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Abstract

Neural operators are a popular technique in scientific machine learning to learn a mathe-
matical model of the behavior of unknown physical systems from data. Neural operators
are especially useful to learn solution operators associated with partial differential equa-
tions (PDEs) from pairs of forcing functions and solutions when numerical solvers are not
available or the underlying physics is poorly understood. In this work, we attempt to pro-
vide theoretical foundations to understand the amount of training data needed to learn
time-dependent PDEs. Given input-output pairs from a parabolic PDE in any spatial di-
mension n ≥ 1, we derive the first theoretically rigorous scheme for learning the associated
solution operator, which takes the form of a convolution with a Green’s function G. Until
now, rigorously learning Green’s functions associated with time-dependent PDEs has been
a major challenge in the field of scientific machine learning because G may not be square-
integrable when n > 1, and time-dependent PDEs have transient dynamics. By combining
the hierarchical low-rank structure of G together with randomized numerical linear alge-
bra, we construct an approximant to G that achieves a relative error of O(Γ

−1/2
ε ε) in the

L1-norm with high probability by using at most O(ε−
n+2

2 log(1/ε)) input-output training
pairs, where Γε is a measure of the quality of the training dataset for learning G, and ε > 0
is sufficiently small.
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1. Introduction

Machine learning, numerical analysis, and scientific computing are successfully combining
in the field of scientific machine learning to integrate data and prior knowledge of physical
laws to solve inverse problems using deep learning (Karniadakis et al., 2021). The flexibility
of neural network architectures and exceptional generalization errors, make neural networks
ideal for scientific machine learning. On the other hand, it is challenging to mathematically
justify the success of deep learning in this context.

A central topic in scientific machine learning is to discover partial differential equations
(PDEs), which are mathematical models describing the relations between variables of a sys-
tem and their spatial and temporal derivatives, directly from simulations or experimental
data. This leads to a wide range of applications in weather forecasting and climate sci-
ence (Rasp et al., 2018; Zanna and Bolton, 2020), biology (Alber et al., 2019; Raissi et al.,
2020), and physics (Karniadakis et al., 2021; Kochkov et al., 2021; Kutz, 2017; Chen and
Gu, 2021). Traditionally, PDEs are derived from mechanistic insights using conservation
laws, minimum energy principles, or empirical observations (Evans, 2010). With the rapid
development of deep learning and the vast collection of experimental results from sensors,
we are beginning an exciting new era of uncovering unknown PDE models directly from
data. Still, learning time-dependent PDEs is challenging because of transient dynamics.

We aim to provide the first theoretical results to characterize how much training data
is needed to learn a time-dependent PDE, and close a theoretical gap with recent data-
driven methods (Boullé et al., 2022; Gin et al., 2021; Li et al., 2021; Lu et al., 2021). Our
main result, described in Section 1.3, exploits and draws connections with standard tools
from numerical analysis, such as approximation theory and numerical linear algebra. While
we exclusively focus on theory, the insights provided by this work will be of interest to a
broader audience in scientific machine learning and motivate future empirical works and
novel physics-informed neural network architectures.

1.1 Parabolic Partial Differential Equations

Throughout this paper, we consider a class of time-dependent PDEs called parabolic partial
differential operators. A parabolic partial differential operator defined on a bounded spatial
domain Ω ⊂ R

n for some n ≥ 1 with Lipschitz smooth boundary takes the form:

Pu := ut −∇ · (A(x, t)∇u) = f(x, t), x ∈ Ω, t ∈ [0, T ], 0 < T <∞. (1)

Here, for every x ∈ Ω and t ∈ [0, T ], the matrix A(x, t) ∈ R
n×n is symmetric positive

definite with bounded coefficient functions in L∞(U), where U := Ω × [0, T ], and satisfies
the uniform parabolicity condition (see Eq. (3)). Here, L∞(U) is the space of measurable
functions defined on U that have a bounded essential supremum. In this manuscript, we
also consider two other Lp spaces, the space of absolutely integrable functions, L1(U), and
squared-integrable functions, L2(U). We emphasize that the regularity requirements on the
parabolic PDE are very weak. The function f in Eq. (1) is called the forcing term of the
PDE while u is the corresponding system’s response or solution. Parabolic PDEs model a
wide variety of time-dependent phenomena, including heat conduction, particle diffusion,
and option pricing.
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The goal of most PDE learning tasks is to learn the solution operator that maps forcing
terms to responses, given training data {(fj , uj)}Nj=1 (Boullé et al., 2022; Gin et al., 2021;
Kovachki et al., 2021b; Li et al., 2020a,b, 2021; Lu et al., 2021; Wang et al., 2021). Associated
with the parabolic operator P in Eq. (1) is a Green’s function G : U × U → R

+, which is
a kernel for the solution operator (Cho et al., 2012). In particular, the solution operator is
an integral operator of the form (Evans, 2010):

u(x, t) =

∫ T

0

∫

Ω
G(x, t, y, s)f(y, s) dy ds, (x, t) ∈ U ,

where u is the solution to Eq. (1) given the forcing term f . Our goal is to recover G as
accurately as possible from forcing functions f1, . . . , fN and their corresponding solutions
u1, . . . , uN , as well as the evaluation of the adjoint of P. Since we are learning a classical
mathematical object, we can gain a mechanistic understanding of the unknown parabolic
PDE, and theoretical and practical performance guarantees.

1.2 Challenges and Contributions

In this paper, we derive a rigorous probabilistic algorithm to learn the Green’s function G
associated with Eq. (1) from random input-output data (f, u) and characterize the number
of training pairs needed to learn G to within a given tolerance ε with high probability. Since
Green’s functions associated with Eq. (1) may not be squared-integrable when n > 1, we
perform our analysis using the L1-norm and obtain a rigorous learning rate for G in that
norm. We summarize the challenges that we face and our main contributions:

Low-rank structure of parabolic Green’s functions. It is known that Green’s func-
tions associated with elliptic PDEs in dimension n ≥ 3 have a low-rank structure on well-
separated domains and can be approximated by separable functions (Bebendorf and Hack-
busch, 2003). This property motivates the use of hierarchical matrices as a way to store,
approximate, and compute the inverse of finite element stiffness matrices and discretized
Green’s functions in quasi-optimal complexity (Bebendorf and Rjasanow, 2003; Bebendorf,
2008; Börm et al., 2003; Hackbusch, 1999; Hackbusch and Khoromskij, 2000; Hackbusch
et al., 2004). The low-rank structure of the Green’s function is heavily used in numerical
solvers for elliptic PDEs, preconditioners for iterative solvers, computing Schur comple-
ments (Bebendorf and Hackbusch, 2003), and rigorously learning Green’s functions from
input-output pairs (Boullé and Townsend, 2022a). While related works (Greengard and Lin,
2000; Greengard and Strain, 1990; Jiang et al., 2015; Li and Greengard, 2007, 2009) ex-
ploited the compressibility of the heat kernel to build fast and accurate numerical methods
for the evaluation of heat potentials, there is a lack of theoretical results that are analogous
to those found in Bebendorf and Hackbusch (2003). In particular, our first contribution is
to prove that Green’s functions associated with parabolic PDEs admit a low-rank structure
on well-separated domains for any spatial dimension, extending (Bebendorf and Hackbusch,
2003). Our analysis is based on the existence of Poincaré and Cacciopolli-type inequalities
satisfied by the solutions of parabolic PDEs. We find that for the most efficient hierar-
chical partitioning of a domain, the time variable must be treated differently from spatial
variables, leading to a careful hierarchical partition of the spatio-temporal domain. This
result enables the approximation of the entire solution operator associated with a parabolic
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PDE by a hierarchical matrix, leading to efficient numerical solvers. Additionally, inspired
by the hierarchical structures in elliptic PDEs, several neural network (NN) architectures
using a wavelet transform are proposed to learn the solution operators of PDEs across dif-
ferent scales (Feliu-Faba et al., 2020; Gupta et al., 2021), and our analysis suggests this is
potentially a good idea for parabolic PDEs too.

Analysis in the L1-norm. Green’s functions associated with parabolic PDEs may not
be squared-integrable when n > 1, presenting an additional challenge compared to elliptic
PDEs with 1 ≤ n ≤ 3. For example, consider the forced heat equation in dimension n > 1
with zero homogeneous Dirichlet boundary conditions and zero initial conditions, i.e.,

∂u

∂t
−∇2u = f(x, t), u(x, 0) = 0, u(0, t) = 0, (x, t) ∈ R

n × R,

The associated Green’s function is given by (Evans, 2010, Sec. 2.3.1)

G(x, t, y, s) =
Θ(t− s)

(4π(t− s))n/2
exp

(

−1

4

|x− y|2
t− s

)

, (x, t) 6= (y, s) ∈ R
n × R, (2)

where Θ(·) is the Heaviside step function that takes the value of one for positive inputs and
zero otherwise, and | · | is the Euclidean norm on Ω. Due to the type of the time singularity
along the diagonal as s approaches t, G is not a squared-integrable function. However, G
does have a bounded L1-norm. This is a very significant theoretical challenge for rigorously
learning the corresponding solution operator as L1 is not a Hilbert space, contrary to L2.
Almost all the techniques employed in the elliptic case (Boullé and Townsend, 2022a) exploit
analogues of matrix results to Hilbert–Schmidt (HS) operators in infinite dimensions, such
as the Eckart–Young–Mirsky theorem for best low-rank approximation in the Frobenius
norm (Eckart and Young, 1936), and do not generalize to the L1-norm. The best low-
rank approximation problem for matrices in the entrywise `1-norm is significantly more
complicated than that in the Frobenius norm and is, in general, NP-hard (Gillis and Vavasis,
2018; Song et al., 2017). We address this issue by approximating well-separated blocks of
the Green’s function in the L2-norm, and then express the final approximation error in
the L1-norm using Moser’s local maximum estimate (Lieberman, 1996). This theory may
motivate the use of NN architectures that allow for representing maps with singularities
that are not square-integrable in deep learning, such as rational NNs (Boullé et al., 2020).

Quality of the training data. Several deep learning techniques for learning solution
operators associated with PDEs assume random training and testing forcing functions
f in Eq. (1), which are drawn from a Gaussian process (GP) GP(0,K) with a care-
fully designed covariance kernel K (Boullé et al., 2022; Gin et al., 2021; Kovachki et al.,
2021b; Li et al., 2020a, 2021; Lu et al., 2021; Wang et al., 2021). For example, the
GreenLearning, DeepGreen, and DeepONet methods use a squared-exponential kernel, i.e.,
K(x, x′) = exp(−|x−x′|2/(2`2)), where the length-scale parameter ` determines the smooth-
ness of the forcing terms (Boullé et al., 2022; Gin et al., 2021; Lu et al., 2021). In contrast,
the Neural Operator approach employs Green’s functions associated with Helmholtz equa-
tions as covariance kernel, where the Helmholtz frequency varies depending on the problem
considered (Li et al., 2020a, 2021). We emphasize that the choice of the covariance kernel is
important in PDE learning applications and can be used to enforce prior knowledge about

4



Learning parabolic Green’s functions

the PDE to obtain higher accuracy. Our main theoretical result contains a term that char-
acterizes the quality of the random training data, i.e., the covariance kernel of the GP from
which forcing terms are sampled (see Section 1.3). This is a step towards understanding
the success of state-of-the-art PDE learning techniques and better determine the optimal
covariance kernel to minimize the size of the training dataset.

Finally, we regard our work here as giving important theoretical insights and we are
not proposing that our rigorous learning algorithm should replace deep learning techniques
in practice. Instead, we hope this paper can benefit the state-of-the-art PDE learning
techniques by suggesting different optimization algorithms based on an L1 loss, improving
the quality of training datasets, and designing “physics-informed” NN architectures that
represent the singularity and low-rank structure present in Green’s functions.

1.3 Main Theoretical Results

Our first result (see Theorem 9) shows that Green’s functions associated with parabolic
operators of the form of Eq. (1) satisfy similar separable approximation properties to Green’s
functions of elliptic operators (Bebendorf and Hackbusch, 2003, Thm. 2.8) on admissible
spatio-temporal domains QX ×QY ⊂ U × U . The notion of admissibility (see Section 2.2)
ensures that the approximation results only apply to domains QX ×QY that do not contain
the singular points of the Green’s function. For any 0 < ε < 1 sufficiently small and
k ≤ kε = O(dlog 1

ε en+3), we show that there exists a (low-rank) separable approximation of
the form

Gk(x, t, y, s) =
k∑

i=1

ui(x, t)vi(y, s), (x, t) ∈ QX , (y, s) ∈ QY ,

such that

‖G−Gk‖L2(QX×QY ) ≤ ε‖G‖L2(Q̂X×QY ).

Here, Q̂X ⊂ U denotes a domain slightly larger than QX .

Throughout this paper, we make the following assumption that allows us to evaluate the
adjoint of the parabolic operator to construct an approximant to the Green’s function. In
practical applications, it may not be possible to evaluate the adjoint, as backward parabolic
equations are usually not well-posed (John, 1955; Miranker, 1961). However, numerical
experiments suggest that deep NNs can approximate the solution operators associated with
non-symmetric problems when the training data contains sufficient prior knowledge of the
operator (Boullé et al., 2022; Li et al., 2021; Lu et al., 2021).

Assumption 1. We assume that we can evaluate the action of the adjoint P∗ of the

parabolic operator P, defined as

P∗u = −ut −∇ · (A(x, t)>∇u),

where A> is the transpose of the coefficient matrix A.

Our main theoretical result, stated later in Theorem 10, constructs a rigorous probabilis-
tic scheme for learning Green’s functions of parabolic operators in spatial dimension n ≥ 1

within a relative error of O(Γ
−1/2
ε ε), with high probability, using at most O(ε−

n+2
2 log(1/ε))
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input-output training pairs, where ε > 0 is a sufficiently small parameter. The factor Γε is
defined later in Section 4.4 and quantifies the quality of the forcing terms for learning G.
This result provides an upper bound for the intrinsic learning rate of parabolic operators.
Our theoretical construction relies on the separable approximation result for Green’s func-
tions associated with parabolic PDEs described earlier, a careful hierarchical partition of
the spatio-temporal domain into well-separated blocks, and the randomized singular value
decomposition (SVD) for HS operators (Boullé and Townsend, 2022a,b).

1.4 Related Works

The approaches that dominate the PDE learning literature consist of discovering coefficients
of the PDE (Brunton et al., 2016; Rudy et al., 2017; Udrescu and Tegmark, 2020; Udrescu
et al., 2020; Zhang and Lin, 2018), building reduced-order models to significantly speed
up standard numerical solvers (Qian et al., 2020, 2021), and directly approximating the
PDE solution operator by an artificial NN (Boullé et al., 2022; Gin et al., 2021; Kovachki
et al., 2021b; Li et al., 2020a,b, 2021; Lu et al., 2021; Wang et al., 2021). Several black-box
deep learning techniques are proposed to approximate the solution operator, which maps
forcing terms f to observations of the associated system’s response u such that P(u) = f ,
where P is the partial differential operator. These methods mainly differ in their choice of
the NN architecture used to approximate the solution map. For example, Fourier Neural
Operator (Li et al., 2021) uses a Fourier transform at each layer, DeepONet (Lu et al., 2021)
contains a concatenation of ‘trunk’ and ‘branch’ networks to enforce additional structure,
and GreenLearning (Boullé et al., 2022) relies on rational NNs (Boullé et al., 2020) to learn
Green’s functions.

On the theoretical side, most of the research has focused on the approximation theory
of infinite-dimensional operators by NNs, such as the generalization of the universal ap-
proximation theorem (Cybenko, 1989) to shallow and deep NNs (Chen and Chen, 1995;
Lu et al., 2021) as well as error estimates for Fourier Neural Operators and DeepONets
with respect to the network width and depth (Kovachki et al., 2021b,a; Lanthaler et al.,
2022). Other approaches aim to approximate the matrix of the discretized Green’s functions
associated with elliptic PDEs from matrix-vector multiplications by exploiting sparsity pat-
terns or hierarchical structure of the matrix (Lin et al., 2011; Schäfer and Owhadi, 2021).
In addition, de Hoop et al. (2021) derived convergence rates for learning linear self-adjoint
operators based on the assumption that the target operator is diagonal in the basis of
the Gaussian prior. More recently and closely related to this work, Boullé and Townsend
(2022a) derived an intrinsic “learning rate” for elliptic PDEs using ideas from randomized
linear algebra and low-rank approximation theory to characterize the number of training
data needed to approximate the associated solution operator or Green’s functions.

However, fundamental challenges of the field concern the interpretability of the dis-
covered model to uncover new physical understanding, and performance guarantees with
theoretical results. These are challenging, especially when the underlying mathematical
model is time-dependent and has short-lived transient dynamics.
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1.5 Organization of the Paper

The paper is organized as follows. We first introduce some definitions and our notation
in Section 2. Then, we prove a low-rank approximation property of Green’s functions
associated with parabolic operators in Section 3 on separable domains. We exploit this
low rank structure to bound the number of input-output pairs needed to learn Green’s
functions in Section 4 using the randomized SVD combined with a hierarchical partition of
the temporal domain. We conclude in Section 5 with a discussion of the results and future
challenges.

2. Background and the Randomized Singular Value Decomposition

This section introduces our notation and background on low-rank functions, admissible
domains, and the randomized SVD for HS operators.

2.1 Definitions and Notation

Throughout this paper, Ω ⊂ R
n denotes a bounded domain in spatial dimension n ≥ 1

satisfying the uniform interior cone condition (Gilbarg and Trudinger, 2001, Chapt. 7.7),
which is defined as follows.

Definition 1 (Uniform interior cone condition). We say that Ω satisfies an interior cone

condition if there exists an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω
there exists a unit vector ξx such that the cone

C(x, ξx, θ, r) = {x+ λy : y ∈ R
n, ‖y‖2 = 1, y · ξx ≥ cos(θ), λ ∈ [0, r]}

is contained in Ω. Here, ‘·’ denotes the standard dot product in R
n.

We note that every bounded domain with a Lipschitz smooth boundary satisfies an interior
cone condition.

We consider parabolic PDEs of the form Eq. (1) on the domain U = Ω × [0, T ], where
T > 0. We also assume that the symmetric coefficient matrix A(x, t) ∈ R

n×n satisfies the
uniform parabolicity condition, i.e., there exist two positive constants λ,Λ > 0 such that

λ|ξ|2 ≤ A(x, t)ξ · ξ ≤ Λ|ξ|2, ξ ∈ R
n, (3)

where |·| denotes the discrete `2-norm. This means that the matrix A is uniformly positive
definite with eigenvalues in the interval [λ,Λ] By the Cauchy–Schwarz inequality, we have
the following inequality:

|A(x, t)ξ · ψ| ≤ Λ|ξ||ψ|, ξ, ψ ∈ R
n.

Under these conditions, we can find a nonnegative Green’s function G(x, t, y, s) defined on
the domain {(x, t, y, s) ∈ U × U , (x, t) 6= (y, s)} by the following relationship (Cho et al.,
2012):

PG(x, t, y, s) = δ(y − x)δ(s− t), (x, t) ∈ U ,
G(·, t, y, s) = 0, on ∂Ω, t ∈ (0, T ),

G(·, 0, y, s) = 0, in Ω,
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where P is the parabolic operator defined in Eq. (1) acting on functions in the variables
(x, t) and δ(·) is the Kronecker delta function.

In this manuscript, we usually work on domains of the form Q = (Ω ∩D)× I, where D
is a bounded convex domain in R

n and I is an open bounded interval of R+, and consider
the following function spaces:

1. The Banach space L1(Q), with norm ‖u‖L1(Q) =
∫

Q |u| dx dt.

2. The Hilbert space L2(Q), with inner product 〈u, v〉L2(Q) =
∫

Q uv dx dt.

3. The Hilbert spaceW 1,0
2 (Q), with inner product 〈u, v〉

W 1,0
2 (Q)

=
∫

Q(uv+∇u ·∇v) dx dt,
consisting of all functions u ∈ L2(U) with squared-integrable weak derivatives.

4. The Banach space V2(Q), defined as

V2(Q) :=

{

u ∈W 1,0
2 (Q), ‖u‖V2(Q) = ess sup

t∈I
‖u(·, t)‖L2(Ω∩D) + ‖∇u‖L2(Q) <∞

}

.

The approximation error between the learned and exact Green’s functions are expressed in
the L1(U × U)-norm as Green’s functions associated with parabolic PDEs are usually not
squared-integrable when n > 1 (see Section 1.2).

2.2 Admissible Domains and Low-rank Functions

We learn Green’s functions on subdomains of U × U satisfying an admissibility condition
so that the subdomains do not contain the singular points of the Green’s functions lo-
cated along the diagonal (x, t) = (y, s). While the definition of strong admissible (or well-
separated) domains is standard for Green’s functions associated with elliptic PDEs (Ballani
and Kressner, 2016; Bebendorf and Hackbusch, 2003; Bebendorf, 2008; Hackbusch, 2015),
we need to adapt the definition for parabolic PDEs slightly. Let β > 0 be a constant, and
consider the following metrics on U × U :

m(x, t, y, s) = max
(

‖x− y‖∞,
√

|t− s|/β
)

, (x, t) ∈ U , (y, s) ∈ U , (5)

where the spatial and temporal variables are treated differently. The choice of the metric
m is related to the exponential term appearing in the Green’s function of the heat equation
(cf. Eq. (2)) since Green’s functions associated with parabolic PDEs satisfy similar Gaussian
bounds (Cho et al., 2012). Let QX , QY ⊂ U be two non-empty domains, we can define the
diameter of QX and the distance between QX and QY using the metric m as

diamQX = sup
(x,t),(y,s)∈QX

m(x, t, y, s), dist(QX , QY ) = inf
(x,t)∈QX ,(y,s)∈QY

m(x, t, y, s). (6)

We use these quantities to define a partition of U × U so that the spatial and temporal do-
mains scale similarly as we approach the singularity of the Green’s function (see Section 4.1).
Finally, one can combine the notions of diameter and distance for spatio-temporal domains
to introduce an admissibility condition, similar to the elliptic case.
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Definition 2 (Admissible domains). For a fixed parameter ρ > 0, we say that two non-

empty domains QX , QY ⊂ U are admissible if

dist(QX , QY ) ≥ ρmax{diamQX , diamQY }. (7)

Otherwise, we say that they are non-admissible.

Fig. 1 illustrates admissible and non-admissible subdomains of U = [0, 1]× [0, 1]. In par-
ticular, the spatial component of U is partitioned into four subdomains while the temporal
component is partitioned into two. This ensures that all the subdomains have a similar
diameter according to Eq. (6). We use a similar strategy when constructing a partition of
U × U into admissible and non-admissible subdomains (see Section 4.1).

0 0.5 1
0

0.5

1

QX QY

d2 ρ2d2

d

t

x

0 0.5 1
0

0.5

1

QX

QY

t

x

(a) (b)

Figure 1: Admissible and non-admissible subdomains of the spatial-temporal domain U =
[0, 1]×[0, 1]. The spatial domain is partitioned into two while the temporal domain
is partitioned into four. In particular, a subdomain QX = DX × IX has diameter
d := diam(QX) = diam(DX) = diam(IX)1/2. Panels (a) and (b) highlights in
green (resp. red) the admissible domains (resp. non-admissible) with QX with
diameter d = 1/2 and ρ = β = 1 (see Eq. (5) and Theorem 2). Specifically, the
subdomain QY is admissible with QX in (a) and non-admissible in (b).

On admissible domains QX × QY ⊂ U × U , we aim to construct approximants to the
Green’s function G associated with Eq. (1). For a given accuracy 0 < ε < 1, we say that G
is of rank k if there exists an integer k = k(ε) and a separable approximation of the form

Gk(x, t, y, s) =
k∑

i=1

ui(x, t)vi(y, s), (x, t, y, s) ∈ QX ×QY ,

such that ‖G−Gk‖L2(QX×QY ) ≤ ε‖G‖L2(Q̂X×Q̂Y ), where Q̂X (resp. Q̂Y ) denotes a domain

slightly larger than QX (resp. QY ); see Theorem 9 for a precise definition. When k =
O(logδ(1/ε)) for some small δ ∈ N as ε → 0, then we say that G has rapidly decaying
singular values on QX ×QY .
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2.3 Randomized Singular Value Decomposition for Hilbert–Schmidt Operators

Let D1, D2 ⊂ R
n be two domains, a linear operator F : L2(D1) → L2(D2) is called an HS

operator if it has finite HS norm, i.e.,

‖F‖HS :=





∞∑

j=1

‖Fej‖2L2(D2)





1/2

<∞,

where {ej}∞j=1 is an orthonormal basis of L2(D1). HS operators generalize the notion of
matrices acting on vectors to infinite dimensions with operators acting on squared-integrable
functions. Moreover, the HS norm is the continuous analogue of the Frobenius norm for
matrices and ‖F‖HS = (

∑∞
j=1 σ

2
j )

1/2, where σ1 ≥ σ2 ≥ · · · ≥ 0 denote the singular values
of F .

The randomized SVD is one of the most popular algorithms for constructing low-rank
approximations of large matrices. Given a matrix A, it uses matrix-vector products with
random vectors drawn from a standard Gaussian distribution to find an approximate or-
thonormal basis Q for the column space of A before computing a low-rank approximation
as QQ>A (Halko et al., 2011; Martinsson and Tropp, 2020).

A recent generalization of the randomized SVD with random vectors drawn from a
general multivariate Gaussian distribution allows its application to learn HS operators using
random functions drawn from a Gaussian process (Boullé and Townsend, 2022a,b). The
randomized SVD for HS operators uses random functions drawn from a Gaussian process
GP(0,K) with mean (0, . . . , 0) and continuous symmetric positive definite covariance kernel
K : D1 × D1 → R to construct a low-rank approximant. The kernel K has positive
eigenvalues λ1 ≥ λ2 ≥ · · · > 0, and there exists an orthonormal basis of L2(D1) such
that (Hsing and Eubank, 2015, Thm. 4.6.5)

K(x, y) =
∞∑

j=1

λjψj(x)ψj(y), x, y ∈ D1.

The trace of the covariance kernel is defined as Tr(K) :=
∑∞

j=1 λj < ∞ and is finite as K
is continuous on D1 × D1. A random function ω ∼ GP(0,K) can be sampled by setting
ω ∼∑∞

j=1

√
λjcjψj , where cj ∼ N (0, 1) are independent and identically distributed.

Finally, it is convenient to introduce quasimatrices, which extends the notion of tall-
skinny matrices to infinite dimensions (Townsend and Trefethen, 2015), to formulate the
randomized SVD for HS operators. Let k ≥ 1 be an integer, a D1 × k quasimatrix
Ω =

[
ω1 · · · ωk

]
is a matrix with k columns, where each column 1 ≤ j ≤ k is a

squared-integrable function wj ∈ L2(D1). The standard matrix-vector operations gener-
alize naturally to the applications of HS operators to quasimatrices. Then, FΩ denotes the
quasimatrix obtained by applying F to each column of Ω (Boullé and Townsend, 2022a,
Sec. 2.1).

We can now state the results of approximating an HS operator with randomized SVD.
Let k ≥ 1 be a target rank, p ≥ 4 an oversampling parameter, and Ω be a D1 × (k +
p) quasimatrix, whose columns are drawn from GP(0,K). If Y = FΩ and PY is the
orthogonal projection onto the vector space spanned by the columns of Y, then for s, t ≥ 1,

10



Learning parabolic Green’s functions

we have (Boullé and Townsend, 2022a, Thm. 1),

‖F −PYF‖HS ≤
√

1 + t2s2
3

γk

k(k + p)

p+ 1

Tr(K)

λ1





∞∑

j=k+1

σ2j





1/2

, (8)

with probability of failure bounded by t−p + [se−(s2−1)/2]k+p. Here, γk = k/(λ1Tr(C
−1))

withCij =
∫

D1×D1
vi(x)K(x, y)vj(y) dx dy for 1 ≤ i, j ≤ k, where vj is the jth right singular

vector of F . The factor 0 < γk ≤ 1 in Eq. (8) characterizes the quality of the covariance
kernel to learn the HS operator F . A refined bound shows that one can enforce prior
information on the operator in the covariance kernel to obtain near-best approximation
error (Boullé and Townsend, 2022b, Thm. 2).

In the remainder of this manuscript, we apply the randomized SVD for HS operators to
learn Green’s functions associated with parabolic PDEs on admissible domains QX ×QY .
Green’s functions restricted to admissible domains are an example of HS integral operators
as the solution operator F associated with parabolic PDEs can be written as

(Ff)(x, t) =

∫

QY

G(x, t, y, s)f(y, s) dy ds, f ∈ L2(QX), (x, t) ∈ QX .

Moreover, we can use the relation ‖F‖HS = ‖G‖L2(QX×QY ) to estimate the approximation
error between the Green’s function and its approximant on QX ×QY .

3. Low-Rank Approximation of Parabolic Green’s Functions

Bebendorf and Hackbusch (2003) show that Green’s functions associated with elliptic equa-
tions in three dimensions admit a low rank separable approximation on admissible domains.
In this section, we extend this result to Green’s functions associated with parabolic PDEs
so that we obtain low-rank approximants on well-separated domains (see Theorem 9). In
particular, approximations in this section are expressed in L2-norm, and we convert the
relations to L1-norm in the next section.

3.1 Poincaré-type Inequality

We start our derivation by showing a Poincaré-type inequality for the solution of a parabolic
equation Eq. (1), which bounds a function by its derivatives and the geometry of its domain.
The standard Poincaré’s inequality is of the form ‖u − ū‖L2(D) ≤ C‖∇u‖L2(D), where ū is
the average of u in D, and C is some positive constant. In Eq. (10) we find that when D is
convex, a closed-form expression for the constant C can be derived.

Lemma 3. Let D be a bounded convex domain in R
n and let u ∈W 1,1(D) = {f ∈ L1(D) :

∂xf ∈ L1(D)} where ∂x is taken in the weak sense. Let η be a nonnegative function such

that
∫

D η dy > 0 and 0 ≤ η(y) ≤ 1. Then, for x ∈ D, we have

|u(x)− ūη| ≤
dn

n
∫

D η dy

∫

D
|x− y|1−n |∇u(y)| dy, (9)

11



Boullé, Kim, Shi, and Townsend

where ūη =
∫

D u(y)η(y) dy/
∫

D η(y) dy and d = diamD. In particular, we have

‖u− ūη‖L2(D) ≤
ω
1− 1

n
n |D| 1n
∫

D η dy
dn ‖∇u‖L2(D), (10)

where ωn denotes the volume of the unit ball in R
n.

Proof From the Fundamental Theorem of Calculus,

u(x)− u(y) = −
∫ |x−y|

0
∂ru(x+ rω) dr, ω =

y − x

|y − x| , x, y ∈ D.

By multiplying by η(y) on both sides and integrating with respect to y over D, we obtain

(u(x)− ūη)

∫

D
η(y) dy = −

∫

D
η(y)

∫ |x−y|

0
∂ru(x+ rω) dr dy.

For x ∈ R
n, we define the function

V (x+ rω) =

{

|∂ru(x+ rω)|, if x+ rω ∈ D,

0, otherwise.

Then, we have

|u(x)− ūη| ≤
1

∫

D η dy

∫

D

∫ ∞

0
V (x+ rω) dr dy

=
1

∫

D η dy

∫ ∞

0

∫

|ω|=1

∫ d

0
V (x+ rω)ρn−1 dρ dω dr

=
dn

n
∫

D η dy

∫ ∞

0

∫

|ω|=1
V (x+ rω) dω dr =

dn

n
∫

D η dy

∫

D
|x− y|1−n |∇u(y)| dy.

Note that we have used the fact that η ≤ 1 to obtain the first inequality. Finally, Eq. (10) is
obtained by applying (Gilbarg and Trudinger, 2001, Lem. 7.12) to Eq. (9), with p = q = 2
and µ = 1/n.

It is worth noting the differences between the standard Poincaré inequality and the one
in Theorem 3 as the average of u is replaced by a “weighted” average of u. This is important
for deriving Theorem 4.

The importance of this lemma is that one can bound the L2-norm of u minus some con-
stant by the L2 norm of the spatial gradient (not the full gradient) of u when u is a solution
of Pu = 0. It is complementary to the parabolic Caccioppoli’s inequality (see Theorem 5),
where the spatial gradient of u is controlled by u itself.

Lemma 4. Let Ω ⊂ R
n be a domain and D ⊂ R

n be a bounded convex set such that

Ω ∩D 6= ∅. Suppose there is a constant θ ∈ (0, 1) such that one of the following holds:

1. |D \ Ω| ≥ θ|D|.

2. There exists a ball B ⊂ Ω ∩D such that |B| ≥ θ|D|.

12
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Then, for any u satisfying Pu = 0 in Q = (Ω∩D)× I, where I is an open bounded interval

of R+, and u = 0 on (∂Ω ∩D)× I, there exists a constant c ∈ R such that

‖u− c‖L2(Q) ≤




22n

θ2

(
ωn

|D|

)2− 2
n

d2n +
22n+3Λ2ω

2
n
n |I|2

θ2+
2
n |D| 2n





1/2

‖∇u‖L2(Q), (11)

where d and ωn are defined in Theorem 3, and Λ is a constant related to uniform parabolicity

defined in Eq. (3).

Proof We denote Q̃ = D × I and extend u by zero on Q̃ \ Q so that u is defined on Q̃.
The proof is done in two steps assuming one of the conditions.

1. We first consider the case when |D\Ω| ≥ θ|D|. If η is the indicator function of D\Ω,
then Theorem 3 yields

∫

D
|u(x, t)|2 dx ≤ ω

2− 2
n

n |D| 2n
|D \ Ω|2 d2n

∫

D
|∇u(x, t)|2 dx, t ∈ I.

By integrating with respect to t ∈ I and using |D \ Ω| ≥ θ|D|, we find that

∫

I

∫

D
|u(x, t)|2 dx dt ≤ ω

2− 2
n

n |D| 2n
θ2|D|2 d2n

∫

I

∫

D
|∇u(x, t)|2 dx dt. (12)

Since u = 0 in Q̃ \Q, (12) implies Eq. (11) with c = 0.

2. Next, we consider the case when there exists a ball B = B(x0, r) ⊂ Ω ∩D such that
|B| ≥ θ|D|. Let η be a smooth function such that

0 ≤ η ≤ 1, supp η ⊂ B, |∇η| ≤ 2

r
, and

∫

B
η(x) dx ≥ 1

2n
|B|. (13)

We denote

ūη(t) :=
1

∫

D η dx

∫

D
u(x, t)η(x) dx, ûη :=

1

|I|

∫

I
ūη(t) dt =

1
∫

Q̃ η dx dt

∫

Q̃
u(x, t)η(x) dx dt.

Then, we have

∫

Q̃
|u(x, t)− ûη|2 dx dt ≤ 2

∫

Q̃
|u(x, t)− ūη(t)|2 + |ūη(t)− ûη|2 dx dt

≤ 22n

θ2

(
ωn

|D|

)2− 2
n

d2n
∫

I

∫

D
|∇u(x, t)|2 dx dt+ 2|D|

∫

I
|ūη(t)− ûη|2 dt, (14)

where the second inequality follows from Eqs. (10) and (13), and the assumption that
|B| ≥ θ|D|.
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We now bound the second term in the right-hand side of Eq. (14). Since Pu = ∂tu −
∇ · (A∇u) = 0 in Q = (Ω ∩D) × I, u = 0 on (∂Ω ∩D) × I, and supp η ⊂ B ⊂ Ω ∩D, we
multiply the equation Pu = 0 by η and integrate by parts over Ω ∩D to obtain

∫

Ω∩D

∂

∂t
u(x, t)η(x) dx+

∫

Ω∩D
A(x, t)∇u(x, t) · ∇η(x) dx = 0.

Then, integrating over t ∈ [t0, t1] ⊂ I yields
∣
∣
∣
∣

∫ t1

t0

(
d

dt

∫

Ω∩D
u(x, t)η(x) dx

)

dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ t1

t0

∫

Ω∩D
A(x, t)∇u(x, t) · ∇η(x) dx dt

∣
∣
∣
∣

≤
∫ t1

t0

∫

Ω∩D
|A(x, t)∇u(x, t) · ∇η(x)| dx dt

≤ 2Λ

r

∫

Q
|∇u| dx dt = 2Λ

(
ωn

|B|

) 1
n
∫

Q̃
|∇u| dx dt,

(15)

where the second inequality follows from Eq. (13) and the uniform parabolicity condition.
We now use the fact that

∫

B η dx ≥ 1
2n |B| to obtain

∣
∣
∣
∣

∫ t1

t0

(
d

dt

∫

Ω∩D
u(x, t)η(x) dx

)

dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

B
η dx

∫ t1

t0

d

dt
ūη(t) dt

∣
∣
∣
∣
≥ |B|

2n
|ūη(t1)− ūη(t0)|,

which when combined with Eq. (15), gives the following inequality:

|B|
2n

|ūη(t1)− ūη(t0)| ≤ 2Λ

(
ωn

|B|

) 1
n
∫

Q̃
|∇u| dx dt.

Therefore, we have

|ūη(t1)− ūη(t0)| ≤
2n+1Λω

1
n
n

|B|1+ 1
n

∫

Q̃
|∇u| dx dt ≤ 2n+1Λω

1
n
n

θ1+
1
n |D|1+ 1

n

∫

Q̃
|∇u| dx dt, (16)

as |B| ≥ θ|D|. Moreover, we have,

ūη(t)− ûη =
1

|I|

∫

I
ūη(t)− ūη(s) ds, t ∈ I

and, using Eq. (16), we deduce that

2|D|
∫

I
|ūη(t)− ûη|2 dt ≤ 2|Q̃|




2n+1Λω

1
n
n

θ1+
1
n |D|1+ 1

n

∫

Q̃
|∇u| dx dt





2

.

We combine this equation with Eq. (14) to obtain

∫

Q̃
|u− ūη|2 dx dt ≤




22n

θ2

(
ωn

|D|

)2− 2
n

d2n +
22n+3Λ2ω

2
n
n |I|2

θ2+
2
n |D| 2n





∫

Q̃
|∇u|2 dx dt,

and choose the constant c = ūη to conclude the proof of Eq. (11).
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If the diameter d of the spatial domain D satisfies d ' |I| 12 ' |D| 1n , where |D| :=
∫

D dx
denotes the volume of D, then Eq. (11) can be simplified to

‖u− c‖L2(Q) . d‖∇u‖L2(Q),

where . denotes an inequality up to the multiplication of the right-hand side by a constant.
For example, this situation arises when D×I = Q−

r (X0) := Br(x0)× (t0−r2, t0], for a given
t0 > 0. The assumptions of Theorem 4 can be shown to hold in some simple contexts. For
example, if Ω satisfies the uniform interior cone condition (Gilbarg and Trudinger, 2001,
Chapt. 7.7) and D is such that |D| ' dn, such as a cube or a ball, then there exists a
constant θ ∈ (0, 1) and δ > 0 depending on Ω, such that if d ≤ δ, one of the conditions of
Theorem 4 holds.

3.2 Cacciopolli’s Inequality

Next, we show Cacciopolli’s inequality for solutions of parabolic equations (1), which can
also be seen as a kind of reverse Poincaré inequality. In particular, it says that the L2 norm
of the spatial gradient (not the full gradient) of u can be bounded above by the L2 norm of
u on a slightly larger domain.

Lemma 5. Let D be a domain such that D∩Ω 6= ∅, Γ := ∂D∩Ω, and K ⊂ D be a domain

such that δ0 := distL2(D)(K,Γ) > 0. Let I = (t0, t1) ⊂ R and I ′ = (t0 + δ1, t1), for a given

0 < δ1 < t1 − t0. Then, for any u satisfying Pu = 0 in Q := (D ∩ Ω) × I and u = 0 on

(∂Ω ∩D)× I, we have

∫

I′

∫

K∩Ω
|∇u(x, t)|2 dx dt ≤

(
4Λ2

λ2δ20
+

2

λδ1

)

‖u‖2L2(Q).

Proof Let η ∈ C1(Rn) such that 0 ≤ η ≤ 1, η = 1 on K, η = 0 in a neighbourhood of Γ,
and |∇η| ≤ 1/δ0. We also consider a similar function ζ ∈ C1(R), defined on the temporal
domain, such that 0 ≤ ζ ≤ 1, ζ = 1 on I ′, ζ = 0 in a neighbourhood of t0, and |ζ ′| ≤ 1/δ1.

Then, the function η2ζ2u, defined on (D ∩ Ω) × (t0, t) for t0 < t < t1, satisfies the
equation P(η2ζ2u) = 0. After multiplying the equation by u, integrating by parts over
(D ∩ Ω) × (t0, t), and using the fact that η vanishes near Γ, which gives η2ζ2u = 0 on
∂(D ∩ Ω), we obtain,

∫ t

t0

∫

D∩Ω
η2(x)ζ2(t)u(x, t)

∂

∂t
u(x, t) dx dt+

∫ t

t0

∫

D∩Ω
A(x, t)∇u · ∇(η2ζ2u) dx dt = 0. (17)

The first term in Eq. (17) can be reformulated as

∫ t

t0

∫

D∩Ω
η2(x)ζ2(t)u

∂

∂t
u dx dt =

∫ t

t0

∫

D∩Ω

∂

∂t

(
1

2
η2(x)ζ2(t)u2

)

− η2(x)ζ(t)ζ ′(t)u2 dx dt.

=

∫

D∩Ω

1

2
η2(x)ζ2(t)u(x, t)2 dx−

∫ t

t0

∫

D∩Ω
η2ζζ ′u2 dx dt,
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since ζ vanishes near t0. Then, the second term of Eq. (17) satisfies

∫ t

t0

∫

D∩Ω
A(x, t)∇u · ∇(η2ζ2u) dx dt =

∫ t

t0

∫

D∩Ω
η2ζ2A∇u · ∇u+ 2ηζ2uA∇u · ∇η dx dt.

Combining these two terms gives the following equality:

∫

D∩Ω

1

2
η2ζ2(t)u2 dx+

∫ t

t0

∫

D∩Ω
η2ζ2A∇u · ∇u ≤

∫ t

t0

∫

D∩Ω
2ηζ2|u||A∇u · ∇η| dx dt

+

∫ t

t0

∫

D∩Ω
η2ζ|ζ ′|u2 dx dt.

We now use the uniform parabolicity of P: λ|∇u|2 ≤ A∇u ·∇u and |A∇u ·∇η| ≤ Λ|∇u‖∇η|
to obtain

∫

D∩Ω

1

2
η2ζ2(t)u2 dx+ λ

∫ t

t0

∫

D∩Ω
η2ζ2|∇u|2 dx dt

≤ 2Λ

∫ t

t0

∫

D∩Ω
ηζ2|u||∇u||∇η| dx dt+

∫ t

t0

∫

D∩Ω
η2ζ|ζ ′|u2 dx dt

≤ ε

∫ t

t0

∫

D∩Ω
η2ζ2|∇u|2 dx dt+ Λ2

ε

∫ t

t0

∫

D∩Ω
ζ2|∇η|2u2 dx dt+

∫ t

t0

∫

D∩Ω
η2ζ|ζ ′|u2 dx dt,

where the second inequality follows from Young’s inequality: ab ≤ (a2 + b2)/2 with a =√
2εη|∇u| and b = Λ

√

2/ε|u‖∇η|, for any ε > 0. Then, choosing ε = λ/2 and using the
properties |∇η| ≤ 1/δ0, |ζ ′| ≤ 1/δ1, 0 ≤ η ≤ 1, and 0 ≤ ζ ≤ 1, we find that

1

2

∫

D∩Ω
η2ζ2(t)u2 dx+

λ

2

∫ t

t0

∫

D∩Ω
η2ζ2|∇u|2 dx dt ≤

(
2Λ2

λδ20
+

1

δ1

)∫ t

t0

∫

D∩Ω
u2 dx dt. (18)

The result follows from the properties of η and ζ.

Since t ∈ (t0, t1) is arbitrary in Eq. (18), we also obtain the following inequality:

ess sup
t∈I′

∫

K∩Ω
|u(x, t)|2 dx ≤

(
4Λ2

λδ20
+

2

δ1

)∫

I

∫

D∩Ω
|u(x, t)|2 dx dt,

which can be combined with Theorem 5 to find that

ess sup
t∈I′

∫

K∩Ω
|u(x, t)|2 dx+

∫

I′

∫

K∩Ω
|∇u(x, t)|2 dx dt ≤ C

∫

I

∫

D∩Ω
|u(x, t)|2 dx dt, (19)

where C is a constant depending on λ, Λ, K, and I ′. From the definition of the Banach
space V2, Eq. (19) can be understood as an upper bound of the norm of solution u with
respect to this Banach space. Using the bound given by Eq. (19), we can introduce a
subspace X (D × I) of L2(D × I) and prove its closeness.

Lemma 6. Let D be a domain such that D ∩ Ω 6= ∅, Γ = ∂D ∩ Ω, I = (t0, t1). Define

X (D × I) to be the subspace of L2(D × I) consisting of the functions u satisfying the

following conditions.
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1. u = 0 on (D \ Ω)× (t0, t1).

2. u ∈ V2(Q
′) for all Q′ = K × (t0 + τ, t1), where K ⊂ D with dist(K,Γ) > 0 and

0 < τ < t1 − t0.

3. Pu = 0 in (D ∩ Ω)× (t0, t1) in the sense that, for almost all t ∈ (t0, t1), the equality

∫

D∩Ω
u(x, t)η(x, t) dx−

∫ t

0

∫

D∩Ω
u∂tη dx dt+

∫ t

0

∫

D∩Ω
A∇u · ∇η dx dt = 0 (20)

holds for all smooth test function η vanishing near ∂(D∩Ω)×(t0, t1) and D ∩ Ω×{t0}.

Then, the space X (D × I) is closed in L2(D × I).

Proof Let v ∈ L2(D × I) and {vk}k∈N ⊂ X (D × I) be a sequence converging to v, we
want to show that v ∈ X (D × I). First, using Eq. (19), we have

‖vk‖V2(Q′) ≤ C‖vk‖L2(D×I).

Following the Banach–Alaoglu Theorem, there exists a subsequence {vik}k∈N of {vk}k∈N
that converges weakly in V2(Q

′) to v̂ ∈ V2(Q
′). Therefore, for any w ∈ L2(Q′), we have

〈v, w〉L2(Q′) = limk→∞〈vik , w〉L2(Q′) = 〈v̂, w〉L2(Q′), which shows that v = v̂ ∈ V2(D× I). By
the same argument v satisfies Eq. (20). Finally, vk = 0 on (D \ Ω) × (t0, t1) implies that
v = 0 on (D \ Ω)× (t0, t1), and v ∈ X (D × I).

3.3 Separable Approximation

The following two lemmas quantify the dimension of a finite-dimensional subspaceW needed
to approximate a function in X (D× I) up to a prescribed relative error. In this way, given
a parabolic equation solution and the desired accuracy, we can determine the rank of the
separable approximant of the corresponding Green’s function. We begin by defining a
finite-dimensional subspace Vk of the space X (D× I), and bounding the distance between
parabolic equation solutions and Vk.

Lemma 7. Let Ω ⊂ R
n be a domain satisfying the uniform interior cone condition, D =

{x ∈ R
n : ‖x− x0‖∞ < d/2} be a cube in R

n of side length d > 0 centered at x0 ∈ R
n such

that Ω ∩ D 6= ∅, and I = (t0, t0 + βd2) for some constant β > 0 and t0 > 0. Then there

exists δ0 > 0 depending only on Ω such that for any k ≥ (1+dd/δ0e)n+2, there is a subspace

Vk ⊂ X (D × I) with dimVk ≤ k such that

distL2(D×I)(u, Vk) ≤ cappr k
− 1

n+2d ‖∇u‖L2(D×I), u ∈ X (D × I) ∩ V2(D × I), (21)

where X (D× I) is defined by Theorem 6, cappr = 2n+2(ω
2−2/n
n θ−2+2Λ2ω

2/n
n β2θ−2−2/n)1/2,

and θ = θ(Ω) is determined by the characteristics of the uniform cone condition.

Proof Let ` ≥ 1, we first subdivide the cube D uniformly into `n sub-cubes and subdivide
the interval (t0, t1) into `

2 subintervals to form `n+2 cylinders of the form Qi = Di×Ii, where
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Di is a cube of side length d/` and Ii is an interval of length β(d/`)2, for 1 ≤ i ≤ `n+2. Since
Ω satisfies the uniform interior cone condition, there exists δ0 = δ0(Ω) > 0 and θ = θ(Ω) > 0
such that if d/` ≤ δ0, then either of the conditions 1 or 2 in Theorem 4 holds for all Di

satisfying Di ∩ Ω 6= ∅.
We now choose ` ≥ dd/δ0e so that d/` ≤ δ0, and define the spaceW of piecewise constant

functions on the domains Qi by

W := {v ∈ L2(D × I) : v is constant on Qi for all 1 ≤ i ≤ `n+2},

then dimW = `n+2. Let 1 ≤ i ≤ `n+2, we first consider the case where Di ∩ Ω 6= ∅. We
know that Di is convex, |Di| = (d/`)n, diam(Di) =

n
√
2d/`, and |Ii| = βd2/`2. According

to Theorem 4, there exists a constant ci ∈ R such that

∫

Qi

|u− ci|2 dx dt ≤




22n+2ω

2− 2
n

n

θ2
+

22n+3Λ2ω
2
n
n β2

θ2+
2
n




d2

`2

∫

Qi

|∇u|2 dx dt. (22)

If Di∩Ω = ∅, then u ∈ X (D× I) implies that u = 0 on Qi, and Eq. (22) holds with ci = 0.
Next, we define a piecewise constant function ū ∈W such that ū|Qi

= ci for 1 ≤ i ≤ `n+2.
Summing Eq. (22) over i yields the following inequality

‖u− ū‖L2(D×I) ≤




22n+2ω

2− 2
n

n

θ2
+

22n+3Λ2ω
2
n
n β2

θ2+
2
n





1/2

d

`
‖∇u‖L2(D×I).

Let k ≥ (1+dd/δ0e)n+2 be an integer and choose ` = bk 1
n+2 c such that `n+2 ≤ k < (`+1)n+2,

` ≥ dd/δ0e, and dimW ≤ `n+2 ≤ k. Now, since 1/` ≤ 2/(`+ 1) ≤ 2k−
1

n+2 , we have

‖u− ū‖L2(D×I) ≤




22n+4ω

2− 2
n

n

θ2
+

22n+5Λ2ω
2
n
n β2

θ2+
2
n





1/2

k−
1

n+2d‖∇u‖L2(D×I). (23)

Finally, let P : L2(D × I) → X (D × I) be the L2(D × I)-orthogonal projection onto
X (D × I) and Vk := P (W ). The statement of the lemma follows from Eq. (23) and

distL2(D×I)(u, Vk) ≤ ‖u− P (ū)‖L2(D×I) = ‖P (u− ū)‖L2(D×I) ≤ ‖u− ū‖L2(D×I).

From Theorem 7, we can use the constant δ0 to fix an accuracy and construct a finite-
dimensional subspace W of X (D × I) such that the L2(D × I)-distance between solutions
to Eq. (1) and W is within the accuracy threshold. In the following lemma, we provide an
upper bound on the dimensionality of W .

Lemma 8. Let Ω ⊂ R
n be a domain satisfying the uniform interior cone condition, D1 =

{x ∈ R
n : ‖x− x0‖∞ < d/2}, D = {x ∈ R

n : ‖x− x0‖∞ < (1/2 + ρ)d}, I1 = (t0, t0 + βd2),
and I = (t0, t0 + β(1 + 2ρ)2d2), for some β, ρ > 0. Assume that Ω ∩ D1 6= ∅ and let δ0
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and θ be the constant introduced in Theorem 7 characterized by the uniform cone condition.

Then, for any M ≥ exp{2(d(1 + 2ρ)d/δ0e + 1)}, there exists a subspace W ⊂ X (D1 × I1)
such that

distL2(D1×I1)(u,W ) ≤ 1

M
‖u‖L2(D×I), ∀u ∈ X (D × I),

and

dim(W ) ≤ cn+2
ρ dlogMen+3 + dlogMe, cρ = e(2 + ρ−1)κc cappr, (24)

where κc =
√

4Λ2/λ2 + 1/(2λβ) and cappr is the constant defined in Theorem 7.

Proof Our proof follows closely the argument for elliptic PDEs (Bebendorf and Hackbusch,
2003, Lem. 2.6). Let i ∈ N≥1 and, for 0 ≤ k ≤ i, define

D(k) = {x ∈ R
n : ‖x− x0‖∞ < (1/2 + (1− k/i)ρ)d},

I(k) = (t0, t0 + β(1 + 2(1− k/i)ρ)2d2),

such that D1 = D(i) ⊂ D(i−1) ⊂ · · · ⊂ D(0) = D, and I1 = I(i) ⊂ I(i−1) ⊂ · · · ⊂ I(0) = I.
We also denote Q(k) = D(k) × I(k) and X (k) = X (Q(k)). Let 1 ≤ j ≤ i. By applying
Theorem 5 with the domains K = D(j), D = D(j−1), I ′ = I(j), and I = I(j−1), we find that

‖∇v‖L2(Q(j)) ≤ κc
i

ρd
‖v‖L2(Q(j−1)), v ∈ X

(j−1). (25)

Moreover, Eq. (19) shows that X (j−1) ⊂ X (j) ∩ V2(Q
(j)). In addition, the choice of

D = D(j) and I = I(j) in Theorem 7, shows that there exists a subspace Vj ⊂ X (j) such
that

distL2(Q(j))(v, Vj) ≤ cappr
(1 + 2ρ)d

iB
‖∇v‖L2(Q(j)), v ∈ X

(j) ∩ V2(Q(j)), (26)

where B is a constant chosen so that d(1 + 2ρ)d/δ0e + 1 ≤ iB ≤ k
1

n+2 and dimVj ≤ k.
In particular, we can set k := d(iB)n+2e so that k ≥ (1 + d(1 + 2ρ)d/δ0e)n+2. Combining
Eqs. (25) and (26) yields

distL2(Q(j))(v, Vj) ≤
1 + 2ρ

ρ

cappr κc
B

‖v‖L2(Q(j−1)), v ∈ X
(j−1).

We now choose B := B0M
1/i and B0 := capprκc

1+2ρ
ρ to obtain the following inequality:

distL2(Q(j))(v, Vj) ≤M−1/i ‖v‖L2(Q(j−1)), v ∈ X
(j−1). (27)

Now let u ∈ X (0). We aim to iteratively express u as a sum of functions in smaller
subspaces. Initially, we define v0 = u and use Eq. (27) to decompose v0 on Q(1) as v0|Q(1) =
u1 + v1, where u1 ∈ V1 and v1 satisfies ‖v1‖L2(Q(1)) ≤M−1/i ‖v0‖L2(Q(0)). Consequently, we
see that v1 ∈ X (1). We can continue this process for 1 ≤ j ≤ i, such that vj−1|Q(j) = uj+vj ,

where uj ∈ Vj and vj ∈ X (j) satisfies ‖vj‖L2(Q(j)) ≤ M−1/i ‖vj−1‖L2(Q(j−1)). Finally, we
define the subspace W = span{Vj |D1×I1 : 1 ≤ j ≤ i} using the restrictions of the Vj to the
smallest domain Q(i) = D(i) × I(i) = D1 × I1, which contain uj |D1×I1 ∈ Vj |D1×I1 ⊂W for
1 ≤ j ≤ i. Therefore, the decomposition of v0 as v0 = vi +

∑i
j=1 uj leads to

distL2(D1×I1)(v0,W ) ≤ ‖vi‖L2(D1×I1) ≤ (M−1/i)i‖v0‖L2(Q(0)) =M−1‖u‖L2(D×I).
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We then choose i = dlogMe and use the definition of W to bound the dimension of W by

dim(W ) ≤
i∑

j=1

dim(Vj) = id(iB)n+2e ≤ i+Bn+2in+3 ≤ dlogMe+Bn+2
0 en+2dlogMen+3,

because B = B0M
1/i ≤ B0e. The statement of the lemma follows by defining cρ = B0e =

capprκce
1+2ρ
ρ .

We are now ready to prove that the Green’s function associated with a parabolic PDE
has a separable approximation in terms of L2-norm on well-separated domains.

Theorem 9. Let Ω ⊂ R
n be a domain satisfying the uniform interior cone condition and

ρ > 0. Let D1, D2 ⊂ R
n be two domains such that D1 is convex and I1, I2 ⊂ (0, T ) be two

open bounded intervals, such that QX = (D1∩Ω)×I1 and QY = (D2∩Ω)×I2 are admissible,

i.e., dist(QX , QY ) ≥ ρmax{diamQX , diamQY }. Then, for any ε > 0 sufficiently small,

there exists a separable approximation of the form

Gk(x, t, y, s) =
k∑

i=1

ui(x, t)vi(y, s), (x, t, y, s) ∈ QX ×QY ,

where k ≤ kε = cn+2
ρ/2 dlog 1

ε en+3 + dlog 1
ε e, and cρ is defined in (24), such that

‖G(·, ·, y, s)−Gk(·, ·, y, s)‖L2(QX) ≤ ε‖G(·, ·, y, s)‖L2(Q̂X), (y, s) ∈ QY , (28)

where Q̂X := {X ∈ Q, dist(X,QX) ≤ ρ
2 diamQX}.

Proof Let ε0 = e−2(d(1+ρ)d/δ0e+1) with δ0 defined in Theorem 7, I1 = (t0−βd2/2, t0+βd2/2),
with t0 > 0 and β defined in Eq. (5), and d = max{diamQX , diamQY }. We also let
D = {x ∈ R

n, dist(x,D1 ∩ Ω) ≤ ρd
2 } and I = {t0 − βd2(1 + ρ)2/2, t0 + βd2(1 + ρ)2/2}.

Similarly to Bebendorf and Hackbusch (2003), we observe that because dist(Q̂X , QY ) ≥
dist(D × I,QY ) ≥ ρd

2 > 0, the right-hand side ‖G(·, ·, y, s)‖L2(Q̂X) does not contain the
singularity of G.

According to Theorem 8, withM = ε−1 and ρ replaced with ρ/2, we can set {u1, . . . , uk}
be the basis of the subspace W ⊂ X (D1 × I1) with k = dimW ≤ cn+2

ρ/2 dlog 1
ε en+3 + dlog 1

ε e.
For any (y, s) ∈ QY , the function gY := G(·, ·, y, s) is in X (D×I). Moreover, gY = ĝY +rY
holds with ĝY ∈W and ‖rY ‖L2(QX) ≤ ε‖gY ‖L2(Q̂X). Then, expressing ĝY with the basis, we

obtain ĝY =
∑k

i=1 vi(y, s)ui, with coefficients vi(y, s) depending on y and s. Since (y, s) ∈
QY , the vi are functions defined on QY . The function Gk(x, t, y, s) =

∑k
i=1 ui(x, t)vi(y, s)

satisfies the estimate (28).

If we integrate Eq. (28) over (y, s) ∈ QY , we obtain the inequality stated in Section 1.3:

‖G−Gk‖L2(QX×QY ) ≤ ε‖G‖L2(Q̂X×QY ).
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4. Learning Rate for Green’s Functions Associated with Parabolic PDEs

In this section, we combine Theorem 9 and the generalization of the randomized SVD to
HS operators (Boullé and Townsend, 2022a,b) to construct a global approximant of Green’s
functions associated with parabolic PDEs. We suppose that one can generate N ≥ 1
arbitrary forcing terms {f1, . . . , fN} and observe the corresponding solutions {u1, . . . , uN}
from an unknown parabolic PDE of the form of Eq. (1) and its adjoint, and derive a
learning rate by working out the number of training pairs needed to learn the Green’s
function within a prescribed tolerance. As discussed in Section 1.2, there is an additional
difficulty compared with the elliptic case (Boullé and Townsend, 2022a) as Green’s functions
of parabolic operators are not guaranteed to be squared-integrable in spatial dimensions
greater than two. Therefore, we prove the following theorem, which provides rigorous
probability bounds for approximating the Green’s function in the L1-norm from a given
number of forcing terms and solutions.

Theorem 10. Let Ω ⊂ R
n be a domain satisfying the uniform interior cone condition,

U = Ω × [0, T ], ε > 0 sufficiently small, and G be the Green’s function associated with

the parabolic operator P in Eq. (1). Then, there exists a randomized algorithm that can

construct an approximation G̃ of G using O(ε−
n+2
2 log(1/ε)) many input-output pairs of (1)

and its adjoint such that

‖G− G̃‖L1(U×U) = O(Γ−1/2
ε ε) ‖G‖L1(U×U),

with probability ≥ 1−O(εlog
n+1(1/ε)). The quantity Γε is defined in Eq. (39) and characterizes

the quality of the training pairs to learn G.

The proof of the theorem occupies the rest of the section. It exploits the regularity result
of Green’s functions on admissible domains stated in Theorem 9, and standard Gaussian
bounds near the diagonal D = {(x, t, y, s) ∈ U × U , (x, t) = (y, s)}.

4.1 Hierarchical Partition of the Temporal Domain

We start the proof of Theorem 10 by constructing a hierarchical partition of the domain
U ×U into admissible and non-admissible domains. We aim to obtain a partition such that
the vast majority of the subdomains are admissible, while the remaining non-admissible
domains all have small areas. In this way, we can obtain accurate low-rank approximations
on admissible domains by combining Theorem 9 with the randomized SVD (see Section 2.3),
and safely neglect Green’s functions on non-admissible domains.

Without loss of generality, we assume that U = Ω× I, where Ω ⊂ D = [0, 1]n, I = [0, 1],
and β = 1 in Eq. (5). Otherwise it’s straightforward to shift and scale Ω and [0, T ] by
adjusting β. We construct a partition of U × U such that if QX ×QY is an element of the
partition, where QX = (Ω ∩Dx)× IX , then

diam(DX) = diam(IX)1/2 = diam(QX) = diam(QY ). (29)

This condition is determined by the metric defined in Eq. (5) and guarantees that a large
proportion of the domains in the partition are admissible. In this setting, choosing ρ = 1
in Eq. (7) is convenient for the definition of admissible sets.
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First, we define a hierarchical partition of D × I for an arbitrary nε ≥ 0 number of
partition levels using an octree-type structure. At each level of the partition, the spatial
domain is divided into 2n domains while the temporal domain is divided into 4 subdomains
so that Eq. (29) is satisfied. The tree structure of the partition is defined as follows.

• At the level L = 0, the domain I1,...,1 := I1 × . . .× I1
︸ ︷︷ ︸

n times

×I1 = [0, 1]n × [0, 1] is the root
of the partitioning tree.

• At a given level 0 ≤ L ≤ nε − 1, if Ij1,...,jn,jn+1 is a node of the tree, then it has 4× 2n

children of the form

I2j1+k1,...,2jn+kn,4jn+1+kn+1 , k1, . . . kn ∈ {0, 1}, kn+1 ∈ {0, . . . 3}.

Here, if Ij1 = [a, b] ⊂ [0, 1], then I2j1 = [a, (a + b)/2] and I2j1+1 = [(a + b)/2, b]. The
division of the temporal interval Ijn+1 into four subintervals is performed similarly.

The tree structure of the hierarchical partition in spatial dimension n = 1 is displayed in
Fig. 2 along with examples of admissible subdomains.

Using the partition of D × I, we can define a tree structure for (D × I)× (D × I) and
cluster the tree nodes into admissible and non-admissible sets, respectively denoted by Padm

and Pnon-adm. These two sets also allow us to design a hierarchical partition of the domain
(D × I)× (D × I).

• At the level L = 0, the root of the tree is given by the domain I1,...1 × I1,...1, which
belongs to the non-admissible set as it does not satisfy Eq. (7).

• At a given level 0 < L ≤ nε − 1, if Ij1,...,jn+1 × Ij̃1,...,j̃n+1
is a node of the tree, then

it is either in the non-admissible set if all the respective indices are separated by at
most one, i.e., |j1 − j̃1| ≤ 1, . . . , |jn+1 − j̃n+1| ≤ 1, or labeled as admissible otherwise.
If the node is admissible then it is added to the hierarchical partition. Otherwise,
we subdivide it into (4× 2n)2 children using cross-products of the 4× 2n children of
Ij1,...,jn+1 and Ij̃1,...,j̃n+1

in the partition of D × [0, 1].

• At the final level L = nε, we add both the admissible and non-admissible domains to
the partition.

In Fig. 3, we illustrate slices of the spatial and temporal partition of the domain (D ×
I)× (D × I) when D = [0, 1]. The regions coloured in green are admissible while the ones
coloured in red are non-admissible. In addition, the grey area in Fig. 3(b) shows the domain
on which the Green’s function is zero. At the final level nε, all the non-admissible domains
have the same diameter and, if QX ×QY is non-admissible with QX = DX × IX , we have
diam(QX) = diam(DX) = diam(IX)1/2 = 2−nε . Therefore, the width of the non-admissible
temporal region (see Fig. 3(b)) is given by

rnε =
√
2× 2−2nε . (30)

We now compute an upper bound on the number of admissible domains in the partition.
By construction, the number of non-admissible regions in the hierarchical partition satisfies

|Pnon-adm| = (3× 4nε − 2)× (3× 2nε − 2)n. (31)
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I1,1

T ime

S
p
a
ce

Figure 2: Hierarchical partition of the domain [0, 1]× [0, 1], where the spatial domains are
divided into 2 at each level, and the temporal domains are divided into 4. At
the levels 1 and 2 of the tree, the domains coloured in red (resp. green) are
non-admissible (resp. admissible) for the blue domain.
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Figure 3: (a) Illustration of level 3, 4, and 5 of the hierarchical partition of the spatial do-
main [0, 1]× [0, 1]. The green blocks are admissible domains with ρ = 1 while the
pink domains are non-admissible. The left to right panels display one admissible
domain QX×QY along with the elongated domains Q̂X×QY (dashed red rectan-
gle) and Q̃X×QY (dashed blue rectangle) appearing in the bounds of Section 4.4.
(b) Illustration of the hierarchical partition of the temporal domain. At each level
the non-admissible blocks are separated into 42 domains. For partition level nε,
rnε is the width of the non-admissible region.
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Moreover, the number of new admissible domains, |Padm(L)|, added to the partition at a
given level 1 ≤ L ≤ nε is given by the number of children of the non-admissible domains at
the previous level minus the number of non-admissible sets at the current level, i.e.,

|Padm(L)| = (4× 2n)2(3× 4L−1 − 2)(3× 2L−1 − 2)n − (3× 4L − 2)(3× 2L − 2)n, (32)

where the number of non-admissible sets is given by Eq. (31). We can then compute the
total number of admissible domains, |Padm| in the partition by summing Eq. (32) over
1 ≤ L ≤ nε and obtain

|Padm| =
nε∑

L=1

22n+4(3× 4L−1 − 2)(3× 2L−1 − 2)n − (3× 4L − 2)(3× 2L − 2)n

= 1− (3× 4nε − 2)(3× 2nε − 2)n + (22n+4 − 1)

nε−1∑

L=0

(3× 4L − 2)(3× 2L − 2)n.

We can bound |Padm| by computing the sum of a geometric series as

nε−1∑

L=0

(3× 4L − 2)× (3× 2L − 2)n ≤ 3n+1
nε−1∑

L=0

(2n+2)L = 3n+1 2
(n+2)nε − 1

2n+2 − 1
≤
(
3

2

)n+1

2(n+2)nε .

The number of admissible domains is bounded by

|Padm| ≤ 22n+43n+12−(n+1)2(n+2)nε = 24× 6n2(n+2)nε . (33)

We conclude the construction of the hierarchical partition of U × U by intersecting each
element of the partition with (Ω× I)× (Ω× I). In the following section, we assume that we
have already constructed a partition of U × U for a general bounded domain Ω ⊂ R

n and
I = [0, T ]. In fact, the number of admissible domains and size of the non-admissible region
(cf. Eqs. (30) and (33)) remain the same up to a constant that depends on the size of the
domain U .

4.2 Diagonal Estimate of Green’s Functions

This section determines the number of hierarchical partitioning levels needed to neglect
the Green’s function on the non-admissible regions of the partition of U × U defined in
Section 4.1. To start, we use a global Gaussian estimate for Green’s functions associated
with parabolic PDEs, which guarantees the existence of a positive constant C > 0 such that
the Green’s function is positive and bounded by (Cho et al., 2012, Eq. 4.2)

G(x, t, y, s) ≤ C
Θ(t− s)

(t− s)n/2
exp

(

−κ|x− y|2
t− s

)

, (x, t) 6= (y, s) ∈ U , (34)

where κ > 0 is a constant depending on the uniform parabolicity constants (3) and is
independent of T . We remark that the Green’s function is zero if t ≤ s, as can be seen
in the gray regions of Fig. 3(b). For a given diameter 0 < rt ≤ T , we define a diagonal
subdomain of U × U as

Drt := {(x, t, y, s) ∈ U × U , |t− s| < rt}.
We use the estimate (34) to bound the Green’s function on the domain Drt in the Lp-norm,
for p ≥ 1.
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Proposition 11. Let p ≥ 1, 0 < rt ≤ T , and assume that n(p− 1) < 2. Then, there exists

a constant Cdiag = Cdiag(Ω, T, p, κ) > 0 such that

‖G‖Lp(Drt )
≤ Cdiagr

[1−n(p−1)/2]/p
t ‖G‖Lp(U×U).

Proof Let y ∈ Ω, s ∈ (0, T ), and denote Is = (s,min(s + rt, T )). Integrating Eq. (34),
raised to the power p, on the domain Ω× Is ⊂ U yields the following inequality,

∫

Is

∫

Ω
|G(x, t, y, s)|p dx dt ≤

∫

Is

∫

Ω

(Θ(t− s))pCp

(t− s)pn/2
exp

{

−pκ|x− y|2
t− s

}

dx dt

≤ Cp

∫ rt

0
t̃−pn/2

∫

Rn

e−pκ|x|2/t̃ dx dt̃,

where we use the change of variables t̃ = t − s. We then make the change of variables
x̃ = x

√

pκ/t̃ to obtain

‖G(·, ·, y, s)‖pLp(Ω×Is)
≤ Cp

∫ rt

0
t̃−pn/2

(
t̃

p

)n/2∫

Rn

e−|x̃|2 dx̃ dt̃ ≤ Cp

(
π

p

)n/2∫ rt

0
t̃−n(p−1)/2 dt̃

≤
(
π

p

)n/2 Cp

1− n(p− 1)/2
r
1−n(p−1)/2
t .

Integrating this expression over y ∈ Ω and s ∈ (0, T ) yields

‖G‖pLp(Drt )
≤
(
π

p

)n/2 |Ω|TCp

1− n(p− 1)/2
r
1−n(p−1)/2
t .

If n(p− 1) < 2, then the Green’s function is in Lp(U ×U), and we can introduce a constant
Cdiag = Cdiag(Ω, T, p, κ) > 0, such that

‖G‖Lp(Drt )
≤ Cdiagr

[1−n(p−1)/2]/p
t ‖G‖Lp(U×U),

which concludes the proof.

We conclude that the Green’s function restricted to the domain Drt has a relative small
norm if rt is small. Applying Theorem 11 with the parameter p = 1 gives the following L1

estimate:
‖G‖L1(Drt )

≤ Cdiagrt‖G‖L1(U×U). (35)

Due to the hierarchical partition of the temporal domain, we can easily bound the norm
of G on non-admissible sets by using a temporal radius of rt = rnε =

√
2 × 2−2nε up to

a constant depending on the size of the domain U , where nε is the number of hierarchical
levels (see. Eq. (30)). Then, since Pnon-adm ⊂ Drt as illustrated by Fig. 3, Eq. (35) yields

‖G‖L1(Pnon-adm) ≤
√
2Cdiag2

−2nε‖G‖L1(U×U) ≤ ε‖G‖L1(U×U), (36)

where we choose nε ∼ (1/2) log2(1/ε) hierarchical levels such that
√
2Cdiag2

−2nε ≤ ε. This
means that we can safely approximate G with the zero approximant on non-admissible
domains, and still get an approximation of G within a relative accuracy of ε in the L1 norm.
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One might be able to slightly improve Theorem 11 by computing the integral of each non-
admissible domain, similarly to the elliptic case (Boullé and Townsend, 2022a). However,
the gain is expected to be marginal since the decay of the bound in Eq. (34) is essentially
controlled by a well-separation of the temporal variables t and s.

4.3 Approximating Green’s Functions on Admissible Domains

The approximation of Green’s functions on the well-separated domains of the partition of
U × U is achieved using the randomized SVD for HS operators described in Section 2.3.
Let QX × QY ∈ Padm be an admissible domain and k = kε = c3ρ/2dlog 1

ε en+3 + dlog 1
ε e be

a target rank derived in Theorem 9, we can combine Theorem 9 and the Eckart–Young–
Mirsky theorem (Hsing and Eubank, 2015, Thm. 4.4.7), which characterizes the best rank-k
approximation error to a HS operator, to bound the singular values of the Green’s function
restricted to QX ×QY by





∞∑

j=kε+1

σ2j,QX×QY





1/2

≤ ‖G−Gkε‖L2(QX×QY ) ≤ ε‖G‖L2(Q̂X×QY ), (37)

where σj,QX×QY
are the singular values of G restricted to QX ×QY . We conclude that the

singular values of G decay rapidly to 0 on admissible domains.
With the rapidly decaying singular values, we can follow the arguments in (Boullé and

Townsend, 2022a, Sec. 4.1.2) to use the randomized SVD for learning Green’s functions
on admissible sets. Roughly speaking, we start with a Gaussian process on U and define
a covariance kernel K that restricts onto QY × QY . We then extend the restricted oper-
ator by 0 on U × U and apply the randomized SVD. As a result, with a target rank of
kε = c3ρ/2dlog 1

ε en+3 + dlog 1
ε e, an oversampling parameter p = kε, and t = e, we combine

Theorem 9 and Eq. (37) to obtain an approximant G̃X×Y of G on QX ×QY such that

‖G− G̃X×Y ‖L2(QX×QY ) ≤
(

1 + se

√

6kε
γkε,QX×QY

Tr(K)

λ1

)

ε‖G‖L2(Q̂X×QY ), (38)

which holds with probability greater than 1−e−kε−e−kε(s2−2 log(s)−1) ≥ 1−2e−kε when s ≥ 3.
The factor γkε,QX×QY

characterizes the suitability of the covariance kernel for learning G
on the domain QX × QY . In this way, our algorithm requires Nε,X×Y = 2(kε + p) =
O
(
logn+3(1/ε)

)
input-output pairs to learn an approximant to G on QX ×QY .

Remark 12. To apply the projection operator associated with the randomized approximation

on the left of the HS operator in Eq. (8), we need to solve the adjoint equation associated

with Eq. (1), which is allowed by Assumption 1.

4.4 Recovering the Green’s Function on the Entire Domain

We can now recover the Green’s function G on the entire domain U × U and compute the
number of input-output pairs needed to approximate it within accuracy ε > 0. With nε
computed in Section 4.2, we can follow the arguments in (Boullé and Townsend, 2022a,
Sec. 4.4.1) to quantify the total number of input-output pairs we need to approximate G
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using the randomized SVD described in Section 4.3. In particular, we denote the worst
γkε,QX×QY

by
Γε = min{γkε,QX×QY

, QX ×QY ∈ Padm}, (39)

so that we need

Nε = O(|Padm| logn+3(1/ε)) = O(ε−
n+2
2 logn+3(1/ε))

input-output pairs to capture the Green’s function on admissible domains with nε ∼
(1/2) log2(1/ε) hierarchical levels (see Section 4.2), and the number of admissible domains
given by Eq. (33).

We now provide an explicit bound for the approximation G̃ if we use zero approximant

on non-admissible sets and learn with Nε = O(ε−
n+2
2 logn+3(1/ε)) many input-output pairs

on admissible domains. First, we separate the norm error into error on admissible sets and
that on non-admissible sets as

‖G− G̃‖L1(U×U) ≤ ‖G− G̃‖L1(Pnon−adm) + ‖G− G̃‖L1(Padm)

≤ ε‖G− G̃‖L1(U×U) +
∑

QX×QY ∈Padm

‖G− G̃‖L1(QX×QY ),
(40)

where the second inequality comes from Eq. (36). Let QX × QY ∈ Padm, we focus on
bounding the error on this subdomain with Eq. (38). Using Hölder’s inequality, we have

‖G(·, ·, y, s)−Gk(·, ·, y, s)‖L1(QX) ≤ |QX |1/2‖G(·, ·, y, s)−Gk(·, ·, y, s)‖L2(QX), (y, s) ∈ QY ,

which implies that

‖G− G̃‖L1(QX×QY ) ≤ |QX |1/2|QY |1/2‖G− G̃‖L2(QX×QY ). (41)

We then apply Eq. (38) to estimate the term ‖G− G̃‖L2(QX×QY ) in Eq. (41) and bound the
resulting right-hand side term ‖G‖L2(Q̂X×QY ) by an L1-estimate to complete the bound of
the approximation error on admissible domains. Let γ > 0 be an arbitrary constant and
define Q̃X := {X ∈ U , dist(X, Q̂X) ≤ γ

2 diam Q̂X}. We first remark that for (y, s) ∈ QY ,

G(·, ·, y, s) satisfies PG(·, ·, y, s) = 0 in (D̃ ∩ Ω) × Ĩ and vanishes on (D̃ ∩ ∂Ω) × Ĩ, where
Q̃X = (D̃ ∩ Ω) × Ĩ. Therefore, by Moser’s local maximum estimate (Lieberman, 1996,
Thm. 6.30), we have

‖G(·, ·, y, s)‖L∞(Q̂X) ≤ C1|Q̃X |−1‖G(·, ·, y, s)‖L1(Q̃X), (42)

where C1 = C1(n, λ,Λ, γ) > 0. Eq. (42) implies that for all (y, s) ∈ QY , we have
∫

Q̂X

|G(x, t, y, s)|2 dx dt ≤ C2
1 |Q̃X |−2|Q̂X |

(∫

Q̃X

|G(x, t, y, s)| dx dt
)2

. (43)

By integrating over (y, s) ∈ QY and using an integral version of Minkowski’s inequality, we
obtain
∫

QY

∫

Q̂X

|G(x, t, y, s)|2 dx dt dy ds ≤ C2
1 |Q̃X |−2|Q̂X |

∫

QY

(∫

Q̃X

|G(x, t, y, s)| dx dt
)2

dy ds

≤ C2
1 |Q̃X |−2|Q̂X |

{
∫

Q̃X

(∫

QY

|G(x, t, y, s)|2 dy ds
)1/2

dx dt

}2

. (44)
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On the other hand, for (x, t) ∈ Q̃X , G(x, t, ·, ·) satisfies P∗G(x, t, ·, ·) = 0 in QY , where P∗

is the adjoint operator of P (Cho et al., 2008). Similarly to Eqs. (42) and (43), we have
∫

QY

|G(x, t, y, s)|2 dy ds ≤ C2
2 |Q̃Y |−2|QY |

(∫

Q̃Y

|G(x, t, y, s)| dy ds
)2

, (45)

where Q̃Y := {Y ∈ U , dist(Y,QY ) ≤ γ
2 diamQY } and C2 > 0 is a constant. Combining (44)

and (45) yields
∫

QY

∫

Q̂X

|G(x, t, y, s)|2 dx dt dy ds ≤ C2
1C

2
2

|Q̂X ||QY |
|Q̃X |2|Q̃Y |2

{∫

Q̃X

∫

Q̃Y

|G(x, t, y, s)| dy ds dx dt
}2

,

or equivalently,

‖G‖L2(Q̂X×QY ) ≤ C1C2|Q̃X |−1|Q̂X |1/2|Q̃Y |−1|QY |1/2‖G‖L1(Q̃X×Q̃Y ). (46)

Finally, the multiplication of Eq. (46) by the term |QX |1/2|QY |1/2 from Eq. (41) yields

|QX |1/2|QY |1/2‖G‖L2(Q̂X×QY ) ≤ C‖G‖L1(Q̃X×Q̃Y ),

where C > 0 is a constant, because QX ⊂ Q̂X ⊂ Q̃X and QY ⊂ Q̃Y .
We then choose γ = 1/16 so that the domain Q̃X × Q̃Y is included in a finite number,

Cn, of neighbors in the hierarchical partition of the domain including itself (see Fig. 3(a)).
Combining Eqs. (38) and (40) and the L1 argument described in the previous paragraph,
we conclude that

‖G− G̃‖L1(U×U) ≤ ε‖G‖L1(U×U) +
∑

QX×QY ∈Padm

‖G− G̃‖L1(QX×QY )

≤ ε‖G‖L1(U×U) +
∑

QX×QY ∈Padm

sCsvdk
1/2
ε Γ−1/2

ε ε‖G‖L1(Q̃X×Q̃Y )

≤ s(2Cn + 1)Csvdk
1/2
ε Γ−1/2

ε ε‖G‖L1(U×U),

(47)

where Csvd > 0 is a constant.
Finally, we choose s = 3 to obtain a probability of failure of the randomized SVD less

than 2e−kε on each admissible domain (cf. Section 4.3). Following Eq. (47), as ε → 0, the
global approximation error between G and the constructed approximant G̃ on U×U satisfies

‖G− G̃‖L1(U×U) = O(Γ−1/2
ε log(n+3)/2(1/ε)ε) ‖G‖L1(U×U),

with probability ≥ (1 − 2e−kε)24
n+1×2(n+2)nε

= 1 − O(εlog
n+2(1/ε)−n+2

2 ). This indicates that
G̃ is a good approximation of G with high probability. We then make the change of variable
ε̃ := ε log(n+3)/2(1/ε) to obtain the bound

‖G− G̃‖L1(U×U) = O(Γ
−1/2
ε̃ ε̃) ‖G‖L1(U×U),

with probability ≥ 1−O(ε̃log
n+1(1/ε̃)) for ε small enough. Note that the factor Γε̃ is changed

according to its implicit definition given by Eq. (39). As a result, the number of input-output
pairs is given by

Nε̃ = O(ε̃−
n+2
2 log(n+3)(1−n+2

4
)(1/ε̃)) = O(ε̃−

n+2
2 log(1/ε̃)),

and we can drop the tilde symbol to conclude the proof of Theorem 10.
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5. Summary and Discussion

We derive a rigorous learning rate for parabolic operators, by giving an upper bound on
the number of training data needed to learn Green’s functions within a prescribed relative
accuracy. Our analysis relies on an extension of a result from Bebendorf and Hackbusch
(2003) to show that Green’s functions of parabolic operators admit low-rank properties on
well-separated domains, i.e., away from the singularity near the diagonal. A similar low
rank property is derived for elliptic operators in dimension three. This result may moti-
vate the development of novel algorithms that use the hierarchical structures of parabolic
operators to discretize time-dependent equations. One interesting outcome of this work
is that the analysis and the resulting approximation error bounds are obtained using the
L1-norm since Green’s functions of parabolic operators in spatial dimension greater than
one are usually not square-integrable. This fact may partially explain the challenges met by
the current deep learning techniques that attempt to learn the solution operators of time-
dependent mathematical models using a quadratic loss function. Hence, Krishnapriyan
et al. (2021) and Wang et al. (2022) recently observed and analysed mode failure issues in
existing physics-informed neural network architectures. The development of PDE learning
techniques based on the L1 loss and NN architectures exploiting singularities of the underly-
ing model, such as rational NNs (Boullé et al., 2020), is of significant interest for the field to
overcome the challenges resulting from learning PDEs with short-lived transient dynamics.
Finally, we note that the analysis performed in this paper is applicable to obtain a learning
rate for elliptic PDEs in any spatial dimension in L1-norm. This generalizes the previous
results from Boullé and Townsend (2022a), and concludes the study of elliptic and parabolic
PDEs. However, Green’s functions associated with hyperbolic PDEs do not admit a similar
low-rank structure on well-separated domains due to singularity near characteristics lines.
Thus, the theoretical analysis remains a future challenge.
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