inequality; the second inequality is by | p] i | <~ Pyy ri
from Lemma C.1 and Lemma C.4.
By (C.13), we have for ¢t > T that
R? ~
A, > Ol _ oy oz (€43)

Therefore, by (C.5), (C.6) and (C.43), we know that

(1-— 7_1cf4ani2npn) p;t ri > BT E [m],i € [n].

(®)

and thus sign((w; ;.

x;)) = 1forany r € [m],i € [n],j = y;.

()

For j # y; and any ¢ > 0, we have P =0, andso

t
<W‘§’))”7X > ]r? +ij ryil ||X’L || <X,L‘I7Xi>
i'=1
§t21+zp]71 |X1 || <Xi’7xi>
i #£q
t
< Bgtz % + Z |p;,2‘,i/| mlnp + ﬁ
2’7%
1
< B§t’2 i fy ;tz szlnpn - 6
:(1* CglRmmp ) ]Tl—ﬂ’

where the first inequality is by triangle inequality; the second inequality is by \p ;. M,|
et |B(_ty ;| from Lemma C.1 and Lemma C.4.
By (C.13), we have
R? ~
|p | = M C/ anlanix (C44)
——Yi,T, 'I nm
Therefore, by (C.5), (C.6) and (C.44), we know that

(1=~ 'R2 pn) - |B(j;r1| > B,Vr € [m],i € [n],

(®

and thus sign((w; ., x;)) = —1 for j # y;, which completes the proof. O

D Stable Rank of Leaky ReLLU Network

In this section, we consider the properties of stable rank of the weight matrix W(*) found by gradient
descent at time ¢, defined as |[W®)||2,/|| W(!)||3, the square of the ratio of the Frobenius norm to
the spectral norm of W), Given Lemma C.5, we have following coefficient update rule for ¢ > 7}
where 7' is defined in Lemma C.2:

—+1) _ (0 " ZO1 x (12 D.1
pyl,rz pyi,r,z+nm | 7 | ||Xl||23 ( . )
1) _ &) ) 2
B—yqz,r,i B—yi,'r‘,i nm |€z | ||X1||27 (DZ)
where
10| = !

1+ exp{F,, (WS, xi) — F_p, (W x)}

g
Based on (D.1) and (D.2), we first introduce the following helpful lemmas.
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Lemma D.1. Let 7} be defined in Lemma C.3. For any 7,7’ € [m], i € [n] and t < 11,

—(t) —=(t) | < |p (t) — | <. D.3)

|pyi=”“1 'Dy7 ri ==Y, *—yz i
Proof of Lemma D.1. By (C.14), we can get
Ty

‘ (t) | max
Pjril = nm

=’

for ¢t < T}. Notice that

—(t —(t —(t —(t
lpéf,” —p0 < max{p® L 1YL,

N0 (t)
oY) Pl ol S max{[pt Ip_y walb

==Y,y

which completes the proof. O

Lemma D.2. Let 7 be defined in Lemma C.3. For any 7, € [m], 4 € [n] and ¢t > T},
|ﬁ(t) —(t) | <, |p(t) (t) ‘ <.

Yi Tyt pyw‘ { =Y, Tt 7—y i

Proof of Lemma D.2. By (D.1) and (D.2), we can get for any r € [m], i € [n] and t > T} that

t _ (T n t
Puori = Py + Z|€’“| 112,

S= T1
n (t
P =0T Z OT - I3
S= T1

® ()

yi,ryi0 Py i
we have

. — . t .
Since p possess the same increment and p(tzl e p(_g, , ; Possess the same increment,
—Yi,Tt — [

—(t) —(t) —(Ty) —(Ty)
pyi,rz pylr i_pyl,rz pylr i)

(t) _ () _ (T  _ (Th)
P i TPy TPy T Py
Notice that
(T, T ) (T
max{[py1): = oy ol 100 = )Y < max{(py L 1) Y < O
which completes the proof. O
Lemma D.3. Let T} be defined in Lemma C.3. For ¢ > 17, it holds that
t T t T
P = Pyeni = Pyor s~ Py i
(t) ( T1) (t) p(Tl)
77y1 i 77y1 T, 77y r'g Dy’ i’
t T
P =Py = (109, L 1= 1650 D/

forany ¢ € [n] and r, 7" € [m].

Proof of Lemma D.3. By Lemma C.3 about the activation pattern after time 77, we can get

—+1) _ () "M ZO1 x (12 DA
pyl,rz pyi,r,z+nm | 7 | ||Xl||23 ( . )
(t+1) _ (b N Oy 2

By = Py i~ o 1G] Il (D.5)

for t > T1. Recursively using (D.4) and (D.5) t — T} times, we can get

t—1
=) _ =(Tv) _ 77HX1||3 gl(s)
P T2y 167,

pyz )Tl Yi,T5
S:Tl
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t—1
i3
00, o =10 = R S 14
s=T1
This indicates that for different r, ' € [m], pz(/f)r i pé 12 ; and p; )T p p; 1,,), are the same, whereas
7(|B(_ty . = |p(_7;/1)T ;)| and pét)r, , p(yTlT), are the same, which completes the proof. O

Now we are ready to prove the second bullet of Theorem 4.1.

Lemma D.4. Throughout the gradient descent trajectory, the stable rank of the weights W ; satisfies,

W, |12
Lo W51

=1,Vj € {&1},
t=o0 [W; 13
with a decreasing rate of O(1/log(t)).
Proof of Lemma D.4. By Definition 5.1, we have
t _
Wi =w +me Ixillz® -

v

J T

We first show that ||V(t) |2 = ©(logt).

2
v ||2—(me Il x)

t t t — —
Z P 2 lxillZ® 3 8o\ il 2l 12 (oxi, i)

£
t _
Z qu)w ? max Z|p]r1 'Rm?np
i=1 i#£e
> Ro2 (1= R*R.2 'y "np) Z(pﬁ%)

=1
= 0O(nR, 2 log2 (1)),

max

where the second last inequality is by triangle inequality; the last inequality is by |p§t3 <
o |p] ;| from Lemma C.1 and Lemma C.4.
()

By the definition of V. We have
n 2
t t t — t _
v = viLII3 = ‘i,i.||xi||22.xi—zp§-,3a,,i~||xz-uz2~xi
i=1 2
n 2
t t _
= Z@ﬁiz P ) I3 i
i=1 2
2 ) ) (i, Xir)
ijrl p]r 7, ”X H +Z pj’r"L p]r z)(pjrz’_pjr z)”X”’LZ”};/”Z
i vi2 vl2
S (C) an12n’

where the first inequality is by Lemma D.1 and Lemma D.2.
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Now, we are ready to estimate the stable rank of W), On the one hand, for ||Wj(-t) %, we have

t t
W2 = Z|\w”u2
fZHW(O)JrV(t)HQ
*ZHW(O)IIQHI I3 +2(w'?) Vi)

0 t t t t t t
<Z|\w< 02+ (vl + V8 = v 12)% + 20w (v 2 + v = v 1)

)

=m||vj,1||2+2(2|\v§-f2 Vil + 1w ) I e
t t
(Zuw 13+ V52 = Vi3 + 2w a1V = vi2llz)

< ml[viQ13 +mCi|[v\ |2 +mCs.

where the first inequality is by triangle inequality and Cauchy inequality; the last inequality is by
Lemma D.1, Lemma D.2 and taking

Cl - 3(0—0\[—’_ C meln)
02 = 2(0-0[ + C \/ﬁRmin) .

On the other hand, for HWO) |2, we have

t t
W72 = max [W{"x+ Vx]3

x€S5d—-1
= max IIW(O)XHﬁHV“’XI|2+2<W(°)X vix)
Sd 1
_ (0) ()
_xg};}ﬁl JT’ +Z JT’ Z JT’ JT’ >
Vt) 2 (t) 2
>Z< wi?, j,1 >+Z<V(t) 1 >
v 11 ; V¥ 112

Z 0 Vi1 (t) V('i
J J>

+ <JT’ ) >‘<ij ) >
le ij,lH2

zZ< ((: > I IHERD SIS

v v o\ 2
t t t t j,1 t t 1
2m||v;,;||a+zzuvg,;n2-<v§,z—v<> B+ Y (v v AL
VAl 5 v ila
0 0 t t t
—an”uz Zuw” Hvﬁ,im\v” viile)
>m||v“>||r(22||v“> ) - IV

(Z w13 + Il ||v§f3 —villlz)

> m|[vi 13 — mCs||vi |2 — mCy

where the first inequality is by taking x = vﬁ /||v(t)||2; the second inequality is by Cauchy

inequality; the third inequality by breaking v( ) down into v( ) 1+ v(t) (t) and then expanding the
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first term as well as applying triangle inequality to the last term; the fourth inequality is by Cauchy
inequality; the last inequality is by Lemma D.1, Lemma D.2 and taking

Cg - 1.500\/E+ 30/\/51%71

Cy = 1.502d + 3C"ooVdv/nR,}.,..
By leverage the upper bound of HW? | as well as the lower bound of HWét) |2, we can get
t t t
W3 l15 _ [Ivgall3 + Cillvyille + s

Js
t t t :
W03 ™ Iv913 - Cslvillz — Ca

Since ||Wj(t)||2F/HW§t) 13 >1, ||vj(?||2 = O(logt) and C4, C3, C3, Cy are constants, it follow that

t
W
oo t -
=00 [W2
and

W3 (Gt GV + (G + C)
WO T VIR = Cs v -
R
(C'VnR_i, + ooVd)
(t)

7,1
_ @(x/ﬁR;iln + 00\/3) B @(1 + ao\/dTanax)

Vi Rmax log(t) log(¥) ’

which completes the proof. O

6
<

V511l

E Coefficient Analysis of ReLLU

In this section, we discuss the stable rank of two-layer ReLU neural network, which is defined as
fW,x) = Fi1 (Wi, x) — Fri(Whg, x),

1 & (E.1)
Fi(Wj,x) = — > o((wjmx),
r=1

where o(z) = max{0, z} is ReLU activation function.
These results are based on the conclusions in Section B, which hold with high probability. Denote by
&} relim the event that all the results in Section B hold (for a given 6, we see P(E] ;) > 1 — 25 by a
union bound). For simplicity and clarity, we state all the results in this and the following sections
conditional on & ;.-
Denote = max; j, {|(W\", %)}, Rmax = maXiepy [1Xill2, Ruin = mingepy [xillz, p =
max;£g |(X;, X)| and suppose R = Rpax/Rmin 18 at most an absolute constant. Here we list
the exact conditions for 7, ¢, Rumin, Rmax, P required by the proofs in this section:

50 < (CRuax\/log(mn/5)) ", (E.2)
1 < (CRE . /nm) ", (E.3)
R, > CR’np, (E.4)
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where C'is a large enough constant. By Lemma B.1, we can upper bound 3 by 24/log(12mn/§) -
00 Rmax- Then, by (C.2) and (C.4), it is straightforward to verify the following inequality:

B<c, (E.5)
R2np <c, (E.6)
R.2 R*np < c, (E.7)

where c is a sufficiently small constant.

We first introduce the following lemma which characterizes the increasing rate of coefficients pgtz i

Lemma E.1. For two-layer ReLU neural network defined in (E.1), under the same condition as

(®

Theorem 4.3, the decomposition coefficients p; ;. ; satisfy following properties:

o ()

Py = cilpy s | forany r € S{, 17 € [m], j € {£1} and i, i’ € [n],

(0150, 12e—5 .
. p;)m > cylog (1 4 S Nlixilize” zlrllnzzl,b -t) for any r € Sl-(o) and i € [n],

0
21| S >\||xl||2 28
m

. pq(/ti” < cslog (1 + t) forany 7 € S\” and i € [n],

where c1, co, c3 are constants. And the following activation pattern is also observed: Si(o) - Si(t)
where SZ-(t) ={reml: <W7(fi),7«, x;) > 0}, i.e., the on-diagonal neuron activated at initialization

will remain activated throughout the training.

Proof of Lemma E.1. We first show that the first bullet and SZ.(O) - Si(t) hold for t < T =
Cn~'nmR_2, where C = ©O(1) is a constant. Now we prove this by induction. When ¢ = 0,

the two hypotheses hold naturally. Suppose that there exists time t < T such that the two hypotheses
hold for all time ¢t < ¢t — 1. We aim to prove they also hold for ¢ = ¢. Recall from Lemma B.3 that

P = P o 6 o (wi) i) - Il - D = ),

p]’l“’b 7,7, nm j’l’"
) — 0 o O gD |2 1 (ys = —i
D = g0 0o (wll) i) - il L = =),
we can get
_ _ UL
A < e x|3 < Bl o+ Tmax (E.8)
nm nm
R?
(t+1) < (t) < (®) NMHmax
DI 1 I+ L il < 10|+ Lo, (E9)
Therefore, maX]m{P]”,Ip]t?J} = O(1) for any ¢t < 71 and hence

maxi{FH(WSri,xi),F,l(W(t)l,xl)} = O(1) for any t < T;. Thus there exists a posi-
tive constant ¢ such that |£;(t)| > cfor any t < T;. By induction hypothesis, we have Si(o) - Si(t)
forall 0 <t <t — 1 and hence a’((wg(ﬁ),r, x;)) = 1forall 0 <t <t — 1. And it follows that for
re Sq(o)

—(t+1 _(t n t _(t

Pt = P+ VL1 ol 2 o S0 Il vO < < T,
D t R?

P00 > g > Ol (E10)
v nm nm

On the other hand, by (E.8) and (E.9), we have
,(f)/ L < nRrQna,x | 0) | < WernaxE:> | (?), ./| < anznaxg.
2,71 — nm 73 r’a ! = nm J,rh — nm

(E.11)
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Dividing (E.10) by (E.11), we can get

ﬁffﬁr i cR2

0, > vre 8, je{x1},id € n], (E.12)
'Djﬂ“’,i’ max

which indicates that the first bullet holds for time t = ¢ as long as ¢; < (cR2)/R2,.. Forr € Si(o),

mln
we have

n
D 7) _
<wéi)7r,xi> = <Wz(;??v"’xi> + Z pg(/i),r,i’Hxi/HZ 2. (xir, %)

= <W’E/(L)?T, ﬁg)rz +Zpyu7‘l |Xi’||2_2 : <Xi’axi>
i £
i = D16 | B
';ﬁ’b
R2 —~

—(t —(t —

pz(h)v'f' i Z n;ax p;E/i),r,i : Rm?np
’i'#i min

2
> (1- g;ﬁ:;p n) By 20,

where the second inequality is by (E.12). This implies that SZ-(O) - Si(t) holds for time ¢ = ¢, which
completes the induction. By then, we have already proved that the first bullet and S’i(o) - Si(t) hold
fort <Ty = Cn~tnmR,2,.

Next, we will prove by induction that the three bullets as well as Si(o) c Sft) hold for any time ¢ > 0.
The second and third bullets are obvious at ¢ = 0 as all the coefficients are zero. Suppose there exists
t such that the three bullets as well as S’Z-(O) C Si(t) hold for all time 0 < ¢ < t— 1. We aim to prove
that they also hold for ¢ = ¢. We first prove that the second and third bullets hold for ¢ = ¢. To prove
this, we first provide more precise upper and lower bounds for \E;(t) |. For lower bound, we have

) _ 1
6] = (t) (t)
1 —i—exp{F (Wl x;) — F—Zh(w—y ) )}
1
< (t)
1+ exp { £y, (Wy,, %)}
1
= 1 @ (E.13)
1 +exp{.- Zresi(t) (Wy,r X))
and
t ¢ _
D wilexih = 30 (W) Py + D Ayl I - e 1))
rES,i(t) T‘ES(t) i
(1) t _ t
< D Bt > e R 188
S(’) S(f) l/;él
< 5t |Sl(t)| —=(t) R—2 S(t)
= Z pyi’r’i+ |S(0)| Z Py; e minpn+| i |6
res® P T g
EX ) s _) ()
= ‘S(O)‘ Z pyimi+ c | (0)| Z pyi,r,i’Rm1npn+ ‘S ‘
% 6S(O) €S(o)
L+ RAmm/e) Y Y+ 1808, (E.14)
TESIFO)
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where the first inequality is by triangle inequality; the second inequality is by the first induction
hypothes1s that p 7() > |py ol forr € S( ) and 0 < t <t —1 and hence |py ” 7/| <

T,

m > res© p;i)ﬂﬂ’i, the third inequality is by

t—1
(¢ n n
P = o ZW Wi oxi)) - Ixalld < = S0
s=0
_(t n
A= 2 S Il
s=0

and hence p;)r/i < pz(f)7 Ve Si(t) \ SZ-(O),r € Si(o) for 0 < t < t — 1; the last inequality is

by |Si(t)| <m< c’|Si(0)| and ¢’ can be taken as 2.5 by Lemma B.2. By plugging (E.14) back into
(E.13), we can get

140 > . -
1+ exp {46 (HRTﬁnm/Cl) Zres“’) pz(fl),r it IS | 5}
S 1
- / ~2 on/c | .
1+ exp { c (1+R,;;;np /c1) ZTES@) p(ytq-,)ﬂ’,i + ﬂ} (E.15)
L e Bl )
ZQexp{— s Y pW B VOSt<E-1

TESEO)

For upper bound of |€;(t) |, we first bound F, (Wé’?, x;) — F_y, (W(_tgh ,X;) as follows:

Fy (W, x;) = F_y (WY ;)

Yi —Yi?
1 m
—(t) (t)
=z m( Z y“rz Z Z|py77T1’|Rmmp |Sz |B> Z(B"’ZV)_%TZ/ mmp)
TESi“) S(t) i'#i i #i
1 —(#) ER _®)
Zm D Pl (o D PyiriBmipn = (o) > pyl,m b — 208
res® m\S rest® c1]S;| res(®
1 —(t) )
=z E Z Pyiri — (0) Z Py ri mmpn - 26
res® ]S res®
1 (¢t 2¢'R-2 pn e
e D e D DI RS L
1m
’I‘ESEO) TGSEO)
1-2¢R2 pnjcy e
= Wr;lm Z p:(%)rﬂ . 2ﬁ7
resgo)

where the first inequality is by

1
Fyq‘, (W:E/i)7xi) = a Z <Wg(j),rvxl>

7’65’5”
1 p—
- E Z (<W§??T7Xl>+py "‘1+Zpu“rz |Xi'H22' <Xi’axi>)
TGSEt) i/ #i
1 ot —2 t
= m( Z p?(ﬁ)’” Z Z |py“rz |Rminp - |Sz( )l . /3)3
reSft) S;t) i £
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and

t t _
w® xy=w +Zp<_§,i,,.,i,||xf||22-<xi/,xi>

=1

0

- <w<_;i,7, RN S e [ PR CoRE )
)
t

<IB+Z‘p(—;lr1’ mlnp’

)

and hence
1 m 1 m ( )
t
Fopu WO, xi) = — S o, x50 (843100, ulRe): (E16)

r=1 r=1 i #£

2 )

—(t)
‘pyi,r’ z’| pymz =

the second inequality is by the first induction hypothesis that p,

i 2
—(t) 1 —(t)
Cl|p—y¢,r’7i" and hence |pyi7r',i’| = qlS(U)\ 2 res® Pyorio |p—yw’,i'| = 1] 8] 2res® Pyi,ri

forr € Si(o) and 0 < ¢t < t— 1; the third inequality is by \Sft)\ < m; the fourth inequality is by
m < ¢ |Si(0)|. Therefore,

/(t) 1
161 = ) ®
1+exp{F, (Wy  x;)— F_,,(WX x;)}
<exp{ F,, W() ,xi) + Fo y(W(_tzh,xl)}
1 —2¢R 2 pn/c (t) ~
gexp{— - > By t2BpV0<t<T—1.

’I‘GSEO)

By the induction hypothesis, we know that SZ-(O) C Si(t) forall 0 < ¢+ < % — 1 and hence
o' (W, x;)) = Lforallr € S and 0 < ¢ <  — 1. By (E.I5) and (E.16), it follows that
forallogtg%v—l

(0) 2 -3 / -2
—(t+1) 77|Sz |||Xi||2e c (1 + Rminpn/cl) —(t)
Z y7 T, 2 Z y“r 2 " eXp o Z pyivrvi ’

2nm m
res” res® rest®

(E.17)

(0) 2,28 I p—2
1 n|S; 7 |||1x:l|e 1-2R,_; pn/c _
Z ytJ;Z) < Z Pyﬂm | i ||| l||2 . exp{ _ min / Z py(;),r,z .

nm m

res(® res® res®
(E.18)
’ -2
By applying Lemma H.2 to (E.17) and taking z; = w > es® ﬁ?(;),r,i, we can get
"(1+ R2 SO 1%, [12¢—8 _
> Pz = log (1+C( i mmp"/cﬁ’g' i lxillze -t),vo <t<t
ES(U) 1 + lenpn/cl) 2nm
(E.19)
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I p—2 .
By applying Lemma H.1 to (E.18) and taking x; = w ZTES.(O) pfflti{ﬁi’ we can get for

any 0 < t < ¢ that
(1 —2¢ B2 pn /e )nl SO llxil13e>*

—_(t) m ] <
og |1+
Z Puirt = T 00R Zpnjer i

(1 = 2¢Ry2 pn/ey)n| S || 3e 2‘*) ‘t)

ex
P ( nm?2

_ 0
m 201 — 2 R pn /1)l S{” il 3¢ ,t)

log (1 + 2

1—2¢R2pn/c

(E.20)

where the last inequality is by n < (CR2, /nm)~!, C is a large enough constant and hence

(1 —2¢R22 pn/er)n| S |1x:]12¢28 /nm? < log2. Since S\” € 5" forall0 <t < — 1 and
hence a’((wz(ﬁ),,»,x») =1forallr Sl-(o) and 0 <t <t — 1, we have

t—1
t n s ~
P = = SO il YO < ¢ <.

Accordingly, it holds that

pg!i);'f’bip?(hr ,L,v'l"’l" ES(O) V0<t<t

Applying this to (E.19) and (E.20), we can get

RO m g (14 €O+ Refpn/enlS” | [xil3e™”
Pyiri = /(14 R-2 5@ & 2nm?
C( + minpn/cl)| i |
— 0 —
1 log (1 L+ Bebn/en)nl S [xi 3¢~ .t) Vo<i<T
T (14 R 2 pnjer) 2nm? T
S0 m log (1 | 20— 20 RS pn/ea)n] 5, [ 3> t)
P (1= 2 R pnen)| S| nm? ’
/ / (0) 2,243 N
S c 5 ].Og (1_~_ 2( 2C lenpn/cl> |S |HX7«|| t),VO S t S t,
(1—-2¢'R_: pn/c1) nm?
(E.21)
By taking
1 c
Coy —

?C - . b
¢C(1+ R Zpnfer) ° (1—2¢R2pn/er)

the above inequalities indicates that the second and third bullets hold at time ¢ = t. For the first
bullet, it is only necessary to consider the situation where ¢t > T} = Cn~ nmRmax In order to
apply Lemma H.4 (requiring b > a), we loosen the bounds in (E.21) as follows:

P> ealog (1+”Rmm t>,VO§t§t~, (E22)
i Snm

6nR2 _
Pl < eslog 1—1—77‘“7‘”‘-15 NO<t<T (E.23)
Yi Snm

where we use 0.4m < |Si(0)| < 0.6m.
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By applying Lemma H.4 to (E.22) and (E.23), we can get for any ¢,i’ € [n], r € Si(o), r e Si(,o) and
T, <t <% that

—=(t) log

nRye
pyl,r,i > Cj L+ 5nm t)

Pyrrie € log (14 Sl p)

S5nm

1Og 1 + anax Tl)

C2 5nm
> =
C3 log ( lndx Tl)
2
o log (1 +0.2Ce" ﬁRmm)

% log (1 + 1.2Ce2ﬁR§naX) '

Notice that SZ-(,O) C S’i(,t) forall 0 <t <t — 1 and hence 0’(<w§?7r,xiz>) =1forallr € Si(,o) and
0 <t<t—1,wehave

t—1
_n /(s) (s) 2
\pj ', vl = nm wi's | "7/(<Wj,8r“7xi’>) < [Ix412
s=0
t—1
< LNTUI] - Jxa |3, Vj € {£1},7" € [m],i’ € [n],
nm
s=0
77 t—1
. t / 0 .
P i = = SO I, vr' e $O. ¢ € [n],
s=0

and hence |p - 2/| ﬁ;) it for 0 < t < t. Therefore, as long as

ez log (1+0.2C’6 BR2. )

min

1 < =

max

3 log (1 + 1.2Ce?PR2 ) 7

the first bullet hold for time ¢ = ¢. This condition holds as long as
d =25,
ZC’cl_lR;lfnpn <05 = ¢3>0.37c3<5,
log (140.2Ce PR2 ;)

min

"~ 14log (1+ 1.2Ce?P R2

max)

Finally, we verify that SZ-(O) - Sl@. Forr € SZ-(O), we have

i : .
<%MM=yw&+Z@wmm*wW>
/=1

t _
= (w0 xi) 50+ A0l - (ki)

i #£i
> Byrs = 2o,
—pyl,T‘Z py,“’f‘l
'751

mlnp

_(% - (%)
= pg(h)r i (Rm?npn/cl)pg(/,;),r,i’

= (1 - R;q?npn/cl) . ﬁg(j),r,z =0,
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where the second inequality is by | py rirl p(t) ./c1. This implies that Si(o) C Si(t) holds for time

Yi Tyt
t= t, which completes the induction. O

Next, we show that | B(_tz/ | will be much smaller than |ﬁ$;i)r’ ;| as the training goes on.

Lemma E.2. There exists time 75 and constant ¢ such that for any time ¢t > T5

(t) |

| < CB:mmpn“)y ,r/ih

o

Sy i’
where r € [m],r’ € Si(o) and i, € [n] satisfying —y; = y;/.

Proof of Lemma E.2. First, we will prove by induction that for » € [m],r’ € SZ-(O) and i,7" € [n]
satisfying —y; = vy, it holds that
PO < BH+1+ Rmmpn|py aller. (E.24)

yrz

This result holds naturally when ¢ = 0 since all the coefficients are zero. Suppose that there

exists time ¢ such that the induction hypothesis (E.24) holds for all time ¢ < ¢ — 1. We aim to

prove that (E.24) also holds for ¢ = ¢. In the following analysis, two cases will be considered:
(t—1 - t—1)

|By“r z’| > ﬁ + Zk;ﬁz/ |py,,r I)c‘ ||Xk||2 2p and |p?(h,r 7/| < ﬂ + Zk;ﬁz’ ‘pyl T, k|||xk||2 p.

(t-1)

For if |By“ o

> B4 s |py“T k|||xk||2 p, then by the decomposition (5.1) we have

t 1 _
(witD xir) = (wi®xi) + pT 0+ 3 o il 2 x x)

y 1
k#i!
i—1)
< oD B+ ol Iz < 0.
k#i!
and hence
® (-1 1(E=1) s (F-1) o\ . 9 (t 1
py“rﬂ _p r7/+ nm ez o—(<wyi77“ 7Xl,>) ||XZ || y ril”

Therefore, by induction hypothesis (E.24) at time ¢ = ¢ — 1, we have

p0 = o < B 1 R 2l e < B 1+ RyZpmla) /e,

Byirir = Ly,
For if |py , 2/| <B+ ks |pyf1 r1,1|||xk||52p, by the first bullet in Lemma E.1, we have
| (yt rlz)/| < B + Z |p'ql i < B + |p§/t“'r1 ZlRHllnpn/cl7 (EZS)
ki’
and thus
o _ -1 n 1(E=1) -1 2
i = o g 1T (T i) e

- 2
< _ (t—1) + anax
— =yemd nm

< B+ 1+1p) . | Radun/e,

where the last inequality is by (E.25) and < (CR2 . /nm)~! with a sufficiently large constant C.
This demonstrates that inequality (E.24) holds for ¢t = ¢, thereby completing the induction process.
By Lemma E.1, we know that there exists time 7" such that

P il > 1B+ )R, /pm,
for any time ¢ > T". Taking 75 = 7" and ¢ = 2/c;, we have

‘pg(;t)rl’| < ﬁ +1+ Rmmpn|py r’ z|/cl < 2Rmmpn|py ! 7,|/C1 = CRr;lznpn|ﬁg(/i),r’z|7
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which completes the proof. O

Given Lemma E.2, the following corollary can be directly obtained.
Corollary E.3. There exists time 73 and constant ¢ such that for any time ¢t > T3

Ip® 1< cRmmpn\py il V€ [m] " € SZ( ,i,1 € [n] with —y; = yy.

Zyi,r,e

F Stable Rank of ReLU Network

In this section, we consider the properties of stable rank of the weight matrix W *) found by gradient
descent at time ¢, defined as |[W®)||2,/||W®)||2. Given Lemma E.1, we have following coefficient

update rule for any t > 0, € [n] and r € Si(o)

1 — Ui
p;ttz) = pz(fi),r,i o 16891 - 1312, (F.1)
where
0] = ! .
' 1+ exp{F 1( Z(th)a XZ) F*yi (W(j;)g,ﬂ XZ)}

Now we are ready to prove the first bullet of Theorem 4.3.

Lemma F.1. For two-layer ReLU neural network defined in (E.1), under the same condition as
Theorem 4.3, the stable rank of W§t> satisfies the following property:

W lI%

lims
t
t—>00 HW§- 113

where C' = O(1) is a constant.

Proof of Lemma F.1. By decomposition (5.1), we have

X1
(t (0 t) t _ .
Wi =W = Zrém Il = (o sz lall 2] | 2
XTL
and
t _
pmn xilz? Pkl o AL Ixally?
P pﬂlnxan P alxilz? - p%nn xall? | |
Wj —Wj = ] :
: : .
t — t — t _
pualilz? Aalals Al S
Ay

Leta;(t) " be the i-th column of A;. It follows that

(W — W% = Tr(AXXTA])

(g
1Ym0 )

1=11=1
n n

= Z Z x;, %) - Tr(a;(t) "ag (1))

1=11'=1
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- Z %12 - Tr(a (t )+ > (i xir) - Tr(ai(t) Tap (t))

174!
<R12naxZTr(ai(t +pZ|Tr al Z())‘7
=1 i#i!
and
Tr(ai(t) (1)) = Y ([ (t)]n)? = > (o8}, I1xil152) Z P )P By < OB (log(t))?,

r=1 r=1

i 2 %[l 12 < CmR L (log (1)),

|Tr(ai(t)Tai/ (t))| S Z |[az(t) ’ - Z ‘pj r1p§t7)"l

Accordingly, we have

(®) (0)12 2 2
||W_7 - Wj || < Cmanamem(log( )) + Cmn pRmm(log(t))
- OmnR?namem(l + Rmaxnp) (10g( ))
< C'mnR2, Rt (log(t))>.

max min

On the other hand, we will give an lower bound for ||Wj(-t) - W§0) Il2-

W W, = max (W — Wy,

IWS — WX (XXT) 11,
- ||XT<XXT> 1l
1AL,

T XTXXT) L2

We first provide a lower bound for ||A+1,||2. Note that

> i ,0] 1 z”Xsz
A, = :

ZZL 1p]m1||x’b||2

we need to bound >, pj o |xill3 2,7 € [m]. By Corollary E.3, there exists time 7" such that for
(®)

any t > T, |By¢,m"| < cRminpnpyim,Vz € S and Vi’ € [n] with y;; = —y;. Therefore, we have

fort > T that

Zzp,m x

=3 (S s + 5 ol bl )

r=11i=1 r=1 €S i€S_

_ ()
=D 3D SN IERED OB SFUNN
i€S; r=1 zeS,jr 1
2 :2 : —=(t) 2 : 2 :

> py“rz max+ p—y“rz min
i€S; r=1 i€S_jr=1

> 7(1‘/ R_ _ m|S—]‘ CRmmpn —(t) R—2

Py, rittmax |S| S(o) Pyi,ri'tmin

i€5; g I ies; | res(©@

() p— m|S_;| - cR_* R2_ pn ) o
> Z Z ?(Ju"’z mix_ : = max Z Z pg(/lri mix

i€5) reg(®) |51 - minges, |S i€8; reg®
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max Z Z ﬁ_gfv)"w (F.2)

i€S; TES(O)

where the second inequality is by Corollary E.3 and hence

o™

——Yi,T, [

R
p® | < M Z e [m], Vi, i € [n],

=—Yi,Tyi | (0)| Y1,
S(U)

c¢R2pn .
p (,ty)%” S Z ;mn Z py“”,VT € [m], Vi € [n],
’LGS 7 es(o)

\<cRmmpnpy, pr i VT € [m] Vi, i€ [n]),

the last inequality is by
m|S_l - cRmmR?ndxpn
151 minies, S|
Then, we have for ¢ > T that

m n 2
t —
AL = > (Zp;l,inxz-nf)
=1

r=1

dcR_t R pn-

min

m n

v

g ||xi22/ﬁ\

r=1i=1

R—2
=S Y A,

lESJ es(0>

S;lls] 0k’

> max' 1 1 IIllI’l

- 2v/m ©8 ( 2c'nm t)
> CRy2v/mnlog(t)

where the second inequality is is by (F.2); the third inequality is by the second bullet of Lemma E.1.
For || X T (XX T)~11,]|2, we have

JXT(XXT) 11,2 = /1] (XXT)~1XX T (XXT)-!
17(XXT)-1
”171”2
T/ Amin (XXT)
By the Gershgorin circle theorem, we know that Ap,,i, (XX 1) lies within at least one of the Gershgorin
discs D((XX )i, R;),i € [n] where D((XXT);;, R;) is a closed disc centered at (XX );; =
[[xi[|5 with radius R; = 37, [(XXT)iir| = 305 [(%5, %) |. Assume Apin (XX ) lies within
D((XXT);i, R;), then we can get following lower bound for Ay, (XX T):

Auin (XX T) > 1,3 = Y lfoxi, xir)| > B2 — np = (1 — Ry2mp) R2, > B2, /2.
il i

Therefore, we have

LD v2n

< .
>\min (XXT) Rmin

IXT(XXT) 11, <
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Accordingly,

Al CR2.v/mnlog(t) _
wi —wo, > 1A > L Tmax = C"R:2, Ruinv/mnlog(t).
H 7 j ||2 = ||XT(XXT)_1].TL||2 = \/%/Rmin max g( )

Therefore, we have for ¢t > T that

||W§t) _W;0)|‘2 < CmnR?namem(lOg( ))2 < CIRG

max

||W§f) - WEO) ||2 C//anRmamem (1Og(t)) CHQR?mn ,

which completes the proof. O

Next, we will provide an example of training data satisfying the condition in Theorem 4.3 and prove
that the stable rank of W;t) trained by gradient descent using such data will converge to 2 £ o(1).

We first provide the following lemma about the increasing rate of coefficients p(.t)

Jomyt
Lemma F.2. If training data x4, - - - , X,, are mutually orthogonal, the activation pattern after time
T = Cny~'R_2 /nm is determined by the activation pattern at initialization, i.e.,
<w ,%;) >0, if (w®.,x;) >0,
(wib) x;) <0, if (w%,,x;) <0,
<W—yz ™ 1> <0, if <W(—013 r7Xi> >0,
(w L x) <0, if (w x;) <0,

®

for any time ¢ > T'. Besides, p; ;. ; satisfy the following properties:

A= 0,20, if (wii),xi) <0,

_ (T 1

pl(jf)rl = pz(ﬁ,)ryiy vt > T, 1f< (j?)h T’XZ> 20,
Tim 57 /ogt = m/|S”), if (wy), xi) > 0.

Proof of Lemma F.2. Part 1. For if (w(.o) x;) < 0, we first prove by induction that

7,77

P =0, (wi) x;) = (W% x;) < 0, > 0. (E3)
The result is obvious at ¢ = 0 as all the coefficients are zero. Suppose that there exists t such that
(F.3) holds for all time 0 < ¢ < ¢ — 1. We aim to prove that (F.3) also holds for ¢ = ¢. Recall that by
(5.4), (5.5) and with (F.3) at time ¢ — 1, we have

_ 7 i i N (i
Pk =Py %-4“ Vo (wit ) -3 1y = ) = 25 =0,
& — -1 E=1) | 7D AN N 12 () — (t-1) _
Bj,rz ]TZ +— nm gz 0(<Wj,r 7Xl>) HXlH2 1(y2 .7) BJTZ 0.

By (5.1) and the orthogonality of training data, we can get

(wixi) = (wl? x; +Zpﬁti,yuxz-/uﬁ<xz»,xi>:<w(-°? i)+ o0 = (wi? x;) < 0.

7, 2,752 J,T7

Therefore, (F.3) holds at time tN, which completes the induction.
For if ( ( ) x;) > 0 and j = y;, we will next prove by induction that

A >0, wlt)x) > (wl? ;) = 0,v¢ > 0. (F4)

7,77
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The result is natural at ¢ = 0. Suppose that there exists # such that (F.4)hold for all time 0 < t < f—1.
By (5.4) and (F.4) at time ¢ — 1, we have

t 7t1 tl —_(t—1
=7 >+ A Ixi13 >0 >0

7,7y

and hence the orthogonality of training data, we can get

(wih),

(,0) Xi> + p(tw) = <w(0) x-> > 0.

X’i> = <Wj,7*7 3yTs8 jyro ) =

Therefore, (E.4) hold at time ¢, which completes the induction.

For if (w j( ) x;) > 0 and j = —y;, we first show that under the same condition as Theorem 4.3 it
holds that ©
P < —(wi x,).

Bjri Wi
Since T = Cn~'R_2,
F+1(Wsri, xi), F_q (W(_)l, x;) = O(1). Thus there exists a positive constant ¢ such that él(t) >c
for all ¢ € [n]. Here we use the method of proof by contradiction. Assume pET)Z > —(w ;O) X;).

Since p(T) < Bit) for 0 < ¢ < T which can be seen from (5.5), we have p(t) > 7<w§,or),xi> for

allt < T Then we can get

/nm, we have max; , l{\pj 7il} = O(1) for t <T'. Therefore, we know that

(Wi xi) = (W xq) +pl) > 0,9 < T

Wi X

(t)

Therefore, by the non-negativeness of (w PR

x;) and (5.5), we can get

12
6ED] = o0+ L6003 2 10|+ S

=4, 4,7 g
and hence |
cn X _
01> AT _ s j3m2 > 0> 5

,j r.i min =
which is a contradiction. Therefore, ng;)i < —(wg?r),xz). By (5.5), we have B;tli < Bﬁ)i <

—<w;.?r),xi> for t > T'. Therefore,

<W§f2,,xl> (w © x;) + p(t) <0,vt>T.

Wi X

Plugging this into (5.5) gives us

1) — 0 0O W ® ) k12 = o8 >
Bj,'r‘,i Bj,r,i + nm El o (<W],T’X1>> ||X71H2 Bj’T.’ZWVt = T.

This completes the proof of the first half of the lemma about the activation pattern as well as the first

two properties of pgtz i

Part 2. Now we will show that

Jim p" logt =m/|S"], (F.5)
—00 vt

if <w§fl)’r7 x;) > 0. By the activation pattern, we can get

—(t+1 —(t n t t
Pt = Py = 101 xall3, vE= 0, for (wi)xi) > 0,
Pyi =0, V20, for (i x0) <0, (E6)
P (D) vt >0, for(w? . x;)>0 '
I T -7 Tyt =

(t) _ (t) .
Pyiri = 0, vt 20, for <W*yi7i’xl> <0.
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Given this activation pattern, we can get for ¢ > 0 that

' 1 & 1 & ’
Fyi(wq(fi)vx)_F*yi(w(—;wxl)_EZ y T’xl EZU (—z);m’ )
r=1 r=1
1
S - Z <W3(;t7),rvxl>
" rESfo)
1
_ (0) (®)
B m Z [<Wyi,r7xl> +py 'r‘i]
TGS(O)
1 (1)
<D Pyt
TESi(O)
and
(1) (t) 1 - w® 1« w®
Fyz(wyl 7xi)_F*yz(ny1 X') = EZU“ yi,rs X %ZU —yi,r X )
r=1 r=1
1
> — Z <Wg(;ti),r7xi> - ﬁ
" TGSEO)
1
P 0) o150 7_
- m Z [<Wyi,r’xl> +py“rz] /8
TESEO)
1 (1)
> % Z Py i —
TESEO)

Therefore, we can get following upper and lower bounds for |€2(t) |

1
’®) < - = 28, >0
| 7 | =~ exp m Z i + 6 ) = Y,

resgo)
t 1 _
601> gexo (=2 0 A - 8) =0
TESEO)
And it follows that
1 _(t41 1 —(t 77||X’H3625
m Z pl(/imi)SE Z pl(/i)mi—’_ 7; ' m Z pynm vt 20,
res® res® TGS(O)
! (1) o 1 v nlxill3e”” 1 ()
— ) > A - — ,Vt > 0.
— 20) Prend > 20) Prori T~ g eP ( — — Zﬁ) Pyori ) ¥t >
res; res; r€S;
By leveraging Lemma H.1 as well as Lemma H.2 and taking
1 _(t
Te = m Z pyz‘)mi’
’I‘ESEO)
we can get
2,28 2 28 ) 12—8
D3 pym_log< y ol ® (UHX ilz¢ )t) < log (1+"”X1”2e
res“” nm nm nm
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77||Xi||§€_ﬁ
Zpym_log( o L)

TGSFO)

Therefore, we have

lim — Z pyl M/logt =1
TESfD)

Since ﬁ(t) 7

i = Py, i forany r#r e Si , we have

hm py M/logt—m/|5 |

which completes the proof. O

Lemma F.3. For two-layer ReLU neural network defined in (E.1), there exists mutually orthogonal
data x1, - - - , X, such that stable rank of Wg-t) will converge to 2 £ o(1).

Proof of Lemma F.3. By (5.1), we have

t _
wif) = w +pr i ll52 - -

_v(®
=v; .

(®)

Given the definition of v} ., we have the following representation of v( ) and V(t)

3
X1
t t - .
Vi =[xl o Il | ]
Xn
t — t —
i Ixally® e Ikl ] [
(t) _ .
V= :
— t —
P Ixalls® e o Ixallz®] L
Assume 7 is an even number and X1, - - - , X, /2 are with label +1 while x(,, /2y41, - - , X, are with

label —1. And we take x1, -+ ,X, as e1,--- ,e,. Given Lemma F.2, W§t) = W](»O) + Vgt) and
such selection of training data, we have

W(t)
lim — = [Avx (n/2)s Omx(n/2)] * Ins Onx(a—n)] = [Amx (n/2) Omx (d—(n/2))]
00 logt m n b) m n ) n n m n b) m n )
wY
Jim gt [0 % (n/2)s Brux (n/2)] - Tns Onx (d=n)] = [Omx(n/2)> Bmx (n/2)> Onx (d—n)],

t
lim w = Amx(”/Q) 0m><(n/2) Onx(dfn)

t—00 10gt 0m><(n/2) Bmx(n/Q) Onx(d—n)

where
0
1w x) >0 1w ) > 0] m/| 51|
Am><(n/2) = dlag ’
LW x) 2 0] - 1w x,0) > 0] m/|S\))|
::CWLX(7L/2)
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1w | Xyzyn) 2 0] - 1w | x,) > 0] m/|5(n/2)+1|
Bix(n/2) = : : -diag :
LW o xzen) > 0] o 1w %) > 0] m/|S5|

—1m> =

=Dy x(n/2)

Then, we can get the stable rank limits as follows:

f
W92 Az

o whz 1Al
L IWOIE B
oo whz IBIE
IW®% [A[%E + 1B

lim =

t=oo [WOIZ — (max{[[All2, [Bll2})*"

Since x; = ey, - , X, = €,, We can get

1w, x;) > 0] = 1[[w”]; > 0].

7,77

Therefore, the entries of matrix C and matrix D can be regarded as i.i.d. random variables taking 0
or 1 with equal probability. For ||A | and ||B||r, we have

m n/2
0 0
A1z =37 1w? )i > 0 - (m/1S))2,
r=1 =1

m

Bl3 =Y Z w1 > 0] - (m/[S{V])2.

r=14i=(n/2)+1

By Lemma B.2, we have with probability at least 1 — ¢ that 0.4m < \SZ-(O)\ < 0.6m. By Hoeffding’s
inequality, we have with probability at least 1 — 26 that

n/2

m
1Al - /1512 <

i=1

n/2
mlog(2/6) Z(m/|5i(o)|)4 < 625mn log(2/0)

2 32 ’

=1

n

m
B > s
i=(n/2)+1

Next, we estimate ||A ||, and |[B]2. Let A = A + E[A] and B = B + E[B]. Assume G be the
m x (n/2) matrix with all entries equal to 1/2. Then,

mlog(2/0) Z (m/|Si(O)|)4 < 625mn31;>g(2/6).

i=(n/2)+1

m/| S| m /Sy 1]
E[A] = G - diag ,EB] = G - diag :
m/|S| m/| 85|
N———
=a :=b

And the entries of matrix A and matrix B are independent, mean zero, sub-gaussian random variables.
By Lemma H.3, we have with probability at least 1 — § that

I1All> < S (vim -+ v+ /1og2/9),
Bl < & (vim + Vi + ioa(2/2).
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where C is a constant. Let 1; denote the row vector with k entries equal to 1. Then for E[A] and
E[B], we have

[E[A]llz = max [|Gdiag(a)x|2

x€ST

= max f||1 1z diag(a)x||2

n_q

x€S72
= max \/rnl%diag(a)x|
xes3-1 2
= max @|aTx|
xesz ! 2
_ Vailals
2 )
" Vbl
m
8], = YT
By triangle inequality, we have
C
1All2 = ICll2 — | Allz > (vVmla]l2) /2 5 (Vm +vn+ /log(2/9)),
C
1Al < [Cll2 + [|A]l2 < (vmlall2) /2+§(xf+f+ V1og(2/9)),
C
IBll2 > [ICl|2 - |[Bll2 > (vVm]b]l2)/ 2= 5 (Vm+Vn+ Vlog(2/4)),
C
B2 < [Cll2 + [Bll2 < (Vml[bll2)/2 + 5 (Vm++/n+ /log(2/9)).

Notice that ||a]|3 = ©(n) and ||b||3 = ©(n), then with probability at least 1 — 2§, we have

Al _ mlal3/2 + /625mnlog(2/9)/32 — 91 o()
IAIE ™~ (vimllallo/2 = § (Vi + v + v/10g(2/9)))”
A% mla|3/2 — \/625mnlog(2/9)/32 —9 o)
IAIZ ™ (vmllalla/2 + S (vin + Vi + /10g(2/9)))* ’
IBlIE m|[bl|3/2 + /625mnlog(2/6)/32 — 9t o(1)
IBIE = (vimlbllo/2 = § (vim + v/ + /10g(2/5)))" ’
IBl7 m|[bl|3/2 — /625mnlog(2/6)/32 o),
IBIE = (vmlbla/2 + § (vim + i + v1os(@/9))”
This leads to
IWEHIE A3 _
w2
. HW“ I _IBIE
oo W2 B3 =2:£0ll).
For W®), we have the following lower bound
IAIE+IBIE m([lall3 + [|b]13)/2 — /625mnlog(2/5)/8
(max{[[All2, [IBll2})* ™ (y/mmax{||all2, [|bll2}/2 + S (vim + Vi + /10g(2/5)))”

all3 + 1/5]13

= @20 G allz ol 217
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> — —o(1),

where the third inequality is by (5/3)+/n < |la|l2 < (5/2)v/n and (5/3)v/n < ||bll2 < (5/2)v/n
due to 0.4m < |S”| < 0.6m. And

IAIE +IBIE m([lall3 + [|6]13)/2 + /625mnlog(2/5)/8
(max{[|Allz, [Bll2})* = (\/mmax{||a]l2, [[b]2}/2 — S (v + Vi + /10g(2/3)))”
<2+ 0(1)- a3 + [15]13

(max{[lall2, [[b]|2})?
<9+ o0(1),

where the third inequality is by (5/3)v/n < ||a]l2 < (5/2)+/n and (5/3)v/n < ||bll2 < (5/2)v/n
due to 0.4m < \SZ-(O)\ < 0.6m. Therefore,

o IWIE AR +BJ3,
35 [WIE ~ (max{| AT, [B]21)

5 €[16/9 = 0(1),9 + o(1)].

G Margin Results and Loss Convergence

In this section, we prove the convergence rate of training loss as well as the increasing rate of margin
for both two-layer ReLU and leaky ReLU networks defined as

f(W(t)jx) = F+1(WE:)1,X) - Ffl(W(ft)I?X)

m

_1 (t) 1y ®)
- m ZU(<W+17raX>) m ;U(<W—1,T’X>)’ (G'l)

r=1

o € {ReLU, leaky ReLU}.

We first prove the following auxiliary lemma.

Lemma G.1. For both two-layer leaky ReLU and ReLU neural networks defined in (G.1), the
following properties hold for any ¢ > 0:

o yif(W® x;) > —cforany i € [n] where ¢ is a positive constant.
. yif(W(t), X;) — ykf(W(t), xi) < Cy for any i, k € [n] where C} is a constant.
. 4(0/6;@ < C, for any i, k € [n] where Cs is a constant.

. Si(t) C Si(tH) for any ¢ € [n], where Si(t) ={rem]: (Wg(,ti),r,xﬂ > 0}.
Proof of Lemma G.1. We prove this lemma by induction. When ¢ = 0, since

i f (WO, x;)| =

> iy (W x)
J

m

S 3 (i)

r=1




the first bullet holds as long as ¢ > 23. We also have

Yif (WO x;) — g f(WO 1) < |y (WD 30)] + e F (WO, x| < 48,
which verifies the second bullet at time ¢ = 0 as long as C; > 4. This leads to

4 ~ I+exp(ynf(WO %))
A I texp(y f(WO), x;))

< (1 + exp(yk.f( W(O) VXk) — ylf(W(O),Xi)))
< (1 + exp(Ch))
<

as long as Cy > 2(1 + exp(Cy)). For any r € SZ-(O), we have

(Wil xi) = (Wi, xi) ZWH o (Wi xi)) - (yorxir, yixi)
n
= (wyly %) + %M;“W xill3 + — 3107 o (Wi xa) - (yrir, yixi)
/751
n 0 n 0
> (wid ) + = 10Ol = =L ST [ xa)]
/757(

> <W(O) x;) >0,

Yi,T?

where the second equality is by <w$?r, x;) > 0; the first inequality is by triangle inequality; the
second inequality is by |€/(0) |/ ‘4(0)‘ < (5 and the condition that R2, > Cnp, C is a sufficiently
large constant. This verifies the fourth bullet at time ¢ = 0.

Now suppose there exists time ¢ > 0 such that these four hypotheses hold for any 0 < ¢t < t. We
aim to prove that these conditions also hold for ¢ = ¢ + 1. We first prove that y; f (W(?‘H) ,X;) >
yi f(W® x;). We have

yif (WD x) — 5, f(WD, x;)
—Zyzy( Fi (WY xi) = F(W i)

=2 LS (w9, x)) = ol ()

r=1
m (t+1) @
o((w;, " %i)) —o((w) ., Xi))
_Zyzj Z J/(t~+1) (?)]’ < n VWJT S(W ))aXz>
<Wj,r 7xi> - <Wj7r7x’b>
m (t+1) () n
1 molwy, X)) —o((wynxi) TG ‘
=> yij—> o - (== \-a<<wj,;,xz-/>>-yyi/xi/,xi>
J L <W§‘t:r1)vxi> - <W§27Xi> <nm i'=1

<t+”x>>fa<<w§f2.,xi>> IRV )
—§: 2: - ] (W) ) - |13
r (t+1 Xi> (t) > nm

_ <Wv7
t+1) (t)
i) —o({w) ., x ;
+Z Z (t+1) : anIE’” o' (W), %)) - (yirxir, yixa).

7
3y (Xi) — <§3;Xz> i’
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By the fourth induction hypothesis at time ¢ = 1, we have Si(a_l) cs; ® and hence

o i) = o(woxi))  wix) — (wx)

J,r? J,r J.r?
(w (t+1) @ (t+1) ®

Wir 2 Xi) = (WjipXi) (Wir oxi) = {Wjip%i)

—1, (G.2)

for j = y; and r € Sit . For 0 € {ReLU,leaky ReLU}, o is non-decreasing and 1-Lipschitz
continuous, which gives

(W ) — o ((wl?, x:))

0< I LT <1. (G.3)
(w0 — (wlh x,)

Then, we have

. _ m
f(W(H_l) ) yzf(W(t) Xz > W Z |£;(t)| ||2 Zzzw/(t X»L 7Xz>|

res® g r=li
n 1)
> o 0 1601 Il
TGSEZ)
t)
_77‘5( | 1, t)| I
N 2nm l||2
/(t)
e A B

where the first inequality is by (G.2), (G.3), o’ € [0,1] and triangle inequality; the second inequality

is by |£ |/|€/(t)| < Cq, |S(t)| > |S(0)| > 0.4m and the condition that B2, > Cnp, C'is a
sufficiently large constant. And

yif (W W+ i) — yi f (W w® ;)

Zznmz > 167 Ilelz+—QZZZ|z D/ (x|

i r=1 TGS(t) j r=1i#4
/(T
3D IR
j r=1

3n /(%) 2
L0 1% )13,
=) il

where the first inequality is by (G.3), ¢’ € [0, 1] and triangle inequality; the second inequality is by

|€/(t)|/|€/(t)| < Cy, S(t)| > |S(O)| > 0.4m and the condition that R2, > Cnp, C is a sufficiently
large constant. Now, we obtain

i FWED ) > 4, f(WD ) 4 1 12O 1,3, (G4)

Smm

~ ~ 3 ~
i f(WED 3y < 4 f (WD x,) + % ) |g;(t)| lxilI2, (G.5)

which implies that y; f(W D, x;) > 4 f(W® x;) > —c. This verifies the first bullet at time
t =t + 1. By subtracting (G.5) from (G.4), we have

urfWED 5y — s f(W D 1))

7 7 31 7) n 0
< @ o @ <. ViGN 2 RYACITT
<y f (WO ) =y f(WO360) + 20 100 a3 — - 167] - [l .
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1£1601/160] > 15R2, then 22 160 - |xi 3 < 5% - 167] - [[xi]13 and hence

yr fWED x) — g (WD 5y < 4 fWD x0) — 4 f (WD x,) < €.

1f |71 /1¢D| < 15R?, then by Lemma H.5
uef (WO ) — i f (WD, x;) < log(4167]/167) < log(60R?),

and hence

~ ~ ~ 3,'7 ~

pef (WD i) =i f (WD i) < i W 300) = i f (W 30) + 20 100
< log(60R?) + 1.
Combining the two cases, we have
gk FOWED ) — o, FWED x) <

as long as C; > max{4/3,1og(60R?) + 1}, which verifies the fourth bullet at time t = ¢ + 1. By
Lemma H.5, this leads to

D1 4 exp(u f (WD, x,)
2D T 1+ exp(yi (WD, x;))

2(1 + exp(yr f (W t“),Xk) yif (W (E+1) Xi)))
2(1 4 exp(Ch))
Cs,

<
<
<

as long as C > 2(1 + exp(C1)). For any r € Sft~+1), we have

(Wi xi) = (wiih) . x) ZIWH)I (WiE i) - (yarxar, i)
z/ 1

n t+1
= (Wil x,) + 7 ] il

i
n t+1)
Z W( o'( ;itl),xQ) (YirXir, YiXi)
/751
(t+1) 1(t+1) 2 n /(t+1)
Z (wy s Xa) G a2 — Z 1] [, x4)|
z’;ﬁz
> <W(€t1):xz> Z 07
where the second equality is by <w§, tl), x;) > 0; the first inequality is by triangle inequality;
the second inequality is by |€/(t+1)|/\€;(t+1 | < C5 and the condition that R2, > Cnp, C is a
sufficiently large constant. This verifies the fourth bullet at time ¢ = ¢ + 1. O

Notice that |[W®) ||z = O(logt) and considering the fact that the difference between any two
margins can be bounded by a constant, the difference between any two margins can be bounded by a
constant, we can derive the following lemma, which demonstrates that the normalized margin of all
the training data points will converge to the same value.

Lemma G.2. For both two-layer ReLU and leaky ReLU neural networks, gradient descent will
asymptotically find a neural network such that all the training data points possess the same normalized

margin, i.e.,
i W ®) W®)
o | (Hwa e ) _y’“f(uw<t>||F’X’“>

t—

:07

for any i, k € [n].

48



By Lemma G.1, we can establish the subsequent lemma regarding the logarithmic rate of increase in
margin. This lemma will be beneficial in demonstrating the convergence rate of the training loss in
subsequent proofs.

Lemma G.3. There exists time 7" = O(n ’1Rmm m) such that the following increasing rate of
margin y; f(W®), x;) holds:

yif (W®,x;) —logt — log(nllxz-llg/”m>‘ < Cs,

- (M.t)*1 < |67 < 5 - (M -t)d?

nm nm
forany i € [n] and t > T, where C5, Cy, Cs are constants.

Proof of Lemma G.3. To prove this, we want to leverage Lemma H.1 and Lemma H.2. To achieve
this, we need approximate |€;(t)| by yi f(W®) x;). We have

1
0] = <exp (- f (W), x1)), (G.6)
1+ exp (yif(W@(fi), xi)) ( Y )

and

1 1
R > e (— wf (W, x)) G
1+ exp (yzf(Wi(/i),Xz)) 1+ ec ( Yi )

by y; f (Wz(,?,xi) > —c. Plugging the upper and lower bounds of |€;(t)| into (G.4) and (G.5), we
obtain

3 X; 2
Y fOWED ) — g fOW D x,) < 7777‘1‘7””2 cexp (—yif(W, xy)), (G.8)
2
WD oy W ® oy s Xl o WO o
yif (W ,Xi) —yi f(WW %) > 51 + ey exp( ylf(Wyl,xZ)). (G.9)

By taking z; = y; f(W®), x;) — 4, f(W(®) x;) and applying Lemma H.1 to (G.8), we can get

30113 3n]l%]13
WD ) < s AW 5 N11Xi12 ( ill2 )
vif( %i) < vif( /%) +log (1 * eyi FW© x) exp eyi FW© x;) o b

i FW(0) ;) 3n|lx:12 _
Aslongast > €~ D eXp ( - %) = O(n 'R, 2 nm), we have
nm

3nllx; H evi Fw(0) x)

G |lxil[3 3n|[xill3
_ ®) 5.} < 1. 0) . 2 ( 2 ) .
ny(W JX’L) — y’lf(w 7X'L) + log ( ,f(w(o) xi)nm eXp eyif(w(o)’xi)nm t

77|| ) 3nlxill3
yif(W(o) 7xz‘)nm

nm
where the last inequality is by y; (0)

large constant. By taking x; = y;
we can get

) x;) < 2B andn < (CR2,,./nm)~", Cis a sufficiently

[
<logt+ log <n||x 2) +log6+1,
(W
FOW® x;) — 5y f(W x;) and applying Lemma H.2 to (G.9),

2
WD ) > 4 FWO % ( nlxll3 . )
il %) 2 yif( xi) +log (1+ 5(1+ eC)eyif(W<o),xi)nm !

> yif(W(O) x;) + log ( nllxill3 _ t)
) | 51+ e0)er /WX

12
= logt + log (nHX2”2> — log (5(1 + ec)).

nm
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Since

—1p-2
. R~ ,
— 3 77 mlnnm

3n|x: 13 evif (WO xi)pm 3n|lxll3

Taking
28
T= {63 n_lRmm —‘, ngmax{logG—i—l,log (5(1+ec))}
completes the proof of the first equation. By plugging the margin upper bound into (G.6), we can get
60] < exp (= i (WD, x)
< exp ( —logt — log(n||x;||3/nm) + C3)
12 -1
< exp(Cs) - (LHXzHQ -t) :
nm

By plugging the margin lower bound into (G.7), we can get

/(t) 1
|£z | Z m + exp ( — %f(Wé?,X,))
1 2
> - exp (— logt — log(ulxil}3/nm) — Co)
02 -
SN O
e¥s(1+e°) nm
Therefore, taking Cy = 1/e%3(1 + €©) and C5 = exp(C3) completes the proof. O

Now we give the following lemma about the convergence rate of training loss.

Lemma G.4. For both two-layer ReLU and leaky ReLU networks defined in (G.1), we have the
following convergence rate of training loss

Ls(W®)=0@™1).

Proof. Having obtained a lower bound for the margin in Lemma G.3, we can now use it to derive an
upper bound for the loss function as follows:

Ls(W®) = =3 (s f(W, x,)
=1

% > log (1+exp (—4if (W, x;)))

i=1

\ N

*ZGXP — 5 f (W, xy))

IN

- Z exp ( —logt — log(n||x;||3/nm) + 03)

1
*ZGXP (nlllelz t)
nm

= O(t 1).

where the first inequality is by log(1 + z) < z; the second inequality is by Lemma G.3.
Having obtained an upper bound for the margin in Lemma G.3, we can now use it to derive a lower
bound for the loss function as follows:

Lg(W) = Zeyz W x;))
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= % Zlog (1+exp(— yl.f(W(t),xi)))
i=1

1 n
- — ® %)) — — 2 ® x.
zn;exp( yif (W, x0)) —exp (= 25 f (W, x1))
1 n
> — > exp (—logt —log(nl|xi|[3/nm) — Cs)
— exp (= 2(log + log(n||xi 3 /nm) — Cs))

1 nlxill3 ) nlxill3 )2
= ;exp(—Cg) . ( i -t) —exp(2Cs) - ( o ~t)
=Q@t™h.

where the first inequality is by log(1 + z) > z — 22/2 for z > 0; the second inequality is by
Lemma G.3. This completes the proof. O

In addition to the aforementioned lemmas, in the case of leaky ReLU, assuming convergence in
direction, we can demonstrate that the directional limit corresponds to a Karush-Kuhn-Tucker (KKT)
point of the max-margin problem. This result is presented in the following lemma.

Lemma G.5. For two-layer leaky ReLU network defined in (G.1), assume that W(*) converges in
direction, i.e. the limit of W(®) /||[W®)|| - exists. Denote lim;_, o, W) /|[W®) || as W. There
exists a scaling factor o > 0 such that « W satisfies Karush-Kuhn-Tucker (KKT) conditions of the
following max-margin problem:

1
min §||W||%, st.  yf(W,x;) > 1, Vi€ [n]. (G.10)
Proof. We need to prove that there exists A1, - -+ , A, > 0 such that for every j € {1} and r € [m]
we have . .
= Z )\iij,'r' (ylf(W, Xi)) = Z )\zyz] . UI<<WJ"T, XZ'>) - X5 (G] 1)
i=1 i=1
By (5.1), we know that
W
Wir = AL WO,

( ) n
. _ Vgr pgrz ..

n (f)
— ] i . -2 . .
- t_mz WO illa ™ - xi

n (t)
— 11 pj'r'b

. 72 . .
~ oo [[WO [ e s,
where the second equality is by ||W(t) |lF = ©(logt) and the last equality is by the existence of
limy 00 WO /|| W®|| - as well as the uniqueness of data-correlated decomposition. By Lemma D.3
and ||[W® || = ©(logt), we can obtain that

(®) @
p] i Pjr i

lim = lim WO (G.12)
t—00 ||W(t)HF t—oo [W®| g

51



forany j € {£1},r,r" € [m], i € [n], and
() (®)
pj,ri —1 p] r’ i’
—L = < lim G.13
t—o0 ||W(f)HF ( )

forany j € {£1}, 4,4 € [n] with j = y;, j = —ys and r,7’ € [m]. Define

(t)
. . P
S;i={i€n]:y;=j} A\ := lim y“”
By (G.12), we know )} is well defined and A} > 0. And by (G.13), we know that for any r € [m],
i€[n],
(®)
p
lim 7@“” = —y\,
S WO~

Then, we have

o - Piri e 1=2 . .
Wi = thli?;) WO|[p [[xilly~ - xi

. pj,ri ) . PJM )
: A WOz Al i+ Z A WO eillz® - s
1ED; i€S_;
= Y N lxilla? xi— Y N il i
iESj ieS,j
By Lemma C.5, it holds for any ¢ > T} that
o' (Wi, xi)) =1, vje {1}, i€ S,
o' (W) xi)) =, Vje{£1},ieS_;.
This leads to
o' (Wi %)) =1, Vi e {£1}, i€ S;,
o' (W), Xi)) =7, Vje{xl},ies_;.

Thus, we can get

Wi =3 N0 (Wimxi) - [xill2® % — > Ao (W %)) - Ixally % x

’iESj ’iES__j
n
=Y Nwid o (W, xi) - [xill5 7 - e
i=1

Taking \; = \}||x;||5? completes the proof of (G.11). On the other hand, by Lemma G.2 and the
assumption of the existence of W(®) /||[W®) ||z, we can get

yif(w7x’i) = ykf(waxk)7
for any i, k € [n]. Taking o = 1/y; f(W,x;), we have
yif(aw7xi) = 17

for any 4 € [n], which completes the proof. O

H Auxiliary Lemmas
Lemma H.1. Let {z,}{2, be an non-negative sequence satisfying the following inequality:

T4l — T S C’~67“,Vt Z 0
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then we have
zy < log(e® + Ce® - t).

Proof of Lemma H.1. Given the inequality x;11 —x; < C-e~ " for all ¢ > 0, we want to prove that
xp < log(e®™ + Ce® - T) for T > 0. We start by manipulating the inequality as follows:

Tpp1 — 2 <C-e”™
= 1z —x <C- e~ Tri1tC (using x4 instead of x4)

— "t (1 —ay) < Ce© (multiplying both sides by e®+1).

Summing the inequality from¢t =0tot =T — 1, we get:

T-1

Z el (xpqq — xy) < Ce® - T.
t=0

Since e* is a monotone increasing function, we can approximate the above sum with an integral:

T
/ edr < Ce€ - T.

0

Evaluating the integral, we get:
€T — g% < O . T
Rearranging the inequality, we get:
€T < %0 4 Ce® . T
Taking the natural logarithm of both sides, we get:
xr < log(e™ + Ce® - 7).
Therefore, we have shown that z7 < log(e™ + Ce® - T'), as required. O

Lemma H.2. Let {z,}{°, be an sequence satisfying the following inequality:
Ti41 — T Z C- e_zt,Vt Z 0

then we have
¢ > log(e™ 4+ C - t).

Proof of Lemma H.2. Given the inequality x;+1 —x; > C'- e~ "t for all ¢ > 0, we want to prove that
xr > log(e®™ + C - T) for T > 0. We start by manipulating the inequality as follows:

Tep1 —a > C-e”™

= " (xpp1 — ) > C (multiplying both sides by e**).

Summing the inequality from¢t =0tot =T — 1, we get:

T-1
et (.I‘t+1 - Q?t) Z C-T.
t=

[}

Since e” is a monotone increasing function, we can approximate the above sum with an integral:

/ etde>C-T.

o
Evaluating the integral, we get:

e*T —e*o >(C - T.
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Rearranging the inequality, we get:
T >e" +C-T.
Taking the natural logarithm of both sides, we get:
xp > log(e®™ +C - T).
Therefore, we have shown that xr > log(e™ + C' - T'), as required. O

Lemma H.3 (Theorem 4.4.5 in Vershynin (2018)). Let A be an m x n random matrix whose entries
a;; are independent, mean zero, sub-gaussian random variables. Then for any ¢ > 0 we have

1Allz < CK(Vm + Vi +1)
with probability at least 1 — 2 exp(—t?). Here K = max; ; ||a;;|| s, where || - || 4, is the sub-gaussian
norm.
Lemma H.4. Fort¢ > s > 0, we have

log(1 + at) S log(1 + as)
log(1+bt) — log(1+bs)’

ifb>a>0.

Proof of Lemma HA4. Let f(t) = log(1 + at)/log(1 4 bt), and we want to prove that f'(¢) > 0 for
all t > 0. To find the derivative of f(t), we use the quotient rule:

Ft) = (log(1 4+ bt))%(log(l + at)) — (log(1 + at))%(log(l + bt))
(log(1 + bt))?
(log(1 + bt)) T (log(1 + at))ﬁ
(log(1 + bt))?
_a(14bt)log(1+ bt) — b(1 + at) log(1 + at)
N (1 + at)(1 + bt)(log(1 + bt))2

Next, we define the function g(t) = (3 +t) log(1 + bt) — (£ + t) log(1 + at), and we aim to show
that ¢/ (¢) > 0 for all ¢ > 0. We start by computing the derivative of g(¢):

g'(t) = log(1 + bt) — log(1 + at).

Since b > a and t > 0, we have 1 + bt > 1 + at, which implies that log(1 + bt) > log(1 + at).
Therefore, we have ¢’(t) > 0 for all ¢ > 0. Note that g(0) = 0, we then have g(¢) > 0 for all ¢ > 0.
Therefore, we have a(1 + bt) log(1 + bt) — b(1 + at) log(1 + at) > 0 for all ¢ > 0, which in turn
implies that f'(¢) > 0 for all ¢ > 0. Thus, we have shown that f(¢) is increasing for ¢ > 0 and hence
() > f(s), which completes the proof. O

Lemma H.5. Let g(z) = ¢/(z) = —1/(1 + exp(z)), then we have that

g(22)
<2(1 — , V21,29 € R,
o) = ( + exp(z1 zg)) 21, 22
and (z2) )
g\z2
> - — v R > —1.
o(zr) = 4eXp(Z1 22), V21 € R, 25 >

Proof of Lemma H.5. We first prove the first inequality. For if z; < 0, we have

9(z2) _ 1+ exp(z1) < 2
g(z1)  1+exp(ze) = 1+exp(ze) —
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For if z; > 0, we have

2exp(21)
exp(z2)

g(z2) 14 exp(z1)

g(z1) 14 exp(z) =

= 2exp(z1 — 22).

Thus, for any z; € R, we have

(22)
(1)

Now we prove the second inequality. We have

)

< 24 2exp(z1 — 22).

Q

g(22) _ 1+ exp(z1) _ exp(—z2) + exp(z1 — 22) _ exp(z1 — 22)
9(z1) 1+ exp(z2) exp(—22) + 1 ~oexp(l) +1

>

which completes the proof.
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