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Abstract

The implicit bias towards solutions with favorable properties is believed to be
a key reason why neural networks trained by gradient-based optimization can
generalize well. While the implicit bias of gradient flow has been widely studied
for homogeneous neural networks (including ReLU and leaky ReLU networks),
the implicit bias of gradient descent is currently only understood for smooth neural
networks. Therefore, implicit bias in non-smooth neural networks trained by
gradient descent remains an open question. In this paper, we aim to answer this
question by studying the implicit bias of gradient descent for training two-layer
fully connected (leaky) ReLU neural networks. We showed that when the training
data are nearly-orthogonal, for leaky ReLU activation function, gradient descent
will find a network with a stable rank that converges to 1, whereas for ReLU
activation function, gradient descent will find a neural network with a stable rank
that is upper bounded by a constant. Additionally, we show that gradient descent
will find a neural network such that all the training data points have the same
normalized margin asymptotically. Experiments on both synthetic and real data
backup our theoretical findings.

1 Introduction
Neural networks have achieved remarkable success in a variety of applications, such as image and
speech recognition, natural language processing, and many others. Recent studies have revealed that
the effectiveness of neural networks is attributed to their implicit bias towards particular solutions
which enjoy favorable properties. Understanding how this bias is affected by factors such as network
architecture, optimization algorithms and data used for training, has become an active research area
in the field of deep learning theory.
The literature on the implicit bias in neural networks has expanded rapidly in recent years (Vardi,
2022), with numerous studies shedding light on the implicit bias of gradient flow (GF) with a wide
range of neural network architecture, including deep linear networks (Ji and Telgarsky, 2018, 2020;
Gunasekar et al., 2018), homogeneous networks (Lyu and Li, 2019; Vardi et al., 2022a) and more
specific cases (Chizat and Bach, 2020; Lyu et al., 2021; Frei et al., 2022b; Safran et al., 2022). The
implicit bias of gradient descent (GD), on the other hand, is better understood for linear predictors
(Soudry et al., 2018) and smoothed neural networks (Lyu and Li, 2019; Frei et al., 2022b). Therefore,
an open question still remains:

What is the implicit bias of leaky ReLU and ReLU networks trained by gradient descent?

In this paper, we will answer this question by investigating gradient descent for both two-layer leaky
ReLU and ReLU neural networks on specific training data, where {xi}ni=1 are nearly-orthogonal
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(Frei et al., 2022b), i.e., ∥xi∥22 ≥ Cnmaxk ̸=i |⟨xi,xk⟩| with a constant C. Our main results are
summarized as follows:

• For two-layer leaky ReLU networks trained by GD, we demonstrate that the neuron activation
pattern reaches a stable state beyond a specific time threshold and provide rigorous proof of the
convergence of the stable rank of the weight matrix to 1, matching the results of Frei et al. (2022b)
regarding gradient flow.

• For two-layer ReLU networks trained by GD, we proved that the stable rank of weight matrix can
be upper bounded by a constant. Moreover, we present an illustrative example using completely
orthogonal training data, showing that the stable rank of the weight matrix converges to a value
approximately equal to 2. To the best of our knowledge, this is the first implicit bias result for
two-layer ReLU networks trained by gradient descent beyond the Karush–Kuhn–Tucker (KKT)
point.

• For both ReLU and leaky ReLU networks, we show that weight norm increases at the rate of
Θ(log(t)) and the training loss converges to zero at the rate of Θ(t−1), where t is the number of
gradient descent iterations. This improves upon the O(t−1/2) rate proved in Frei et al. (2022b)
for the case of a two-layer smoothed leaky ReLU network trained by gradient descent and aligns
with the results by Lyu and Li (2019) for smooth homogeneous networks. Additionally, we prove
that gradient descent will find a neural network such that all the training data points have the same
normalized margin asymptotically.

2 Related Work
Implicit bias in neural networks. Recent years have witnessed significant progress on implicit
bias in neural networks trained by gradient flow (GF). Lyu and Li (2019) and Ji and Telgarsky (2020)
demonstrated that homogeneous neural networks trained with exponentially-tailed classification losses
converge in direction to the KKT point of a maximum-margin problem. Lyu et al. (2021) studied
the implicit bias in two-layer leaky ReLU networks trained on linearly separable and symmetric
data, showing that GF converges to a linear classifier maximizing the ℓ2 margin. Frei et al. (2022b)
showed that two-layer leaky ReLU networks trained by GF on nearly-orthogonal data produce a
ℓ2-max-margin solution with a linear decision boundary and rank at most two. Other works studying
the implicit bias of classification using GF in nonlinear two-layer networks include Chizat and
Bach (2020); Phuong and Lampert (2021); Sarussi et al. (2021); Safran et al. (2022); Vardi et al.
(2022a,b); Timor et al. (2023). Although implicit bias in neural networks trained by GF has been
extensively studied, research on implicit bias in networks trained by gradient descent (GD) remains
limited. Lyu and Li (2019) examined smoothed homogeneous neural network trained by GD with
exponentially-tailed losses and proved a convergence to KKT points of a max-margin problem. Frei
et al. (2022b) studied two-layer smoothed leaky ReLU trained by GD and revealed the implicit bias
towards low-rank networks. Other works studying implicit bias towards rank minimization include Ji
and Telgarsky (2018, 2020); Timor et al. (2023); Arora et al. (2019); Razin and Cohen (2020); Li
et al. (2021). Lastly, Vardi (2022) provided a comprehensive literature survey on implicit bias.

Benign overfitting and double descent in neural networks. A parallel line of research aims to
understand the benign overfitting phenomenon (Bartlett et al., 2020) of neural networks by considering
a variety of models. For example, Allen-Zhu and Li (2020); Jelassi and Li (2022); Shen et al. (2022);
Cao et al. (2022); Kou et al. (2023) studied the generalization performance of two-layer convolutional
networks on patch-based data models. Several other papers studied high-dimensional mixture models
(Chatterji and Long, 2021; Wang and Thrampoulidis, 2022; Cao et al., 2021; Frei et al., 2022a).
Another thread of work Belkin et al. (2020); Hastie et al. (2022); Wu and Xu (2020); Mei and
Montanari (2019); Liao et al. (2020) focuses on understanding the double descent phenomenon first
empirically observed by Belkin et al. (2019).

3 Preliminaries
In this section, we introduce the notation, fully connected neural networks, the gradient descent-based
training algorithm, and a data-coorrelated decomposition technique.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters
to denote scalars, vectors, and matrices respectively. For a vector v = (v1, · · · , vd)⊤, we denote by
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∥v∥2 :=
(∑d

j=1 v
2
j

)1/2
its ℓ2 norm. For a matrix A ∈ Rm×n, we use ∥A∥F to denote its Frobenius

norm and ∥A∥2 its spectral norm. We use sign(z) as the function that is 1 when z > 0 and −1
otherwise. For a vector v ∈ Rd, we use [v]i ∈ R to denote the i-th component of the vector. For
two sequence {ak} and {bk}, we denote ak = O(bk) if |ak| ≤ C|bk| for some absolute constant C,
denote ak = Ω(bk) if bk = O(ak), and denote ak = Θ(bk) if ak = O(bk) and ak = Ω(bk). We also
denote ak = o(bk) if lim |ak/bk| = 0.

Two-layer fully connected neural newtork. We consider a two-layer neural network described
as follows: its first layer consists of m positive neurons and m negative neurons; its second layer
parameters are fixed as +1/m and −1/m respectively for positive and negative neurons. Then the
network can be written as f(W,x) = F+1(W+1,x) − F−1(W−1,x), where the partial network
function of positive and negative neurons, i.e., F+1(W+1,x), F−1(W−1,x), are defined as:

Fj(Wj ,x) =
1

m

m∑
r=1

σ(⟨wj,r,x⟩) (3.1)

for j ∈ {±1}. Here, σ(z) represents the activation function. For ReLU, σ(z) = max{0, z}, and
for leaky ReLU, σ(z) = max{γz, z}, where γ ∈ (0, 1). Wj ∈ Rm×d is the collection of model
weights associated with Fj , and wj,r ∈ Rd denotes the weight vector for the r-th neuron in Wj . We
use W to denote the collection of all model weights.

Gradient Descent. Given a training data set S = {(xi, yi)}ni=1 ⊆ Rd × {±1}, instead of consid-
ering the gradient flow (GF) that is commonly studied in prior work on the implicit bias, we use
gradient descent (GD) to optimize the empirical loss on the training data

LS(W) =
1

n

n∑
i=1

ℓ(yi · f(W,xi)),

where ℓ(z) = log(1 + exp(−z)) is the logistic loss, and S = {(xi, yi)}ni=1 is the training data set.
The gradient descent update rule of each neuron in the two-layer neural network can be written as

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

LS(W
(t)) = w

(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r,xi⟩) · jyixi (3.2)

for all j ∈ {±1} and r ∈ [m], where we introduce a shorthand notation ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)]

and assume the derivative of the ReLU activation function at 0 is σ′(0) = 1 without loss of generality.
Here η > 0 is the learning rate. We initialize the gradient descent by Gaussian initialization, where
all the entries of W(0) are sampled from i.i.d. Gaussian distributions N (0, σ2

0) with σ2
0 being the

variance.

4 Main Results
In this section, we present our main theoretical results. For the training data set S = {(xi, yi)}ni=1 ⊆
Rd × {±1}, let Rmin = mini ∥xi∥2, Rmax = maxi ∥xi∥2, p = maxi̸=k |⟨xi,xk⟩|, and suppose
R = Rmax/Rmin is at most an absolute constant. For simplicity, we only consider the dependency on
t when characterizing the convergence rates of the weight matrix related quantities and the training
loss, omitting the dependency on other parameters such as m,n, σ0, Rmin, Rmax.

Theorem 4.1 (Leaky ReLU Networks). For two-layer neural network defined in (3.1) with leaky
ReLU activation σ(z) = max{γz, z}, γ ∈ (0, 1). Assume the training data satisfy R2

min ≥
CR2γ−4np for some sufficiently large constant C. For any δ ∈ (0, 1), if the learning rate
η ≤ (CR2

max/nm)−1 and the initialization scale σ0 ≤ γ
(
CRmax

√
log(mn/δ)

)−1
, then with

probability at least 1 − δ over the random initialization of gradient descent, the trained network
satisfies:

• The ℓ2 norm of each neuron increases to infinity at a logarithmic rate: ∥w(t)
j,r∥2 = Θ(log(t)) for all

j ∈ {±1} and r ∈ [m].
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• Throughout the gradient descent trajectory, the stable rank of the weights W(t)
j for all j ∈ {±1}

satisfies
lim
t→∞

∥W(t)
j ∥2F /∥W

(t)
j ∥22 = 1,

with a convergence rate of O(1/ log(t)).
• Gradient descent will find W(t) such that all the training data points possess the same normalized

margin asymptotically:

lim
t→∞

∣∣yif(W(t)/∥W(t)∥F ,xi)− ykf(W
(t)/∥W(t)∥F ,xk)

∣∣ = 0, ∀i, k ∈ [n].

If we assume that W(t) converges in direction, i.e., the limit of W(t)/∥W(t)∥F exists, denoted
by W̄, then there exists a scaling factor α > 0 such that αW̄ satisfies the Karush-Kuhn-Tucker
(KKT) conditions for the following max-margin problem:

min
W

1

2
∥W∥2F , s.t. yif(W,xi) ≥ 1, ∀i ∈ [n]. (4.1)

• The empirical loss converges to zero at the following rate: LS(W
(t)) = Θ(t−1).

Remark 4.2. In Theorem 4.1, we show that when using the leaky ReLU activation function on nearly
orthogonal training data, gradient descent asymptotically finds a network with a stable rank of Wj

equal to 1. Additionally, we demonstrate that gradient descent will find a network by which all the
training data points share the same normalized margin asymptotically. Moreover, if we assume the
weight matrix converges in direction, then its limit will satisfy the KKT conditions of the max-margin
problem (4.1). Furthermore, we analyze the rate of weight norm increase and the convergence rate of
the stable rank for gradient descent, both of which exhibit a logarithmic dependency in t.

Theorem 4.3 (ReLU Networks). For two-layer neural network defined in (3.1) with ReLU activation
σ(z) = max{0, z}. Assume the training data satisfy R2

min ≥ CR2np for some sufficiently large
constant C. For any δ ∈ (0, 1), if the neural network width m ≥ C log(n/δ), learning rate
η ≤ (CR2

max/nm)−1 and initialization scale σ0 ≤
(
CRmax

√
log(mn/δ)

)−1
, then with probability

at least 1− δ over the random initialization of gradient descent, the trained network satisfies:

• The Frobenious norm and the spectral norm of weight matrix increase to infinity at a logarithmic
rate: ∥W(t)

j ∥F = Θ(log(t)) and ∥W(t)
j ∥2 = Θ(log(t)) for all j ∈ {±1}.

• Throughout the gradient descent trajectory, the stable rank of the weights W(t)
j for all j ∈ {±1}

satisfies,
lim sup
t→∞

∥W(t)
j ∥2F /∥W

(t)
j ∥22 ≤ c,

where c is an absolute constant.
• Gradient descent will find a W(t) such that all the training data points possess the same normalized

margin asymptotically:

lim
t→∞

∣∣yif(W(t)/∥W(t)∥F ,xi)− ykf(W
(t)/∥W(t)∥F ,xk)

∣∣ = 0, ∀i, k ∈ [n].

• The empirical loss converges to zero at the following rate: LS(W
(t)) = Θ(t−1).

Remark 4.4. For ReLU networks, we provide an example in the appendix concerning fully orthogo-
nal training data and prove that the activation pattern during training depends solely on the initial
activation state. Specifically, when training a two-layer ReLU network with gradient descent using
such data, the stable rank of the network’s weight matrix Wj converges to approximately 2. It
is worth noting that this stable rank value is higher than the stable rank achieved by leaky ReLU
networks, which is 1.

Comparison with previous work. One notable related work is Lyu et al. (2021), which also
investigates the implicit bias of two-layer leaky ReLU networks. The main distinction between our
work and Lyu et al. (2021) is the optimization method employed. We utilize gradient descent, whereas
they utilize gradient flow. Additionally, our assumption is that the training data is nearly-orthogonal,
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while they assume the training data is symmetric. Our findings are more closely related to the
work by Frei et al. (2022b), which investigates both gradient flow and gradient decent. In both our
study and Frei et al. (2022b), we examine two-layer neural networks with leaky ReLU activations.
However, they focus on networks trained via gradient flow, while we investigate networks trained
using gradient descent. For the gradient descent approach, Frei et al. (2022b) provide a constant
stable rank upper bound for smoothed leaky ReLU. In contrast, we prove that the stable rank of leaky
ReLU networks converges to 1, aligning with the implicit bias of gradient flow proved in Frei et al.
(2022b). Furthermore, they presented an O(t−1/2) convergence rate for the empirical loss, whereas
our convergence rate is Θ(t−1). Another related work is Lyu and Li (2019), which studied smooth
homogeneous networks trained by gradient descent. Our results on the rate of weight norm increase
and the convergence rate of training loss match those in Lyu and Li (2019), despite the fact that
we study non-smooth homogeneous networks. It is worth noting that Lyu and Li (2019); Lyu et al.
(2021); Frei et al. (2022b) demonstrated that neural networks trained by gradient flow converge to a
Karush-Kuhn-Tucker (KKT) point of the max-margin problem. We do not have such a result unless
we assume the directional convergence of the weight matrix.

5 Overview of Proof Techniques
In this section, we discuss the key techniques we invent in our proofs to analyze the implicit bias of
ReLU and leaky ReLU networks.

5.1 Refined Analysis of Decomposition Coefficient

Signal-noise decomposition, a technique initially introduced by Cao et al. (2022), is used to analyze the
learning dynamics of two-layer convolutional networks. This method decomposes the convolutional
filters into a linear combination of initial filters, signal vectors, and noise vectors, converting the
neural network learning into a dynamical system of coefficients derived from the decomposition. In
this work, we extend the signal-noise decomposition to data-correlated decomposition to facilitate
the analysis of the training dynamic for two-layer fully connected neural networks.

Definition 5.1 (Data-correlated Decomposition). Let w(t)
j,r, j ∈ {±1}, r ∈ [m] be the weights of

first-layer neurons at the t-th iteration of gradient descent. There exist unique coefficients ρ(t)j,r,i such
that

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi. (5.1)

By defining ρ
(t)
j,r,i := ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≤ 0), (5.1) can be further written as

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi +
n∑

i=1

ρ(t)
j,r,i

· ∥xi∥−2
2 · xi. (5.2)

As an extension of the signal-noise decomposition first proposed in Cao et al. (2022) for analyzing
two-layer convolutional networks, data-correlated decomposition defined in Definition 5.1 can be
used to analyze two-layer fully-connected network, where the normalization factors ∥xi∥−2

2 are
introduced to ensure that ρ(t)j,r,i ≈ ⟨w(t)

j,r,xi⟩. This is also inspired by previous works by Lyu and Li
(2019); Frei et al. (2022b), which demonstrate that W converges to a KKT point of the max-margin
problem. This implies that w(∞)

j,r /∥w(∞)
j,r ∥2 can be expressed as a linear combination of the training

data {xi}ni=1, with the coefficient λi corresponding to ρ
(t)
j,r,i in our analysis. This technique does not

rely on the strictly increasing and smoothness properties of the activation function and will serve as
the foundation for our analysis. Let us first investigate the update rule of the coefficient ρ(t)j,r,i, ρ

(t)
j,r,i

.

Lemma 5.2. The coefficients ρ
(t)
j,r,i, ρ

(t)
j,r,i

defined in Definition 5.1 satisfy the following iterative
equations:

ρ
(0)
j,r,i, ρ

(0)
j,r,i

= 0, (5.3)
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ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j), (5.4)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j), (5.5)

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

To study implicit bias, the first main challenge is to generalize the decomposition coefficient analysis
to infinite time. The signal-noise decomposition used in Cao et al. (2022); Kou et al. (2023) requires
early stopping with threshold T ∗ to facilitate their analysis. They only provided upper bounds of
4 log(T ∗) for ρ(t)j,r,i, |ρ(t)j,r,i

| (See Proposition 5.3 in Cao et al. (2022), Proposition 5.2 in Kou et al.

(2023)), and then carried out a two-stage analysis. To obtain upper bounds for ρ(t)j,r,i, |ρ(t)j,r,i
|, they

used an upper bound for |ℓ′(t)i | and directly plugged it into (5.4) and (5.5) to demonstrate that ρ(t)j,r,i

and |ρ(t)
j,r,i

| would not exceed 4 log(T ∗), which is a fixed value related to the early stopping threshold.
Therefore, dealing with infinite time requires new techniques. To overcome this difficulty, we propose
a refined analysis of decomposition coefficients which generalizes Cao et al. (2022)’s technique. We
first give the following key lemma.

Lemma 5.3. For non-negative real number sequence {xt}∞t=0 satisfying

C1 exp(−xt) ≤ xt+1 − xt ≤ C2 exp(−xt), (5.6)

it holds that

log(exp(−x0) + C1 · t) ≤ xt ≤ log(exp(−x0) + C2 exp(C2) · t). (5.7)

We can establish the relationship between (5.4), (5.5) and inequality (5.6) if we are able to express
|ℓ′(t)i | using coefficients ρ

(t)
j,r,i and |ρ(t)

j,r,i
|. To achieve this, we can first approximate ℓ

(t)
i using

the margin yif(W
(t),xi) and then approximate Fj(W

(t)
j ,xi) using the coefficients ρ

(t)
j,r,i. The

approximation is given as follows:

ℓ
(t)
i = Θ(exp(−yif(W

(t),xi))) = Θ
(
exp

(
F−yi

(W
(t)
−yi

,xi)− Fyi
(W(t)

yi
,xi)

))
, (5.8)∣∣∣∣Fj(W

(t)
j ,xi)−

1

m

m∑
r=1

ρ
(t)
j,r,i

∣∣∣∣ ≤ ∑
i′ ̸=i

(
1

m

m∑
r=1

|ρ(t)j,r,i′ |R
−2
minp

)
, (5.9)

From (5.9), one can see that we need to decouple ℓ
(t)
i from |ρ(t)j,r,i′ |(i′ ̸= i). In order to accomplish

this, we also prove the following lemma, which demonstrates that the ratio between
∑m

r=1 |ρ
(t)
j,r,i|

and
∑m

r=1 |ρ
(t)
j,r,i′ |(i′ ̸= i) will maintain a constant order throughout the training process. Here, we

present the lemma for leaky ReLU networks.

Lemma 5.4 (leaky ReLU automatic balance). For two-layer leaky ReLU network defined in (3.1),
for any t ≥ 0, we have

∑m
r=1 |ρ

(t)
j,r,i| ≥ cγ2

∑m
r=1 |ρ

(t)
j,r,i′ | for any j ∈ {±1} and i, i′ ∈ [n], where c

is a constant.

By Lemma 5.4, we can approximate the neural network output using (5.9). This approximation
expresses the output Fj(W

(t)
j ,xi) as a sum of the coefficients ρ(t)j,r,i:

Fj(W
(t)
j ,xi) ≈

1± cγ2R−2
minpn

m

m∑
r=1

ρ
(t)
j,r,i. (5.10)

By combining (5.4), (5.5), (5.8), and (5.10), we obtain the following relationship:

1

m

m∑
r=1

|ρ(t+1)
j,r,i | − 1

m

m∑
r=1

|ρ(t)j,r,i| = Θ
(η∥xi∥22

nm

)
· exp

(
− 1± cγ2R−2

minpn

m

m∑
r=1

|ρ(t)j,r,i|
)
.

This relationship aligns with the form of (5.6), if we set xt =
1±cγ2R−2

minpn

m

∑m
r=1 |ρ

(t)
j,r,i|. Thus, we

can directly apply Lemma 5.3 to gain insights into the logarithmic rate of increase for the average
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magnitudes of the coefficients 1
m

∑m
r=1 |ρ

(t)
j,r,i|, which in turn implies that ∥w(t)

j,r∥2 = Θ(log t) and
∥W(t)∥F = Θ(log t). In the case of ReLU networks, we have the following lemma that provides
automatic balance:

Lemma 5.5 (ReLU automatic balance). For two-layer ReLU network defined in (3.1), there exists a
constant c such that for any t ≥ 0, we have |ρ(t)yi,r,i

| ≥ c|ρ(t)j,r′,i′ | for any j ∈ {±1}, r ∈ S
(0)
i := {r ∈

[m] : ⟨w(0)
yi,r,xi⟩ ≥ 0}, r′ ∈ [m] and i, i′ ∈ [n].

The automatic balance lemma guarantees that the magnitudes of coefficients related to the neurons of
class yi, which are activated by xi during initialization, dominate those of other classes. With the
help of Lemma 5.5, we can get the following approximation for the margin yif(W

(t),xi):

Fyi
(W(t)

yi
,xi)− F−yi

(W
(t)
−yi

,xi) ≈
1± cR−2

minpn

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

. (5.11)

By combining (5.4), (5.5), (5.8) and (5.11), we obtain the following relationship:∑
r∈S

(0)
i

|ρ(t+1)
yi,r,i

| −
∑

r∈S
(0)
i

|ρ(t)yi,r,i
| = Θ

(η∥xi∥22|S
(0)
i |

nm

)
· exp

(
− 1± cR−2

minpn

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

)
,

which precisely matches the form of (5.6) by setting xt =
1±cR−2

minpn

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

. Therefore, we

can directly apply Lemma 5.3 and obtain the logarithmic increasing rate of |ρ(t)yi,r,i
| for r ∈ S

(0)
i .

Consequently, this implies that ∥W(t)∥F = Θ(log t).

5.2 Analysis of Activation Pattern

One notable previous work (Frei et al., 2022b) provided a constant upper bound for the stable rank
of two-layer smoothed leaky ReLU networks trained by gradient descent in their Theorem 4.2. To
achieve a better stable rank bound, we characterize the activation pattern of leaky ReLU network
neurons after a certain threshold time T in the following lemma.

Lemma 5.6 (leaky ReLU activation pattern). Let T = Cη−1nmR−2
max. For two-layer leaky ReLU

network defined in (3.1), for any t ≥ T , it holds that sign(⟨w(t)
j,r,xi⟩) = jyi for any j ∈ {±1} and

r ∈ [m].

Lemma 5.6 indicates that the activation pattern will not change after time T . Given Lemma 5.6, we
can get σ′(⟨w(t)

j,r,xi⟩) = γ for j ̸= yi and σ′(⟨w(t)
j,r,xi⟩) = 1 for j = yi. Plugging this into (5.4)

and (5.5) can give the following useful lemma.

Lemma 5.7. Let T be defined in Lemma 5.6. For t ≥ T , it holds that

ρ
(t)
yi,r,i

− ρ
(T )
yi,r,i

= ρ
(t)
yi,r′,i

− ρ
(T )
yi,r′,i

, ρ(t)−yi,r,i
− ρ(T )

−yi,r,i
= ρ(t)−yi,r′,i

− ρ(T )
−yi,r′,i

,

ρ
(t)
yi,r,i

− ρ
(T )
yi,r,i

= (ρ(t)−yi,r′,i
− ρ(T )

−yi,r′,i
)/γ,

for any i ∈ [n] and r, r′ ∈ [m].

This lemma reveals that beyond a certain time threshold T , the increase in ρ
(t)
j,r,i is consistent across

neurons within the same positive or negative class. However, for neurons belonging to the oppose
class, this increment in ρ

(t)
j,r,i is scaled by a factor equivalent to the slope of the leaky ReLU function

γ. From this and (5.1), we can demonstrate that ∥w(t)
j,r −w

(t)
j,r′∥2(r ̸= r′) can be upper bounded by a

constant, leading to the following inequalities:

∥W(t)
j ∥2F ≤ m∥w(t)

j,1∥
2
2 +mC1∥w(t)

j,1∥2 +mC2, ∥W(t)
j ∥22 ≥ m∥w(t)

j,1∥
2
2 −mC3∥w(t)

j,1∥2 −mC4.

Considering that ∥w(t)
j,r∥2 = Θ(log t), the stable rank of W(t)

j naturally converges to a value of 1.
For ReLU networks, we can partially characterize the activation pattern as illustrated in the following
lemma.
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Lemma 5.8. (ReLU activation pattern) For two-layer ReLU networks defined in (3.1), for any i ∈ [n],
we have S

(t)
i ⊆ S

(t+1)
i for any t ≥ 0, where S

(t)
i := {r ∈ [m] : ⟨w(t)

yi,r,xi⟩ ≥ 0}.

Lemma 5.8 suggests that once the neuron of class yi is activated by xi, it will remain activated
throughout the training process. Leveraging such an activation pattern, we can establish a lower
bound for ∥W(t)

j ∥2 as Ω(log(t)). Together with the trivial upper bound for ∥W(t)
j ∥F of order

O(log(t)), it provides a constant upper bound for the stable rank of ReLU network weight.

5.3 Analysis of Margin and Training Loss

Notably, Lyu and Li (2019) established in their Theorem 4.4 that any limit point of smooth homoge-
neous neural networks f(W,x) trained by gradient descent is along the direction of a KKT point
for the max-margin problem (4.1). Additionally, Lyu and Li (2019) provided precise bounds on the
training loss and weight norm for smooth homogeneous neural networks in their Theorem 4.3 as
follows:

LS(W
(t)) = Θ

( 1

t(log t)2−2/L

)
, ∥W(t)∥F = Θ

(
(log t)1/L

)
,

where L is the order of the homogeneous network satisfying the property f(cW,x) = cLf(W,x)
for all c > 0, W, and x. It is worth noting that the two-layer (leaky) ReLU neural network analyzed
in this paper is 1-homogeneous but not smooth. In Section 5.1, we have already demonstrated that
∥W(t)∥F = Θ(log t), and in this subsection, we will discuss the proof technique employed to show a
convergence rate of Θ(t−1) for the loss and establish the same normalized margin for all the training
data points asymptotically. These results align with those presented by Lyu and Li (2019) regarding
smooth homogeneous networks.
By the nearly orthogonal property, we can bound the increment of margin as follows:

η

5nm
· |ℓ′(t)i | · ∥xi∥22 ≤ yif(W

(t+1),xi)− yif(W
(t),xi) ≤

3η

nm
· |ℓ′(t)i |∥xi∥22. (5.12)

Given (5.8) and (5.12), we can apply Lemma 5.3 and obtain∣∣∣yif(W(t),xi)− log t− log(η∥xi∥22/nm)
∣∣∣ ≤ C3, (5.13)

where C3 is a constant. Utilizing (5.13) and the inequality z − z2/2 ≤ log(1 + z) ≤ z for z ≥ 0, we
can derive:

LS(W
(t)) ≤ 1

n

n∑
i=1

exp
(
− yif(W

(t),xi)
)

≤ 1

n

n∑
i=1

exp
(
− log t− log(η∥xi∥22/nm) + C3

)
= O(t−1),

LS(W
(t)) ≥ 1

n

n∑
i=1

exp
(
− yif(W

(t),xi)
)
− exp

(
− 2yif(W

(t),xi)
)
= Ω(t−1).

To demonstrate that all the training data points attain the same normalized margin as t goes to infinity,
we first observe that (5.12) provides the following bounds for the increment of margin difference:

ykf(W
(t+1),xk)− yif(W

(t+1),xi)

≤ ykf(W
(t),xk)− yif(W

(t),xi) +
3η

nm
· |ℓ′(t)k | · ∥xk∥22 −

η

5nm
· |ℓ′(t)i | · ∥xi∥22.

(5.14)

Now, we consider two cases:

• If the ratio |ℓ′(t)i |/|ℓ′(t)k | is relatively large, then ykf(W
(t),xk)− yif(W

(t),xi) will not increase.

• If the ratio |ℓ′(t)i |/|ℓ′(t)k | is relatively small, then ykf(W
(t),xk) − yif(W

(t),xi) will also be
relatively small. In fact, it can be bounded by a constant due to the fact that |ℓ′(t)i |/|ℓ′(t)k |
can be approximated by exp(ykf(W

(t),xk) − yif(W
(t),xi)). By (5.14), we can show that
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Figure 1: Stable ranks and training loss for different leaky ReLU slopes γ across multiple runs. A
slope of 1 corresponds to linear activation, while a slope of 0 corresponds to ReLU activation. Each
line represents the mean stable rank or training loss for a given leaky ReLU slope, while the shaded
regions indicate the variability of the values (±3 times the standard deviation) across the 5 runs.

ykf(W
(t+1),xk)−yif(W

(t+1),xi) can also be bounded by a constant, provided that the learning
rate η is sufficiently small.

By combining both cases, we can conclude that both |ℓ′(t)i |/|ℓ′(t)k | and ykf(W
(t),xk)−yif(W

(t),xi)
can be bounded by constants. This result is formally stated in the following lemma.

Lemma 5.9. For two-layer neural networks defined in (3.1) with (leaky) ReLU activation, the
following bounds hold for any t ≥ 0:

yif(W
(t),xi)− ykf(W

(t),xk) ≤ C1, ℓ
′(t)
i /ℓ

′(t)
k ≤ C2, (5.15)

for any i, k ∈ [n], where C1, C2 are positive constants.

By Lemma 5.9, which shows that the difference between the margins of any two data points can
be bounded by a constant, and taking into account that ∥W(t)∥F = Θ(log t), we can deduce the
following result:

lim
t→∞

∣∣yif(W(t)/∥W(t)∥F ,xi)− ykf(W
(t)/∥W(t)∥F ,xk)

∣∣ = 0, ∀i, k ∈ [n].

This demonstrates that gradient descent will asymptotically find a neural network in which all the
training data points achieve the same normalized margin.

6 Experiments
In this section, we present simulations of both synthetic and real data to back up our theoretical
analysis in the previous section.

Synthetic-data experiments. Here we generate a synthetic mixture of Gaussian data as follows:
Let µ ∈ Rd be a fixed vector representing the signal contained in each data point. Each data point
(x, y) with predictor x ∈ Rd and label y ∈ {−1, 1} is generated from a distribution D, which we
specify as follows:

1. The label y is generated as a Rademacher random variable, i.e. P[y = 1] = P[y = −1] = 1/2.

2. A noise vector ξ is generated from the Gaussian distribution N (0, σ2
pId). And x is assigned as

y · µ+ ξ where µ is a fixed feature vector.

Specifically, we set training data size n = 10, d = 784 and train the NN with gradient descent
using learning rate 0.1 for 50 epochs. We set µ to be a feature randomly drawn from N (0, 10−4Id).
We then generate the noise vector ξ from the Gaussian distribution N (0, σ2

pI) with fixed standard
deviation σp = 1. We train the FNN model defined in Section 3 with ReLU (or leaky-RelU) activation
function and width m = 100. As we can infer from Figure 1, the stable rank will decrease faster for
larger leaky ReLU slopes and have a smaller value when epoch t → ∞.

Real-data experiments on MNIST dataset. Here we train a two-layer feed-forward neural
network defined in Section 3 with ReLU (or leaky-ReLU) functions. The number of widths is
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Figure 2: Stable ranks and test errors for different weight variances across multiple runs (ReLU
Activation Function). Each line represents the mean stable rank or test accuracy for a given weight
variance, while the shaded regions indicate the variability of the values (±3 times the standard
deviation) across the 5 runs.
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Figure 3: Stable ranks and test errors for different weight variances across multiple runs (leaky-ReLU
Activation Function with slope 0.1). Each line represents the mean stable rank or test accuracy for a
given weight variance, while the shaded regions indicate the variability of the values (±3 times the
standard deviation) across the 5 runs.

set as m = 1000. We use the Gaussian initialization and consider different weight variance
σ0 ∈ {0.00001, 0.00005, 0.0001, 0.0005, 0.001}. We train the NN with stochastic gradient de-
scent with batch size 64 and learning rate 0.1 for 10 epochs. As we can infer from Figures 2 and 3,
the stable rank of ReLU or leaky ReLU networks will largely depend on the initialization and the
training time. When initialization is sufficiently small, the stable rank will quickly decrease to a small
value compared to its initialization values.

7 Conclusion and Future Work
This paper employs a data-correlated decomposition technique to examine the implicit bias of two-
layer ReLU and Leaky ReLU networks trained using gradient descent. By analyzing the training
dynamics, we provide precise characterizations of the weight matrix stable rank limits for both ReLU
and Leaky ReLU cases, demonstrating that both scenarios will yield a network with a low stable rank.
Additionally, we present an analysis for the convergence rate of the loss function. An important future
work is to investigate the directional convergence of the weight matrix in neural networks trained
via gradient descent, which is essential to prove the convergence to a KKT point of the max-margin
problem. Furthermore, it is important to extend our analysis to fully understand the neuron activation
patterns in ReLU networks. Specifically, we will explore whether certain neurons will switch their
activation patterns by an infinite number of times throughout the training or if the activation patterns
stabilize after a certain number of gradient descent iterations.
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A Additional Experiments
In this section, we conduct additional experiments on the nearly orthogonal and MINIST datasets.

A.1 Additional Experiment on Nearly Orthogonal Dataset

In this subsection, we conduct additional experiments on a nearly orthogonal dataset for long epochs
to support our main Theorems 4.1 and 4.3.
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Figure 4: (Left) Stable ranks for different leaky ReLU slopes γ across multiple runs. A slope of
1 corresponds to linear activation, while a slope of 0 corresponds to ReLU activation. Each line
represents the mean stable rank for a given leaky ReLU slope, while the shaded regions indicate the
variability of the values (±3 times the standard deviation) across the 20 runs. The red dashed line
indicates a stable rank of 1. (Right) The difference between stable rank and 1 from the left figure is
visualized on a semilog y-axis.
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Figure 5: fully orthogonal data: (Left) Stable ranks for different leaky ReLU slopes γ across
multiple runs. A slope of 1 corresponds to linear activation, while a slope of 0 corresponds to ReLU
activation. Each line represents the mean stable rank for a given leaky ReLU slope, while the shaded
regions indicate the variability of the values (±3 times the standard deviation) across the 20 runs.
The red dashed line indicates a stable rank of 1. (Right) The difference between stable rank and 1
from the left figure is visualized on a semilog y-axis.

Figure 4: Under the same setting of the synthetic data introduced in Section 6, we train the NN
with full batch gradient descent with a learning rate 0.1 for 1000 epochs. We set µ to be a feature
randomly drawn from N (0, 10−4Id). We then generate the noise vector ξ from the Gaussian
distribution N (0, σ2

pId) with fixed standard deviation σp = 1. We train the FNN model defined in
Section 3 with ReLU (or leaky-ReLU) activation function and width m = 100. As we can see from
Figure 4, the stable rank for the leaky ReLU network with large slopes γ will converge to 1 when
epoch t → ∞. In comparison, the stable rank for the ReLU network will not converge to 1.
Figure 5: To further illustrate the behavior of the ReLU network, we generate the synthetic training
data with fully orthogonal input. Each data point (x, y) with input x ∈ Rd and label y ∈ {−1, 1} is
generated from a distribution D, which we specify as follows:

1. The label y is generated as a Rademacher random variable, i.e., P[y = 1] = P[y = −1] = 1/2.

2. Input x is randomly generated from the basis {e1, e2, . . . , ed}.

Specifically, we set training data size n = 20, d = 40 and train the NN with full batch gradient
descent with a learning rate 0.1 for 1000 epochs. We train the FNN model defined in Section 3 with
ReLU (or leaky-ReLU) activation function and width m = 10000. As we can observe from Figure 5,
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the stable rank for the leaky ReLU network with large slopes γ will converge to 1 when epoch t → ∞.
In comparison, the stable rank for the large-width ReLU network will not converge to 1 but to 2.

A.2 Additional Experiment on MINIST

Our focus is the training of a two-layer feed-forward neural network, as discussed in Section 3,
utilizing either ReLU or leaky-ReLU activation functions. We examine different widths, specifically
choosing from {10, 50, 100, 500, 1000}.
The network initialization process follows a Gaussian distribution, with a variance of σ0 = 0.00001.
Training is executed using stochastic gradient descent, a batch size of 64, and a learning rate of 0.1,
for a total of 10 epochs. As discerned from Figures 6 and 7, the stable rank of networks utilizing
either ReLU or leaky ReLU is weakly influenced by the width. For an exceedingly small width such
as 10, the weight matrix is low rank with a correspondingly small stable rank. However, this also
results in low test accuracy as the network cannot effectively learn all necessary features. As the
width increases, the test accuracy and final stable rank will increase. However, for sufficiently large
widths, an increase in width no longer corresponds to stable rank or test accuracy increases.
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Figure 6: Stable ranks and test errors for different width across multiple runs (ReLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (±3 times the standard deviation) across the 5
runs.
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Figure 7: Stable ranks and test errors for different width across multiple runs (leaky-ReLU Activation
Function). Each line represents the mean stable rank or test error for a given weight variance, while
the shaded regions indicate the variability of the values (±3 times the standard deviation) across the 5
runs.

B Preliminary Lemmas
In this section, we present some pivotal lemmas that illustrate some important properties of the
data and neural network parameters at their random initialization and provide the update rule of
coefficients from data-correlated decomposition.
Now turning to network initialization, the following lemma studies the inner product between a
randomly initialized neural network neuron w

(0)
j,r (j ∈ {±1} and r ∈ [m]) and the training data. The

calculations characterize how the neural network at initialization randomly captures the information
in training data.

14



Lemma B.1. Suppose that d = Ω(log(mn/δ)), m = Ω(log(1/δ)). Then with probability at least
1− δ,

σ2
0d/2 ≤ ∥w(0)

j,r ∥
2
2 ≤ 3σ2

0d/2,

|⟨w(0)
j,r ,xi⟩| ≤

√
2 log(8mn/δ) · σ0Rmax

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Proof of Lemma B.1. First of all, the initial weights w(0)
j,r ∼ N (0, σ0I). By Bernstein’s inequality,

with probability at least 1− δ/(4m) we have∣∣∥w(0)
j,r ∥

2
2 − σ2

0d
∣∣ = O(σ2

0 ·
√
d log(8m/δ)).

Therefore, if we set appropriately d = Ω(log(m/δ)), we have with probability at least 1− δ/2, for
all j ∈ {±1} and r ∈ [m],

σ2
0d/2 ≤ ∥w(0)

j,r ∥
2
2 ≤ 3σ2

0d/2.

Under definition, we have ∥xi∥2 ≤ Rmax for all i ∈ [n]. It is clear that for each j, r, ⟨w(0)
j,r ,µ⟩ is a

Gaussian random variable with mean zero and variance σ2
0∥xi∥22. Therefore, by Gaussian tail bound

and union bound, with probability at least 1− δ/2,

|⟨w(0)
j,r ,xi⟩| ≤

√
2 log(8mn/δ) · σ0Rmax.

Next, we denote S
(0)
i as {r ∈ [m] : ⟨w(0)

yi,r,xi⟩ > 0}. We give a lower bound of |S(0)
i | in the

following two lemmas.

Lemma B.2. Suppose that δ > 0 and m ≥ 50 log(2n/δ). Then with probability at least 1− δ,

0.4m ≤ |S(0)
i | ≤ 0.6m, ∀i ∈ [n].

Proof of Lemma B.2. Note that |S(0)
i | =

∑m
r=1 1[⟨w

(0)
yi,r,xi⟩ > 0] and P (⟨w(0)

yi,r,xi⟩ > 0) = 1/2,
then by Hoeffding’s inequality, with probability at least 1− δ/n, we have∣∣∣∣ |S(0)

i |
m

− 1

2

∣∣∣∣ ≤
√

log(2n/δ)

2m
.

Therefore, as long as m ≥ 50 log(2n/δ), by applying union bound, with probability at least 1− δ,
we have

0.4m ≤ |S(0)
i | ≤ 0.6m, ∀i ∈ [n].

Now we give the update rule of coefficients from data-correlated decomposition. We will begin
by analyzing the coefficients in the data-correlated decomposition in Definition 5.1. The following
lemma presents an iterative expression for the coefficients.

Lemma B.3. (Restatement of Lemma 5.2) The coefficients ρ
(t)
j,r,i, ρ

(t)
j,r,i

defined in Definition 5.1
satisfy the following iterative equations:

ρ
(0)
j,r,i, ρ

(0)
j,r,i

= 0,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j),

for all r ∈ [m], j ∈ {±1} and i ∈ [n].
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Proof of Lemma B.3. First, we iterate the gradient descent update rule (3.2) t times and get

w
(t+1)
j,r = w

(0)
j,r − η

nm

t∑
s=0

n∑
i=1

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · jyixi.

According to the definition of ρ(t)j,r,i, we have

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi.

Therefore, we have the unique representation

ρ
(t)
j,r,i = − η

nm

t∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · ∥xi∥22 · jyi.

Now with the notation ρ
(t)
j,r,i := ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≤ 0) and the fact

ℓ
′(s)
i < 0, we get

ρ
(t)
j,r,i = − η

nm

t∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · ∥xi∥22 · 1(yi = j), (B.1)

ρ(t)
j,r,i

=
η

nm

t∑
s=0

ℓ
′(s)
i · σ′(⟨w(s)

j,r ,xi⟩) · ∥xi∥22 · 1(yi = −j). (B.2)

Writing out the iterative versions of (B.1) and (B.2) completes the proof.

C Coefficient Analysis of Leaky ReLU
In this section, we establish a series of results on the data-correlated decomposition for two-layer
leaky ReLU network defined as

f(W(t),x) = F+1(W
(t)
+1,x)− F−1(W

(t)
−1,x)

=
1

m

m∑
r=1

σ(⟨w(t)
+1,r,x⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−1,r,x⟩),

σ(z) = max{γz, z}, γ ∈ (0, 1).

(C.1)

The results in Section C, D and G are based on Lemma B.1, which hold with high probability. Denote
by Eprelim the event that Lemma B.1 in Section B holds (for a given δ, we see P(Eprelim) ≥ 1− δ).
For simplicity and clarity, we state all the results in Section C, D and G conditional on Eprelim.

Denote β = maxi,j,r{|⟨w(0)
j,r ,xi⟩|}, Rmax = maxi∈[n] ∥xi∥2, Rmin = mini∈[n] ∥xi∥2, p =

maxi̸=k |⟨xi,xk⟩| and suppose R = Rmax/Rmin is at most an absolute constant. Here we list
the exact conditions for η, σ0, Rmin, Rmax, p required by the proofs in this section.

σ0 ≤ γ
(
CRmax

√
log(mn/δ)

)−1
, (C.2)

η ≤ (CR2
max/nm)−1, (C.3)

R2
min ≥ Cr−4R2np, (C.4)

where C is a large enough constant. By Lemma B.1, we can upper bound β by 2
√

log(12mn/δ) ·
σ0Rmax. Then, by (C.2) and (C.4), it is straightforward to verify the following inequality:

β ≤ cγ, (C.5)

γ−4R−2
minnp ≤ c, (C.6)

γ−4R−2
minR

2np ≤ c, (C.7)
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where c is a sufficiently small constant.
Suppose the conditions listed in (C.2) and (C.4) hold, we claim that for any t ≥ 0 the following
property holds.

Lemma C.1. Under the same conditions as Theorem 4.1, for any t ≥ 0, we have that
m∑
r=1

|ρ(t)j,r,i| ≥ c1γ
2

m∑
r=1

|ρ(t)j′,r,i′ |, ∀j, j
′ ∈ {±1}, ∀i, i′ ∈ [n], (C.8)

where c1 is a constant.

To prove Lemma C.1, we divide it into two lemmas, each addressing a specific case: 0 ≤ t ≤ T1

(Lemma C.2) when the logit |ℓ(t)i | = Θ(1), and t ≥ T1 (Lemma C.3) when the logit |ℓ(t)i | is smaller
than constant order. Here, T1 = C ′η−1nmR−2

max, and C ′ is a constant. For each case, we apply
different techniques to establish the proof.

Lemma C.2 (0 ≤ t ≤ T1). Under the same conditions as Theorem 4.1, for any 0 ≤ t ≤ T1 =
C ′η−1nmR−2

max, where C ′ is a constant, we have that

|ρ(t)j,r,i| ≥ c2γ|ρ(t)j′,r′,i′ |, ∀j, j
′ ∈ {±1}, ∀r, r′ ∈ [m], ∀i, i′ ∈ [n], (C.9)

where c2 is a constant.

Proof of Lemma C.2. In this lemma, we first show that (C.8) hold for t ≤ T1 = C ′η−1nmR−2
max

where C ′ = Θ(1) is a constant. Recall from Lemma B.3 that

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j),

we can get
ρ
(t)
−yi,r,i

, ρ(t)
yi,r,i

= 0, (C.10)

and

ρ
(t+1)
yi,r,i

≤ ρ
(t)
yi,r,i

+
η

nm
· ∥xi∥22 ≤ ρ

(t)
yi,r,i

+
ηR2

max

nm
, (C.11)

|ρ(t+1)
−yi,r,i

| ≤ |ρ(t)−yi,r,i
|+ η

nm
· ∥xi∥22 ≤ |ρ(t)−yi,r,i

|+ ηR2
max

nm
. (C.12)

Therefore, we have maxj,r,i{ρ(t)j,r,i, |ρ(t)j,r,i
|} = O(1) for any t ≤ T1 and hence

maxi{F+1(W
(t)
+1,xi), F−1(W

(t)
−1,xi)} = O(1) for any t ≤ T1. Thus there exists a positive constant

c̃ such that |ℓ′(t)i | ≥ c̃ for any t ≤ T1. And it follows for any j ∈ {±1}, r ∈ [m], i ∈ [n] that

|ρ(t+1)
j,r,i | ≥ |ρ(t)j,r,i|+

γη

nm
· |ℓ′(t)i | · ∥xi∥22 ≥ |ρ(t)j,r,i|+

c̃γη

nm
· ∥xi∥22, ∀ 0 ≤ t ≤ T1,

|ρ(t)j,r,i| ≥
c̃γηt

nm
· ∥xi∥22 ≥ c̃γηR2

mint

nm
, ∀ 0 ≤ t ≤ T1. (C.13)

On the other hand, by (C.10), (C.11) and (C.12), we have for any j′ ∈ {±1}, r′ ∈ [m], i′ ∈ [n] that

|ρ(t)j′,r′,i′ | ≤
ηR2

maxt

nm
, ∀ 0 ≤ t ≤ T1. (C.14)

Dividing (C.14) by (C.13), we can get for any j, j′ ∈ {±1}, r, r′ ∈ [m], i, i′ ∈ [n] that

|ρ(t)j,r,i| ≥
c̃γR2

min

R2
max

|ρ(t)j′,r′,i′ |,

which indicates that the first bullet holds for time t ≤ T1 as long as c2 ≤ c̃R2
minR

−2
max.
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Lemma C.3 (t ≥ T1). Let T1 be defined in Lemma C.2. Under the same conditions as Theorem 4.1,
for any t ≥ T1, we have that

m∑
r=1

|ρ(t)j,r,i| ≥ c3γ
2

m∑
r=1

|ρ(t)j′,r,i′ |, ∀j, j
′ ∈ {±1}, ∀i, i′ ∈ [n], (C.15)

where c3 = Θ(1) is a constant. Moreover, we also have the following increasing rate estimation of
|ρ(t)yi,r,i

|, |ρ(t)−yi,r,i
|:

• 1
m

∑m
r=1 ρ

(t)
yi,r,i

≤ c−1
4 log

(
1 +

η∥xi∥2
2c4e

2β

nm · t
)

,

• 1
m

∑m
r=1 |ρ

(t)
−yi,r,i

| ≤ c−1
5 γ−1 log

(
1 +

γη∥xi∥2
2c5e

2β

nm · t
)

,

• 1
m

∑m
r=1 ρ

(t)
yi,r,i

≥ c−1
6 log

(
1 +

γη∥xi∥2
2c6e

−(γ+1)β

nm · t
)

,

• 1
m

∑m
r=1 |ρ

(t)
−yi,r,i

| ≥ c−1
6 γ log

(
1 +

η∥xi∥2
2c6e

−(γ+1)β

nm · t
)

,

where c4, c5, c6 are constants.

Proof of Lemma C.3. We prove this lemma by induction. By Lemma C.2, we know that (C.15) holds
for time t = T1 as long as c3 ≤ c2. Suppose that there exists t̃ > T1 such that (C.15) holds for all
time 0 ≤ t ≤ t̃− 1. We aim to prove that they also hold for t = t̃. For any 0 ≤ t ≤ t̃− 1, we have

Fyi(W
(t)
yi
,xi) =

1

m

m∑
r=1

σ(⟨w(t)
yi,r,xi⟩)

≥ 1

m

m∑
r=1

⟨w(t)
yi,r,xi⟩

=
1

m

m∑
r=1

(
⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

)

≥ 1

m

m∑
r=1

(
ρ
(t)
yi,r,i

−
∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp

)
− β

=
1

m

m∑
r=1

ρ
(t)
yi,r,i

−
∑
i′ ̸=i

(
1

m

m∑
r=1

ρ
(t)
yi,r,i′

)
R−2

minp− β

≥ 1− γ−2c−1
3 R−2

minpn

m

m∑
r=1

ρ
(t)
yi,r,i

− β,

(C.16)

where the first inequality is by σ(z) ≥ z; the second equality is by (5.1); the third inequality is
by triangle inequality and the definition of β, p,Rmin; the fourth inequality is by the induction
hypothesis (C.15). Besides, for any 0 ≤ t ≤ t̃ − 1, we also have the following upper bound of
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Fyi
(W

(t)
yi ,xi):

Fyi(W
(t)
yi
,xi) =

1

m

m∑
r=1

σ(⟨w(t)
yi,r,xi⟩)

=
1

m

m∑
r=1

σ

(
⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

)

≤ 1

m

m∑
r=1

σ

(
ρ
(t)
yi,r,i

+
∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp+ β

)

=
1

m

m∑
r=1

(
ρ
(t)
yi,r,i

+
∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp+ β

)

=
1

m

m∑
r=1

ρ
(t)
yi,r,i

+
∑
i′ ̸=i

(
1

m

m∑
r=1

ρ
(t)
yi,r,i′

)
R−2

minp+ β

≤ 1 + γ−2c−1
3 R−2

minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+ β,

(C.17)

where the first inequality is by triangle inequality and the definition of β, p,Rmin; the second
inequality is by the induction hypothesis (C.15). On the other hand, for any 0 ≤ t ≤ t̃, we can give
following upper and lower bounds for F−yi

(W
(t)
−yi

,xi) by applying similar arguments like (C.16)
and (C.17):

F−yi
(W

(t)
−yi

,xi) ≥
γ

m

m∑
r=1

⟨w(t)
−yi,r,xi⟩

≥ γ

m

m∑
r=1

(
ρ
(t)
−yi,r,i

−
∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp− β

)
,

≥ γ(1 + γ−2c−1
3 R−2

minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

− γβ, (C.18)

and

F−yi(W
(t)
−yi

,xi) ≤
1

m

m∑
r=1

σ

(
ρ
(t)
−yi,r,i

+
∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp+ β

)

≤ 1

m

m∑
r=1

[
σ(ρ

(t)
−yi,r,i

) + σ
(∑

i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp
)
+ σ(β)

]

=
γ

m

m∑
r=1

ρ
(t)
−yi,r,i

+
∑
i′ ̸=i

(
1

m

m∑
r=1

|ρ(t)−yi,r,i
|
)
+ β

=
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

+ β, (C.19)

where the second inequality is by a property of leaky ReLU function that σ(a + b) ≤ σ(a) +
σ(b), ∀a, b ∈ R.

19



Next, we can bound |ℓ′(t)i | for 0 ≤ t ≤ t̃− 1:

|ℓ′(t)i |

=
1

1 + exp{Fyi(W
(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi)}

≤ exp{−Fyi(W
(t)
yi
,xi) + F−yi(W

(t)
−yi

,xi)}

≤ exp

{
− 1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

+ 2β

}
,

(C.20)
where the second inequality is by (C.16) and (C.19). And

|ℓ′(t)i |

=
1

1 + exp{Fyi(W
(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi)}

≥ 1

1 + exp
{

1+γ−2c−1
3 R−2

minpn

m

∑m
r=1 ρ

(t)
yi,r,i

− γ(1+γ−2c−1
3 R−2

minpn)

m

∑m
r=1 ρ

(t)
−yi,r,i

+ (γ + 1)β
}

≥ 1

2
exp

{
− 1 + γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+
γ(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

− (γ + 1)β

}
,

(C.21)
where the first inequality is by (C.17) and (C.18); the last inequality is by 1/(1 + exp(z)) ≥
exp(−z)/2 if z ≥ 0. By (C.20), we can get for 0 ≤ t ≤ t̃− 1 that

|ℓ′(t)i | ≤ exp

{
− 1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

+ 2β

}
, (C.22)

|ℓ′(t)i | ≤ exp

{
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

+ 2β

}
. (C.23)

By (C.21) and γρ
(t)
yi,r,i

≤ |ρ(t)−yi,r,i
| ≤ γ−4ρ

(t)
yi,r,i

, we can get for 0 ≤ t ≤ t̃− 1 that

|ℓ′(t)i | ≥ 1

2
exp

{
− 2(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
yi,r,i

− (γ + 1)β

}
, (C.24)

|ℓ′(t)i | ≥ 1

2
exp

{
(γ−1 + γ)(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
−yi,r,i

− (γ + 1)β

}

≥ 1

2
exp

{
2(1 + γ−2c−1

3 R−2
minpn)

γm

m∑
r=1

ρ
(t)
−yi,r,i

− (γ + 1)β

}
. (C.25)

By (5.4), (5.5) and σ′ ∈ [γ, 1], we have for 0 ≤ t ≤ t̃− 1 that

ρ
(t+1)
yi,r,i

≤ ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22,

ρ
(t+1)
yi,r,i

≥ ρ
(t)
yi,r,i

+
γη

nm
· |ℓ′(t)i | · ∥xi∥22,

|ρ(t+1)
−yi,r,i

| ≤ |ρ(t)−yi,r,i
|+ η

nm
· |ℓ′(t)i | · ∥xi∥22,

|ρ(t+1)
−yi,r,i

| ≥ |ρ(t)−yi,r,i
|+ γη

nm
· |ℓ′(t)i | · ∥xi∥22.

(C.26)
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By plugging (C.22), (C.24), (C.23) and (C.25) into (C.26), we have for 0 ≤ t ≤ t̃− 1 that
m∑
r=1

ρ
(t+1)
yi,r,i

≤
m∑
r=1

ρ
(t)
yi,r,i

+
η∥xi∥22e2β

n
· exp

{
− 1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

}
, (C.27)

m∑
r=1

|ρ(t+1)
−yi,r,i

| ≤
m∑
r=1

|ρ(t)−yi,r,i
|+ η∥xi∥22e2β

n
· exp

{
− γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

|ρ(t)−yi,r,i
|
}
,

(C.28)
m∑
r=1

ρ
(t+1)
yi,r,i

≥
m∑
r=1

ρ
(t)
yi,r,i

+
γη∥xi∥22e−(γ+1)β

2n
· exp

{
− 2(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
yi,r,i

}
,

(C.29)
m∑
r=1

|ρ(t+1)
−yi,r,i

| ≥
m∑
r=1

|ρ(t)−yi,r,i
|+ γη∥xi∥22e−(γ+1)β

2n
· exp

{
− 2(1 + γ−2c−1

3 R−2
minpn)

γm

m∑
r=1

|ρ(t)−yi,r,i
|
}
.

(C.30)

By applying Lemma H.1 to (C.27) and taking

xt =
1− γ−2c−1

3 R−2
minpn

m

m∑
r=1

ρ
(t)
yi,r,i

,

we can get for 0 ≤ t ≤ t̃ that

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ c−1
4 log

(
1 +

η∥xi∥22c4e2β

nm
exp

{
η∥xi∥22c4e2β

nm

}
· t
)

≤ c−1
4 log

(
1 +

η∥xi∥22c4e2β

nm
· t
)
,

(C.31)

where c4 := 1 − γ−2c−1
3 R−2

minpn and the last inequality is by η ≤ (CR2
max/nm)−1 and C is a

sufficiently large constant.
By applying Lemma H.1 to (C.28) and taking

xt =
γ(1− γ−3c−1

3 R−2
minpn)

m

m∑
r=1

|ρ(t)−yi,r,i
|,

we can get for 0 ≤ t ≤ t̃ that

1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≤ c−1

5 γ−1 log

(
1 +

γη∥xi∥22c5e2β

nm
exp

{
γη∥xi∥22c5e2β

nm

}
· t
)

≤ c−1
5 γ−1 log

(
1 +

γη∥xi∥22c5e2β

nm
· t
)
,

(C.32)

where c5 := 1 − γ−3c−1
3 R−2

minpn and the last inequality is by η ≤ (CR2
max/nm)−1 and C is a

sufficiently large constant.
By applying Lemma H.2 to (C.29) and taking

xt =
2(1 + γ−2c−1

3 R−2
minpn)

m

m∑
r=1

ρ
(t)
yi,r,i

,

we can get
1

m

m∑
r=1

ρ
(t)
yi,r,i

≥ (2c6)
−1 log

(
1 +

γη∥xi∥22c6e−(γ+1)β

nm
· t
)
, (C.33)

where c6 := 1 + γ−2c−1
3 R−2

minpn.
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By applying Lemma H.2 to (C.30) and taking

xt =
2(1 + γ−4c−1

3 R−2
minpn)

γm

m∑
r=1

|ρ(t)−yi,r,i
|,

we can get
1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≥ (2c6)

−1γ log

(
1 +

η∥xi∥22c6e−(γ+1)β

nm
· t
)
, (C.34)

where c6 := 1 + γ−2c−1
3 R−2

minpn.
In order to apply Lemma H.4 (requiring b > a), we loosen the bounds in (C.31), (C.32), (C.33) and
(C.34) as follows:

1

m

m∑
r=1

ρ
(t)
yi,r,i

≤ c−1
4 γ−1 log

(
1 +

γηR2
maxc5e

2β

nm
· t
)
, ∀ 0 ≤ t ≤ t̃, (C.35)

1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≤ c−1

4 γ−1 log

(
1 +

γηR2
maxc5e

2β

nm
· t
)
, ∀ 0 ≤ t ≤ t̃, (C.36)

1

m

m∑
r=1

ρ
(t)
yi,r,i

≥ (2c6)
−1γ log

(
1 +

ηR2
minc6e

−(γ+1)β

nm
· t
)
, ∀ 0 ≤ t ≤ t̃, (C.37)

1

m

m∑
r=1

|ρ(t)−yi,r,i
| ≥ (2c6)

−1γ log

(
1 +

ηR2
minc6e

−(γ+1)β

nm
· t
)
, ∀ 0 ≤ t ≤ t̃, (C.38)

where (C.35) is by Bernoulli’s inequality that 1+γ−1x ≤ (1+x)γ
−1

for every real number 0 ≤ r ≤ 1
and x ≥ −1; (C.37) is by Bernoulli’s inequality that 1 + γx ≥ (1 + x)γ for every real number
0 ≤ r ≤ 1 and x ≥ −1. If R2

minc6e
−(γ+1)β ≥ γR2

maxc5e
2β , we have

1

m

m∑
r=1

|ρ(t)j,r,i| ≥
γ2(2c6)

−1c4
m

m∑
r=1

|ρ(t)j′,r,i′ |. (C.39)

If R2
minc6e

−(γ+1)β < γR2
maxc5e

2β , by Lemma H.4, we have

min{ 1
m

∑m
r=1 ρ

(t)
yi,r,i

, 1
m

∑m
r=1 |ρ

(t)
−yi,r,i

|}

max{ 1
m

∑m
r=1 ρ

(t)
yi′ ,r,i

′ , 1
m

∑m
r=1 |ρ

(t)
−yi′ ,r,i

′ |}

≥ γ2(2c6)
−1c4 ·

log
(
1 +

ηR2
minc6e

−(γ+1)β

nm · t
)

log
(
1 +

γηR2
maxc5e

2β

nm · t
)

≥ γ2(2c6)
−1c4 ·

log
(
1 +

ηR2
minc6e

−(γ+1)β

nm · T1

)
log

(
1 +

γηR2
maxc5e

2β

nm · T1

)
≥ γ2(2c6)

−1c4 ·
log(1 +R−2c6e

−(γ+1)βC ′)

log(1 + γc5e2βC ′)
.

Therefore, we can get for 0 ≤ t ≤ t̃ that
m∑
r=1

|ρ(t)j,r,i| ≥ γ2c3

m∑
r=1

|ρ(t)j′,r,i′ |, ∀j, j
′ ∈ {±1}, ∀i, i′ ∈ [n], (C.40)

as long as

c3 ≤ (2c6)
−1c4 ·min

{
1,

log(1 +R−2c6e
−(γ+1)βC ′)

log(1 + γc5e2βC ′)

}
.
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This condition holds under the following conditions:

γ−3c−1
3 R−2

minpn ≤ 1

2
=⇒ c4, c5 ≥ 1

2
, c6 ≤ 3

2
,

c3 =
1

6
min

{
1,

log(1 +R−2e−(γ+1)βC ′)

log(1 + γe2βC ′)

}
.

This implies that induction hypothesis (C.15) holds for t = t̃.

Lemma C.4 (Implication of Lemma C.1). Under the same condition as Theorem 4.1, if (C.8) hold
for time t, then we have that

|ρ(t)j,r,i| ≥ c1γ
4|ρ(t)j′,r′,i′ |,

where c1 is the same constant as defined in Lemma C.1.

Proof of Lemma C.4. By σ′ ∈ [γ, 1], (5.4) and (5.5), we have

|ρ(t+1)
j,r,i | ≥ |ρ(t)j,r,i|+

γη

nm
· |ℓ′(t)i | · ∥xi∥22, ∀j ∈ {±1}, ∀r ∈ [m], ∀i ∈ [n],

|ρ(t+1)
j,r,i | ≤ |ρ(t)j,r,i|+

η

nm
· |ℓ′(t)i | · ∥xi∥22, ∀j ∈ {±1}, ∀r ∈ [m], ∀i ∈ [n].

Thus, we have

|ρ(t)j,r,i| ≥
γη∥xi∥22

nm
·
t−1∑
s=1

|ℓ′(t)i |, ∀j ∈ {±1}, ∀r ∈ [m], ∀i ∈ [n],

|ρ(t)j,r,i| ≤
η∥xi∥22
nm

·
t−1∑
s=1

|ℓ′(t)i |, ∀j ∈ {±1}, ∀r ∈ [m], ∀i ∈ [n].

Therefore, |ρ(t)j,r,i| ≥ γ|ρ(t)j′,r′,i| for any j, j′ ∈ {±1}, r′, r ∈ [m] and i ∈ [n], and hence

m|ρ(t)j,r,i| ≥ γ

m∑
r=1

|ρ(t)j,r,i|,

m∑
r=1

|ρ(t)j′,r,i′ | ≥ mγ|ρ(t)j′,r′,i′ |.
(C.41)

Plugging (C.41) back into (C.8) completes the proof.

Lemma C.5. Let T1 be defined in Lemma C.2. Every neuron will never change its activation pattern
after time T1, i.e.,

sign(⟨w(t)
j,r,xi⟩) = sign(⟨w(T1)

j,r ,xi⟩),
for any t ≥ T1, j ∈ {±1} and r ∈ [m]. Moreover, it holds that

sign(⟨w(t)
j,r,xi⟩) = jyi, (C.42)

for any t ≥ T1, j ∈ {±1} and r ∈ [m].

Proof of Lemma C.5. For j = yi and t ≥ 0, we have ρ(t)
j,r,i

= 0, and so

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+
n∑

i′=1

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

= ⟨w(0)
j,r ,xi⟩+ ρ

(t)
j,r,i +

∑
i′ ̸=i

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

≥ ρ
(t)
j,r,i −

∑
i′ ̸=i

|ρ(t)j,r,i′ |R
−2
minp− β
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≥ ρ
(t)
j,r,i − γ−4c−1

1 ρ
(t)
j,r,iR

−2
minpn− β

= (1− γ−4c−1
1 R−2

minpn) · ρ
(t)
j,r,i − β,

where the first inequality is by triangle inequality; the second inequality is by |ρ(t)j,r,i′ | ≤ γ−4c−1
1 ρ

(t)
yi,r,i

from Lemma C.1 and Lemma C.4.
By (C.13), we have for t ≥ T1 that

ρ
(t)
yi,r,i

≥ c̃γηR2
minT1

nm
= C ′c̃γR2

minR
−2
max. (C.43)

Therefore, by (C.5), (C.6) and (C.43), we know that

(1− γ−1c−4
1 R−2

minpn) · ρ
(t)
yi,r,i

> β, ∀ r ∈ [m], i ∈ [n].

and thus sign(⟨w(t)
j,r,xi⟩) = 1 for any r ∈ [m], i ∈ [n], j = yi.

For j ̸= yi and any t ≥ 0, we have ρ
(t)
j,r,i = 0, and so

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+
n∑

i′=1

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

= ρ(t)
j,r,i

+
∑
i′ ̸=i

ρ
(t)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩

≤ ρ(t)
j,r,i

+
∑
i′ ̸=i

|ρ(t)j,r,i′ |R
−2
minp+ β

≤ ρ(t)
j,r,i

− γ−1c−1
2 ρ(t)

j,r,i
R−2

minpn− β

= (1− γ−1c−1
2 R−2

minpn)ρ
(t)
j,r,i

− β,

where the first inequality is by triangle inequality; the second inequality is by |ρ(t)j,r,i′ | ≤
γ−4c−1

1 |ρ(t)−yi,r,i
| from Lemma C.1 and Lemma C.4.

By (C.13), we have

|ρ(t)−yi,r,i
| ≥ c̃γηR2

minT1

nm
= C ′c̃γR2

minR
−2
max. (C.44)

Therefore, by (C.5), (C.6) and (C.44), we know that

(1− γ−4c−1
1 R−2

minpn) · |ρ
(t)
−yi,r,i

| > β, ∀ r ∈ [m], i ∈ [n],

and thus sign(⟨w(t)
j,r,xi⟩) = −1 for j ̸= yi, which completes the proof.

D Stable Rank of Leaky ReLU Network

In this section, we consider the properties of stable rank of the weight matrix W(t) found by gradient
descent at time t, defined as ∥W(t)∥2F /∥W(t)∥22, the square of the ratio of the Frobenius norm to
the spectral norm of W(t). Given Lemma C.5, we have following coefficient update rule for t ≥ T1

where T1 is defined in Lemma C.2:

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22, (D.1)

ρ(t+1)
−yi,r,i

= ρ(t)−yi,r,i
− γη

nm
· |ℓ′(t)i | · ∥xi∥22, (D.2)

where
|ℓ′(t)i | = 1

1 + exp{Fyi
(W

(t)
yi ,xi)− F−yi

(W
(t)
−yi

,xi)}
.

Based on (D.1) and (D.2), we first introduce the following helpful lemmas.
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Lemma D.1. Let T1 be defined in Lemma C.3. For any r, r′ ∈ [m], i ∈ [n] and t ≤ T1,

|ρ(t)yi,r,i
− ρ

(t)
yi,r′,i

| ≤ C ′, |ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

| ≤ C ′. (D.3)

Proof of Lemma D.1. By (C.14), we can get

|ρ(t)j,r,i| ≤
ηR2

maxT1

nm
= C ′,

for t ≤ T1. Notice that

|ρ(t)yi,r,i
− ρ

(t)
yi,r′,i

| ≤ max{|ρ(t)yi,r,i
|, |ρ(t)yi,r′,i

|},

|ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

| ≤ max{|ρ(t)−yi,r,i
|, |ρ(t)−yi,r′,i

|},

which completes the proof.

Lemma D.2. Let T1 be defined in Lemma C.3. For any r, r′ ∈ [m], i ∈ [n] and t ≥ T1,

|ρ(t)yi,r,i
− ρ

(t)
yi,r′,i

| ≤ C ′, |ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

| ≤ C ′.

Proof of Lemma D.2. By (D.1) and (D.2), we can get for any r ∈ [m], i ∈ [n] and t ≥ T1 that

ρ
(t)
yi,r,i

= ρ
(T1)
yi,r,i

+
η

nm

t−1∑
s=T1

|ℓ′(t)i | · ∥xi∥22,

ρ(t)−yi,r,i
= ρ(T1)

−yi,r,i
+

η

nm

t−1∑
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|ℓ′(t)i | · ∥xi∥22.

Since ρ
(t)
yi,r,i

, ρ
(t)
yi,r′,i

possess the same increment and ρ(t)−yi,r,i
, ρ

(t)
−yi,r′,i

possess the same increment,
we have

ρ
(t)
yi,r,i

− ρ
(t)
yi,r′,i

= ρ
(T1)
yi,r,i

− ρ
(T1)
yi,r′,i

,

ρ(t)−yi,r,i
− ρ(t)−yi,r′,i

= ρ(T1)
−yi,r,i

− ρ(T1)
−yi,r′,i

.

Notice that

max
i,r,r′

{|ρ(T1)
yi,r,i

− ρ
(T1)
yi,r′,i

|, |ρ(T1)
−yi,r,i

− ρ(T1)
−yi,r′,i

|} ≤ max
i,r,r′

{|ρ(T1)
yi,r,i

|, |ρ(T1)
−yi,r,i

|} ≤ C ′,

which completes the proof.

Lemma D.3. Let T1 be defined in Lemma C.3. For t ≥ T1, it holds that

ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

= ρ
(t)
yi,r′,i

− ρ
(T1)
yi,r′,i

,

ρ(t)−yi,r,i
− ρ(T1)

−yi,r,i
= ρ(t)−yi,r′,i

− ρ(T1)
−yi,r′,i

,

ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

=
(
|ρ(t)−yi,r′,i

| − |ρ(T1)
−yi,r′,i

|
)
/γ,

for any i ∈ [n] and r, r′ ∈ [m].

Proof of Lemma D.3. By Lemma C.3 about the activation pattern after time T1, we can get

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22, (D.4)

ρ(t+1)
−yi,r,i

= ρ(t)−yi,r,i
− γη

nm
· |ℓ′(t)i | · ∥xi∥22, (D.5)

for t ≥ T1. Recursively using (D.4) and (D.5) t− T1 times, we can get

ρ
(t)
yi,r,i

− ρ
(T1)
yi,r,i

=
η∥xi∥22
nm

t−1∑
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|ℓ′(s)i |,

25



|ρ(t)−yi,r,i
| − |ρ(T1)

−yi,r,i
| = γη∥xi∥22

nm

t−1∑
s=T1

|ℓ′(s)i |.

This indicates that for different r, r′ ∈ [m], ρ(t)yi,r,i
−ρ

(T1)
yi,r,i

and ρ
(t)
yi,r′,i

−ρ
(T1)
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γ(|ρ(t)−yi,r,i
| − |ρ(T1)

−yi,r,i
)| and ρ

(t)
yi,r′,i

− ρ
(T1)
yi,r′,i

are the same, which completes the proof.

Now we are ready to prove the second bullet of Theorem 4.1.

Lemma D.4. Throughout the gradient descent trajectory, the stable rank of the weights Wj satisfies,

lim
t→∞

∥Wj∥2F
∥Wj∥22

= 1, ∀j ∈ {±1},

with a decreasing rate of O
(
1/ log(t)

)
.

Proof of Lemma D.4. By Definition 5.1, we have

w
(t)
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ρ
(t)
j,r,i · ∥xi∥−2

2 · xi︸ ︷︷ ︸
:=v
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.

We first show that ∥v(t)
j,r∥2 = Θ(log t).
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2
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j,r,i′∥xi∥−2
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∑
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where the second last inequality is by triangle inequality; the last inequality is by |ρ(t)j,r,i| ≤
γ−4c−1

1 |ρ(t)j,r,i′ | from Lemma C.1 and Lemma C.4.

By the definition of v(t)
j,r, we have
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where the first inequality is by Lemma D.1 and Lemma D.2.
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Now, we are ready to estimate the stable rank of W(t). On the one hand, for ∥W(t)
j ∥2F , we have
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where the first inequality is by triangle inequality and Cauchy inequality; the last inequality is by
Lemma D.1, Lemma D.2 and taking
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On the other hand, for ∥W(t)
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j,1∥2

〉
·
〈
v
(t)
j,r,

v
(t)
j,1

∥v(t)
j,1∥2

〉

≥
∑
r

〈
v
(t)
j,r,

v
(t)
j,1

∥v(t)
j,1∥2

〉2

−
∑
r

∥w(0)
j,r ∥

2
2 −

∑
r

∥w(0)
j,r ∥2∥v

(t)
j,r∥2

≥ m∥v(t)
j,1∥

2
2 + 2

∑
r

∥v(t)
j,1∥2 ·

〈
v
(t)
j,r − v

(t)
j,1,

v
(t)
j,1

∥v(t)
j,1∥2

〉
+

∑
r

〈
v
(t)
j,r − v

(t)
j,1,

v
(t)
j,1

∥v(t)
j,1∥2

〉2

−
∑
r

∥w(0)
j,r ∥

2
2 −

∑
r

∥w(0)
j,r ∥2

(
∥v(t)

j,1∥2 + ∥v(t)
j,r − v

(t)
j,1∥2

)
≥ m∥v(t)

j,1∥
2
2 −

(∑
r

2∥v(t)
j,r − v

(t)
j,1∥2 + ∥w(0)

j,r ∥2
)
· ∥v(t)

j,1∥2

−
(∑

r

∥w(0)
j,r ∥

2
2 + ∥w(0)

j,r ∥2∥v
(t)
j,r − v

(t)
j,1∥2

)
≥ m∥v(t)

j,1∥
2
2 −mC3∥v(t)

j,1∥2 −mC4

where the first inequality is by taking x = v
(t)
j,1/∥v

(t)
j,1∥2; the second inequality is by Cauchy

inequality; the third inequality by breaking v
(t)
j,r down into v

(t)
j,1 + v

(t)
j,r − v

(t)
j,1 and then expanding the
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first term as well as applying triangle inequality to the last term; the fourth inequality is by Cauchy
inequality; the last inequality is by Lemma D.1, Lemma D.2 and taking

C3 = 1.5σ0

√
d+ 3C ′√nR−1

min,

C4 = 1.5σ2
0d+ 3C ′σ0

√
d
√
nR−1

min.

By leverage the upper bound of ∥W(t)
j ∥2F as well as the lower bound of ∥W(t)

j ∥22, we can get

∥W(t)
j ∥2F

∥W(t)
j ∥22

≤
∥v(t)

j,1∥22 + C1∥v(t)
j,1∥2 + C2

∥v(t)
j,1∥22 − C3∥v(t)

j,1∥2 − C4

.

Since ∥W(t)
j ∥2F /∥W

(t)
j ∥22 ≥ 1, ∥v(t)

j,1∥2 = Θ(log t) and C1, C2, C3, C4 are constants, it follow that

lim
t→∞

∥W(t)
j ∥2F

∥W(t)
j ∥22

= 1,

and

∥W(t)
j ∥2F

∥W(t)
j ∥22

− 1 ≤
(C1 + C3)∥v(t)

j,1∥2 + (C2 + C4)

∥v(t)
j,1∥22 − C3∥v(t)

j,1∥2 − C4

⪯ C1 + C3

∥v(t)
j,1∥2

≤ 6(C ′√nR−1
min + σ0

√
d)

∥v(t)
j,1∥2

= Θ
(√nR−1

min + σ0

√
d

√
nR−1

max log(t)

)
= Θ

(1 + σ0

√
d/nRmax

log(t)

)
,

which completes the proof.

E Coefficient Analysis of ReLU
In this section, we discuss the stable rank of two-layer ReLU neural network, which is defined as

f(W,x) = F+1(W+1,x)− F+1(W+1,x),

Fj(Wj ,x) =
1

m

m∑
r=1

σ(⟨wj,r,x⟩),
(E.1)

where σ(z) = max{0, z} is ReLU activation function.
These results are based on the conclusions in Section B, which hold with high probability. Denote by
E ′
prelim the event that all the results in Section B hold (for a given δ, we see P(E ′

prelim) ≥ 1− 2δ by a
union bound). For simplicity and clarity, we state all the results in this and the following sections
conditional on E ′

prelim.

Denote β = maxi,j,r{|⟨w(0)
j,r ,xi⟩|}, Rmax = maxi∈[n] ∥xi∥2, Rmin = mini∈[n] ∥xi∥2, p =

maxi̸=k |⟨xi,xk⟩| and suppose R = Rmax/Rmin is at most an absolute constant. Here we list
the exact conditions for η, σ0, Rmin, Rmax, p required by the proofs in this section:

σ0 ≤
(
CRmax

√
log(mn/δ)

)−1
, (E.2)

η ≤ (CR2
max/nm)−1, (E.3)

R2
min ≥ CR2np, (E.4)
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where C is a large enough constant. By Lemma B.1, we can upper bound β by 2
√

log(12mn/δ) ·
σ0Rmax. Then, by (C.2) and (C.4), it is straightforward to verify the following inequality:

β ≤ c, (E.5)

R−2
minnp ≤ c, (E.6)

R−2
minR

2np ≤ c, (E.7)

where c is a sufficiently small constant.
We first introduce the following lemma which characterizes the increasing rate of coefficients ρ(t)j,r,i.

Lemma E.1. For two-layer ReLU neural network defined in (E.1), under the same condition as
Theorem 4.3, the decomposition coefficients ρ(t)j,r,i satisfy following properties:

• ρ
(t)
yi,r,i

≥ c1|ρ(t)j,r′,i′ | for any r ∈ S
(0)
i , r′ ∈ [m], j ∈ {±1} and i, i′ ∈ [n],

• ρ
(t)
yi,r,i

≥ c2 log
(
1 +

η|S(0)
i |∥xi∥2

2e
−β

2nm2 · t
)

for any r ∈ S
(0)
i and i ∈ [n],

• ρ
(t)
yi,r,i

≤ c3 log
(
1 +

2η|S(0)
i |∥xi∥2

2e
2β

nm2 · t
)

for any r ∈ S
(0)
i and i ∈ [n],

where c1, c2, c3 are constants. And the following activation pattern is also observed: S(0)
i ⊆ S

(t)
i

where S
(t)
i := {r ∈ [m] : ⟨w(t)

yi,r,xi⟩ ≥ 0}, i.e., the on-diagonal neuron activated at initialization
will remain activated throughout the training.

Proof of Lemma E.1. We first show that the first bullet and S
(0)
i ⊆ S

(t)
i hold for t ≤ T1 =

Cη−1nmR−2
max where C = Θ(1) is a constant. Now we prove this by induction. When t = 0,

the two hypotheses hold naturally. Suppose that there exists time t̃ ≤ T1 such that the two hypotheses
hold for all time t ≤ t̃− 1. We aim to prove they also hold for t = t̃. Recall from Lemma B.3 that

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 · 1(yi = −j),

we can get

ρ
(t+1)
j,r,i ≤ ρ

(t)
j,r,i +

η

nm
· ∥xi∥22 ≤ ρ

(t)
j,r,i +

ηR2
max

nm
, (E.8)

|ρ(t+1)
j,r,i

| ≤ |ρ(t)
j,r,i

|+ η

nm
· ∥xi∥22 ≤ |ρ(t)

j,r,i
|+ ηR2

max

nm
. (E.9)

Therefore, maxj,r,i{ρ(t)j,r,i, |ρ(t)j,r,i
|} = O(1) for any t ≤ T1 and hence

maxi{F+1(W
(t)
+1,xi), F−1(W

(t)
−1,xi)} = O(1) for any t ≤ T1. Thus there exists a posi-

tive constant c such that |ℓ′(t)i | ≥ c for any t ≤ T1. By induction hypothesis, we have S
(0)
i ⊆ S

(t)
i

for all 0 ≤ t ≤ t̃ − 1 and hence σ′(⟨w(t)
yi,r,xi⟩) = 1 for all 0 ≤ t ≤ t̃ − 1. And it follows that for

r ∈ S
(0)
i

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22 ≥ ρ

(t)
yi,r,i

+
cη

nm
· ∥xi∥22, ∀ 0 ≤ t ≤ t̃− 1,

ρ
(t̃)
yi,r,i

≥ cηt̃

nm
· ∥xi∥22 ≥ cηR2

mint̃

nm
. (E.10)

On the other hand, by (E.8) and (E.9), we have

ρ
(t̃)
j,r′,i′ ≤

ηR2
maxt̃

nm
, |ρ(t̃)

j,r′,i′
| ≤ ηR2

maxt̃

nm
=⇒ |ρ(t̃)j,r′,i′ | ≤

ηR2
maxt̃

nm
. (E.11)
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Dividing (E.10) by (E.11), we can get

ρ
(t̃)
yi,r,i

|ρ(t̃)j,r′,i′ |
≥ cR2

min

R2
max

, ∀ r ∈ S
(0)
i , j ∈ {±1}, i, i′ ∈ [n], (E.12)

which indicates that the first bullet holds for time t = t̃ as long as c1 ≤ (cR2
min)/R

2
max. For r ∈ S

(0)
i ,

we have

⟨w(t̃)
yi,r,xi⟩ = ⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t̃)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

= ⟨w(0)
yi,r,xi⟩+ ρ

(t̃)
yi,r,i

+
∑
i′ ̸=i

ρ
(t̃)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

≥ ρ
(t̃)
yi,r,i

−
∑
i′ ̸=i

|ρ(t̃)yi,r,i′
|R−2

minp

≥ ρ
(t̃)
yi,r,i

−
∑
i′ ̸=i

R2
max

cR2
min

ρ
(t̃)
yi,r,i

·R−2
minp

≥
(
1− R2

max

cR4
min

pn
)
· ρ(t̃)yi,r,i

≥ 0,

where the second inequality is by (E.12). This implies that S(0)
i ⊆ S

(t)
i holds for time t = t̃, which

completes the induction. By then, we have already proved that the first bullet and S
(0)
i ⊆ S

(t)
i hold

for t ≤ T1 = Cη−1nmR−2
max.

Next, we will prove by induction that the three bullets as well as S(0)
i ⊆ S

(t)
i hold for any time t ≥ 0.

The second and third bullets are obvious at t = 0 as all the coefficients are zero. Suppose there exists
t̃ such that the three bullets as well as S(0)

i ⊆ S
(t)
i hold for all time 0 ≤ t ≤ t̃− 1. We aim to prove

that they also hold for t = t̃. We first prove that the second and third bullets hold for t = t̃. To prove
this, we first provide more precise upper and lower bounds for |ℓ′(t)i |. For lower bound, we have

|ℓ(t)i | = 1

1 + exp
{
Fyi

(W
(t)
yi ,xi)− F−yi

(W
(t)
−yi

,xi)
}

≥ 1

1 + exp
{
Fyi(W

(t)
yi ,xi)

}
=

1

1 + exp{ 1
m

∑
r∈S

(t)
i
⟨w(t)

yi,r,xi⟩}
(E.13)

and ∑
r∈S

(t)
i

⟨w(t)
yi,r,xi⟩ =

∑
r∈S

(t)
i

(
⟨w(0)

yi,r,xi⟩+ ρ
(t)
yi,r,i

+
∑
i′ ̸=i

ρ
(t)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

)
≤

∑
r∈S

(t)
i

ρ
(t)
yi,r,i

+
∑

r∈S
(t)
i

∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp+ |S(t)
i | · β

≤
∑

r∈S
(t)
i

ρ
(t)
yi,r,i

+
|S(t)

i |
c1|S(0)

i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i′

R−2
minpn+ |S(t)

i | · β

≤ |S(t)
i |

|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+
|S(t)

i |
c1|S(0)

i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i′

R−2
minpn+ |S(t)

i | · β

≤ c′(1 +R−2
minpn/c1)

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+ |S(t)
i | · β, (E.14)
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where the first inequality is by triangle inequality; the second inequality is by the first induction
hypothesis that ρ(t)yi,r,i

≥ c1|ρ(t)yi,r′,i′
| for r ∈ S

(0)
i and 0 ≤ t ≤ t̃ − 1 and hence |ρ(t)yi,r′,i′

| ≤
1

c1|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

; the third inequality is by

ρ
(t)
yi,r′,i

=
η

nm

t−1∑
s=0

|ℓ′(s)i | · σ′(⟨w(s)
yi,r′

,xi⟩) · ∥xi∥22 ≤ η

nm

t−1∑
s=0

|ℓ′(s)i | · ∥xi∥22,

ρ
(t)
yi,r,i

=
η

nm

t−1∑
s=0

|ℓ′(s)i | · ∥xi∥22,

and hence ρ
(t)
yi,r′,i

≤ ρ
(t)
yi,r,i

, ∀r′ ∈ S
(t)
i \ S

(0)
i , r ∈ S

(0)
i for 0 ≤ t ≤ t̃ − 1; the last inequality is

by |S(t)
i | ≤ m ≤ c′|S(0)

i | and c′ can be taken as 2.5 by Lemma B.2. By plugging (E.14) back into
(E.13), we can get

|ℓ(t)i | ≥ 1

1 + exp
{

c′(1+R−2
minpn/c1)

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+
|S(t)

i |
m · β

}
≥ 1

1 + exp
{

c′(1+R−2
minpn/c1)

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+ β
}

≥ 1

2
exp

{
− c′(1 +R−2

minpn/c1)

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− β

}
, ∀ 0 ≤ t ≤ t̃− 1.

(E.15)

For upper bound of |ℓ′(t)i |, we first bound Fyi(W
(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi) as follows:

Fyi
(W(t)

yi
,xi)− F−yi

(W
(t)
−yi

,xi)

≥ 1

m

( ∑
r∈S

(t)
i

ρ
(t)
yi,r,i

−
∑

r∈S
(t)
i

∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp− |S(t)
i | · β

)
− 1

m

m∑
r=1

(
β +

∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp
)

≥ 1

m

∑
r∈S

(t)
i

ρ
(t)
yi,r,i

− |S(t)
i |

c1m|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

R−2
minpn− 1

c1|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

R−2
minpn− 2β

≥ 1

m

∑
r∈S

(t)
i

ρ
(t)
yi,r,i

− 2

c1|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

R−2
minpn− 2β

≥ 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− 2c′R−2
minpn

c1m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− 2β

=
1− 2c′R−2

minpn/c1
m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− 2β,

where the first inequality is by

Fyi
(W(t)

yi
,xi) =

1

m

∑
r∈S

(t)
i

⟨w(t)
yi,r,xi⟩

=
1

m

∑
r∈S

(t)
i

(
⟨w(0)

yi,r,xi⟩+ ρ
(t)
yi,r,i

+
∑
i′ ̸=i

ρ
(t)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

)

≥ 1

m

( ∑
r∈S

(t)
i

ρ
(t)
yi,r,i

−
∑

r∈S
(t)
i

∑
i′ ̸=i

|ρ(t)yi,r,i′
|R−2

minp− |S(t)
i | · β

)
,
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and

⟨w(t)
−yi,r,xi⟩ = ⟨w(0)

−yi,r,xi⟩+
n∑

i′=1

ρ
(t)
−yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

= ⟨w(0)
−yi,r,xi⟩+ ρ(t)−yi,r,i

+
∑
i′ ̸=i

ρ
(t)
−yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

≤ β +
∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp,

and hence

F−yi
(W

(t)
−yi

,xi) =
1

m

m∑
r=1

σ(⟨w(t)
−yi,r,xi⟩) ≤

1

m

m∑
r=1

(
β +

∑
i′ ̸=i

|ρ(t)−yi,r,i′
|R−2

minp
)
; (E.16)

the second inequality is by the first induction hypothesis that ρ
(t)
yi,r,i

≥ c1|ρ(t)yi,r′,i′
|, ρ(t)yi,r,i

≥
c1|ρ(t)−yi,r′,i′

| and hence |ρ(t)yi,r′,i′
| ≤ 1

c1|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

, |ρ(t)−yi,r′,i′
| ≤ 1

c1|S(0)
i |

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

for r ∈ S
(0)
i and 0 ≤ t ≤ t̃ − 1; the third inequality is by |S(t)

i | ≤ m; the fourth inequality is by
m ≤ c′|S(0)

i |. Therefore,

|ℓ′(t)i | = 1

1 + exp
{
Fyi(W

(t)
yi ,xi)− F−yi(W

(t)
−yi

,xi)
}

≤ exp
{
− Fyi(W

(t)
yi
,xi) + F−yi(W

(t)
−yi

,xi)
}

≤ exp

{
− 1− 2c′R−2

minpn/c1
m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+ 2β

}
, ∀ 0 ≤ t ≤ t̃− 1.

By the induction hypothesis, we know that S
(0)
i ⊆ S

(t)
i for all 0 ≤ t ≤ t̃ − 1 and hence

σ′(⟨w(t)
yi,r,xi⟩) = 1 for all r ∈ S

(0)
i and 0 ≤ t ≤ t̃ − 1. By (E.15) and (E.16), it follows that

for all 0 ≤ t ≤ t̃− 1∑
r∈S

(0)
i

ρ
(t+1)
yi,r,i

≥
∑

r∈S
(0)
i

ρ
(t)
yi,r,i

+
η|S(0)

i |∥xi∥22e−β

2nm
· exp

{
− c′(1 +R−2

minpn/c1)

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

}
,

(E.17)∑
r∈S

(0)
i

ρ
(t+1)
yi,r,i

≤
∑

r∈S
(0)
i

ρ
(t)
yi,r,i

+
η|S(0)

i |∥xi∥22e2β

nm
· exp

{
− 1− 2c′R−2

minpn/c1
m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

}
.

(E.18)

By applying Lemma H.2 to (E.17) and taking xt =
c′(1+R−2

minpn/c1)

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

, we can get

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

≥ m

c′(1 +R−2
minpn/c1)

log

(
1+

c′(1 +R−2
minpn/c1)η|S

(0)
i |∥xi∥22e−β

2nm2
·t
)
, ∀ 0 ≤ t ≤ t̃.

(E.19)
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By applying Lemma H.1 to (E.18) and taking xt =
1−2c′R−2

minpn/c1
m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

, we can get for

any 0 ≤ t ≤ t̃ that∑
r∈S

(0)
i

ρ
(t)
yi,r,i

≤ m

1− 2c′R−2
minpn/c1

log

(
1 +

(1− 2c′R−2
minpn/c1)η|S

(0)
i |∥xi∥22e2β

nm2
·

exp
( (1− 2c′R−2

minpn/c1)η|S
(0)
i |∥xi∥22e2β

nm2

)
· t
)

≤ m

1− 2c′R−2
minpn/c1
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nm2
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(E.20)
where the last inequality is by η ≤ (CR2

max/nm)−1, C is a large enough constant and hence
(1 − 2c′R−2

minpn/c1)η|S
(0)
i |∥xi∥22e2β/nm2 ≤ log 2. Since S

(0)
i ⊆ S

(t)
i for all 0 ≤ t ≤ t̃ − 1 and

hence σ′(⟨w(t)
yi,r,xi⟩) = 1 for all r ∈ S

(0)
i and 0 ≤ t ≤ t̃− 1, we have

ρ
(t)
yi,r,i

=
η

nm

t−1∑
s=0

|ℓ′(s)i | · ∥xi∥22, ∀ 0 ≤ t ≤ t̃.

Accordingly, it holds that

ρ
(t)
yi,r,i

= ρ
(t)
yi,r′,i

, ∀ r, r′ ∈ S
(0)
i , ∀ 0 ≤ t ≤ t̃.

Applying this to (E.19) and (E.20), we can get

ρ
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≥ m

c′(1 +R−2
minpn/c1)|S

(0)
i |

log

(
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(0)
i |∥xi∥22e−β

2nm2
· t
)

≥ 1
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log

(
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minpn/c1)η|S

(0)
i |∥xi∥22e−β

2nm2
· t
)
, ∀ 0 ≤ t ≤ t̃,

ρ
(t)
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≤ m

(1− 2c′R−2
minpn/c1)|S

(0)
i |

log

(
1 +

2(1− 2c′R−2
minpn/c1)η|S

(0)
i |∥xi∥22e2β

nm2
· t
)
,

≤ c′

(1− 2c′R−2
minpn/c1)

log

(
1 +

2(1− 2c′R−2
minpn/c1)η|S

(0)
i |∥xi∥22e2β

nm2
· t
)
, ∀ 0 ≤ t ≤ t̃,

(E.21)
By taking

c2 =
1

c′(1 +R−2
minpn/c1)

, c3 =
c′

(1− 2c′R−2
minpn/c1)

,

the above inequalities indicates that the second and third bullets hold at time t = t̃. For the first
bullet, it is only necessary to consider the situation where t̃ ≥ T1 = Cη−1nmR−2

max. In order to
apply Lemma H.4 (requiring b > a), we loosen the bounds in (E.21) as follows:

ρ
(t)
yi,r,i

≥ c2 log

(
1 +

ηR2
mine

−β

5nm
· t
)
, ∀ 0 ≤ t ≤ t̃, (E.22)

ρ
(t)
yi,r,i

≤ c3 log

(
1 +

6ηR2
maxe

2β

5nm
· t
)
, ∀ 0 ≤ t ≤ t̃, (E.23)

where we use 0.4m ≤ |S(0)
i | ≤ 0.6m.
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By applying Lemma H.4 to (E.22) and (E.23), we can get for any i, i′ ∈ [n], r ∈ S
(0)
i , r′ ∈ S

(0)
i′ and

T1 ≤ t ≤ t̃ that

ρ
(t)
yi,r,i

ρ
(t)
yi′ ,r

′,i′

≥ c2
c3

·
log

(
1 +

ηR2
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−β

5nm · t
)

log
(
1 +

6ηR2
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2β
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)

≥ c2
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·
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(
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5nm · T1

)
log

(
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)
=
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·
log

(
1 + 0.2Ce−βR2

min

)
log

(
1 + 1.2Ce2βR2

max

) .

Notice that S(0)
i′ ⊆ S

(t)
i′ for all 0 ≤ t ≤ t̃ − 1 and hence σ′(⟨w(t)

yi′ ,r,xi′⟩) = 1 for all r ∈ S
(0)
i′ and

0 ≤ t ≤ t̃− 1, we have

|ρ(t)j,r′′,i′ | =
η

nm

t−1∑
s=0

|ℓ′(s)i′ | · σ′(⟨w(s)
j,r′′ ,xi′⟩) · ∥xi∥22

≤ η

nm

t−1∑
s=0

|ℓ′(s)i′ | · ∥xi′∥22, ∀j ∈ {±1}, r′′ ∈ [m], i′ ∈ [n],

ρ
(t)
yi′ ,r

′,i′ =
η

nm

t−1∑
s=0

|ℓ′(s)i′ | · ∥xi′∥22, ∀r′ ∈ S
(0)
i′ , i′ ∈ [n],

and hence |ρ(t)j,r′,i′ | ≤ ρ
(t)
yi′ ,r

′,i′ for 0 ≤ t ≤ t̃. Therefore, as long as

c1 ≤ c2
c3

·
log

(
1 + 0.2Ce−βR2

min

)
log

(
1 + 1.2Ce2βR2

max

) ,

the first bullet hold for time t = t̃. This condition holds as long as

c′ = 2.5,

2c′c−1
1 R−2

minpn ≤ 0.5 =⇒ c2 ≥ 0.37, c3 ≤ 5,

c1 =
log

(
1 + 0.2Ce−βR2

min

)
14 log

(
1 + 1.2Ce2βR2

max

) .
Finally, we verify that S(0)

i ⊆ S
(t̃)
i . For r ∈ S

(0)
i , we have

⟨w(t̃)
yi,r,xi⟩ = ⟨w(0)

yi,r,xi⟩+
n∑

i′=1

ρ
(t̃)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

= ⟨w(0)
yi,r,xi⟩+ ρ

(t̃)
yi,r,i

+
∑
i′ ̸=i

ρ
(t̃)
yi,r,i′

∥xi′∥−2
2 · ⟨xi′ ,xi⟩

≥ ρ
(t̃)
yi,r,i

−
∑
i′ ̸=i

|ρ(t̃)yi,r,i′
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minp

≥ ρ
(t̃)
yi,r,i

− (R−2
minpn/c1)ρ

(t̃)
yi,r,i′

= (1−R−2
minpn/c1) · ρ

(t̃)
yi,r,i
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where the second inequality is by |ρ(t̃)yi,r,i′
| ≤ ρ

(t̃)
yi,r,i

/c1. This implies that S(0)
i ⊆ S

(t)
i holds for time

t = t̃, which completes the induction.

Next, we show that |ρ(t)−yi,r,i′
| will be much smaller than |ρ(t)yi,r′,i

| as the training goes on.

Lemma E.2. There exists time T2 and constant c such that for any time t ≥ T2

|ρ(t)
yi,r,i′

| ≤ cR−2
minpn|ρ

(t)
yi,r′,i

|,

where r ∈ [m], r′ ∈ S
(0)
i and i, i′ ∈ [n] satisfying −yi = yi′ .

Proof of Lemma E.2. First, we will prove by induction that for r ∈ [m], r′ ∈ S
(0)
i and i, i′ ∈ [n]

satisfying −yi = yi′ it holds that

|ρ(t)
yi,r,i′

| ≤ β + 1 +R−2
minpn|ρ

(t)
yi,r′,i

|/c1. (E.24)

This result holds naturally when t = 0 since all the coefficients are zero. Suppose that there
exists time t̃ such that the induction hypothesis (E.24) holds for all time t ≤ t̃ − 1. We aim to
prove that (E.24) also holds for t = t̃. In the following analysis, two cases will be considered:
|ρ(t̃−1)

yi,r,i′
| > β +

∑
k ̸=i′ |ρ

(t̃−1)
yi,r,k

|∥xk∥−2
2 p and |ρ(t̃−1)

yi,r,i′
| ≤ β +

∑
k ̸=i′ |ρ

(t̃−1)
yi,r,k

|∥xk∥−2
2 p.

For if |ρ(t̃−1)
yi,r,i′

| > β +
∑

k ̸=i′ |ρ
(t̃−1)
yi,r,k

|∥xk∥−2
2 p, then by the decomposition (5.1) we have

⟨w(t̃−1)
yi,r ,xi′⟩ = ⟨w(0)

yi,r,xi′⟩+ ρ(t̃−1)
yi,r,i′

+
∑
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ρ
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2 ⟨xk,xi′⟩

≤ ρ(t̃−1)
yi,r,i′

+ β +
∑
k ̸=i′

|ρ(t̃−1)
yi,r,k

|∥xk∥−2
2 p < 0.

and hence

ρ(t̃)
yi,r,i′

= ρ(t̃−1)
yi,r,i′

+
η

nm
· ℓ′(t̃−1)

i · σ′(⟨w(t̃−1)
yi,r ,xi′⟩) · ∥xi′∥22 = ρ(t̃−1)

yi,r,i′
.

Therefore, by induction hypothesis (E.24) at time t = t̃− 1, we have

ρ(t̃)
yi,r,i′

= ρ(t̃−1)
yi,r,i′

≤ β + 1 +R−2
minpn|ρ

(t̃−1)
yi,r′,i

|/c1 ≤ β + 1 +R−2
minpn|ρ

(t̃)
yi,r′,i

|/c1.

For if |ρ(t̃−1)
yi,r,i′

| ≤ β +
∑

k ̸=i′ |ρ
(t̃−1)
yi,r,k

|∥xk∥−2
2 p, by the first bullet in Lemma E.1, we have

|ρ(t̃−1)
yi,r,i′

| ≤ β +
∑
k ̸=i′

|ρ(t̃−1)
yi,r′,i

|∥xk∥−2
2 p/c1 ≤ β + |ρ(t̃−1)

yi,r′,i
|R−2

minpn/c1, (E.25)

and thus

−ρ(t̃)
yi,r,i′

= −ρ(t̃−1)
yi,r,i′

+
η

nm
· |ℓ′(t̃−1)

i | · σ′(⟨w(t̃−1)
yi,r ,xi′⟩) · ∥xi′∥22

≤ −ρ(t̃−1)
yi,r,i′

+
ηR2

max

nm

≤ β + 1 + |ρ(t)yi,r′,i
|R−2

minpn/c1,

where the last inequality is by (E.25) and η ≤ (CR2
max/nm)−1 with a sufficiently large constant C.

This demonstrates that inequality (E.24) holds for t = t̃, thereby completing the induction process.
By Lemma E.1, we know that there exists time T ′ such that

|ρ(t)yi,r′,i
| ≥ c1(β + 1)R2

min/pn,

for any time t ≥ T ′. Taking T2 = T ′ and c = 2/c1, we have

|ρ(t)
yi,r,i′

| ≤ β + 1 +R−2
minpn|ρ

(t)
yi,r′,i

|/c1 ≤ 2R−2
minpn|ρ

(t)
yi,r′,i

|/c1 = cR−2
minpn|ρ

(t)
yi,r′,i

|,
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which completes the proof.

Given Lemma E.2, the following corollary can be directly obtained.

Corollary E.3. There exists time T3 and constant c such that for any time t ≥ T3

|ρ(t)
yi,r,i′

| ≤ cR−2
minpn|ρ

(t)
yi,r′,i

|, ∀r ∈ [m], r′ ∈ S
(0)
i , i, i′ ∈ [n] with − yi = yi′ .

F Stable Rank of ReLU Network

In this section, we consider the properties of stable rank of the weight matrix W(t) found by gradient
descent at time t, defined as ∥W(t)∥2F /∥W(t)∥22. Given Lemma E.1, we have following coefficient
update rule for any t ≥ 0, i ∈ [n] and r ∈ S

(0)
i :

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22, (F.1)

where
|ℓ′(t)i | = 1

1 + exp{Fyi
(W

(t)
yi ,xi)− F−yi

(W
(t)
−yi

,xi)}
.

Now we are ready to prove the first bullet of Theorem 4.3.

Lemma F.1. For two-layer ReLU neural network defined in (E.1), under the same condition as
Theorem 4.3, the stable rank of W(t)

j satisfies the following property:

lim sup
t→∞

∥W(t)
j ∥2F

∥W(t)
j ∥22

≤ C,

where C = Θ(1) is a constant.

Proof of Lemma F.1. By decomposition (5.1), we have

w
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ρ
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2
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x1

...
xn

 ,
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2 ρ
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ρ
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. . .
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2 ρ
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︸ ︷︷ ︸
:=X

.

Let ai(t)⊤ be the i-th column of At. It follows that
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(0)
j ∥2F = Tr(AtXX⊤A⊤

t )

= Tr
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x⊤
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⊤
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=
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∑
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Accordingly, we have
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On the other hand, we will give an lower bound for ∥W(t)
j −W

(0)
j ∥2.

∥W(t)
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We first provide a lower bound for ∥At1n∥2. Note that

At1n =


∑n

i=1 ρ
(t)
j,1,i∥xi∥−2

2
...∑n

i=1 ρ
(t)
j,m,i∥xi∥−2

2

 ,

we need to bound
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2

∑
i∈Sj
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r∈S

(0)
i

ρ
(t)
j,r,i, (F.2)

where the second inequality is by Corollary E.3 and hence

|ρ(t)−yi,r,i
| ≤ cR−2
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Then, we have for t ≥ T that
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where the second inequality is is by (F.2); the third inequality is by the second bullet of Lemma E.1.
For ∥X⊤(XX⊤)−11n∥2, we have

∥X⊤(XX⊤)−11n∥2 =
√

1⊤
n (XX⊤)−1XX⊤(XX⊤)−11n

=
√

1⊤
n (XX⊤)−11n

≤ ∥1n∥2√
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By the Gershgorin circle theorem, we know that λmin(XX⊤) lies within at least one of the Gershgorin
discs D((XX⊤)ii, Ri), i ∈ [n] where D((XX⊤)ii, Ri) is a closed disc centered at (XX⊤)ii =
∥xi∥22 with radius Ri =

∑
i′ ̸=i |(XX⊤)ii′ | =

∑
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D((XX⊤)ii, Ri), then we can get following lower bound for λmin(XX⊤):

λmin(XX⊤) ≥ ∥xi∥22 −
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Accordingly,
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2
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,

which completes the proof.

Next, we will provide an example of training data satisfying the condition in Theorem 4.3 and prove
that the stable rank of W(t)

j trained by gradient descent using such data will converge to 2± o(1).

We first provide the following lemma about the increasing rate of coefficients ρ(t)j,r,i.

Lemma F.2. If training data x1, · · · ,xn are mutually orthogonal, the activation pattern after time
T = Cη−1R−2

min/nm is determined by the activation pattern at initialization, i.e.,

⟨w(t)
yi,r,xi⟩ ≥ 0, if ⟨w(0)

yi,r,xi⟩ ≥ 0,

⟨w(t)
yi,r,xi⟩ < 0, if ⟨w(0)

yi,r,xi⟩ < 0,

⟨w(t)
−yi,r,xi⟩ < 0, if ⟨w(0)

−yi,r,xi⟩ ≥ 0,

⟨w(t)
−yi,r,xi⟩ < 0, if ⟨w(0)

−yi,r,xi⟩ < 0,

for any time t ≥ T . Besides, ρ(t)j,r,i satisfy the following properties:

ρ
(t)
yi,r,i

= 0, ∀t ≥ 0, if ⟨w(t)
j,r,xi⟩ < 0,

ρ
(t)
yi,r,i

= ρ
(T )
yi,r,i

, ∀t ≥ T, if ⟨w(t)
−yi,r,xi⟩ ≥ 0,

lim
t→∞

ρ
(t)
yi,r,i

/ log t = m/|S(0)
i |, if ⟨w(t)

yi,r,xi⟩ ≥ 0.

Proof of Lemma F.2. Part 1. For if ⟨w(0)
j,r ,xi⟩ < 0, we first prove by induction that

ρ
(t)
j,r,i = 0, ⟨w(t)

j,r,xi⟩ = ⟨w(0)
j,r ,xi⟩ < 0, ∀t ≥ 0. (F.3)

The result is obvious at t = 0 as all the coefficients are zero. Suppose that there exists t̃ such that
(F.3) holds for all time 0 ≤ t ≤ t̃− 1. We aim to prove that (F.3) also holds for t = t̃. Recall that by
(5.4), (5.5) and with (F.3) at time t̃− 1, we have

ρ
(t̃)
j,r,i = ρ

(t̃−1)
j,r,i − η

nm
· ℓ′(t̃−1)

i · σ′(⟨w(t̃−1)
j,r ,xi⟩) · ∥xi∥22 · 1(yi = j) = ρ

(t̃−1)
j,r,i = 0,

ρ(t̃)
j,r,i

= ρ(t̃−1)
j,r,i

+
η

nm
· ℓ′(t̃−1)

i · σ′(⟨w(t̃−1)
j,r ,xi⟩) · ∥xi∥22 · 1(yi = −j) = ρ(t̃−1)

j,r,i
= 0.

By (5.1) and the orthogonality of training data, we can get

⟨w(t̃)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+
n∑

i′=1

ρ
(t̃)
j,r,i′∥xi′∥−2

2 · ⟨xi′ ,xi⟩ = ⟨w(0)
j,r ,xi⟩+ ρ

(t̃)
j,r,i = ⟨w(0)

j,r ,xi⟩ < 0.

Therefore, (F.3) holds at time t̃, which completes the induction.
For if ⟨w(0)

j,r ,xi⟩ ≥ 0 and j = yi, we will next prove by induction that

ρ
(t)
j,r,i ≥ 0, ⟨w(t)

j,r,xi⟩ ≥ ⟨w(0)
j,r ,xi⟩ ≥ 0, ∀t ≥ 0. (F.4)
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The result is natural at t = 0. Suppose that there exists t̃ such that (F.4) hold for all time 0 ≤ t ≤ t̃−1.
By (5.4) and (F.4) at time t̃− 1, we have

ρ
(t̃)
j,r,i = ρ

(t̃−1)
j,r,i +

η

nm
· |ℓ′(t̃−1)

i | · ∥xi∥22 ≥ ρ
(t̃−1)
j,r,i ≥ 0

and hence the orthogonality of training data, we can get

⟨w(t̃)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+ ρ
(t̃)
j,r,i = ⟨w(0)

j,r ,xi⟩ ≥ 0.

Therefore, (F.4) hold at time t̃, which completes the induction.
For if ⟨w(0)

j,r ,xi⟩ ≥ 0 and j = −yi, we first show that under the same condition as Theorem 4.3 it
holds that

ρ(T )
j,r,i

< −⟨w(0)
j,r ,xi⟩.

Since T = Cη−1R−2
min/nm, we have maxj,r,i{|ρ(t)j,r,i|} = O(1) for t ≤ T . Therefore, we know that

F+1(W
(t)
+1,xi), F−1(W

(t)
−1,xi) = O(1). Thus there exists a positive constant c such that −ℓ

′(t)
i ≥ c

for all i ∈ [n]. Here we use the method of proof by contradiction. Assume ρ(T )
j,r,i

≥ −⟨w(0)
j,r ,xi⟩.

Since ρ(T )
j,r,i

≤ ρ(t)
j,r,i

for 0 ≤ t ≤ T which can be seen from (5.5), we have ρ(t)
j,r,i

≥ −⟨w(0)
j,r ,xi⟩ for

all t ≤ T . Then, we can get

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+ ρ
(t)
j,r,i ≥ 0, ∀t ≤ T.

Therefore, by the non-negativeness of ⟨w(t)
j,r,xi⟩ and (5.5), we can get

|ρ(t+1)
j,r,i

| = |ρ(t)
j,r,i

|+ η

nm
· |ℓ′(t)i | · ∥xi∥22 ≥ |ρ(t)

j,r,i
|+ cη∥xi∥22

nm

and hence

|ρ(T )
j,r,i

| ≥ cη∥xi∥22T
nm

= cC∥xi∥22R−2
min ≥ cC ≥ β,

which is a contradiction. Therefore, ρ(T )
j,r,i

< −⟨w(0)
j,r ,xi⟩. By (5.5), we have ρ(t)

j,r,i
≤ ρ(T )

j,r,i
<

−⟨w(0)
j,r ,xi⟩ for t ≥ T . Therefore,

⟨w(t)
j,r,xi⟩ = ⟨w(0)

j,r ,xi⟩+ ρ
(t)
j,r,i < 0, ∀t ≥ T.

Plugging this into (5.5) gives us

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ(t)i · σ′(⟨w(t)

j,r,xi⟩) · ∥xi∥22 = ρ(t)
j,r,i

, ∀t ≥ T.

This completes the proof of the first half of the lemma about the activation pattern as well as the first
two properties of ρ(t)j,r,i.
Part 2. Now we will show that

lim
t→∞

ρ
(t)
yi,r,i

/ log t = m/|S(0)
i |, (F.5)

if ⟨w(t)
yi,r,xi⟩ ≥ 0. By the activation pattern, we can get

ρ
(t+1)
yi,r,i

= ρ
(t)
yi,r,i

+
η

nm
· |ℓ′(t)i | · ∥xi∥22, ∀t ≥ 0, for ⟨w(t)

yi,i
,xi⟩ ≥ 0,

ρ
(t)
yi,r,i

= 0, ∀t ≥ 0, for ⟨w(t)
yi,i

,xi⟩ < 0,

ρ(t)−yi,r,i
= ρ(T )

−yi,r,i
, ∀t ≥ 0, for ⟨w(t)

−yi,i
,xi⟩ ≥ 0,

ρ(t)−yi,r,i
= 0, ∀t ≥ 0, for ⟨w(t)

−yi,i
,xi⟩ < 0.

(F.6)
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Given this activation pattern, we can get for t ≥ 0 that

Fyi(W
(t)
yi
,xi)− F−yi(W

(t)
−yi

,xi) =
1

m

m∑
r=1

σ(⟨w(t)
yi,r,xi⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−yi,r,xi⟩)

≤ 1

m

∑
r∈S

(0)
i

⟨w(t)
yi,r,xi⟩

=
1

m

∑
r∈S

(0)
i

[⟨w(0)
yi,r,xi⟩+ ρ

(t)
yi,r,i

]

≤ 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+ β,

and

Fyi
(W(t)

yi
,xi)− F−yi

(W
(t)
−yi

,xi) =
1

m

m∑
r=1

σ(⟨w(t)
yi,r,xi⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−yi,r,xi⟩)

≥ 1

m

∑
r∈S

(0)
i

⟨w(t)
yi,r,xi⟩ − β

=
1

m

∑
r∈S

(0)
i

[⟨w(0)
yi,r,xi⟩+ ρ

(t)
yi,r,i

]− β

≥ 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− 2β.

Therefore, we can get following upper and lower bounds for |ℓ′(t)i |:

|ℓ′(t)i | ≤ exp

(
− 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+ 2β

)
, ∀t ≥ 0,

|ℓ′(t)i | ≥ 1

2
exp

(
− 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

− β

)
, ∀t ≥ 0.

And it follows that

1

m

∑
r∈S

(0)
i

ρ
(t+1)
yi,r,i

≤ 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+
η∥xi∥22e2β

nm
· exp

(
− 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

)
, ∀t ≥ 0,

1

m

∑
r∈S

(0)
i

ρ
(t+1)
yi,r,i

≥ 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

+
η∥xi∥22e−β

2nm
· exp

(
− 1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

)
, ∀t ≥ 0.

By leveraging Lemma H.1 as well as Lemma H.2 and taking

xt =
1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

,

we can get

1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

≤ log

(
1 +

η∥xi∥22e2β

nm
exp

(η∥xi∥22e2β

nm

)
· t
)

≤ log

(
1 +

2η∥xi∥22e−β

nm
· t
)
,
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1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

≥ log

(
1 +

η∥xi∥22e−β

2nm
· t
)
.

Therefore, we have

lim
t→∞

1

m

∑
r∈S

(0)
i

ρ
(t)
yi,r,i

/ log t = 1.

Since ρ
(t)
yi,r,i

= ρ
(t)
yi,r′,i

for any r ̸= r ∈ S
(0)
i , we have

lim
t→∞

ρ
(t)
yi,r,i

/ log t = m/|S(0)
i |,

which completes the proof.

Lemma F.3. For two-layer ReLU neural network defined in (E.1), there exists mutually orthogonal
data x1, · · · ,xn such that stable rank of W(t)

j will converge to 2± o(1).

Proof of Lemma F.3. By (5.1), we have

w
(t)
j,r = w

(0)
j,r +

n∑
i=1

ρ
(t)
j,r,i · ∥xi∥−2

2 · xi︸ ︷︷ ︸
:=v

(t)
j,r

.

Given the definition of v(t)
j,r, we have the following representation of v(t)

j,r and V
(t)
j .

v
(t)
j,r =

[
ρ
(t)
j,r,1 · ∥x1∥−2

2 · · · , ρ(t)j,r,n · ∥xn∥−2
2

]
·

x1

...
xn

 ,

V
(t)
j =


ρ
(t)
j,r,1 · ∥x1∥−2

2 · · · ρ
(t)
j,r,n · ∥xn∥−2

2
...

. . .
...

ρ
(t)
j,m,1 · ∥x1∥−2

2 · · · ρ
(t)
j,m,n · ∥xn∥−2

2

 ·

x1

...
xn

 .

Assume n is an even number and x1, · · · ,xn/2 are with label +1 while x(n/2)+1, · · · ,xn are with
label −1. And we take x1, · · · ,xn as e1, · · · , en. Given Lemma F.2, W(t)

j = W
(0)
j + V

(t)
j and

such selection of training data, we have

lim
t→∞

W
(t)
+1

log t
= [Am×(n/2),0m×(n/2)] · [In,0n×(d−n)] = [Am×(n/2),0m×(d−(n/2))],

lim
t→∞

W
(t)
−1

log t
= [0m×(n/2),Bm×(n/2)] · [In,0n×(d−n)] = [0m×(n/2),Bm×(n/2),0n×(d−n)],

lim
t→∞

W(t)

log t
=

[
Am×(n/2) 0m×(n/2) 0n×(d−n)

0m×(n/2) Bm×(n/2) 0n×(d−n)

]
.

where

Am×(n/2) =


1[⟨w(0)

+1,1,x1⟩ ≥ 0] · · · 1[⟨w(0)
+1,1,xn/2⟩ ≥ 0]

...
. . .

...
1[⟨w(0)

+1,m,x1⟩ ≥ 0] · · · 1[⟨w(0)
+1,m,xn/2⟩ ≥ 0]


︸ ︷︷ ︸

:=Cm×(n/2)

·diag


m/|S(0)

1 |
...

m/|S(0)
n/2|

 ,
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Bm×(n/2) =


1[⟨w(0)

−1,1,x(n/2)+1⟩ ≥ 0] · · · 1[⟨w(0)
−1,1,xn⟩ ≥ 0]

...
. . .

...
1[⟨w(0)

−1,m,x(n/2)+1⟩ ≥ 0] · · · 1[⟨w(0)
−1,m,xn⟩ ≥ 0]


︸ ︷︷ ︸

:=Dm×(n/2)

·diag


m/|S(0)

(n/2)+1|
...

m/|S(0)
n |

 .

Then, we can get the stable rank limits as follows:

lim
t→∞

∥W(t)
+1∥2F

∥W(t)
+1∥22

=
∥A∥2F
∥A∥22

,

lim
t→∞

∥W(t)
−1∥2F

∥W(t)
−1∥22

=
∥B∥2F
∥B∥22

,

lim
t→∞

∥W(t)∥2F
∥W(t)∥22

=
∥A∥2F + ∥B∥2F

(max{∥A∥2, ∥B∥2})2
.

Since x1 = e1, · · · ,xn = en, we can get

1[⟨w(0)
j,r ,xi⟩ ≥ 0] = 1[[w

(0)
j,r ]i ≥ 0].

Therefore, the entries of matrix C and matrix D can be regarded as i.i.d. random variables taking 0
or 1 with equal probability. For ∥A∥F and ∥B∥F , we have

∥A∥2F =
m∑
r=1

n/2∑
i=1

1[[w
(0)
+1,r]i ≥ 0] · (m/|S(0)

i |)2,

∥B∥2F =
m∑
r=1

n∑
i=(n/2)+1

1[[w
(0)
−1,r]i ≥ 0] · (m/|S(0)

i |)2.

By Lemma B.2, we have with probability at least 1− δ that 0.4m ≤ |S(0)
i | ≤ 0.6m. By Hoeffding’s

inequality, we have with probability at least 1− 2δ that

∣∣∣∣∥A∥2F − m

2

n/2∑
i=1

(m/|S(0)
i |)2

∣∣∣∣ ≤
√√√√m log(2/δ)

2

n/2∑
i=1

(m/|S(0)
i |)4 ≤

√
625mn log(2/δ)

32
,

∣∣∣∣∥B∥2F −m

2

n∑
i=(n/2)+1

(m/|S(0)
i |)2

∣∣∣∣ ≤
√√√√m log(2/δ)

2

n∑
i=(n/2)+1

(m/|S(0)
i |)4 ≤

√
625mn log(2/δ)

32
.

Next, we estimate ∥A∥2 and ∥B∥2. Let A = Ã + E[A] and B = B̃ + E[B]. Assume G be the
m× (n/2) matrix with all entries equal to 1/2. Then,

E[A] = G · diag


m/|S(0)

1 |
...

m/|S(0)
n/2|


︸ ︷︷ ︸

:=a

,E[B] = G · diag


m/|S(0)

(n/2)+1|
...

m/|S(0)
n |


︸ ︷︷ ︸

:=b

.

And the entries of matrix Ã and matrix B̃ are independent, mean zero, sub-gaussian random variables.
By Lemma H.3, we have with probability at least 1− δ that

∥Ã∥2 ≤ C

2

(√
m+

√
n+

√
log(2/δ)

)
,

∥B̃∥2 ≤ C

2

(√
m+

√
n+

√
log(2/δ)

)
,
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where C is a constant. Let 1k denote the row vector with k entries equal to 1. Then for E[A] and
E[B], we have

∥E[A]∥2 = max
x∈S

n
2

−1
∥Gdiag(a)x∥2

= max
x∈S

n
2

−1

1

2
∥1⊤

m1n
2
diag(a)x∥2

= max
x∈S

n
2

−1

√
m

2
|1n

2
diag(a)x|

= max
x∈S

n
2

−1

√
m

2
|a⊤x|

=

√
m∥a∥2
2

,

and

∥E[B]∥2 =

√
m∥b∥2
2

.

By triangle inequality, we have

∥A∥2 ≥ ∥C∥2 − ∥Ã∥2 ≥ (
√
m∥a∥2)/2−

C

2

(√
m+

√
n+

√
log(2/δ)

)
,

∥A∥2 ≤ ∥C∥2 + ∥Ã∥2 ≤ (
√
m∥a∥2)/2 +

C

2

(√
m+

√
n+

√
log(2/δ)

)
,

∥B∥2 ≥ ∥C∥2 − ∥B̃∥2 ≥ (
√
m∥b∥2)/2−

C

2

(√
m+

√
n+

√
log(2/δ)

)
,

∥B∥2 ≤ ∥C∥2 + ∥B̃∥2 ≤ (
√
m∥b∥2)/2 +

C

2

(√
m+

√
n+

√
log(2/δ)

)
.

Notice that ∥a∥22 = Θ(n) and ∥b∥22 = Θ(n), then with probability at least 1− 2δ, we have

∥A∥2F
∥A∥22

≤
m∥a∥22/2 +

√
625mn log(2/δ)/32(√

m∥a∥2/2− C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2 + o(1),

∥A∥2F
∥A∥22

≥
m∥a∥22/2−

√
625mn log(2/δ)/32(√

m∥a∥2/2 + C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2− o(1),

∥B∥2F
∥B∥22

≥
m∥b∥22/2 +

√
625mn log(2/δ)/32(√

m∥b∥2/2− C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2 + o(1),

∥B∥2F
∥B∥22

≥
m∥b∥22/2−

√
625mn log(2/δ)/32(√

m∥b∥2/2 + C
2

(√
m+

√
n+

√
log(2/δ)

))2 = 2− o(1).

This leads to

lim
t→∞

∥W(t)
+1∥2F

∥W(t)
+1∥22

=
∥A∥2F
∥A∥22

= 2± o(1),

lim
t→∞

∥W(t)
−1∥2F

∥W(t)
−1∥22

=
∥B∥2F
∥B∥22

= 2± o(1).

For W(t), we have the following lower bound

∥A∥2F + ∥B∥2F
(max{∥A∥2, ∥B∥2})2

≥
m(∥a∥22 + ∥b∥22)/2−

√
625mn log(2/δ)/8(√

mmax{∥a∥2, ∥b∥2}/2 + C
2

(√
m+

√
n+

√
log(2/δ)

))2
≥ (2− o(1)) · ∥a∥22 + ∥b∥22

(max{∥a∥2, ∥b∥2})2
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≥ 16

9
− o(1),

where the third inequality is by (5/3)
√
n ≤ ∥a∥2 ≤ (5/2)

√
n and (5/3)

√
n ≤ ∥b∥2 ≤ (5/2)

√
n

due to 0.4m ≤ |S(0)
i | ≤ 0.6m. And

∥A∥2F + ∥B∥2F
(max{∥A∥2, ∥B∥2})2

≤
m(∥a∥22 + ∥b∥22)/2 +

√
625mn log(2/δ)/8(√

mmax{∥a∥2, ∥b∥2}/2− C
2

(√
m+

√
n+

√
log(2/δ)

))2
≤ (2 + o(1)) · ∥a∥22 + ∥b∥22

(max{∥a∥2, ∥b∥2})2

≤ 9 + o(1),

where the third inequality is by (5/3)
√
n ≤ ∥a∥2 ≤ (5/2)

√
n and (5/3)

√
n ≤ ∥b∥2 ≤ (5/2)

√
n

due to 0.4m ≤ |S(0)
i | ≤ 0.6m. Therefore,

lim
t→∞

∥W∥2F
∥W∥22

=
∥A∥2F + ∥B∥2F

(max{∥A∥2, ∥B∥2})2
∈ [16/9− o(1), 9 + o(1)].

G Margin Results and Loss Convergence
In this section, we prove the convergence rate of training loss as well as the increasing rate of margin
for both two-layer ReLU and leaky ReLU networks defined as

f(W(t),x) = F+1(W
(t)
+1,x)− F−1(W

(t)
−1,x)

=
1

m

m∑
r=1

σ(⟨w(t)
+1,r,x⟩)−

1

m

m∑
r=1

σ(⟨w(t)
−1,r,x⟩),

σ ∈ {ReLU, leaky ReLU}.

(G.1)

We first prove the following auxiliary lemma.

Lemma G.1. For both two-layer leaky ReLU and ReLU neural networks defined in (G.1), the
following properties hold for any t ≥ 0:

• yif(W
(t),xi) ≥ −c for any i ∈ [n] where c is a positive constant.

• yif(W
(t),xi)− ykf(W

(t),xk) ≤ C1 for any i, k ∈ [n] where C1 is a constant.

• ℓ
′(t)
i /ℓ

′(t)
k ≤ C2 for any i, k ∈ [n] where C2 is a constant.

• S
(t)
i ⊆ S

(t+1)
i for any i ∈ [n], where S

(t)
i := {r ∈ [m] : ⟨w(t)

yi,r,xi⟩ ≥ 0}.

Proof of Lemma G.1. We prove this lemma by induction. When t = 0, since

|yif(W(0),xi)| =
∣∣∣∣∑

j

jyiFj(W
(0)
j ,xi)

∣∣∣∣
=

∣∣∣∣∑
j

jyi ·
1

m

m∑
r=1

σ(⟨w(0)
j,r ,xi⟩)

∣∣∣∣
≤

∑
j

1

m

m∑
r=1

|σ(⟨w(0)
j,r ,xi⟩)|

≤
∑
j

1

m

m∑
r=1

|⟨w(0)
j,r ,xi⟩|

≤ 2β,
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the first bullet holds as long as c ≥ 2β. We also have

yif(W
(0),xi)− ykf(W

(0),xk) ≤ |yif(W(t),xi)|+ |ykf(W(0),xk)| ≤ 4β,

which verifies the second bullet at time t = 0 as long as C1 ≥ 4β. This leads to

ℓ
′(0)
i

ℓ
′(0)
k

=
1 + exp(ykf(W

(0),xk))

1 + exp(yif(W(0),xi))

≤ 2
(
1 + exp(ykf(W

(0),xk)− yif(W
(0),xi))

)
≤ 2(1 + exp(C1))

≤ C2,

as long as C2 ≥ 2(1 + exp(C1)). For any r ∈ S
(0)
i , we have

⟨w(1)
yi,r,xi⟩ = ⟨w(0)

yi,r,xi⟩+
η

nm

n∑
i′=1

|ℓ′(0)i′ | · σ′(⟨w(0)
yi,r,xi⟩) · ⟨yi′xi′ , yixi⟩

= ⟨w(0)
yi,r,xi⟩+

η

nm
· |ℓ′(0)i | · ∥xi∥22 +

η

nm

∑
i′ ̸=i

|ℓ′(0)i′ | · σ′(⟨w(0)
yi,r,xi⟩) · ⟨yi′xi′ , yixi⟩

≥ ⟨w(0)
yi,r,xi⟩+

η

nm
· |ℓ′(0)i | · ∥xi∥22 −

η

nm

∑
i′ ̸=i

|ℓ′(0)i′ | · |⟨xi′ ,xi⟩|

≥ ⟨w(0)
yi,r,xi⟩ ≥ 0,

where the second equality is by ⟨w(0)
yi,r,xi⟩ ≥ 0; the first inequality is by triangle inequality; the

second inequality is by |ℓ′(0)i′ |/|ℓ′(0)i | ≤ C2 and the condition that R2
min ≥ Cnp, C is a sufficiently

large constant. This verifies the fourth bullet at time t = 0.
Now suppose there exists time t̃ ≥ 0 such that these four hypotheses hold for any 0 ≤ t ≤ t̃. We
aim to prove that these conditions also hold for t = t̃ + 1. We first prove that yif(W(t̃+1),xi) ≥
yif(W

(t̃),xi). We have

yif(W
(t̃+1),xi)− yif(W

(t̃),xi)

=
∑
j

yij
(
Fj(W

(t̃+1)
j ,xi)− Fj(W

(t̃)
j ,xi)

)
=

∑
j

yij ·
1

m

m∑
r=1

(
σ(⟨w(t̃+1)

j,r ,xi⟩)− σ(⟨w(t̃)
j,r,xi⟩)

)

=
∑
j

yij ·
1

m

m∑
r=1

σ(⟨w(t̃+1)
j,r ,xi⟩)− σ(⟨w(t̃)

j,r,xi⟩)

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩
· ⟨−η · ∇wj,r

LS(W
(t̃)),xi⟩

=
∑
j

yij ·
1

m

m∑
r=1

σ(⟨w(t̃+1)
j,r ,xi⟩)− σ(⟨w(t̃)

j,r,xi⟩)

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩
·
〈 η

nm

n∑
i′=1

|ℓ′(t̃)i′ | · σ′(⟨w(t̃)
j,r,xi′⟩) · jyi′xi′ ,xi

〉

=
∑
j

1

m

m∑
r=1

σ(⟨w(t̃+1)
j,r ,xi⟩)− σ(⟨w(t̃)

j,r,xi⟩)

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩
· η

nm
|ℓ′(t̃)i | · σ′(⟨w(t̃)

j,r,xi⟩) · ∥xi∥22

+
∑
j

1

m

m∑
r=1

σ(⟨w(t̃+1)
j,r ,xi⟩)− σ(⟨w(t̃)

j,r,xi⟩)

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩
· η

nm

∑
i′ ̸=i

|ℓ′(t̃)i′ | · σ′(⟨w(t̃)
j,r,xi′⟩) · ⟨yi′xi′ , yixi⟩.
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By the fourth induction hypothesis at time t = t̃, we have S
(t̃+1)
i ⊆ S

(t̃)
i and hence

σ(⟨w(t̃+1)
j,r ,xi⟩)− σ(⟨w(t̃)

j,r,xi⟩)

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩
=

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩
= 1, (G.2)

for j = yi and r ∈ S
(t)
i . For σ ∈ {ReLU, leaky ReLU}, σ is non-decreasing and 1-Lipschitz

continuous, which gives

0 ≤
σ(⟨w(t̃+1)

j,r ,xi⟩)− σ(⟨w(t̃)
j,r,xi⟩)

⟨w(t̃+1)
j,r ,xi⟩ − ⟨w(t̃)

j,r,xi⟩
≤ 1. (G.3)

Then, we have

yif(W
(t̃+1),xi)− yif(W

(t̃),xi) ≥
η

nm2

∑
r∈S

(t̃)
i

|ℓ′(t̃)i | · ∥xi∥22 −
η

nm2

∑
j

m∑
r=1

∑
i′ ̸=i

|ℓ′(t̃)i′ | · |⟨xi′ ,xi⟩|

≥ η

2nm2

∑
r∈S

(t̃)
i

|ℓ′(t̃)i | · ∥xi∥22

=
η|S(t̃)

i |
2nm2

· |ℓ′(t̃)i | · ∥xi∥22

≥ η

5nm
· |ℓ′(t̃)i | · ∥xi∥22,

where the first inequality is by (G.2), (G.3), σ′ ∈ [0, 1] and triangle inequality; the second inequality
is by |ℓ′(t̃)i′ |/|ℓ′(t̃)i | ≤ C2, |S(t̃)

i | ≥ |S(0)
i | ≥ 0.4m and the condition that R2

min ≥ Cnp, C is a
sufficiently large constant. And

yif(W
(t̃+1),xi)− yif(W

(t̃),xi)

≤
∑
j

m∑
r=1

η

nm2

∑
r∈S

(t̃)
i

|ℓ′(t̃)i | · ∥xi∥22 +
η

nm2

∑
j

m∑
r=1

∑
i′ ̸=i

|ℓ′(t̃)i′ | · |⟨xi′ ,xi⟩|

≤ 3η

2nm2

∑
j

m∑
r=1

|ℓ′(t̃)i | · ∥xi∥22

=
3η

nm
· |ℓ′(t̃)i | · ∥xi∥22,

where the first inequality is by (G.3), σ′ ∈ [0, 1] and triangle inequality; the second inequality is by
|ℓ′(t̃)i′ |/|ℓ′(t̃)i | ≤ C2, |S(t̃)

i | ≥ |S(0)
i | ≥ 0.4m and the condition that R2

min ≥ Cnp, C is a sufficiently
large constant. Now, we obtain

yif(W
(t̃+1),xi) ≥ yif(W

(t̃),xi) +
η

5nm
· |ℓ′(t̃)i | · ∥xi∥22, (G.4)

yif(W
(t̃+1),xi) ≤ yif(W

(t̃),xi) +
3η

nm
· |ℓ′(t̃)i | · ∥xi∥22, (G.5)

which implies that yif(W(t̃+1),xi) ≥ yif(W
(t̃),xi) ≥ −c. This verifies the first bullet at time

t = t̃+ 1. By subtracting (G.5) from (G.4), we have

ykf(W
(t̃+1),xk)− yif(W

(t̃+1),xi)

≤ ykf(W
(t̃),xk)− yif(W

(t̃),xi) +
3η

nm
· |ℓ′(t̃)k | · ∥xk∥22 −

η

5nm
· |ℓ′(t̃)i | · ∥xi∥22.
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If |ℓ′(t̃)i |/|ℓ′(t̃)k | ≥ 15R2, then 3η
nm · |ℓ′(t̃)k | · ∥xk∥22 ≤ η

5nm · |ℓ′(t̃)i | · ∥xi∥22 and hence

ykf(W
(t̃+1),xk)− yif(W

(t̃+1),xi) ≤ ykf(W
(t̃),xk)− yif(W

(t̃),xi) ≤ C1.

If |ℓ′(t̃)i |/|ℓ′(t̃)k | < 15R2, then by Lemma H.5

ykf(W
(t̃),xk)− yif(W

(t̃),xi) ≤ log(4|ℓ′(t̃)i |/|ℓ′(t̃)k |) < log(60R2),

and hence

ykf(W
(t̃+1),xk)− yif(W

(t̃+1),xi) ≤ ykf(W
(t̃),xk)− yif(W

(t̃),xi) +
3η

nm
· |ℓ′(t̃)k | · ∥xk∥22

≤ log(60R2) + 1.

Combining the two cases, we have

ykf(W
(t̃+1),xk)− yif(W

(t̃+1),xi) ≤ C1,

as long as C1 ≥ max{4β, log(60R2) + 1}, which verifies the fourth bullet at time t = t̃ + 1. By
Lemma H.5, this leads to

ℓ
′(t̃+1)
i

ℓ
′(t̃+1)
k

=
1 + exp(ykf(W

(t̃+1),xk))

1 + exp(yif(W(t̃+1),xi))

≤ 2
(
1 + exp(ykf(W

(t̃+1),xk)− yif(W
(t̃+1),xi))

)
≤ 2(1 + exp(C1))

≤ C2,

as long as C2 ≥ 2(1 + exp(C1)). For any r ∈ S
(t̃+1)
i , we have

⟨w(t̃+2)
yi,r ,xi⟩ = ⟨w(t̃+1)

yi,r ,xi⟩+
η

nm

n∑
i′=1

|ℓ′(t̃+1)
i′ | · σ′(⟨w(t̃+1)

yi,r ,xi⟩) · ⟨yi′xi′ , yixi⟩

= ⟨w(t̃+1)
yi,r ,xi⟩+

η

nm
· |ℓ′(t̃+1)

i | · ∥xi∥22

+
η

nm

∑
i′ ̸=i

|ℓ′(t̃+1)
i′ | · σ′(⟨w(t̃+1)

yi,r ,xi⟩) · ⟨yi′xi′ , yixi⟩

≥ ⟨w(t̃+1)
yi,r ,xi⟩+

η

nm
· |ℓ′(t̃+1)

i | · ∥xi∥22 −
η

nm

∑
i′ ̸=i

|ℓ′(t̃+1)
i′ | · |⟨xi′ ,xi⟩|

≥ ⟨w(t̃+1)
yi,r ,xi⟩ ≥ 0,

where the second equality is by ⟨w(t̃+1)
yi,r ,xi⟩ ≥ 0; the first inequality is by triangle inequality;

the second inequality is by |ℓ′(t̃+1)
i′ |/|ℓ′(t̃+1)

i | ≤ C2 and the condition that R2
min ≥ Cnp, C is a

sufficiently large constant. This verifies the fourth bullet at time t = t̃+ 1.

Notice that ∥W(t)∥F = Θ(log t) and considering the fact that the difference between any two
margins can be bounded by a constant, the difference between any two margins can be bounded by a
constant, we can derive the following lemma, which demonstrates that the normalized margin of all
the training data points will converge to the same value.

Lemma G.2. For both two-layer ReLU and leaky ReLU neural networks, gradient descent will
asymptotically find a neural network such that all the training data points possess the same normalized
margin, i.e.,

lim
t→∞

∣∣∣∣yif( W(t)

∥W(t)∥F
,xi

)
− ykf

( W(t)

∥W(t)∥F
,xk

)∣∣∣∣ = 0,

for any i, k ∈ [n].
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By Lemma G.1, we can establish the subsequent lemma regarding the logarithmic rate of increase in
margin. This lemma will be beneficial in demonstrating the convergence rate of the training loss in
subsequent proofs.

Lemma G.3. There exists time T = Θ(η−1R−2
minnm) such that the following increasing rate of

margin yif(W
(t),xi) holds:∣∣∣yif(W(t),xi)− log t− log(η∥xi∥22/nm)

∣∣∣ ≤ C3,

C4 ·
(η∥xi∥22

nm
· t
)−1

≤ |ℓ′(t)i | ≤ C5 ·
(η∥xi∥22

nm
· t
)−1

,

for any i ∈ [n] and t ≥ T , where C3, C4, C5 are constants.

Proof of Lemma G.3. To prove this, we want to leverage Lemma H.1 and Lemma H.2. To achieve
this, we need approximate |ℓ′(t)i | by yif(W

(t),xi). We have

|ℓ′(t)i | = 1

1 + exp
(
yif(W

(t)
yi ,xi)

) ≤ exp
(
− yif(W

(t)
yi
,xi)

)
, (G.6)

and
|ℓ′(t)i | = 1

1 + exp
(
yif(W

(t)
yi ,xi)

) ≥ 1

1 + ec
· exp

(
− yif(W

(t)
yi
,xi)

)
(G.7)

by yif(W
(t)
yi ,xi) ≥ −c. Plugging the upper and lower bounds of |ℓ′(t)i | into (G.4) and (G.5), we

obtain

yif(W
(t+1),xi)− yif(W

(t),xi) ≤
3η∥xi∥22
nm

· exp
(
− yif(W

(t)
yi
,xi)

)
, (G.8)

yif(W
(t+1),xi)− yif(W

(t),xi) ≥
η∥xi∥22

5(1 + ec)nm
· exp

(
− yif(W

(t)
yi
,xi)

)
. (G.9)

By taking xt = yif(W
(t),xi)− yif(W

(0),xi) and applying Lemma H.1 to (G.8), we can get

yif(W
(t),xi) ≤ yif(W

(0),xi) + log

(
1 +

3η∥xi∥22
eyif(W(0),xi)nm

exp
( 3η∥xi∥22
eyif(W(0),xi)nm

)
· t
)
.

As long as t ≥ eyif(W(0),xi)nm
3η∥xi∥2

2
exp

(
− 3η∥xi∥2

2

eyif(W(0),xi)nm

)
= Θ(η−1R−2

minnm), we have

yif(W
(t),xi) ≤ yif(W

(0),xi) + log

(
6η∥xi∥22

eyif(W(0),xi)nm
exp

( 3η∥xi∥22
eyif(W(0),xi)nm

)
· t
)

= log t+ log
(η∥xi∥22

nm

)
+ log 6 +

3η∥xi∥22
eyif(W(0),xi)nm

≤ log t+ log
(η∥xi∥22

nm

)
+ log 6 + 1,

where the last inequality is by yif(W
(0),xi) ≤ 2β and η ≤ (CR2

max/nm)−1, C is a sufficiently
large constant. By taking xt = yif(W

(t),xi)− yif(W
(0),xi) and applying Lemma H.2 to (G.9),

we can get

yif(W
(t),xi) ≥ yif(W

(0),xi) + log
(
1 +

η∥xi∥22
5(1 + ec)eyif(W(0),xi)nm

· t
)

≥ yif(W
(0),xi) + log

( η∥xi∥22
5(1 + ec)eyif(W(0),xi)nm

· t
)

= log t+ log
(η∥xi∥22

nm

)
− log

(
5(1 + ec)

)
.
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Since

eyif(W
(0),xi)nm

3η∥xi∥22
exp

(
− 3η∥xi∥22

eyif(W(0),xi)nm

)
≤ eyif(W

(0),xi)nm

3η∥xi∥22
≤ e2β

3
η−1R−2

minnm,

Taking

T =

⌈
e2β

3
η−1R−2

minnm

⌉
, C3 = max

{
log 6 + 1, log

(
5(1 + ec)

)}
completes the proof of the first equation. By plugging the margin upper bound into (G.6), we can get

|ℓ′(t)i | ≤ exp
(
− yif(W

(t)
yi
,xi)

)
≤ exp

(
− log t− log(η∥xi∥22/nm) + C3

)
≤ exp(C3) ·

(η∥xi∥22
nm

· t
)−1

.

By plugging the margin lower bound into (G.7), we can get

|ℓ′(t)i | ≥ 1

1 + ec
· exp

(
− yif(W

(t)
yi
,xi)

)
≥ 1

1 + ec
· exp

(
− log t− log(η∥xi∥22/nm)− C3

)
≥ 1

eC3(1 + ec)
·
(η∥xi∥22

nm
· t
)−1

.

Therefore, taking C4 = 1/eC3(1 + ec) and C5 = exp(C3) completes the proof.

Now we give the following lemma about the convergence rate of training loss.

Lemma G.4. For both two-layer ReLU and leaky ReLU networks defined in (G.1), we have the
following convergence rate of training loss

LS(W
(t)) = Θ(t−1).

Proof. Having obtained a lower bound for the margin in Lemma G.3, we can now use it to derive an
upper bound for the loss function as follows:

LS(W
(t)) =

1

n

n∑
i=1

ℓ(yif(W
(t),xi))

=
1

n

n∑
i=1

log
(
1 + exp

(
− yif(W

(t),xi)
))

≤ 1

n

n∑
i=1

exp
(
− yif(W

(t),xi)
)

≤ 1

n

n∑
i=1

exp
(
− log t− log(η∥xi∥22/nm) + C3

)
=

1

n

n∑
i=1

exp(C3) ·
(η∥xi∥22

nm
· t
)−1

= O(t−1).

where the first inequality is by log(1 + z) ≤ z; the second inequality is by Lemma G.3.
Having obtained an upper bound for the margin in Lemma G.3, we can now use it to derive a lower
bound for the loss function as follows:

LS(W
(t)) =

1

n

n∑
i=1

ℓ(yif(W
(t),xi))
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=
1

n

n∑
i=1

log
(
1 + exp

(
− yif(W

(t),xi)
))

≥ 1

n

n∑
i=1

exp
(
− yif(W

(t),xi)
)
− exp

(
− 2yif(W

(t),xi)
)

≥ 1

n

n∑
i=1

exp
(
− log t− log(η∥xi∥22/nm)− C3

)
− exp

(
− 2(log t+ log(η∥xi∥22/nm)− C3)

)
=

1

n

n∑
i=1

exp(−C3) ·
(η∥xi∥22

nm
· t
)−1

− exp(2C3) ·
(η∥xi∥22

nm
· t
)−2

= Ω(t−1).

where the first inequality is by log(1 + z) ≥ z − z2/2 for z ≥ 0; the second inequality is by
Lemma G.3. This completes the proof.

In addition to the aforementioned lemmas, in the case of leaky ReLU, assuming convergence in
direction, we can demonstrate that the directional limit corresponds to a Karush-Kuhn-Tucker (KKT)
point of the max-margin problem. This result is presented in the following lemma.

Lemma G.5. For two-layer leaky ReLU network defined in (G.1), assume that W(t) converges in
direction, i.e. the limit of W(t)/∥W(t)∥F exists. Denote limt→∞ W(t)/∥W(t)∥F as W̄. There
exists a scaling factor α > 0 such that αW̄ satisfies Karush-Kuhn-Tucker (KKT) conditions of the
following max-margin problem:

min
W

1

2
∥W∥2F , s.t. yif(W,xi) ≥ 1, ∀i ∈ [n]. (G.10)

Proof. We need to prove that there exists λ1, · · · , λn ≥ 0 such that for every j ∈ {±1} and r ∈ [m]
we have

w̄j,r =
n∑

i=1

λi∇wj,r

(
yif(W̄,xi)

)
=

n∑
i=1

λiyij · σ′(⟨w̄j,r,xi⟩) · xi. (G.11)

By (5.1), we know that

w̄j,r = lim
t→∞

w
(t)
j,r

∥W(t)∥F

= lim
t→∞

w
(0)
j,r

∥W(t)∥F
+

n∑
i=1

ρ
(t)
j,r,i

∥W(t)∥F
· ∥xi∥−2

2 · xi

= lim
t→∞

n∑
i=1

ρ
(t)
j,r,i

∥W(t)∥F
· ∥xi∥−2

2 · xi

=
n∑

i=1

lim
t→∞

ρ
(t)
j,r,i

∥W(t)∥F
· ∥xi∥−2

2 · xi,

where the second equality is by ∥W(t)∥F = Θ(log t) and the last equality is by the existence of
limt→∞ W(t)/∥W(t)∥F as well as the uniqueness of data-correlated decomposition. By Lemma D.3
and ∥W(t)∥F = Θ(log t), we can obtain that

lim
t→∞

ρ
(t)
j,r,i

∥W(t)∥F
= lim

t→∞

ρ
(t)
j,r′,i

∥W(t)∥F
, (G.12)
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for any j ∈ {±1}, r, r′ ∈ [m], i ∈ [n], and

lim
t→∞

ρ
(t)
j,r,i

∥W(t)∥F
= −γ−1 · lim

t→∞

ρ
(t)
j,r′,i′

∥W(t)∥F
, (G.13)

for any j ∈ {±1}, i, i′ ∈ [n] with j = yi, j = −yi′ and r, r′ ∈ [m]. Define

Sj = {i ∈ [n] : yi = j}, λ′
i := lim

t→∞

ρ
(t)
yi,r,i

∥W(t)∥F
.

By (G.12), we know λ′
i is well defined and λ′

i ≥ 0. And by (G.13), we know that for any r ∈ [m],
i ∈ [n],

lim
t→∞

ρ
(t)
−yi,r,i

∥W(t)∥F
= −γλ′

i.

Then, we have

w̄j,r =
n∑

i=1

lim
t→∞

ρ
(t)
j,r,i

∥W(t)∥F
· ∥xi∥−2

2 · xi

=
∑
i∈Sj

lim
t→∞

ρ
(t)
j,r,i

∥W(t)∥F
· ∥xi∥−2

2 · xi +
∑

i∈S−j

lim
t→∞

ρ
(t)
j,r,i

∥W(t)∥F
· ∥xi∥−2

2 · xi

=
∑
i∈Sj

λ′
i · ∥xi∥−2

2 · xi −
∑

i∈S−j

γλ′
i · ∥xi∥−2

2 · xi.

By Lemma C.5, it holds for any t ≥ T1 that

σ′(⟨w(t)
j,r,xi⟩) = 1, ∀j ∈ {±1}, i ∈ Sj ,

σ′(⟨w(t)
j,r,xi⟩) = γ, ∀j ∈ {±1}, i ∈ S−j .

This leads to

σ′(⟨w̄j,r,xi⟩) = 1, ∀j ∈ {±1}, i ∈ Sj ,

σ′(⟨w̄j,r,xi⟩) = γ, ∀j ∈ {±1}, i ∈ S−j .

Thus, we can get

w̄j,r =
∑
i∈Sj

λ′
i · σ′(⟨w̄j,r,xi⟩) · ∥xi∥−2

2 · xi −
∑

i∈S−j

λ′
i · σ′(⟨w̄j,r,xi⟩) · ∥xi∥−2

2 · xi

=
n∑

i=1

λ′
iyij · σ′(⟨w̄j,r,xi⟩) · ∥xi∥−2

2 · xi.

Taking λi = λ′
i∥xi∥−2

2 completes the proof of (G.11). On the other hand, by Lemma G.2 and the
assumption of the existence of W(t)/∥W(t)∥F , we can get

yif(W̄,xi) = ykf(W̄,xk),

for any i, k ∈ [n]. Taking α = 1/yif(W̄,xi), we have

yif(αW̄,xi) = 1,

for any i ∈ [n], which completes the proof.

H Auxiliary Lemmas
Lemma H.1. Let {xt}∞t=0 be an non-negative sequence satisfying the following inequality:

xt+1 − xt ≤ C · e−xt , ∀ t ≥ 0
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then we have
xt ≤ log(ex0 + CeC · t).

Proof of Lemma H.1. Given the inequality xt+1 − xt ≤ C · e−xt for all t ≥ 0, we want to prove that
xT ≤ log(ex0 + CeC · T ) for T ≥ 0. We start by manipulating the inequality as follows:

xt+1 − xt ≤ C · e−xt

=⇒ xt+1 − xt ≤ C · e−xt+1+C (using xt+1 instead of xt)

=⇒ ext+1(xt+1 − xt) ≤ CeC (multiplying both sides by ext+1 ).

Summing the inequality from t = 0 to t = T − 1, we get:

T−1∑
t=0

ext+1(xt+1 − xt) ≤ CeC · T.

Since ex is a monotone increasing function, we can approximate the above sum with an integral:∫ xT

x0

exdx ≤ CeC · T.

Evaluating the integral, we get:

exT − ex0 ≤ CeC · T.

Rearranging the inequality, we get:

exT ≤ ex0 + CeC · T.

Taking the natural logarithm of both sides, we get:

xT ≤ log(ex0 + CeC · T ).

Therefore, we have shown that xT ≤ log(ex0 + CeC · T ), as required.

Lemma H.2. Let {xt}∞t=0 be an sequence satisfying the following inequality:

xt+1 − xt ≥ C · e−xt , ∀ t ≥ 0

then we have
xt ≥ log(ex0 + C · t).

Proof of Lemma H.2. Given the inequality xt+1 − xt ≥ C · e−xt for all t ≥ 0, we want to prove that
xT ≥ log(ex0 + C · T ) for T ≥ 0. We start by manipulating the inequality as follows:

xt+1 − xt ≥ C · e−xt

=⇒ ext(xt+1 − xt) ≥ C (multiplying both sides by ext ).

Summing the inequality from t = 0 to t = T − 1, we get:

T−1∑
t=0

ext(xt+1 − xt) ≥ C · T.

Since ex is a monotone increasing function, we can approximate the above sum with an integral:∫ xT

x0

exdx ≥ C · T.

Evaluating the integral, we get:

exT − ex0 ≥ C · T.
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Rearranging the inequality, we get:

exT ≥ ex0 + C · T.

Taking the natural logarithm of both sides, we get:

xT ≥ log(ex0 + C · T ).

Therefore, we have shown that xT ≥ log(ex0 + C · T ), as required.

Lemma H.3 (Theorem 4.4.5 in Vershynin (2018)). Let A be an m× n random matrix whose entries
aij are independent, mean zero, sub-gaussian random variables. Then for any t > 0 we have

∥A∥2 ≤ CK(
√
m+

√
n+ t)

with probability at least 1− 2 exp(−t2). Here K = maxi,j ∥aij∥ϕ2
where ∥ · ∥ϕ2

is the sub-gaussian
norm.

Lemma H.4. For t ≥ s > 0, we have

log(1 + at)

log(1 + bt)
≥ log(1 + as)

log(1 + bs)
,

if b > a > 0.

Proof of Lemma H.4. Let f(t) = log(1 + at)/ log(1 + bt), and we want to prove that f ′(t) > 0 for
all t > 0. To find the derivative of f(t), we use the quotient rule:

f ′(t) =
(log(1 + bt)) d

dt (log(1 + at))− (log(1 + at)) d
dt (log(1 + bt))

(log(1 + bt))2

=
(log(1 + bt)) a

1+at − (log(1 + at)) b
1+bt

(log(1 + bt))2

=
a(1 + bt) log(1 + bt)− b(1 + at) log(1 + at)

(1 + at)(1 + bt)(log(1 + bt))2
.

Next, we define the function g(t) =
(
1
b + t

)
log(1 + bt)−

(
1
a + t

)
log(1 + at), and we aim to show

that g′(t) > 0 for all t > 0. We start by computing the derivative of g(t):

g′(t) = log(1 + bt)− log(1 + at).

Since b > a and t > 0, we have 1 + bt > 1 + at, which implies that log(1 + bt) > log(1 + at).
Therefore, we have g′(t) > 0 for all t > 0. Note that g(0) = 0, we then have g(t) > 0 for all t > 0.
Therefore, we have a(1 + bt) log(1 + bt)− b(1 + at) log(1 + at) > 0 for all t > 0, which in turn
implies that f ′(t) > 0 for all t > 0. Thus, we have shown that f(t) is increasing for t > 0 and hence
f(t) > f(s), which completes the proof.

Lemma H.5. Let g(z) = ℓ′(z) = −1/(1 + exp(z)), then we have that

g(z2)

g(z1)
≤ 2

(
1 + exp(z1 − z2)

)
, ∀z1, z2 ∈ R,

and
g(z2)

g(z1)
≥ 1

4
exp(z1 − z2), ∀z1 ∈ R, z2 ≥ −1.

Proof of Lemma H.5. We first prove the first inequality. For if z1 ≤ 0, we have

g(z2)

g(z1)
=

1 + exp(z1)

1 + exp(z2)
≤ 2

1 + exp(z2)
≤ 2.
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For if z1 > 0, we have

g(z2)

g(z1)
=

1 + exp(z1)

1 + exp(z2)
≤ 2 exp(z1)

exp(z2)
= 2 exp(z1 − z2).

Thus, for any z1 ∈ R, we have

g(z2)

g(z1)
≤ 2 + 2 exp(z1 − z2).

Now we prove the second inequality. We have

g(z2)

g(z1)
=

1 + exp(z1)

1 + exp(z2)
=

exp(−z2) + exp(z1 − z2)

exp(−z2) + 1
≥ exp(z1 − z2)

exp(1) + 1
≥ 1

4
exp(z1 − z2),

which completes the proof.
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